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Abstract

We provide an optimization framework for computing optimal upper and lower bounds

on functional expectations of distributions with special properties, given moment con-

straints. Bertsimas and Popescu [3, 4] have already shown how to obtain optimal moment

inequalities for arbitrary distributions via semidefinite programming. These bounds are

not sharp if the underlying distributions possess additional structural properties, including

symmetry, unimodality, convexity or smoothness. For convex distribution classes that are

in some sense generated by an appropriate parametric family, we use conic duality to show

how optimal moment bounds can be efficiently computed as semidefinite programs. In par-

ticular, we obtain generalizations of Chebyshev’s inequality for symmetric and unimodal

distributions, and provide numerical calculations to compare these bounds given higher

order moments. We also extend these results for multivariate distributions.
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1 Introduction

A generalized moment bound is a problem of the following type: Given “moment” informa-

tion, in the form E[fi(X)] = qi, i = 1, . . . , n , about a random variable X, what are the “best

possible” upper and/or lower bounds on the expectation of a related quantity, φ(X), that

can be derived from the available information? We can formulate the problem of finding

such optimal upper (and similarly lower) bounds as an optimization program:

(P ) max
X∈P

E[φ(X)]

s.t. E[fi(X)] = qi , i = 0, . . . , n .

where the optimization is taken over all possible distributions of the random variable X in

the class P. This setup is made rigorous in the next section.

This formulation is powerful because of the variety of interpretations that can be given to

the random variable X and the underlying class P, as well as the generality of the objective

and constraint functions φ and fi. These are not assumed to be continuous or bounded, to

allow for “moments” such as P (X ≥ a) and distributions with unbounded support. The

problem (P) provides a general framework for studying a multitude of moment problems,

with applications. For example, moment inequalities are used to provide robust estimates

for financial quantities, such as option and stock prices [22, 14, 4], wealth balance in option

hedging [46] or value at risk [13]. In the decision sciences literature, Smith [36] explores

several areas of application of moment bounds, including dynamic programming, decision

analysis with incomplete information (see also [43, 21]) and Bayesian statistics.

The question of feasibility of Problem (P) given standard moment constraints E[Xi] =

qi , i = 1, . . . , n, is the classical moment problem. It has been investigated by probabilists

since the nineteenth century, most notably by Chebyshev [7], Markov [24], Stieltjes [38],

Akhiezer and Krein [1], Karlin and Studden [16]. For collected works on moment problems,

see also Shohat and Tamarkin [35], Tong [40], Landau [20] and references therein. Given

the first and second moment of a univariate random variable, Chebyshev’s inequality [7, 24]

gives a bound on the distribution function. A generalization of this result is due to Bertsimas

and Popescu [3] who compute optimal bounds on arbitrary distributions given any finite

number of generalized moments using semidefinite programming.

Moment bounds are used to provide robust, worst case estimates of unknown random

quantities. These estimates, however, can be overly pessimistic. The reason is that moment

bounds are achieved by discrete distributions, which are not always realistic for practical

applications. For example, in finance, Yamada and Primbs [46] observe that their upper

and lower moment bounds can be far apart, hence not providing much valuable information.

This is partly due to ignoring additional structural properties of the underlying stock price

distributions. In an inventory control application, Scarf [33] and Gallego [12] derive worst
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case order quantities given mean-variance demand information. The resulting bound is very

conservative, as it corresponds to an unrealistic two point distribution of demand.

In contrast to worst case moment based estimates, an alternate approach taken in the

literature is to fit a (functional) parametric distribution to the moment data. For exam-

ple, unknown financial quantities are usually modeled as normal or lognormal distributions.

In a decision sciences context, Soll and Klayman [37] provide measures of overconfidence

by estimating mean absolute dispersion and other distributional properties given sample

quantiles of a distribution which is known to be continuous and unimodal. To make the

analysis tractable, they fit a beta distribution to the data. This approach, akin to the

method of moments estimators, is ubiquitous in a variety of settings for statistical estima-

tion. Lanckriet, El Ghaoui, Bhattacharya and Jordan [19] compares general distribution-free

moment bounds with traditional approaches based on normal densities. Their numerical

data-classification tests on medical disease data show a significant gap between the estimates

provided by the two methods.

Our results are useful in settings where one needs to provide measurements of random

quantities when incomplete distributional information is available. Instead of assuming a

particular distribution type (normal, lognormal, beta), or solving a pure moment problem,

we propose an intermediary approach by incorporating structural distributional properties

into the moment problem.

The contribution of this paper is a general approach for deriving moment bounds that

are tight for some special convex classes of distributions. Our main result (Theorem 4)

states that for piecewise polynomial objective and constraint functions φ and fi, the opti-

mal bound in Problem (P) can be efficiently1 computed as a semidefinite program (SDP),

when the underlying distributions form a convex class that can be “generated” by an appro-

priate parametric family (see Assumptions [A, B]). Such classes include symmetric and/or

unimodal distributions, distributions with convex and/or concave densities, and slope con-

straints. The tighter bounds for these classes extend the results of Bertsimas and Popescu

[3] for arbitrary distributions.

For example, suppose we want to find the best upper bound on the probability P (X −

M ≥ 2σ) that a realization of a random variable X, with mean M and variance σ2, falls

at least 2 standard deviations above the mean. Furthermore, suppose X is known to

be symmetric and unimodal. The one-sided Chebyshev inequality provides a worst case

estimate of 0.20. For a normal random variable the true value is 0.025, compared to which

Chebyshev’s bound is disappointingly weak. However, by incorporating symmetry and

unimodality conditions, but without assuming normality, the tight bound can be reduced

to 0.05, a 75% error improvement over Chebyshev (see Proposition 10 Section 7). Our

numerical results show even greater improvements for higher order moments.

1Throughout the paper we refer to an efficient, or polynomial time algorithm when it takes polynomial

time in the problem data and log(1/ǫ), and it computes a bound within ǫ of the optimal bound for all ǫ > 0.
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Univariate moment bounds for unimodal and higher order convexity classes have been

previously investigated in the remarkable monograph of Karlin and Studden [16] (Chapter

12), who also provide closed form solutions for the mean-variance case. Their proof relies

on a clever integration by parts argument which is valid only if the random variables have

unbounded support. A similar approach is taken by Mulholland and Rogers [25], who also

characterize the corresponding extremal distributions, thereby extending ad-hoc results of

Mallows [23]. None of these papers, however, provides any computational approach. The

main contribution of our results is to provide a simple and efficient method for computing

the optimal solution for special classes of moment problems via semidefinite programming.

Moreover, our duality-based approach allows to characterize more general classes of distri-

butions, including multivariate extensions.

From a methodological standpoint, mathematical programming tools, such as conic

duality and semidefinite optimization, provide a powerful framework for solving efficiently

what otherwise appears to be a difficult problem in probability. Our results exploit and

bring a new dimension – that of special convex distribution classes – to the intriguing

connection between moment problems and semidefinite optimization.

Section 2 formalizes the problem and reviews the main known results. Sections 3 de-

velops the conic duality framework and our main result for univariate convex distribution

classes generated by a one-parameter family. Section 4 derives optimal moment bounds

for symmetric and unimodal distributions. Section 5 investigates the moment problem for

distributions with convex, respectively concave densities, including bounds on the slope.

Several results for combined classes are also outlined. A general multivariate result, and

applications for unimodal and symmetric classes are obtained in Section 6. As an illustra-

tion of our approach, in Section 7, we derive SDP formulations for sharp moment bounds

on tail probabilities for some special classes of distributions. In particular, we obtain ana-

lytical analogues and extensions of Chebyshev’s inequality. Numerical results illustrate the

comparative performance of these bounds.

2 Moment Bounds for Arbitrary Distributions via SDP

In this section, we briefly review the general moment bounds and corresponding SDP ap-

proach from Bertsimas and Popescu [3]. We first set up the problem by introducing some

definitions and notation.

2.1 The Problem and Notation

The goal is to find the best upper bound on E[φ(X)], given expectations qi of functionals

fi(X) of the random vector X, defined on a closed set Ω ⊆ Rm, endowed with a Borel

sigma algebra B = BΩ, typically omitted for notational convenience. The distribution2

2Throughout the paper, we use the terms measure and distribution interchangeably.
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µ : B → [0, 1] of X, defined by µ(S) = P (X ∈ S), is restricted to a particular convex class P.

For a vector of moment functions f = (f0, f1, . . . , fn) : Ω → Rn we denote the set of feasible

moment sequences by QP(f) = {q = (q0, q1, . . . , qn) | q = Eµ[f(X)] for some µ ∈ P}. We

explicitly include the probability mass constraint by setting q0 = 1 , f0 ≡ 1Ω, where 1S(x)

is the indicator function of a set S. The central problem of this research is:

(P ) max
µ
P
∼(f,q)

Eµ[φ(X)]
def
= max

µ∈P
Eµ[φ(X)]

s.t. Eµ[f(X)] = q .

(1)

In this paper, by solving Problem (P) we mean calculating its optimal value. Our use of

“max” and “min” operators does not automatically imply that the corresponding optimal

value is attained. We focus on Problem (P) as an upper bound problem, but all results

hold true for the lower bound problem as well, via a simple change of sign transformation.

Moreover, the mathematical programming setup extends to problems involving inequality

constraints on the moments.

Consider the set X+ = X+(Ω) of all measures on (Ω,B) such that the functions φ

and fi are µ-measurable for all µ ∈ X+. Let M+ = M+(Ω) denote the corresponding

subset of probability measures (i.e. µ(Ω) = 1) and let X = X (Ω) denote the span of M+,

which is a linear space of signed measures. Let X ∗ denote the span of φ, f0, . . . , fn. The

vector spaces X and X ∗ are paired by a bilinear form (scalar product) given by the integral

operator 〈h | µ〉 :=
∫

Ω hdµ =
∫

Ω h(ω)dµ(ω). For probability measures, this is the expectation

operator: Eµ[h(X)] =
∫

Ω hdµ.

The convex hull of a set T is denoted cx(T ), and co(T ) denotes the cone generated

by a set T . Since we are working on infinite dimensional spaces, we extend these concepts

to allow for a continuum of convex combinations. We define the convex set of generalized

mixtures of distributions τ ∈ T by:

mix(T ) = {µ ∈ M+ : µ(A) =
∫

T τ(A)dν(τ) ∀A ∈ B | ν ∈ M+(T )}, (2)

where M+(T ) is the set of all mixing distributions ν over T , with the sigma algebra on

T defined so that the functions τ → τ(A) are measurable in τ ∈ T , for every A ∈ B. In

functional analysis, µ is known as the resultant or barycenter of ν.

Throughout the paper, we denote closure with a bar. We implicitly work with the

standard topology of the reals and the weak topology of measures (e.g. see Billingsley [5]

or Parthasarathy [28]), unless stated otherwise.

Finally, we use standard notation 〈a, b〉 = {αa + (1 − α)b |α ∈ [0, 1]} for the closed

segment between vectors a and b, and (x)+ = max(0, x) for the positive part of x.
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2.2 Review of General Moment Bounds

Consider the moment problem (P ) over P = M+. We denote this problem by (P0). The

dual of this problem can be written as a linear semiinfinite program:

(D0) miny y′q

s.t. y′f(x) − φ(x) ≥ 0 ∀ x ∈ Ω
. (3)

If the support set Ω is finite, this problem is a simple linear program.

Isii [15] shows that solving Problem (P0) is equivalent to solving its dual, under standard

regularity assumptions (e.g. the vector q is in the interior of QM+(f), in the norm topology).

For duality results on moment problems see also [16, 1, 36, 34].

Theorem 1 (Linear Duality) Strong duality holds between Problems (P0) and (D0) un-

der standard Slater conditions.

A characterization of the set of extremal3 distributions is due to Rogosinsky [32] Thm.

1 (see also Shapiro [34] Lemma 3.1):

Proposition 1 (Extremal Distributions) The extremal distributions for Problem (P0)

are discrete with support on at most n + 1 points, where n is the number of moment con-

straints.

Bertsimas and Popescu [3, 4] provide an efficient method for solving a very general class

of moment bounds via semidefinite programming (SDP). Semidefinite optimization prob-

lems are linear programs with linear matrix inequality (LMI) constraints, i.e. semidefinite

positivity constraints on matrices of variables. SDPs preserve the strong duality properties

of linear programs, and are efficiently solvable via interior point methods (see [45] and ref-

erences therein). The following univariate result from [3, 4] constitutes a key ingredient in

this paper:

Theorem 2 (Moment Bounds via SDP) The univariate moment Problem (P0) reduces

to solving a semidefinite program, provided that the dual feasible set ∆0 = {y| y′f(x)−φ(x) ≥

0 , ∀x ∈ Ω ⊆ R} is semi-algebraic.

A set is semi-algebraic whenever it can be characterized by inequality constraints among

polynomials. The proof relies on the fact that a polynomial is non-negative (on an interval)

if and only if it is a sum of squares, which can be expressed as an LMI condition (see

Nesterov [26] or Bertsimas and Popescu [3, 4]):

3µ is an extreme point of a set P if it cannot be represented as the average of two distinct elements of P.
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Proposition 2 The set {y | hy(x) =
∑d

r=0 yrx
r ≥ 0 ,∀ x ∈ I}, where I ⊆ R is a possibly

infinite interval, can be reduced to an LMI of polynomial size in d.

This result shows that Theorem 2 holds for functions φ and f that are piecewise polyno-

mial (henceforth denoted pp). The pp functions form a fairly general class, as most functions

of practical interest can be approximated by piecewise polynomials. Examples of pp func-

tions are interval indicators h(x) = 1[a,b](x) and option-like functions h(x) = (x − a)+.

3 Moment Bounds for General Convex Classes

We extend the results of the previous section to the case when the measures underlying the

Problem (P) are restricted to a convex subset P ⊆ M+.

3.1 Conic Duality, Generating Sets and Polar Representations

The first step in our developments is to observe that Problem (P) over the convex set P of

probability measures is equivalent to its relaxation over the corresponding cone of measures

C = co(P). Since we included the probability mass constraint (f0 ≡ 1, q0 = 1) among the

moment constraints, we can relax Problem (P) to the following equivalent problem:

(P ′) Z∗ = max
µ∈C

∫

Ω
φdµ

s.t.

∫

Ω
fdµ = q .

(4)

Given a cone of measures C ⊆ X , we remind, within our context, the notion of polarity.

For a general treatment, see Rockafellar [31].

Definition 1 The polar of a cone C ⊆ X is defined as C∗ = {h ∈ X ∗ |
∫

hdµ ≥ 0, ∀µ ∈ C}.

For any set C, its polar C∗ is a pointed convex cone. Shapiro [34] (Prop. 3.4, also 3.1

and 3.3; see also Duffin [10]) provides various specific sufficient conditions for the following

conic duality result to hold, as well as for the existence of an optimal solution:

Theorem 3 (Conic Duality) Under certain Slater conditions (e.g., the moment vector q

is interior4 to the set of feasible moments: q ∈ int[QC(f)]), then the optimal value of the

Primal Problem (P’) equals that of the following Dual Problem:

(D) Z∗ = miny y′q

s.t. y′f − φ ∈ C∗
(5)

4The strong (norm) topology is needed here.
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where C∗ is the polar cone of C.

Since C = co(P), its polar can be written as C∗ = {h ∈ X ∗ |
∫

hdµ ≥ 0, ∀ µ ∈ P}.

Duality allows to reduce the primal Problem (P) over infinite dimensional variables, to the

dual Problem (D) in n+1 variables, but with an infinite number of constraints, indexed by

the set of probability measures P. This type of indexing is typically difficult to work with.

However, the constraint set of the dual problem can be significantly reduced if the set P is

in some sense generate by a convenient class T . We consider several alternate concepts of

“generating class”:

Assumption [A] There exists a subset T of the convex measure set P underlying Problem

(P) such that one the following conditions holds:

[A1] P = cx(T );

[A2] P = mix(T );

[A3] P = c̄x(T ), and f, φ are continuous and bounded ;

[A4] P = c̄x(T ), and T is (weakly) closed.

The following lemma is a key milestone for our main result, presented in the next section:

Lemma 1 Suppose that the set of measures P is generated by a set T in the sense of

Assumption [A]. Then the polar of C = co(P) equals C∗ = {h ∈ X ∗ |
∫

hdτ ≥ 0, ∀ τ ∈ T }.

This result together with Theorem 3 implies that the dual (D) of Problem (P) is equiv-

alent to the following relaxation:

(DT ) Z∗ = miny y′q

s.t.

∫

y′f − φdτ ≥ 0 , ∀ τ ∈ T
.

For example, consider P = M+ and let Tδ denote the set of Dirac measures δx, x ∈ Ω. Since

M+ = c̄x(Tδ) = mix(Tδ), (6)

by Lemma 1 ([A2] or [A4]), the corresponding polar cone is C∗ = {h ∈ X ∗ |h(x) ≥ 0, ∀x ∈

Ω}. In this case, the conic duality result of Theorem 3 reduces to the linear duality result

of Theorem 1. By Lemma 1 ([A1]), the same polar representation holds for the set D+ of

discrete probability measures on Ω, in which case D+ = cx(Tδ).

The applications presented in this paper rely mostly on Assumptions [A2] and [A4].

A closed convex hull ([A4]) representation is typically easier and more intuitive to obtain

than an integral representation ([A2]), hence more useful in practical applications (see
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e.g. Section 4 and 5). Assumption [A3] allows a weakening of [A4] when the underlying

functions are continuous and bounded, whereas Assumption [A1] is useful in the case of

discrete distributions.

Proof of Lemma 1: Under Assumption [A1], the lemma follows by simple application

of convexity to the linearity of the expectation operator.

Under [A2], for any µ ∈ P we can write µ =
∫

T τdν(τ) for a certain mixing measure ν.

If h ∈ X ∗ then
∫

Ω hdτ is ν-measurable and
∫

Ω hdµ =
∫

T (
∫

Ω hdτ) dν(τ) (see e.g. Dudley [9]

p.269). The desired result follows.

Under [A3], for any µ ∈ c̄x(T ), consider a sequence of measures µn ∈ cx(T ) con-

verging weakly to µ. Since X ∗ consists of continuous bounded functions, it follows that

0 ≤
∫

hdµn →
∫

hdµ for any h ∈ D∗, where D = co(cx((T )). Therefore
∫

hdµ ≥ 0, which

proves D∗ ⊆ C∗. The opposite inclusion is trivial.

Under [A4], the lemma is a consequence of the second part of the following result,

proved in Appendix A.

Proposition 3 Let T be a set of Borel probability measures on Ω ⊆ Rm. We have that

cx(T ) ⊆ mix(T ) ⊆ c̄x(T ). Moreover, if Ω and T are closed, then c̄x(T ) = mix(T ).

In a general topological context, the existence of generalized mixture (a.k.a. integral)

representations and its relationship with closed convex hull representations is the focus of

Choquet theory, for which a standard reference is Phelps [29]. The main results are the

theorems of Krein-Milman and Choquet, providing topological conditions under which a set

admits a closed convex hull representation, and respectively a general mixture representation

in terms of its extreme points. Extensions and applications in the context of measure sets

can be found in Rogosinsky [32], Winkler [44], Weizsäcker and Winkler [42] and Karr [17].

None of these results, however, implies Proposition 3 in the non-compact case. Moreover,

we intentionally do not require the generating set T to coincide with the extreme points

of P, since these can be difficult to characterize, and to parametrize as required further by

Assumption [B].

3.2 The Main Result for Convex Classes of Univariate Distributions

Our main result requires, beside Assumption [A], a parametrization of the generating set:

Assumption [B] The generating set T ⊆ P consists of Borel measures µt on a real

interval Ω, such that µ(S, t) = µt(S) : B × IT → [0, 1] is a Borel measurable function of t

and IT is a real interval.

Assumption [B] effectively says that T is defined by a Markov kernel. Extensions

dealing with multivariate distributions (Ω ⊆ Rm) and multi-parameter generating classes
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(IT ⊆ Rm) are investigated in Section 6. Our main result extends Theorem 2 by providing

an SDP solution for univariate moment problems over convex classes of distributions:

Theorem 4 (Moment Bounds for Convex Distribution Classes via SDP) Suppose

that the Slater condition holds for Problem (P) satisfying Assumptions [A] and [B]. Then

the following results are true:

(a) The optimal bound in Problem (P) can be efficiently computed as a semidefinite pro-

gram whenever the set {y |
∫

(y′f − φ)dµt ≥ 0,∀ t ∈ IT ⊆ R} is semi-algebraic.

(b) If the bound in Problem (P) is achievable, then there exists an optimal measure which

is a convex combination of n + 1 probability measures from the generating set T .

Proof: (a) For any function h ∈ X ∗, define the linear transform HT (t) =
∫

Ω hdµt. Based on

Theorem 3 and Lemma 1, the dual of Problem (P) over the convex class P is the following

semi-infinite linear program:

(DT ) Z∗ = miny y′q

s.t. y′FT (t) − ΦT (t) ≥ 0 , ∀ t ∈ IT .
(7)

By Theorem 2, this reduces to an SDP whenever the dual feasible set is semi-algebraic.

(b) Assumption [B] implies that ΦT and FT are measurable functions of t. The problem:

(PT ) max
ν∈M+(IT )

∫

ΦT dν

s.t.

∫

FT dν = q .
(8)

is a special case of Problem (P0) over Ω = IT with (f, φ) := (FT , ΦT ). The mass constraint

is satisfied since F 0
T (t) =

∫

f0dµt = 1.

One can easily see that the Slater condition is verified for Problem (PT ) whenever it is

verified for (P). So by Theorem 1, Problem (P) has the same optimal value as Problem (PT ).

Moreover, if the bound in Problem (P) is achievable, then so is the bound in Problem (PT ),

since for an optimal measure µ for (P), the corresponding mixing measure ν ∈ M+(IT ) is

optimal for (PT ).

By Proposition 1, the extremal measures for Problem (PT ) are of the type ν∗ =
n

∑

i=0

wiδti ,

ti ∈ IT with
∑

wi = 1, wi ≥ 0. The feasibility and optimality conditions for ν∗ are:

q =
n

∑

i=0

wi

∫

fdµti =

∫

f d

(

n
∑

i=0

wiµti

)

Z∗ =
n

∑

i=0

wi

∫

φdµti =

∫

φ d

(

n
∑

i=0

wiµti

)

.
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This shows that µ∗ =
n

∑

i=0

wiµti ∈ cx(T ) ⊆ P achieves the optimum in Problem (P), since

it satisfies the moment conditions, and achieves the optimal value Z∗.

Our main result requires the feasible set of the Dual Problem (DT ) to be semi-algebraic.

When f and φ are piecewise polynomial (pp), this condition is satisfied for example if

T = {µt}t∈IT
is a parametric class of continuous measures whose densities πt(x) = π(x, t)

are pp in x and t. In this case, the following functions are pp in t:

FT (t) =
∫

fdµt =
∫

f(x)π(x, t)dx,

ΦT (t) =
∫

φdµt =
∫

φ(x)π(x, t)dx.

The semi-algebraic condition also allows for generating densities that are pp in x, but

fractional in the parameter t. In this case, the functions ΦT and FT are piecewise polynomial

fractions (ppf), that is fractions of polynomials on an interval partition, and the dual

constraints can be reduced to semi-algebraic conditions (since checking p(x)/q(x) ≥ 0 is

equivalent to p(x)q(x) ≥ 0). Examples are Cauchy, Pareto and uniform densities.

Another case of potential interest is that of exponentially damped moments fi(x) =

f0
i (x)e−λ(x) and φ(x) = φ0(x)e−λ(x), for arbitrary functions λ(·) and where f0(·), φ0(·)

are ppf. In this case, checking y′f(x) − φ(x) ≥ 0 amounts to y′f0(x) − φ0(x) ≥ 0, a

semi-algebraic condition.

4 Bounds for Symmetric and Unimodal Distributions

In this section we apply Theorem 4 to derive optimal moment bounds for distributions that

are: (1) symmetric, (2) unimodal with given mode, (3) unimodal with bounds on the mode,

(4) unimodal and symmetric (including bounds on the mean). Multivariate analogues of

these properties are investigated in Section 6.

4.1 Symmetric Distributions

Let Ω = I ⊆ R, be either a compact interval, or I = R. A measure µ on (I,B) is M -

symmetric if µ[M − x, M ] = µ[M, M + x] for all x ∈ IM , where IM = {x ≥ 0 | M − x ∈

I and M + x ∈ I}.

Since any convex combinations of M -symmetric probability measures is M -symmetric,

the set of M -symmetric probability measures PsM is convex. Symmetry is preserved under

weak limits, so PsM is closed.

Lemma 2 The closed convex set of M -symmetric probability measures can be generated by

pairs of symmetric Diracs as PsM = c̄x(T s
M ), where T s

M = {µt = 1
2δM+t + 1

2δM−t| t ∈ IM}.
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The proof trivially follows from (6) applied on the half-interval Ω = M + IM . Since T s
M

is closed, by Lemma 1 ([A4]), the polar cone of M -symmetric measures is:

CsM
∗

= {h ∈ X ∗ | Hs
M (t) = h(M + t) + h(M − t) ≥ 0, ∀ t ∈ IM}.

Therefore, the dual of the moment Problem for M -symmetric distributions is:

miny y′q

s.t. y′(f(M − t) + f(M + t)) − (φ(M − t) + φ(M + t)) ≥ 0 , ∀ t ∈ IM

(9)

The constraints amount to checking polynomial positivity whenever f, φ are pp, so Theorem

4 implies the following result:

Proposition 4 If φ and f are pp and the Slater condition holds, then:

(a) Problem (P) over the convex set PsM of M -symmetric probability measures on (I,B)

can be efficiently solved as a semidefinite program.

(b) If the corresponding bound is achievable, there exists an optimal measure which is a

convex combinations of n + 1 pairs of M -symmetric Diracs.

When the mean M of the distribution is unspecified, our approach does not directly

provide sharper bounds based on symmetry information. This is because the class of sym-

metric probability measures is non-convex, and its convex hull is all of M+.

4.2 Unimodal Distributions

Let Ω = I ⊆ R be a possibly infinite interval. A measure µ is m-unimodal on I ∋ m if the

corresponding distribution function is convex to the left of m and concave to the right of m.

For a continuous measure, this amounts to its density function being increasing5 to the left

of m and decreasing to the right of m. Any m-unimodal measure can be decomposed into

a continuous m-unimodal measure and a Dirac at m. The class of continuous m-unimodal

probability measures Pum is convex, and its closure P̄um is the class of m-unimodal measures.

Examples of continuous unimodal densities include the normal (possibly truncated), Be-

tas, monotone densities and uniform densities. Measures with uniform densities on closed

m-bounded segments I are also called m-rectangular measures, and denoted δI . The follow-

ing characterization of unimodal measures can be found in Dharmadhikari and Joag-Dev

[8] (Theorem 1.2). The mixture representation is attributed to Khintchine [18].

Lemma 3 The set of (continuous) m-unimodal measures can be generated using m-rectangulars

as Pum = mix(T u
m ), respectively P̄um = c̄x(T u

m ), where T u
m = {δ〈t,m〉| t ∈ I, t 6= m}.

5Throughout the paper, we will use the terms increasing/decreasing in their weak sense.
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For the closed convex hull representation, Assumption [A4] requires closure of the gen-

erating set, so a Dirac at m should be added to T u
m . By Lemmas 1 and 3, the dual of the

moment problem for m-unimodal distributions is:

miny y′q

s.t. y′
∫

〈m,t〉
f(x)dx −

∫

〈m,t〉
φ(x)dx ≥ 0 , ∀ t ∈ I , t 6= m

y′f(m) − φ(m) ≥ 0.

(10)

The last constraint should be relaxed for the case of continuous m-unimodal measures.

The integral transform
∫

〈m,t〉 h(x)dx is pp in t for any function h ∈ X ∗ that is pp in x,

so Theorem 4 implies the following result:

Proposition 5 Suppose that φ and f are pp and the Slater condition holds. Then the

following results are true:

(a) Problem (P) over the convex class of (continuous) m-unimodal probability measures,

can be efficiently solved as a semidefinite program.

(b) If the corresponding bound is achievable, then there exists an optimal measure which

is a convex combinations of n + 1 m-rectangulars, possibly including a Dirac at m.

4.3 Constraints on the mode and [m1,m2]-modal distributions.

Suppose that the underlying distribution in Problem (P) is unimodal, but the mode is only

known to belong to a certain interval: m ∈ [m1, m2]. Define Pum1,m2
= cx(

⋃

m∈[m1,m2] P
u
m),

to be the convex hull of the (non-convex) class of unimodal probability measures with

mode between m1 and m2. We refer to the elements of the class Pum1,m2
as [m1, m2]-modal

probability measures. By Lemma 3, an obvious generating family for Pum1,m2
is the class

⋃

m∈[m1,m2] T
u

m of rectangulars δ〈s,t〉 for s ∈ I, t ∈ [m1, m2], and Diracs δt for t ∈ [m1, m2].

However, this class is double indexed by s and t, hence does not satisfy Assumption [B].

Any measure in Pum1,m2
can be decomposed into an m1 unimodal to the left of m1, an

m2 unimodal to the right of m2 and an arbitrary distribution on [m1, m2]. Lemma 3 implies

the following representation:

Lemma 4 The closed convex set of [m1, m2]-modal measures can be generated by the closed

set of probability measures T u
m1,m2

= {µt}t∈I , where:

µt =



















δ[t,m1] , if t < m1

δ[m2,t] , if t > m2 .

δt , if t ∈ [m1, m2]
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By Lemma 1, the dual of Problem (P) over Pum1,m2
can be written as:

(Du
m1,m2

) miny y′q

s.t.
∫ m1

t y′f(x) − φ(x)dx ≥ 0 , ∀ t ≤ m1, x ∈ I
∫ t
m2

y′f(x) − φ(x)dx ≥ 0 , ∀ t ≥ m2, x ∈ I

y′f(t) − φ(t) ≥ 0 , ∀ t ∈ [m1, m2].

(11)

By Theorem 4, we have the following result:

Proposition 6 If f and φ are pp and the Slater condition holds, then:

(a) Problem (P) over the closed convex set of [m1, m2]-unimodals can be efficiently solved

as an SDP.

(b) If the corresponding bound is achievable, then there exists an optimal measure which

is a convex combinations of n + 1 probability measures from the class T u
m1,m2

.

If the mode of the underlying distribution is completely unspecified, then we cannot

improve the moment bounds by adding unimodality conditions in a duality framework.

This is because the convex hull of all unimodal probability measures is all of M+.

4.4 Symmetric Unimodal Distributions

We now combine the results for unimodal and symmetric distributions. The set of continu-

ous M -symmetric unimodal probability distributions is convex, denoted PsuM = PsM
⋂

PuM ,

and its closure P̄suM = PsM
⋂

P̄uM , is the set of all M -symmetric unimodals. Recall the

notation IM = {t ≥ 0 | M − t ∈ I and M + t ∈ I}.

Lemma 5 The convex set of M -symmetric unimodal measures can be generated using M -

centered rectangulars as P̄suM = c̄x(T su
M ), respectively PsuM = mix(T su

M ) for continuous

measures, where T su
M = {δ[M−t,M+t] | t ∈ IM , t 6= 0}.

The result is a direct consequence of Lemma 3. Again, for P̄suM , a Dirac at M should

be added to the generating set to insure closure ([A4]). Based on this characterization,

Lemma 1 yields the following dual formulation (after basic simplifications):

miny y′q

s.t. y′
∫ M+t

M−t
f(x)dx −

∫ M+t

M−t
φ(x)dx ≥ 0 , ∀ t ∈ IM , t 6= 0

y′f(M) − φ(M) ≥ 0

(12)
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The last constraint should be dropped for continuous M -symmetric unimodal measures.

For any pp function h ∈ X ∗ the corresponding transform Hsu
M (t) =

∫ M+t

M−t
h(x)dx is pp

in t, so Theorem 4 implies the following result:

Proposition 7 Suppose that φ and f are pp and the Slater condition holds. Then the

following results are true:

(a) Problem (P) over the class of (continuous) M -symmetric unimodal probability mea-

sures can be efficiently solved as a semidefinite program.

(b) If the bound is achievable, there exists an optimal measure which is a convex combi-

nation of n + 1 M -symmetric rectangulars, possibly including a Dirac at M .

Unspecified mean. Given bounds on the mean, the convex hull of the class of sym-

metric unimodal distributions with mean M ∈ [M1, M2] is the class of [M1, M2]-unimodals,

with mean in [M1, M2]. For this class, we derived bounds in Section 4.3.

Without any prior bounds on the mean, our approach does not directly improve the

bounds for arbitrary distributions. This is because the convex hull of symmetric unimodal

probability distributions is all of M+. In this case, we propose an alternative two step

approach:

1. Find optimal lower and upper bounds M1, M2 on the mean given the moment con-

straints, by solving the corresponding moment problem for arbitrary distributions.

2. Solve the moment problem for [M1, M2]-unimodals, with mean in [M1, M2].

5 Bounds for Distributions with Convex/Concave Densities.

The last section showed how monotonicity properties of the distributions in Problem (P)

translate into optimizing over certain combinations of n+1 uniforms. The resulting bounds

are tighter than those for arbitrary distributions, which are achieved by discrete distri-

butions (this is also illustrated numerically in Section 7). However, approximations by

uniforms can be rough if the distributions satisfy additional convexity or smoothness prop-

erties. In this section we improve the moment bounds by incorporating conditions on the

slope of the underlying densities.

5.1 Monotone convex densities.

Denote Pdxm,a the set of continuous probability measures on Ω = [m, m + a], which admit

decreasing and convex densities. Similarly, consider the set Pixm,a of continuous probability

measures that admit increasing and convex densities on an interval [m − a, m]. In this

section only, we abuse notation and allow a ≥ 0 to be infinite.
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Both classes are convex, but not closed, since limiting distributions (such as δm) do

not necessarily have a density. The respective closures P̄dxm,a (P̄ixm,a) consist of distributions

that can be decomposed into a continuous part, with a decreasing (increasing) and convex

density, and possibly a Dirac at m. These can be generated using right (left) m-triangular

densities:

Definition 2 A probability density function is said to be:

(a) right m-triangular, if it is given by π+
m,t(x) =

2

t2
(m + t − x)+, for x ≥ m, t > 0.

(b) left m-triangular, if it is given by π−
m,t(x) =

2

t2
(x − m + t)+, for x ≤ m, t > 0.

The corresponding triangular measures are denoted γ+
m,t, respectively γ−

m,t.

For t → 0, the degenerate triangular measure γ±
m,0 is a Dirac at m.

Lemma 6 (a) We have that P̄dxm,a = c̄x(T dx
m,a) and Pdxm,a = mix(T dx

m,a), where T dx
m,a =

{γ+
m,t | t ∈ [0, a)} ∪ {δ[m,m+a]}.

(b) We have that P̄ixm,a = c̄x(T ix
m,a) and Pixm,a = mix(T ix

m,a), where T ix
m,a = {γ−

m,t | t ∈

[0, a)} ∪ {δ[m−a,m]}.

If a is infinite, the rectangular should be omitted from the generating sets.

The proof is provided in Appendix B. By Lemma 1, this characterization leads to the

following equivalent formulation of the dual problem over the class P̄dxm,a:

min y′q

s.t. y′
∫ m+a

m
(m + t − x)+f(x)dx −

∫ m+a

m
(m + t − x)+φ(x)dx ≥ 0 , ∀ t ∈ (0, a]

y′f(m) − φ(m) ≥ 0.

The last constraint should be dropped if we are only interested in continuous measures

(Pdxm,a). The dual constraints are ppf in t, whenever f and φ are pp, hence the problem can

be stated as an SDP.

We obtain analogous results for the convex class Pixm,a. By combining the two, we can

obtain SDP formulations for optimal moment bounds for measures with U-shaped densities

with given mode (point of minimum) m. Summarizing, by Theorem 4 we have:

Proposition 8 If φ and f are pp and the Slater condition holds, then:

(a) Problem (P) over the classes Pdxm,a,P
ix
m,a and their respective closures can be efficiently

solved as a semidefinite program.

(b) If the corresponding bound is achievable, there exists an optimal solution which is a

convex combination of n + 1 right/left triangulars, possibly including a rectangular on

the whole domain and a Dirac at m.
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Constraints on the maximal slope. We can improve these bounds by further limiting

the slope of the densities underlying the moment problems. This basically amounts to

putting bounds on the values t that index the generating set.

Consider for example the moment problem (P) for measures that admit convex increas-

ing densities on (−∞, m] with maximal slope bounded in a finite interval [α, β]. This class

is closed and convex (since β is finite, the Dirac is not a possible limiting distribution, hence

these measures are continuous). By Proposition 8, this problem admits an optimal solution

whose density is of the type:

π∗(x) =
n

∑

i=0

wiπ
+
m,ti

(x) =
n

∑

i=0

wi
2

t2i
(x − m + ti)

+, x ≤ m, ti > 0 (13)

with wi ≥ 0. Since π∗ must correspond to a probability distribution, the mass constraint

implies that
∑

wi = 1. The maximum slope of the corresponding density is:

n
∑

i=0

2

t2i
wi ∈ (min

i

2

t2i
, max

i

2

t2i
).

In order for the maximal slope to be between α and β, we should restrict the generating

class to α ≤ 2/t2 ≤ β, that is:

T dx
m,α,β = {γ+

m,t |
√

2/β ≤ t ≤
√

2/α}.

We can similarly treat the case of convex decreasing densities, by incorporating bounds on

the maximal absolute slope.

Approximations by triangulars can be regarded as a second stage in a series of approx-

imations by means of increasing numbers of independent uniforms. As pointed out by Bell

[2], triangular distributions can provide fairly good approximations to normal distributions.

Buslenko et al. [6] present a method of construction of so-called ”random normal deviates”

using triangular distributions. However, normal densities are concave around the mean and

convex on the tails. Therefore, if one wants to provide more suitable approximations for

such distributions, it is desirable to model concave densities in the moment problem.

5.2 Monotone concave densities.

Let m, a ∈ R, a ≥ 0 and consider the class Pdvm,a of probability measures on a finite interval

[m, m + a] that admit decreasing and concave densities. Similarly, consider the class Pivm,a

of probability measures that admit increasing and concave densities on [m − a, m]. Both
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classes are closed and convex, and can be generated using m-trapezoidal densities.

Definition 3 A probability density function π is said to be:

(a) right m-trapezoidal on [m, m + a], if for some 0 ≤ t < a it is given by

π+
m,t,a(x) =

2

a + t
min

(

1,
m + a − x

a − t

)

, m ≤ x ≤ m + a.

(b) left m-trapezoidal on [m − a, m], if for some 0 ≤ t < a it is given by

π−
m,t,a(x) =

2

a + t
min

(

1,
x − m + a

a − t

)

, m − a ≤ x ≤ m.

The corresponding trapezoidal probability measures are denoted ζ+
m,t,a, respectively ζ−m,t,a.

If t = 0, the degenerate trapezoidal is a triangular. As t → a above, the degenerate

trapezoidal measures denoted ζ±m,a,a are rectangulars on the whole domain.

Lemma 7 (a) The closed convex class Pdvm,a can be generated as Pdvm,a = c̄x(T dv
m,a), where

T dv
m,a = {ζ+

m,t,a | t∈ [0, a]}.

(b) The closed convex class Pivm,a can be generated as Pivm,a = c̄x(T iv
m,a), where T iv

m,a =

{ζ−m,t,a | t∈ [0, a]}.

The proof is provided in Appendix B. Since the generating classes are closed, by Lemma

1 ([A4]), the dual of Problem (P) over the class Pdvm,a is:

min y′q

s.t.

∫ m+a

m
min(a − t, m + a − x)(y′f(x) − φ(x))dx ≥ 0, ∀ t ∈ [0, a].

This can be expressed as an SDP whenever f and φ are pp.

We obtain analogous results for the convex class Pivm,b, generated by left m-trapezoidal

probability measures. By combining the two, we obtain optimal moment bounds for (sym-

metric) measures with m-unimodal and concave densities on [m − b, m + a]. These are

generated by (symmetric pairs of) right and left m-trapezoidal distributions.

Proposition 9 If φ and f are pp and the Slater condition holds, then:

(a) Problem (P) over the closed convex class of m-unimodal probability measures with

concave densities can be efficiently solved as a semidefinite program.

(b) If the corresponding bound is achievable, then there exists an optimal measure which

is a convex combination of n+1 m-trapezoidals, possibly degenerate.
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Constraints on the maximal slope. Consider for example the moment problem (Piv
m,a)

for concave increasing densities on [m − a, m]. By Proposition 9, this problem admits an

optimal solution whose density has the following structure:

π∗(x) =
n

∑

i=0

wiπ
+
m,ti,a

(x) =
n

∑

i=0

wi
2

a2 − t2i
min(a − ti, x − m + a), x ≤ m, 0 ≤ ti < a

with wi ≥ 0 and
∑

wi = 1. Therefore, in order to restrict the maximal slope between α

and β, we should define the generating class as:

T dv
m,α,β = {ζ+

m,t,a |
√

a2 − 2/β ≤ t ≤
√

a2 − 2/α }.

We can similarly treat the case of concave decreasing densities, by incorporating bounds on

the maximal absolute slope.

Finally, by putting all the pieces together, we obtain bounds on (symmetric) m-unimodal

distributions that are concave on [m − b, m + a] and convex on the tails (−∞, m − b],

[m + a,∞). Furthermore, slope constraints can be added at the inflexion points. Similarly,

we obtain bounds for (symmetric) m-unimodal distributions with convex tails outside an

interval [m− b, m+a], and other such combinations of convex properties. These results can

be extended to incorporate higher order convexity and smoothness information, by using

generating families of piecewise polynomials densities.

6 Multivariate Extensions

Our results so far concern univariate distributions generated by single-parameter classes.

In this section we generalize these results to multiple dimensions, and apply them for dis-

tributions satisfying multivariate unimodality and symmetry properties.

All the results of Sections 2 and 3.1 hold over Rm, with the exception of Theorem 2.

Bertsimas and Popescu [3] extend this result in the context of a moment problem over Rm.

They prove that the dual problem of optimizing a linear objective over a general semi-

algebraic set (i.e. defined by multivariate polynomial inequalities) has an equivalent SDP

formulation of exponential size in m. They also obtain an improving sequence of polynomial

size SDP relaxations. Based on Putinar [30], polynomial positivity in the dual formulation

are relaxed to sum of square conditions (the two are not equivalent in the multivariate

case), which in turn are expressed as SDPs. These results lead to a natural multivariate

generalization of our main result (Theorem 4). The proof follows the same principles, and

is omitted here for brevity.
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A multivariate version [B∗] of Assumption [B] is required, where Ω ⊆ Rm is closed and

the generating set T of probability measures µt is parametrized by a vector t ∈ IT ⊆ Rm,

and IT is polyhedral.

Theorem 5 Suppose that the Slater condition holds for Problem (P) satisfying Assump-

tions [A] and [B∗]. Then the following results are true:

(a) Problem (P) can be approximated by a converging sequence of SDP relaxations when-

ever the set {y |
∫

(y′f − φ)dµt ≥ 0,∀ t ∈ IT ⊆ Rm} is semi-algebraic.

(b) There exists a probability measure achieving the optimal bound for this problem which

is a convex combination of n + 1 measures from the generating set T .

We use this theorem to extend the results of Section 4 for various multivariate general-

izations of unimodality and symmetry. A very good reference on multivariate unimodality is

Dharmadhikari and Joag-Dev [8], from which we adopt the concepts and generating classes

described below. Throughout this section, generating classes refer to both integral and

closed convex hull representations.

Definition 4 A set S ∈ Rm is said to be star-shaped about s ∈ S if for every x ∈ S, the

segment 〈x, s〉 is completely contained in S.

Definition 5 A set S ∈ Rm is centrally symmetric if x ∈ S implies −x ∈ S. A distribution

µ on Rm is centrally symmetric if µ(A) = µ(−A) for all Borel sets A in Rm.

Star unimodality. A probability measure on Rm is star unimodal about 0 if it belongs to

the closed convex hull of the set of all uniform distributions on sets S ⊆ Rm which are star

shaped about 0. Intuitively, the corresponding density function (if it exists) is decreasing

along any ray away from the origin. The following parametric generating class satisfies the

assumptions of Theorem 5:

T s-u
0 = {µt = δ〈0,t〉| t ∈ Rm},

where δ〈0,t〉 is the rectangular probability measure on the segment 〈0, t〉. We include the

Dirac at 0 as a degenerate case δ0 = δ〈0,0〉.

The corresponding dual feasible set is given by:

{y |

∫

〈0,t〉
(y′f(x) − φ(x))dx =

∫ 1

0
(y′ft(a)da − φt(a))da ≥ 0 , ∀t ∈ Rm},

where we denoted ht(a) = h(ta) , t ∈ Rr , a ∈ [0, 1].
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Centrally symmetric star unimodality. The class of centrally symmetric star unimodal

probability measures about 0 is the closed convex hull of uniform distributions on centrally

symmetric star-shaped sets about 0. This class is generated by the parametric family:

T cs-u
0 = {µt = δ〈−t,t〉| t ∈ Rm},

where δ〈−t,t〉 is the rectangular probability measure on the segment 〈−t, t〉.

The dual feasible set is given by

{y |

∫

〈−t,t〉
(y′f(x) − φ(x))dx =

∫ 1

−1
(y′ft(a) − φt(a))da ≥ 0 , ∀t ∈ Rm}.

Block unimodality. A probability measure on Rm is block unimodal about 0 if it belongs

to the closed convex hull of the set of all uniform distributions on sets R ⊆ Rm which are

rectangles containing 0 and having edges parallel to the coordinate axes. This is a subset

of the class of star unimodals, that can be generated by the parametric family:

T b-u
0 = {µt = ρ〈0,t〉| t ∈ Rm},

where ρ〈0,t〉 is the uniform distribution on the rectangle with edges parallel with the axes

and with opposite vertices 0 and t. Equivalently, ρ〈0,t〉 is the distribution of (U1t1, . . . , Untn)

where Ui are independent and uniform on (0, 1).

The dual feasible set is given by

{y |

∫∫ t

0
(y′f(x) − φ(x))dx =

∫ t1

0
· · ·

∫ tn

0
(y′f(x) − φ(x))dx ≥ 0 , ∀t ∈ Rm}.

Centrally symmetric block unimodality. The class of centrally symmetric block uni-

modals about 0 can be generated by the following set:

T cb-u
0 = {µt = ρ〈−t,t〉| t ∈ Rm},

where ρ〈−t,t〉 is the uniform distribution on the rectangle with edges parallel with the axes

and opposite vertices −t and t. The dual feasible set is given by

{y |

∫∫ t

−t
(y′f(x) − φ(x))dx =

∫ t1

−t1

· · ·

∫ tn

−tn

(y′f(x) − φ(x))dx ≥ 0 , ∀t ∈ Rm}.

By Theorem 5, we can obtain a converging sequence of SDP relaxations for the moment
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problems for star and block unimodal distributions and their centrally symmetric analogues,

provided that the dual feasible set in the above problems is semi-algebraic. In particular,

this is the case if f and φ are polynomial, or piecewise polynomial on multidimensional

rectangles. The latter follows by a natural multivariate extension of Proposition 2.

Other unimodal classes, such as linear unimodal or convex unimodal measures are not

convex, therefore cannot be treated with our approach. On the other hand, the spheri-

cally symmetric unimodal probability measures form a closed convex set that can be

parametrized using a single real parameter. This coincides with the classes of spherically

symmetric star-shaped, block and convex unimodals, respectively, and can be generated

using uniforms on disks D(t) ⊆ Rm of radius t ∈ R+ centered at 0. The dual feasible set is

given by:

{y |

∫∫

D(t)
(y′f(x) − φ(x))dx ≥ 0 , ∀ t ∈ R+},

By changing to polar coordinates, the dual feasible set can be characterized by inequalities

in terms of univariate polynomials (in t), whenever f and φ are polynomial on rectangles.

Therefore Theorem 4 provides an equivalent SDP formulation for this problem.

7 Generalizations of Chebyshev’s Inequality

In this section, we obtain optimal upper bounds on the survival distribution (sdf) P (X ≥ a)

of a random variable X satisfying standard moment constraints, for the case when X is

symmetric, respectively symmetric and unimodal. We generalize some known extensions of

Chebyshev’s mean-variance bound for higher order moments and show how these bounds

can be computed by solving an SDP. Our numerical results compare the performance of

these bounds relative to those from Bertsimas and Popescu [3], and relative to the normal

distribution.

7.1 Chebyshev Bounds for Symmetric and Unimodal Distributions

Given the mean and variance of the random variable X, the best bound on the upper

tail P (X ≥ a) is given by the one-sided Chebyshev inequality (see [41] or [3]), which we

present here for completeness. Bertsimas and Popescu [3] generalize this result to the case

of an arbitrary number of moments. The two sided version of the mean-variance bound for

unimodal (not necessarily symmetric) random variables is known as the Gauss inequality

(see Karlin and Studden [16]). One can easily show that this is the same as the optimal

one-sided bound for symmetric and unimodal random variables. We generalize this bound

for higher order moments. The proof of the following result is given in Appendix C.
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Proposition 10 Given the mean M and variance σ2 of a random variable X, the following

bounds on P (X ≥ a) are optimal:

sup P (X ≥ a)

X a > M a ≤ M

arbitrary
σ2

σ2 + (M − a)2
1

symmetric
1

2
min

{

1,
σ2

(M − a)2

}

1

symmetric unimodal
1

2
min

{

1,
4

9

σ2

(M − a)2

}

1

Given any number of moments M = (M0 =1, M1, . . .M2n) of a random variable X, the

optimal upper bounds on P (X ≥ a) can be computed as semidefinite programs as follows:

(a) For arbitrary random variables:

min
n

∑

i=0

yiMi

s.t. 0 = diag2l−1(U), l = 1, . . . , 2n,

y0 − 1 +

n
∑

i=1

yia
i = diag0(U),

n
∑

i=l

(

i

l

)

ai−lyi = diag2l(U), l = 1, . . . , 2n,

0 = diag2l−1(V ), l = 1, . . . , 2n,

(−1)l

n
∑

i=l

(

i

l

)

ai−lyi = diag2l(V ), l = 0, . . . , 2n,

U(n×n), V(n×n) º 0.

(14)

where diagd(X) =
∑

i,j: i+j=d

xij to denotes the anti-diagonal sums of the matrix X.

(b.1) For symmetric random variables with mean M1 = 0 and a ≤ 0:

min

n
∑

i=0

yiM2i

s.t. 0 = diag2l−1(U) = diag2l−1(V ), l = 1, . . . , n,

yl = diag2l(U), l = 1, . . . , n,

y0 −
1

2
= diag0(U),

(y0 − 1)

(

n

l

)

+

l
∑

i=1

yia
2i = diag2l(V ) l = 1, . . . , n,

U(n×n), V(n×n) º 0

(15)
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(b.2) For symmetric random variables with mean M1 = 0 and a > 0:

min
n

∑

i=0

yiM2i

s.t. 0 = diag2l−1(U) = diag2l−1(V ), l = 1, . . . , n,

yl = diag2l(U), l = 0, . . . , n,
n

∑

i=l

(

i

l

)

yia
2(i−l) = diag2l(V ) l = 1, . . . , n,

(y0 −
1

2
) +

l
∑

i=1

yia
2i = diag0(V )

U(n×n), V(n×n) º 0

(16)

(c.1) For unimodal symmetric random variables with mean M1 = 0 and a ≤ 0:

min

n
∑

i=0

yiM2i

s.t. 0 = diag2l−1(U), l = 1, . . . , n,

(y0 − 1)

(

n

l

)

+

l
∑

i=1

yi

2i + 1

(

n − l

l − i

)

a2i = diag2l(U), l = 0, . . . , n,

0 = diag2l−1(V ), l = 1, . . . , 2n,
n

∑

i=⌊ l−1

2
⌋

yi

2i + 1

(

2i + 1

l

)

(−a)2i+1−l = diag2l(V ) l = 2, . . . , 2n,

y0 −
1

2
+

n
∑

i=1

yia
2i = diag2(V )

−(y0 − 1)a −

n
∑

i=0

yi

2i + 1
a2i+1 = diag0(V )

U(n×n), V((2n+1)×(2n+1)) º 0

(17)

(c.2) For unimodal symmetric random variables with mean M1 = 0 and a > 0:

min

n
∑

i=0

yiM2i

s.t. 0 = diag2l−1(U), l = 1, . . . , n,
yl

2l + 1
= diag2l(U), l = 0, . . . , n,

0 = diag2l−1(V ), l = 1, . . . , 2n,

0 = diag4l(V ), l = 1, . . . , n,
yl

2l + 1
= diag4l+2(V ), l = 1, . . . , n,

y0 −
1

2
= diag2(V ),

a

2
= diag0(V ),

U(n×n), V((2n+1)×(2n+1)) º 0

(18)
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7.2 Numerical results

This numerical study compares the sharp bounds for arbitrary, symmetric, respectively

symmetric unimodal distributions, given higher order moments.

The standard normal survival distribution function (sdf) N(a) = 1 − Φ(a) for a ≥ 0 is

benchmarked against moment bounds on the survival distribution P (X ≥ a) for arbitrary,

symmetric, and symmetric unimodal distributions, with the same moments6 up to order k,

where k = 2, . . . , 10. Figure 1 plots the corresponding upper bounds Ak(a), Sk(a), SUk(a)

and the normal sdf N(a) as functions of a ≥ 0; the three plots correspond to k = 2, 4 and

respectively 10 moments. While all bounds perform well in the tails (beyond 3-4 std), the

bound for symmetric and unimodal distributions exhibits a good performance also around

the mean.
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Figure 1: From left to right: bounds given k = 2, 4, 10 moments respectively. Each plot compares

Ak(a), Sk(a), SUk(a) and N(a) for a ∈ [0, 5].
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Figure 2: From left to right: Ak(a), Sk(a) and SUk(a), a ∈ [0, 5]. Each plot compares sharp bounds

given k = 2, 4, 10 moments vs. the normal sdf.

In Table 1 we compare the improvement of the bound for symmetric unimodal distri-

butions over the bound for arbitrary distributions, relative to the normal sdf benchmark,

calculated as ∆k(a) = (Ak(a)−SUk(a))/(Ak(a)−N(a)). Remarkably, ∆k(a) is consistently

6The first ten moments of the standard normal distribution are M = (0, 1, 0, 3, 0, 15, 0, 105, 0, 945).
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POPESCU
  k=2                                                      k=4                                                k=10                              

POPESCU
   a                                                       a                                                        a                            

POPESCU
 k                                                                       k                                                                     k                              

POPESCU
  A (a)                                                   S (a)                                              SU (a)                             

POPESCU
   a                                                       a                                                        a                            



a ∆2(a) ∆4(a) ∆6(a) ∆8(a) ∆10(a)

0 100 100 100 100 100

0.2 96.01 93.92 96.27 95.46 96.69

0.4 92.29 89.33 93.13 92.33 94.24

0.6 88.61 86.32 91.16 90.95 93.77

0.8 85.62 84.82 91.82 91.79 93.27

1.0 84.59 84.59 90.91 90.20 88.98

1.2 86.70 85.95 87.01 86.39 85.99

1.4 87.32 84.59 82.90 87.19 87.16

1.6 85.85 80.26 79.80 89.04 88.37

1.8 83.64 79.88 79.75 88.81 86.58

2.0 81.49 83.03 81.48 86.79 85.24

2.2 79.66 85.28 81.35 83.02 86.15

2.4 78.24 86.20 79.17 79.03 85.10

2.6 77.29 86.26 80.60 78.92 82.56

2.8 76.74 85.56 82.71 78.30 79.25

3.0 76.29 84.44 82.42 75.81 75.00

3.2 76.22 84.27 82.54 80.56 78.13

3.4 76.17 83.92 82.22 81.82 76.47

3.6 76.33 84.35 83.87 84.62 75.00

3.8 76.35 84.04 82.61 87.50 75.00

4.0 76.36 84.42 82.35 83.33 76.67

4.2 76.49 84.38 84.62 75.00 100

4.4 76.58 84.91 80.00 100 100

4.6 76.72 84.09 85.71 100 100

4.8 76.92 86.49 83.33 100 100

5.0 76.88 84.38 75.00 100 100

Table 1: Percentage improvement of the bound for symmetric unimodal distributions over

the bound for arbitrary distributions (relative to the normal), given k =2,4,6,8, and 10

moments.

(i.e. for all a and k) above 75%. It is higher around the mean, for any number of moments,

and it is also higher in the tails for moments of higher order.

It is interesting to understand how much the various bounds improve as higher order

moments are given. Each plot in Figure 2 compares the bounds given 2, 4 and 10 moments

(against the normal sdf benchmark) for a category of distributions: arbitrary, symmetric,

respectively unimodal and symmetric. The value of adding higher order moment informa-

tion appears to be higher under less distributional assumptions. In fact, for unimodal and

symmetric distributions, the mean-variance bound (k = 2) is already fairly strong. This
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a ∆su
2 (a) ∆su

4 (a) ∆su
6 (a) ∆su

8 (a)

0.2 0 0 0 0

0.4 0 41.20 0 29.92

0.6 0 44.61 0 33.94

0.8 0 50.86 0 43.80

1.0 0 62.41 0 33.02

1.2 0 58.94 0 0.46

1.4 0 29.34 13.72 0

1.6 0 2.76 44.16 0

1.8 0.0469 0 60.66 0.83

2.0 0.3089 0 57.08 0

2.2 0.5732 0 37.14 14.77

2.4 0.7156 0 10.99 38.27

2.6 78.62 0 0 23.08

2.8 84.05 43.90 0 4.35

3.0 85.04 54.29 6.25 0

3.2 86.67 60.71 36.36 0

3.4 87.83 65.22 50.00 0

3.6 89.35 72.22 60.00 0

3.8 90.20 73.33 75.00 0

4.0 91.37 75.00 66.67 0

4.2 92.06 80.00 50.00 100

4.4 93.04 75.00 100 NaN

4.6 93.33 85.71 100 NaN

4.8 94.79 80.00 100 NaN

5.0 94.38 80.00 100 NaN

Table 2: Percentage improvement in the bound for symmetric unimodal distributions rel-

ative to the normal sdf due to higher moment information. (NaN stand for division by

zero.)
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also shows that approximating a unimodal and symmetric distribution by a normal with

the same mean and variance yields a reasonably good approximation.

Another interesting observation is that fourth moment information has a most significant

impact in the tails (beyond 2 − 2.5 standard deviations), but less so around the mean.

This can also be observed from Table 2, which illustrates the relative improvement in the

bound for symmetric unimodal distributions from using higher order moments ∆su
k (a) =

(SUk(a)− SUk+2(a))/(SUk(a)−N(a)). The relative improvement from using higher order

moments appears to be much stronger in the tails than around the mean. Nevertheless, no

monotonicity relationship can be observed.

The numerical experiments have been conducted in MATLAB5.3 under WindowsNT,

using the SOS Toolbox [27]- an optimization package over semi-algebraic sets, based on the

SeDuMi [39] solver for semidefinite programming.

8 Conclusions.

In this paper we showed how optimal moment bounds over convex classes of distributions

generated by one-parameter families can be efficiently computed using semidefinite program-

ming. Polar representations and conic duality provide a general and tractable framework

for solving Problem (P) for convex classes of distributions, satisfying special properties such

as symmetry, unimodality, convexity and smoothness. We also extended these results to

obtain approximate SDP solutions for multi-parameter classes and multivariate distribu-

tions. Finally, we applied these results to obtain generalizations of Chebyshev’s inequality

given higher order moments via SDP. Numerical computation shows that accounting for

structural properties such as symmetry and unimodality can improve the quality of the

moment bounds by at least 75%.
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9 Appendix A. Proof of Proposition 3

The first part of the proposition is a known result. We provide a proof for completeness:

Clearly cx(T ) ⊆ mix(T ). To prove mix(T ) ⊆ c̄x(T ), let µ =
∫

τdν(τ) ∈ mix(T ). The

set of measures with finite support is weakly dense in M+(T ) (a separable metric space7),

so there exists νn → ν such that νn has support on (at most) n points. Let µn =
∫

τdνn(τ) ∈

cx(T ). For any bounded continuous h,
∫

hdτ is bounded and continuous in τ ∈ T (in the

inherited weak topology), implying
∫

hdµn =
∫

(
∫

hdτ) dνn →
∫

(
∫

hdτ) dν =
∫

hdµ, so

µ ∈ c̄x(T ). This concludes the proof of the first part.

The second part of Proposition 3 is not new in the compact case. It follows from the

following result (Phelps [29] Proposition 1.2):

Proposition 11 Suppose that X is a compact subset of a locally convex8 topological space.

Then c̄x(X) = mix(X).

Since the space of probability measures can be appropriately metrized, weak compact-

ness is sufficient. By Prohorov’s Theorem (see [5]), a sufficient condition for weak compact-

ness is that T be weakly closed and uniformly tight, i.e. for any ǫ > 0 there exists a compact

Kǫ with τ(Kǫ) > 1 − ǫ for every τ ∈ T . Uniform tightness is satisfied if Ω is compact.

For non-compact intervals Ω ⊆ R, the following proof has been suggested by Edgar [11].

Consider for example Ω = [0,∞) (the other cases work similarly), which is not compact,

but can be compactified in R̄ by adding the point {∞}. This yields Ω̄ = [0,∞], which is

homeomorphic to [0, 1]. The set of probability measures on Ω can be identified with the

following subset of probability measures on Ω̄ : M+(Ω) = {µ ∈ M+(Ω̄) | µ({∞}) = 0}.

Let S denote the closure of T in M+(Ω̄). Since T is closed in M+(Ω), it follows that

T = {µ ∈ S | µ({∞}) = 0}. By Proposition 11 we have c̄x∗(S) = mix(S), where the star

refers to closure in M+(Ω̄).

We want to show that c̄x(T ) ⊆ mix(T ), where the closure is in M+(Ω). Let µ0 ∈ c̄x(T ).

Then µ0 ∈ c̄x∗(S) and µ0({∞}) = 0. Let ν0 ∈ M+(S) be a mixing measure for µ0. It

remains to show that ν0 is concentrated on T . For this we rely on the following result

(Phelps [29] Chapter 12 p.100):

Proposition 12 If X is a compact convex subset of a locally convex space and if ν is a

probability measure on X with resultant x, then f(x) =
∫

fdν for each affine function f of

first Baire class.

Affine functions of first Baire class are those affine functions that are the pointwise limit

of a sequence of continuous (not necessarily affine) functions on X. The map µ → µ({∞})

is affine and of first Baire class (although not continuous). To see this, use continuous

7It is possible to metrize the space of probability measures as a separable complete metric space such

that convergence in the metric is equivalent to weak convergence (see [28] Theorem 6.2 Ch.II)
8A space is locally convex if it admits a convex base. Any metric space is locally convex.
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increasing functions fn(x) that are zero for x < n, and one for x > n+1. Then each
∫

fndµ

is continuous, and µ({∞}) is the limit of that sequence.

Therefore, by Proposition 12, 0 = µ0({∞}) =
∫

S µ({∞})dν0(µ). This integral of a non-

negative function is zero, so the set {µ ∈ S | µ({∞}) = 0} = T has ν0-measure 1. This

shows that ν0 is supported on T , so µ0 ∈ mix(T ), as claimed.

The above argument easily extends for closed sets Ω ⊆ Rm, using the one-point com-

pactification of Rm (i.e. add one extra point ∞, with neighborhoods consisting of the

complements of the compact sets of Rm). This result becomes relevant in Section 6, when

we deal with multivariate extensions.

Appendix B. Proofs of Lemmas 6 and 7.

Proof of Lemma 6: We only prove part (a); the second part is analogous. Any measure

in S = cx(T dx
m,a) admits a continuous piecewise linear decreasing and convex density. Con-

versely, any continuous piecewise linear decreasing and convex density function on [m, m+a],

can be written as p(x) = s0 +
∑l

i=1 si(bi − x)+, with si ≥ 0 and m ≤ bl ≤· · ·≤ b1≤m + a,

where the left-slopes at breakpoints bk equal −
∑k

i=1 si. Denote ti = bi−m and wi = sit
2
i /2,

so p(x) = s0 +
∑l

i=1 wi
2
t2
i

(m + ti − x)+. Since p(x) is a density, the weights sum up to 1.

Hence the measure with density p(x) is a convex combination of triangulars and a rect-

angular (with weight s0), so it belongs in S. Hence S is the set of continuous probability

measures that admit piecewise linear decreasing and convex densities.

We now show that S ⊆ P̄dxm,a ⊆ S̄, hence P̄ixm,a = S̄ as desired. Let µ ∈ P̄ixm,a, so

µ = αµ0 + (1 − α)δm, where µ0 is a continuous measure that admits an increasing convex

density π0. There exists an increasing sequence of non-negative piecewise linear decreasing

concave measurable functions πn converging pointwise to π0. By monotone convergence,
∫

A πn(x)dx →
∫

A π0(x)dx for any measurable set A. Let
∫

πn(x) = 1
cn

≤ 1, so cn → 1

and cnπn is the density function of a measure in S. Therefore the sequence of measures

µn = αcn

∫

πn(x)dx + (1 − α)γ+
m, 1

n

∈ S converges weakly to µ0.

Finally, by Proposition 3, we have P̄dxm,a = mix(T dx
m,a ∪ {δm}), where the Dirac at m is

added to insure closure of the generating set. Without it, we obtain the corresponding set

of continuous measures Pdxm,a = mix(T dx
m,a).

Proof of Lemma 7: We only prove the first part, the second part is analogous. The

proof follows the same lines as the previous lemma. Any measure in S = cx(T dv
m,a) admits

a continuous piecewise linear decreasing and concave density. Any continuous piecewise

linear decreasing and concave density function v(x) ≥ 0 on [m, m + a] can be written as

v(x) = M −
∑l

i=0 wi(x − m − ti)
+, where wi ≥ 0, 0 ≤ ti ≤ a and M = v(m + a) is the
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maximal value of v. It follows that

v(x) =
l

∑

i=0

wi(a − ti − (x − m − ti)
+) =

l
∑

i=0

wi min(a − ti, a + m − x),

which is a convex combination of right m-trapezoidal densities with weights ρi = wi
a2−t2

i

2 ≥

0. Since v is a density, the weights must sum to 1. This shows that S is exactly the set of

distributions that admit a piecewise linear decreasing and concave density. We now show

that S ⊆ Pdvm,a ⊆ S̄. Closure of Pdvm,a implies the desired equality.

Let π0 be an increasing convex density for µ ∈ Pdvm,a. Let πn be an increasing sequence of

non-negative piecewise linear increasing convex measurable functions converging pointwise

to π0. By monotone convergence,
∫

A πn(x)dx →
∫

A π0(x)dx for any measurable set A.

Let
∫

πn(x) = 1
cn

≤ 1, so cn → 1 and cnπn is the density function of a measure in S.

So cn

∫

A πn(x)dx →
∫

A π0(x)dx for any measurable set A, and the sequence of measures

µn = cn

∫

πn(x)dx ∈ S converges weakly to µ.

Appendix C. Proof of Proposition 10.

The result for arbitrary distributions is from Bertsimas and Popescu [3]. In order to simplify

notation, in the following we assume that the mean M1 = 0, and hence all odd order

moments are also null.

Symmetric random variables. According to the formulation (9) in Section 4.1, the dual

of this problem can be written as:

min
y

y′M

s.t.
n

∑

i=0

yi((−t)2i + t2i) ≥ 1(t≤−a) + 1(t≥a) , ∀ t ≥ 0.
(19)

We must distinguish two cases:

Case 1: a ≤ 0. By the change of variables t2 = z, we can rewrite the dual as follows:

min
y

y′M

s.t.
n

∑

i=0

yiz
i ≥

1

2
, for z ≥ 0

n
∑

i=0

yiz
i ≥ 1 , for z ≤ a2.

The corresponding SDP formulation is a simple application of Proposition 2 (see the explicit
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formulation in [3]). Suppose now that n = 1, and σ2 = M2. The optimal Chebyshev bound

for symmetric distributions is the solution of the following program:

min
y

y0 + y1σ
2

s.t. y0 + y1z ≥ 1
2 , for z ≥ 0

y0 + y1z ≥ 1 , for z ≤ a2,

The constraints imply that y0 ≥ 1 and y1 ≥ 0. It follows that the optimal bound is 1.

Case 2: a > 0. By the same change of variables t2 = z, the dual can be written as:

min
y

y′M

s.t.
n

∑

i=0

yiz
i ≥ 0 , for z ≥ 0

n
∑

i=0

yiz
i ≥

1

2
, for z ≥ a2.

The corresponding SDP formulation is a simple application of Proposition 2 as explicitly

stated in [3]. Suppose now that n = 1, and σ2 = M2. The optimal Chebyshev bound for

symmetric distributions is the solution of the following program:

min
y

y0 + y1σ
2

s.t. y0 + y1z ≥ 0 , for z ≥ 0

y0 + y1z ≥ 1
2 , for z ≥ a2,

The first constraint set is equivalent to y0, y1 ≥ 0. In this case, the second constraint set is

equivalent to y0 + y1a
2 ≥ 1

2 . So the problem can be reformulated as

min
y1≤

1

2
a2

1

2
+ y1(σ

2 − a2) =











1

2
, if σ2 ≥ a2

σ2

2a2
, if σ2 < a2

=
1

2
min

(

1,
σ2

a2

)

.

This concludes the proof of this part.

Unimodal and symmetric random variables. According to formulation (12) in Section

4.3, the problem can be written as:

min
y

y′M

s.t.
n

∑

i=0

2yi

2i + 1
t2i+1 ≥

∫ t

−t
1(x≥a)dx , ∀ t ≥ 0.

(20)
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We consider two separate cases:

Case 1: a ≤ 0 . The equivalent dual formulation is

min
y

y′M

s.t.
n

∑

i=0

2yi

2i + 1
t2i+1 ≥







2t , ∀ 0 ≤ t ≤ −a

t − a , ∀ t ≥ −a.

(21)

The degree of the first constraint set can be reduced after simplification by 2t and the

change of variable z = t2, to
n

∑

i=0

yi

2i + 1
zi ≥ 1 , ∀ 0 ≤ z ≤ a2. The corresponding SDP

formulation is a direct consequence of Proposition 2 (see [3] for the explicit formulation).

For n = 1, and σ2 = M2, the desired bound is the solution to the following program:

min
y

y0 + y1σ
2

s.t. y0 +
y1

3
z ≥ 1 , ∀ 0 ≤ z ≤ a2

y0t +
y1

3
t3 ≥

t − a

2
, ∀ t ≥ −a

(22)

The second constraint implies that y1 ≥ 0, whereas the first implies y0 ≥ 1. The optimum

is achieved when equality holds in both, and the bound equals 1.

Case 2: a > 0 . The equivalent dual formulation is:

min
y

y′M

s.t.
n

∑

i=0

2yi

2i + 1
t2i+1 ≥







0 , ∀ t ≥ 0

t − a , ∀ t ≥ 0
.

(23)

We degree of the first constraint can be reduced after dividing by 2t, and by the change of

variable z = t2, obtaining:
n

∑

i=0

yi

2i + 1
zi ≥ 0 , ∀ z ≥ 0. The corresponding SDP formulation

is a direct consequence of Proposition 2.

In particular, for n = 1 and σ2 = M2, we have the following program:

min
y

y1σ
2 + y0

s.t.
y1

3
z + y0 ≥ 0 , ∀ z ≥ 0

y1

3
t3 + (y0 −

1

2
)t +

a

2
≥ 0 , ∀ t ≥ 0

(24)

The first condition set implies y0 ≥ 0. The second condition implies y1 ≥ 0, in which case

the first constraint set is always satisfied. For y1 = 0, or y0 ≥ 1
2 , the bound cannot exceed
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1
2 , obtained for y0 = 1

2 , y1 = 0.

Suppose now that y1 > 0 and 0 ≤ y0 < 1
2 . Denote h(t) = y1

3 t3 + (y0 −
1
2)t + a

2 . Notice

that the inflexion point is at 0 and h(0) = a/2 ≥ 0, whereas h(a) ≥ 0. The local optima

are t± = ±

√

(
1

2
− y0)/y1. Therefore, we can have h(t) ≥ 0 for all t ≥ a if and only if

h(t+) ≥ 0, or else t+ ≤ a. The latter case leads to a contradiction. The condition h(t+) ≥ 0

is equivalent to y1 ≥ 2
9

(1−2y0)3

a2 . The minimum is achieved for y0 = 0 or y0 = 1
2 , and the

value of the bound is min

(

1

2
,
2

9

σ2

a2

)

. This concludes the proof.
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