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A Semidefinite Programming Approach to Optimal
Unambiguous Discrimination of Quantum States
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Abstract—n this paper, we consider the problem of unam- If the given stateg¢;) are not orthogonal, then no measure-
biguous discrimination between a set of linearly independent pure ment can distinguish perfectly between them [2]. A fundamental
quantum states. We show that the design of the optimal measure- ,rqpjem, therefore, is to design measurements optimized to dis-
ment that minimizes the probability of an inconclusive result can fi ish bet th | ¢ tat
be formulated as a semidefinite programming problem. Based Inguish between pure ”9“°r ogona _qu_an um states.
on this formulation, we develop a set of necessary and sufficient e may formulate this problem within the framework of
conditions for an optimal quantum measurement. We show that quantum detection, and seek the measurement that minimizes
the optimal measurement can be computed very efficiently in the probability of a detection error, or more generally, the

for solving semidefinite programs, which are guaranteed to e
converge to the global optimum, problem has emerged, which in some cases may be more useful.

Using the general conditions for optimality, we derive necessary 1 Nis approach, referred to as unambiguous discrimination of
and sufficient conditions so that the measurement that results in quantum states, combines error-free discrimination with a cer-
an equal probability of an inconclusive result for each one of the tain fraction of inconclusive results. The basic idea, pioneered
quantum states is optimal. We refer to this measurement as the by Ivanovic [7], is to design a measurement that with a certain
equal-probability measurement (EPM)Ve then show that for any , probability returns an inconclusive result, but such that if the

state set, the prior probabilities of the states can be chosen suc -
that the EPM is optimal. measurement returns an answer, then the answer is correct

Finally, we consider state sets with strong symmetry properties With probability 1. Given an ensemble consisting f states,
and equal prior probabilities for which the EPM is optimal. We the measurement therefore consistsnof+ 1 measurement
first consider geometrically uniform (GU) state sets that are de- gperators corresponding4e+ 1 outcomes, wherg: outcomes

fined over a group of unitary matrices and are generated by a 4respond to detection of each of the states and the additional
single generating vector. We then consider compound GU state setso tcome corresnonds to an inconclusive result

which are generated by a group of unitary matrices usingnultiple u . p ! usiv u_ o
generating vectors, where the generating vectors satisfy a certain  [vanovic [7] developed a measurement which discriminates

(weighted) norm constraint. unambiguously between a pair of nonorthogonal pure states.
Index Terms—Compound geometrically uniform (CGU) The_measure_ment giV?S the smallest pOS.Sible pro_bat_)ilit_y of
quantum states, equal-probability measurement (EPM), geo- Obtaining an inconclusive result for unambiguous discrimina-
metrically uniform (GU) quantum states, quantum detection, tion, when distinguishing between two linearly independent
semidefinite programming, unambiguous discrimination. nonorthogonal states with equal prior probabilities. This mea-
surement was then further investigated by Dieks [8] and Peres
[9], and was later extended by Jaeger and Shimony [10] to the
case in which the two states have unequal prior probabilities.

I N recent years, research into the foundations of quantumajthough the two-state problem is well developed, the
physics has led to the emerging field of quantum informatigitoblem of unambiguous discrimination between multiple
theory [1]. Quantum information theory refers to the distinctivguantum states has received considerably less attention. In [11],
information processing properties of quantum systems, whiplgres and Terno consider unambiguous discrimination between
arise when information is stored in or retrieved from quantugiree quantum states. Chefles [12] showed that a necessary and

states. To convey information using quantum states, we may psgfficient condition for the existence of unambiguous mea-
pare a quantum system in a pure quantum state, drawn froruements for distinguishing betweenquantum states is that
collection of known state§|¢;), 1 <4 < m}. To detectthe in- the states are linearly independent. He also proposed a simple
formation, the system is subjected to a quantum measuremegboptimal measurement for unambiguous discrimination for
which the probability of an inconclusive result is the same

' ' ' ~ regardless of the state of the system. Equivalently, the measure-
B e o et yilds an equal probabilty of correcty detecting each
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In this paper, we develop a general framework for unam-I1l. UNAMBIGUOUS DISCRIMINATION OF QUANTUM STATES
biguous state discrimination which can be applied to any
number of states with arbitrary prior probabilities. For OULi~te drawn from a collection of given stafes;), 1 < i < m)
measurement, we consider general positive operator—vallfﬁa FAR

31 [14 isting of 4 1 A ¢ nr-dimensional complex Hilbert spa@é, with» > m. The
measures [3], [14], consisting of + Mmeasurement Operators a4 span a subspdé®f H. To detect the state of the system,
We derive a set of necessary and sufficient conditions for

. L - Q'measurement is constructed comprising- 1 measurement
optimal measurement that minimizes the probability of

) . . L : Joperatorg{I1;, 0 < 7 < that satis
inconclusive result, by exploiting principles of duality theory ﬁwgp s sigm} fy

Assume that a quantum system is prepared in a pure quantum

vector space optimization. In analogy to the quantum detection m
problem, deriving a closed-form analytical expression for > =1, 1)
the optimal measurement directly from these conditions is a =0

difficult problem. However, our formulation has several adrhe measurement operators are constructed so that either the
vantages. First, it readily lends itself to efficient computationakste is correctly detected, or the measurement returns an in-
methods. Specifically, we show that the optimal measureme@nciusive result. Thus, each of the operafdfs1 < i < m

can be found by solving a standard semidefinite program (SDErresponds to detection of the corresponding sfates 1 <

[15], which is a convex optimization problem. By exploiting; < ;,, andII, corresponds to an inconclusive result.

the many well-known algorithms for solving SDPs [16], [17], Given that the state of the system|ds), the probability of

the optimal measurement can be computed very efficiently ghtaining outcome is (¢:|I1| ). Therefore, to ensure that

polynomial time. Since an SDP is convex, it does not suff@iach state is either correctly detected or an inconclusive result
from local optimums, so that SDP-based algorithms are guar@nptained, we must have

teed to converge to thglobal optimum. Second, although the
necessary and sufficient conditions are hard to solve directly, (di| Uk |di) = pidik, 1<, k<m (2)
they can be used to verify a solution. Finally, the necessary
and sufficient conditions lead to further insight into the optimdPr some0 < p; < 1. Since from ()11, = I, — >\, T1;, (2)
measurement. In particular, using these conditions we derii@plies that(;|Ilo|¢;) = 1 — p;, so that given that the state of
necessary and sufficient conditions on the state vectors, t6 systemip;), the state is correctly detected with probability
that the EPM minimizes the probability of an inconclusive:, and an inconclusive result is returned with probabilityp; .
result. In contrast with the general optimality conditions, these It was shown in [12] that (2) can be satisfied if and only if the
conditions can be easily verified given the state ensemble affftors|¢;) are linearly independent, or equivalentlym i/ =
the prior probabilities. Using these conditions we show that for- We, therefore, make this assumption throughout the paper.
any set of state vectors the prior probabilities can be chos¥hthis case, we may choose
such that the EPM is optimal. S A ,

Based on the necessary and sufficient conditions, we I; = pil¢i){dil = piQs, l<ism ®)
develop the optimal measurement for state sets with broflﬂere
symmetry properties. In particular, we consider geometrically
uniform (GU) state sets [18]-[20] defined over a group of Qi = |9:){dil, 1<i<m (4)
unitary matrices. For such state sets, we show that the optimal ~
measurement is the EPM, and we obtain a convenient characééid the vectorsg;) € U are thereciprocal statesassociated
ization of the EPM that exploits the state symmetries. We thaith the stateg¢;), i.e., they are the unique vectorstihsuch
considercompound GU (CGU3¥tate sets [21], [20] in which that
the state vectors are generated by a group of unitary matrices ~ )
using multiple generating vectors. We obtain a convenient (Dilr) = dir, 1<i, k<m. ®)
characterizgtion of the EPM in this case, and s_how that Whﬁ'ﬂth ® and® denoting the matrices of columns;) and|¢~>7;>,
the generating vectors satisfy a certain constraint, the EPMré%pectively
optimal. '

The paper is organized as follows. After a statement of the d = (p((p*(p)—l, (6)
problem in Section II, in Section lll, we derive the necessary
and sufficient conditions for the optimal measurement that mifsince the vectorp;) are linearly independen*® is always
imizes the probability of an inconclusive result, by formulatingnvertible. Alternatively
the problem as an SDP. In Section IV, we consider the EPM
and derive necessary and sufficient conditions on the state set
and the prior probabilities so that the EPM is optimal. Efficient
. ; ) S o . so that
iterative algorithms for minimizing the probability of an incon-
clusive result which are guaranteed to converge to the global |¢”,i> = (00*)T|¢;) (8)
optimum are considered in Section V. In Sections VI and VII,
we derive the optimal measurement for state sets with certawhere(-)" denotes thdloore—Penrose pseudoinveri&2]; the
symmetry properties, and show that the optimal measurementerse is taken on the subspace spanned by the columns of the
coincides with the EPM. matrix.

d = (20*)Td 7
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We can immediately verify that the measurement operatdsminimize the probability of an inconclusive result. Although
given by (3) satisfy (2). Ifr = m so that the dimension df in general obtaining a closed-form analytical solution directly
is equal to the dimension of the spdéespanned by the vectorsfrom these conditions is a difficult problem, the conditions
|#;), then these operators are the unique operators satisfying (&n be used to verify whether or not a set of measurement
If, on the other hand; > m, then the measurement operatoreperators is optimal. Furthermore, these conditions lead to
are not strictly unique. Indeed, any measurement operatorsunrther insight into the optimal measurement operators. In
the form particular, in Section IV, we use these conditions to develop

_ necessary and sufficient conditions on the state vectors and the
i = piQi + |pa) (il l<i<m ©) prior probabilities so that the EPM is optimal.

where|u;) € U+, also satisfy (2). Sinckb;) € U, (¢i|ur) =0
for everyi, k sothatthe measurement operators given by 3) a'r/_l\d Semidefinite Programming

(9) lead to the same detection probabilit{gs|II|¢;) = pidix. A standard SDP is the problem of minimizing
We may, therefore, assume without loss of generality that the

operatordI; are restricted téf, so that they have the form given P(z) = {c|z) (12)
bylf(?k)é state|¢;) is prepared with prior probability;, then the subject to
total probability of correctly detecting the state is Fz)> 0 13)
Pp = Zm: 0i(pi|lL; i) = Zm: nips. (10) Where
1=1 i=1
Our problem, therefore, is to choose the measurement opera- F(z) = Fo+ Z ziFy. (14)

tors1l; = p;Q;, or equivalently, the probabilities; > 0, to
maximizePp, subject to the constraint (1). We can express thigere|xz) € R™ is the vector to be optimized; denotes théth
constraint directly in terms of the probabilitipsas component ofz), |¢) is a given vector irR™, andF; are given

m matrices in the spad8, of n x n Hermitian matrices.

Z I; = piQi < I,. (11) The problem of (12) and (13) is referred to as frémal

P ; problem A vector|z) is said to beprimal feasiblef F(x) > 0,
and isstrictly primal feasibleif F'(x) > 0. If there exists a
strictly feasible point, then the primal problem is said to be
strictly feasible. We denote the optimal valuef®fz) by P.

An SDP is a convex optimization problem and can be solved
We now show that our maximization problem (10) and (1Mery efficiently. Furthermore, iterative algorithms for solving
can be formulated as a standard SDP [15], [16], which iSSDPs are guaranteed to converge to the global minimum. The
convex optimization problem. There are several advantagesIoP formulation can also be used to derive necessary and suf-

this formulation. First, the SDP formulation readily lends itseficient conditions for optimality by exploiting principles of du-
to efficient computational methods. Specifically, by exploitinglity theory. The essential idea is to formulatéual problemof
the many well-known algorithms for solving SDPs [15], e.g., inthe formmax; D(Z) for some linear functional whose max-
terior point methods[16], [17], the optimal measurement carimal valueD serves as a certificate fét. Thatis, for all feasible
be computed very efficiently in polynomial time. Furthermoreyalues ofZ € B,,,i.e., values of € B, that satisfy a certain set
SDP-based algorithms are guaranteed to converge to the glaifalonstraints, and for all feasible values|ef, D(7) < P(x),
optimum. Second, by exploiting principles of duality theory io that the dual problem provides a lower bound on the optimal
vector space optimization, the SDP formulation can be usedvialue of the original (primal) problem. If in addition, we can es-
derive a set of necessary and sufficient conditions for the prohablish that? = D, then this equality can be used to develop
bilities p; to maximizePp of (10) subject to the constraint (11).conditions for optimality orjz).

We note that recently SDP-based methods have been enifhe dual problem associated with the SDP of (12) and (13)
ployed in a variety of different problems in quantum detectiof15] is the problem of maximizing
and quantum information [6], [23]-[27].

After a description of the general SDP problem in Sec- D(Z) = -Tr(FoZ) (15)
tion 1lI-A, in Section 11I-B we show that our maximization
problem can be formulated as an SDP. Based on this formufPiect o
tion, we derive a set of necessary and sufficient conditions on
the measurement operators, or equivalently, the probabjlities

Ms

1
o

Note that (11) implies thas;

I /\

ll. SEMIDEFINITE PROGRAMMING (SDP) FORMULATION

Tv(F,7Z) = ¢, 1<i<m (16)
7 >0 a7

Linterior point methods are iterative algorithms that terminate once a prespec-
ified accuracy has been reached. A worst case analysis of interior point method®lthough typically in the literature the matricég are restricted to be real
shows that the effort required to solve an SDP to a given accuracy grows no fasted symmetric, the SDP formulation can be easily extended to include Her-
than a polynomial of the problem size. In practice, the algorithms behave mugitian matricesF; ; see, e.g., [28]. In addition, many of the standard software
better than predicted by the worst case analysis, and, in fact, in many casegtiekages for efficiently solving SDPs, for example the Self-Dual-Minimization
number of iterations is almost constant in the size of the problem. (SeDuMi) package [29], [30], allow for Hermitian matrices.
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whereZ € B,,. Amatrix Z € B, is said to balual feasiblefit  sothatthe constraid(p) > 0is equivalent t(E;”:lpiQi <I,
satisfies (16) and (17) and strictly dual feasibldf it satisfies andp; > 0,1 < i < m. Thus, the problem of (10) and (11)
(16) andZ > 0. If there exists a strictly feasible point, then theeduces to the SDP

dual problem is said to be strictly feasible.

For any feasibléxz) and Z we have that pgl%gl(CIP) subjectto F(p) > 0 (24)

P(x) = D(2) = (c|lz) + Tr(FoZ) where|c) is the vector of componentsn; with n; being the

prior probability of|#;), andF'(p) is given by (23).
To derive a set of necessary and sufficient conditions for opti-
(18) mality on|p), we use the dual problem formulation of a general
SDP (15)—(17) to formulate the dual problem associated with

sothatas required)(Z) < P(z). Furthermore, it can be shown(24), which reduces to
[15] that if both the primal problem and the dual problem are

=Y @ Te(FiZ) + Tr(FoZ)
i=1

=Tr(F(z)Z) >0

strictly feasible, ther® = D and|z) is an optimal primal point max —Tr(X) (25)
if and only if |z) is primal feasible, and there exists a dual fea-
sible Z € B,, such that subject to
ZF(z) = 0. (19) Tr(QiX) — zi =mi, 1<i<m (26)
>
Equation (19) together with (16), (17), and (13) constitute a set X 20 27)
z; >0, 1<i<m. (28)

of necessary and sufficient conditions fel) to be an optimal
solution to the problem of (12) and (13), when both the primal
and the dual are strictly feasible.

If Z maximizesD(Z) sothatD(Z) = D, then|z) is optimal
if and only if F(z) > 0 andZF(z) = 0.

We can immediately verify that both the primal and the dual
problem are strictly feasible. Therefore, it follows tha} is
optimal if and only if the componentg; of |p) satisfy (21),
there exists a matriX and scalarg;, 1 < ¢ < m that satisfy

B. SDP Formulation of Unambiguous Discrimination (26)—(28), and
We now show that the unambiguous discrimination problem m
of (10) and (11) can be formulated as an SDP. Denotj othe X <Ir - Z piQi) =0 (29)
vector of componentg; and by|c) the vector of components i=1
—n;. Then our problem is to minimize zipi =0, 1<i<m. (30)
P(p) = (c|p) (20) Note that (29) implies that for the optimal choice @f, the
_ largest eigenvalue of." , p;Q; must be equal ta. This con-
subject to dition has already been derived in [12].
m If X and2; maximize (25) subject to (26)—(28), then the op-
Z piQi < I p; >0,1<i<m. (21) timal values ofp; can be found by solving (29) and (30) with
=1 X:szzzéz

. W mmariz r results in the following theorem.
To formulate this problem as an SDP, Iét 0 < i < m be the esu arize our results in the following theore

block-diagonal matrices defined by Theorem 1: Let{|¢;), 1 <14 < m} denote a set of state vec-
tors with prior probabilities{r;, 1 < i < m} in anr-dimen-
I —t sional Hilbert spac@{ that span am-dimensional subspaéé
Fy = 0 _ L F = ! _ - of H, let {|¢;), 1 < i < m} denote the reciprocal statestin
' B defined by(¢;|dr) = i, and letQ; = |¢p;){¢:|. Let A denote
0 0 the set of all ordered sets of constafits, 1 < 7 < m} that
—Qm satisfyp; > 0 andzznzlpi@i < I,, and letI’ denote the set
0 of r x r Hermitian matricesX satisfyingX > 0 and scalars
P = - (22) z; > 0,1 <4 < m such thatTr(Q,; X) — z; = n;. Consider
1 the problemmin,,cx P(p) where P(p) = — " n;p; and
the dual problemmaxx, .,cr D(X) whereD(X) = —Tr(X).
Then Then

s m 1) foranyp;, € AandX, z; € ', P(p) > D(X);
m n ;pi@i 2) there is an optimal|p), denoted [p), such that
F(p)=Fo+ > piF; = ’ p1 P = P(p) < P(p) forany|p) € A; )
i=1 3) thereis an optima}( and optimalz;, denotedX andz;,
Pm such thatD = D(X) > D(X) foranyX, z €T}

(23) 4) P = D;
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5) a set of necessary and sufficient conditionggorto min-  B. Conditions for Optimality

imize P(p) is thatp; € A andthere exist&’, z; € 'such 1) Necessary and Sufficient Conditionket s denote the
thatX(:TT — 2.t piQi) = 0andzip; = 0, 1 <i < m; multiplicity of ¢, S0 thato,, = g1 = -+ = Opmys—1. We
6) givenX andz; a set of necessary and sufficient condifirst consider the case in which = 1. In this case, to satisfy
tions on|p) to minimize P(p) is thatp; € A, X(I, — (29) and (27) we must have that
Yo piQi) =0andzp; =0,1 <i<m. X = blugs) (| (34)
As we indicated at the outset, the necessary and sufficient
conditions given by Theorem 1 are in general hard to solVéhere|u,) are the columns o/ andb > 0. In addition, since
directly, although they can be used to verify a solution. Ip: = p > 0, itfollows from (30) thatz; = 0, 1 <4 < m so that
addition, these conditions can be used to gain insight into tfiem (26)
optimal measurement operators. In the next section, we will T 2 p
use Theorem 1 to develop necessary and sufficient conditions Tr(QiX) = bi{ilum) " = mi Lsism. (35)
on a set of state vectors so that the EPM is optimal. Contragpw, from (31) we have that
to the conditions given by Theorem 1, these conditions can

be easily verified. |:) = U(ST)*[vi) (36)
where|v;) denotes théth column ofV*. Substituting into (35)
IV. EQUAL-PROBABILITY MEASUREMENT (EPM) )
A. EPM g lim)P=m,  1<i<m @37

b'A simple measurement th_at has been employ_ed fo_r unavrT/]Iﬁerevi(k) denotes théth component ofv;). Since
iguous state discrimination is the measurement in whjch
p, 1 < i < m. This measurement results in equal probability i ) s
of correctly detecting each of the states. We, therefore, refer to Z [vi(m)|” = Z ni=1 (38)
this measurement as the EPM. i=1 i=1

To determine the value of, let ® have a singular value de-» must be equal te2,.
composition (SVD) [22], [19] of the forn® = UXV* where  We conclude that when the multiplicity of,, is equal tol,
U is anr x r unitary matrix,X is a diagonat x m matrix with  the EPM is optimal if and only ifv;(m)|> = n;, 1 < i < m,
diagonal elements; > 0 arranged in descending order so thate., if and only if each of the elements in the last rowtof is
01> 02 > -+ > om, andV is anm x m unitary matrix. Then equal to the prior probability of the corresponding state.

from (6) it follows that 2) Sufficient Conditions:We now consider the case in which
} s > 1. To derive a set of sufficient conditions for the EPM to be
d=UxNH)Vv* (31) optimal we construct a matriX that satisfies the conditions of

Theorem 1.
whereX' is a diagonaln x r matrix with diagonal elements  To satisfy (29) and (27) we let
1/O'i. Thus, s
X = Z bie|wm—ket1) (U — 1] (39)
k=1

Y Q=) 1)kl =00 =UE T (32) _ _
P Py with b;, > 0. Sincep; = p > 0, it follows from (30) that
z; = 0, 1 < i < m so that from (26),X must satisfy

and the largest eigenvalue I’ , Q; is equal tol /o2,. To sat- s

isfy the condition (29), the largest eigenvaluepdf”, Q); must TH(Q; X) = Z bk|<(z>i|um—k+1>|2 =, 1<i<m.
be equal tal, so that 1

(40)
p=o02. (33) Substituting|¢;) = U(X1)*|v;) into (40), we have that the con-
stantsb;, must satisfy
Therefore, our problem reduces to finding necessary and suf- s
ficient conditions on the vectorg;) such thatll; = o2 Q; — Z bi|vi(m — k+ 1)|> = n;, 1<i<m (41)
minimizes the probability of an inconclusive result. Om =1

In the next section, we develop conditions under which tr\]/veherevi(k) denotes théth component ofv;).

Epn'\w/lelr?t ovst;rziLgégP:;nk;?;[grstﬁ;sggrsn;rmt\ll(;; m;surmdueI}/eI- We conclude that the EPM is optimal if there exists constants
pment, parately e b; > 0,1 < i< ssuch that

tiplicity 1 and the case in which,, has multiplicity greater

than1. We derive a set of necessary and sufficient conditions for{vi (m)[* -+ |vi(m — s +1)|? m
ophmqhty c_)ft_he EPM in the first case, and sufficient condition loa(m)[2 -+ |ua(m — s+ 1) 1 1
for optimality in the second case. Two broad classes of state sets . ) =1 .. 42
that satisfy these conditions are discussed in Sections VI and - : b, :

VII. [om(m)|? - |om(m — s +1)]? ' fhm
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The problem of determining whether there existd)awith  probabilities. Theorem 3 provides a set of sufficient conditions
component$; > 0 such that (42) is satisfied is equivalent tmn the state§p;) and the prior probabilities; so that the EPM
verifying whether a standard linear program is feasible. Spedi§-optimal. The proof of the Theorem is given in the Appendix.
ically, in a linear program the objective is to minimize a linealn Sections VI and VII, we discuss some general classes of state
functional of the vectotb) of the form(d|b) for some vector sets that satisfy these conditions.
|d), subject to the constraintd|b) = |y) and |b) > O for

some given matrix4 and vectory). A linear program is fea- vectors with prior probabilitien,, 1 < i < m} in a Hilbert

sible if there exists avectw)_that satisfies th<=T constraints [31].s acel that span amn-dimensional subspadé of H. Let &
Thus, we can use standard linear programming techniques toé%ﬁote the matrix of columris), and lety denote the number
termine w_hether #) exists that satisfie_s (4.2)’ or e_quivalentl)_/,Pf distinct singular values cb. 1Eh7en the equal-probability mea-
)[/i\/:set:lheer glgi/lnig (s)s;ir(:asltate vectors with given prior prObamgurement minimizes the probability of an inconclusive result if

Note, that given a set of state vectors, we can always choég)é'((I)(I)*)t/%l|¢’i> = miag for 1 <i <mandl < # < g, for

.’ - " . : Some constants;.

the prior probabilities); so that the EPM is optimal. This fol-
lows from the fact that the matrix in (42) depends only on the
state vectors. Thus, any set of coefficiehjts> 0 will give a set V. COMPUTATIONAL ASPECTS
of n; > 0 that satisfy (42). The coefficientg will correspond
to probabilities ify ", n; = 1. Sinced_1" , |v;(k)|* =1 for all &,
S omi = Y.i_, b, and any set of coefficients > 0 such

Theorem 3:Let {|¢;), 1 < ¢ < m} denote a set of state

In the general case, there is no closed-form analytical solu-
tion to the maximization problem (20) subject to (21). However,
] . g . since this problem is a convex optimization problem, there are
that) bi.: 1 V.V'” resultin a set of probabilities; for which very efficient methods for solving (20). In particular, the optimal
the EPMis optimal. . . vector|p) can be computed on Matlab using the linear matrix

In [13], th(_e authors raise the qu_e_s_non of whether or not cyclf equality (LMI) Toolbox. Convenient interfaces for using the
sta_te sets with egual prior probabilities are the only state sets Il toolbox are the Matlab packages I@G32] and SeDuMi
which the EPM is optimal. Here we have shown that the EP 9], [30]. These algorithms are guaranteed to converge to the

can be .O.Pt'mal foany state se.t, as long as we choosg the pri lobal optimum in polynomial time within any desired accuracy.
probabilities correctly. In Sections VI and VII, we consider stat The number of operations required for each iteration of a gen-

sets with equal prior probabilities for which the EPM is optimaleral SDP wherdz) € R™ andF; € B, is O(m?n?). How-

ge\r/wverallzmg the result in [It13]. dina the EPM in the followi ever, the computational load can be reduced substantially by
€ summarize our results regarding the intheto OWIr@xploiting structure in the matrice;. In our problem, these

theorem. matrices are block diagonal, so that each iteration requires on
Theorem 2:Let {|¢;), 1 <i<m} denote a set of state vec-the order of0(m*) operations [15].

tors with prior probabilitiegn;, 1 <i <m} in a Hilbert spacét To illustrate the computational steps involved in computing
that span am-dimensional subspaéeof H, let{|$;), 1<i< the optimal measurement, we now consider a specific example.
m} denote the reciprocal vectorstihdefined by(;|¢r.) = 8z, Consider the case in which the ensemble consists of three

and letQ; = |¢;)(¢:|. Let ® = USV* denote the matrix of state vectors with equal probability 3, where
columns|¢;), let |v;) denote the columns df* andv; (k) the L L 0
kth component ofv;), letoy > - - - > o,,, >0 denote the singular 1 1 1
values of®, and lets be the multiplicity ofs,,. LetIl; =02, Q; |61) = V3 L b)) = V2 LI |ds) = V2 1
denote the EPM operators. Then we have the following. 1 0 1

1) If s = 1, then the EPM minimizes the probability of (43)

an inconclusive result if and only ii;(m)|* = 7: for  To find the optimal measurement operators, we first find the
L <i<m. reciprocal stategp;). With ® denoting the matrix of columns

2) If s > 1, then the EPM minimizes the probability of an|¢;), we have
inconclusive result if there exists constabis> 0, 1 <

. : ‘e 1.73 0 —-1.41

i < s such that (42) is satisfied. ~

'8 (42) d=0@®)' = | 173 141 141 (44)
3) Given a set of state vectors, we can always choose the 173 —1.41 0

prior probabilities); so that the EPM is optimal. Specifi-
cally, n; is given by (42) wheré; are arbitrary coefficients and the vectorgp;) are the columns ob. Next, we form the

satisfyingb; > 0, and_", b; = 1. matrices); = |¢;)(¢:| which results in
Theorem 2 provides necessary and sufficient conditions in the 1 —1 1 0O 0 0
cases = 1 and sufficient conditions in the case> 1 for the Q,=3|-1 1 -1 Q=10 2 -2

EPM to be optimal, which depend on the SVD ®fand the 1 -1 1 0 -2 2
prior probabilitiesn;. It may also be useful to have a criterion

which depends explicitly on the given statés) and the prior

Qs= |- (45)

S NN
S NN
o OO

3The inequality is to be understood as a component-wise inequality.
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We can now find the optimal vectgs) using the IQ@ package
on Matlab. To this end, we first define the matridgésaccording
to (22), and define

With this choice ofs, Tr(Q3X) = 1/3 andTr(@Q1X) = 0.89 >

1/3, so that the necessary and sufficient conditions are satisfied.
Now, suppose that instead of equal prior probabilities we as-

sume that the prior probabilities arg = 0.6, ns = 0.2,

ns = 0.2. These priors were chosen to be equal to the ele-

ments of the last row of*, where® = UXV*. Since the

smallest square singular value®fo2 = 0.07, has multiplicity

We then generate the code shown at the bottom of the page(42) is satisfied and the EPM, consisting of the measurement
assuming that the matricdg and the vectofc) have already operatorsll; = pQ; with p = 0.07, minimizes the proba-

1 1
ey =—==1]1]. (46)
3
1
been defined in Matlab. The optimal vectpy is given by
0
lp) = | 0.17 47)
0.17

and the optimal measurement operafidfs= p;Q; are

0 0 0] 0 0 0
;=10 0 0 I,=|0 034 —0.34
0 0 0] 0 —0.34 0.34
0.34 —0.34 0
I;=|-034 034 0f. (48)
0 0 0

bility of an inconclusive result. As before, we can immediately
verify that this is indeed the correct solution using the necessary
and sufficient conditions of Theorem 1. For this choicdIpf
T=1I — pZ?zl Q;, and the null space df is spanned by the
vector

0.68
) = | —0.52] . (53)
—0.52

Therefore, X must be equal t& = a|u)(u| for somea > 0.
Sincep; = p > 0forall 4, z; =0, 1 <4 < 3 so that we must
have

We can now use the necessary and sufficient conditions de-Tr(Q,X) = 0.6, Tr(Q2:X)=10.2, Tr(QsX) =0.2.
rived in Section Ill-B and summarized in Theorem 1 to verify (54)
that|p) given by (47) is the optimal probability vector. To thislf we choosen = 0.6/{u|Q1|u) = 0.07, then (54) is satisfied,

end, we first form the matri¥’ = I, — Ele II;. Using the
eigendecomposition df, we conclude that the null spaceBf
has dimension and is spanned by the vector

—0.81
lu) = 041 ] . (49)
0.41

Therefore, to satisfy (29) and (27X must be equal toY =
alu)(u| for somea > 0. Sincep; = 0 andps, p3 > 0, (30) and
(28) imply thatzo = z3 = 0 andz; > 0. Therefore, from (26),
we must have that
1
Tr(Q2X) =Tr(QsX) = 3 (50)
and

Tr(Q1X) > (51)

W =

To satisfy (50), we choose
1

and the EPM is optimal.

In the remainder of the paper, we use the sufficient conditions
of Theorem 3 to derive the optimal unambiguous measurement
for state sets with certain symmetry properties. The symmetry
properties we consider are quite general, and include many cases
of practical interest. Specifically, in Section VI we consider GU
state sets, and in Section VII we consider compound GU state
sets. It is interesting to note that for these classes of state sets,
the optimal measurement that minimizes the probability of a
detection error is also known explicitly [19], [20].

VI. GEOMETRICALLY UNIFORM (GU) STATE SETS

In this section, we consider the case in which the state vectors
|;) are defined over a group of unitary matrices and are gener-
ated by a single generating vector. Such a state set is gpted
metrically uniform (GU)18]. We first obtain a convenient char-
acterization of the EPM in this case and then show that the EPM
is optimal. This result generalizes a similar result of Chefles and

= ———=0.11. 52
= S aQala) (52)  Barett [13].
>> abst_init_Imi % Initializing the LMI toolbox
>> p = rectangular(3,1); % Defining a vectotp) of length 3
>> F = FO0; % Defining the matrixF'(p); hereFi = F;

>>fori=1:3,
>> eval([W=F num2str(i)]);
>> F=F+p(i)*W,

>> end
>>F > 0; % Imposing the constraint
>> Imimincx_tbx(c’ * p); % Minimizing {c|p) subject to the constraint

>> P = value(p) % Getting the optimal value of.
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A. GU State Sets It follows that the reciprocal states are also GU with generating
groupg and generating vectqu%) given by (58). Therefore, to
compute the reciprocal states for a GU state set all we need is
to compute the generating vectér). The remaining vectors are
obtained by applying the groupto |¢). The EPM is then given

[y the measurement operators

Let G be a finite group ofn unitary matriced’/; on H. That
is, G contains the identity matriX,.; if G containsU;, then it
also contains its invers€; ' = U;; and the product/;U; of
any two elements of is in G [33].

A state set generated gy using a single generating vecto
|¢) is a setS = {|¢i> = U;|¢), U; € G}. The groupg will be Qi = pUi|d)(|U; (59)
called thegenerating groupf S. For concreteness, we assume _ )
thatl; = I, so that|¢;) = |$). Such a state set has strond"hereﬁ is equal to the smallest eigenvalued®d*.
symmetry properties and is called GU. For consistency with the L
symmetry ofS, we will assume equiprobable prior probabilities™ Optimality of the EPM
onS. We now show that the EPM is optimal for GU state sets with

Alternatively, a state setis GU if given any two stdig$ and equal prior probabilities; = 1/m. Since®®* commutes with
|¢;) in the set, there is an isometry (a norm-preserving lineé; for all j, (¢®*)* also commutes witl/; for anya. There-
transformation) that transforn;) into |¢;) while leaving the fore, for all
set invariant [18]. Intuitively, a state set is GU if it “looks the . wnt/2- 1)\ _ X w\t/2 177
same” geometrically from any of the states in the set. Some (gil(@27) #:) = (#IU; ((fqt)/z)_l *U’W))
examples of GU state sets are considered in [18], [19]. = (¢[(®27) Ui Uilo)

We note that in [19], a GU state set was defined over an = (¢|(@D*)"/271|¢). (60)

abeliangroup of unitary matrices. Here we are not requmn%ince(dn|(<I><I>*)t/2—1|¢i) does not depend aipfrom Theorem

the groupg to be ab_ehan. . : 3, we conclude that the EPM is optimal.

A cyclic state set is a special case of a GU state set in whlchW : . .
: i1 ) e summarize our results regarding GU state sets in the fol-

the generating grou@ has element&/; = 7*=*, 1 < ¢ < m, lowing theorem:

where 7 is a unitary matrix withZ™ = [... A cyclic group 9 '

generates a cyclic state set= {|¢;) = Z:71¢), 1 < i < m}, Theorem 4 (GU State Setshet S={|¢;) =U;|d), U; € G}

where|¢) is arbitrary. be a GU state set generated by a finite grgupf unitary ma-
Any binary state sef = {|¢1), |#2)} is a GU cyclic state set, trices, wherd¢) is an arbitrary state, and |& be the matrix of

because it can be generated by the binary g®up {I., R}, columns|¢;). Then the measurement that minimizes the proba-

whereR is the reflection about the hyperplane halfway betwedaility of an inconclusive result is equal to the equal-probability

the two states. SincR represents a reflectiol® is unitary and measurement, and consists of the measurement operators

R? =1,. L.
IL; = pldi) (i
B. The EPM for GU States where{|¢;) = Ui|¢), U; € G}
To derive the EPM for a GU state set with generating gi@up |(;)> — (90%)T|g),

we need to determine the reciprocal stdies. It was shown in
[21], [20] that for a GU state set with generating graiypb®*  andp is the smallest eigenvalue &f®*.
commutes with each of the matricEs € G. For completeness,

we repeat the argument here. Expressdg* as D. Example of a GU State Set
. e " . We now consider an example of a GU state set.
00" = Z [bi) (il = Z Uil$){4|U; (55) Consider the groug of m = 4 unitary matriced/;, where
1=1 =1
we have that for alj L 00 0
m U1 |0 -1 0 0
1 — 44, 2 —
OP*U,; = Us|p)(p|UFU; 0 01 0
! ; ! 0 0 0 -1
i S 10 0 0
=U; ) UjUi|¢)(o|UiU; 01 0 0
= ! Us= o o _1 o Us=0:Us  (61)
- . 00 0 —1
=U; Y Uilg){g|U; = U;0® (56)
i—1 Let the state set b8 = {|¢;) = U;|¢), 1 < i < 4}, where
since{U;U;, 1 < i < m} is just a permutation of. ) = 1/(3v2)[2 2 1 3]*, so that
If @&* commutes wittU;, thenT = (®®*)" also commutes 2 2 2 2
with U; for all 5. Thus, from (8) the reciprocal states are 1 2 -2 2 =2 (62)
i) = T\pi) = TU;|p) = UiT|$) = Us|) (57) 3v2 |11 -1 -1

3 -3 -3 3

: From Theorem 4, the measurement that minimizes the prob-
|§) = T|¢) = (2D*)|). (58) ability of an inconclusive result is the EPM. Furthermore, the

where
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reciprocal state{af&i) are also GU with generating grogpand A CGU state set is in general not GU. However, for eviery

generator the vectord|¢;i), 1 < i < [} are a GU state set with generating
3 groupg. Examples of CGU state sets are considered in [21],
} . 1 3 [20].
[¢) = (%)) = —= (63)
42 ‘23 A. The EPM for CGU State Sets
We now derive the EPM for a CGU state set with equal prior
so that{|¢;) = U;|¢), 1 < i < 4}. Since probabilities. Letb denote the matrix of columrig; ), where
40 0 0 the first/ columns correspond tb = 1, and so forth. Then, for
. |0 4 0 0 a CGU state set with generating gro@pit was shown in [21],
20" =5 00 1 0 (64) [20] that ®®* commutes with each of the matricEs € G. If
00 0 9 ®d* commutes witl;, thenT' = ($&*)' also commutes with
p = 2/9 and the EPM measurement operators are Ui forNaII i. Thus, the reciprocal states are ~
I, = (2/9)Qi — (2/9)Ul|(/~>)<(/~>|U* |¢zk> = T|‘/’zk> = TUi|¢k> = UiT|¢k> = Ui|</’k> (68)
We can now use the necessary and sufficient conditions\’(\ﬁrf-]ere
Theorem 1 to verify thatl, = (2/9)|¢:)(¢:| are indeed the b)) = T|di) = (29*) ). (69)

optimal measurement operators. To this end, we first form the
matrixT = I, — ijl II;. Using the eigendecomposition ofTherefore, the reciprocal states are also CGU with generating
T, we conclude that the null spaceBthas dimension and is groupg and generating vectof,) given by (69). To compute
spanned by the vector these vectors all we need is to compute the generating vectors
0 |¢x). The remaining vectors are then obtained by applying the
0 groupg to each of the generating vectors.
) = | (65)

0 B. CGU State Sets With GU Generators

Therefore, to satisfy (29) and (27X must be equal tof = A special class of CGU state setd&U state sets with GU
alu)(u| for somea > 0. Sincep; = 2/9 > 0, 1 < i < 4, (30) generatorg21] in which the generating vectofs¢), 1 <k <

and (28) imply that; = 0, 1 < i < 4. Therefore, from (26) we "} are themselves GU. Specificallfj¢,) = Vi|¢)} for some
must have that - generatol¢), where the matrice§V,, 1 < k <r} are unitary,

1 and form a grou®. Examples of CGU state sets with GU gen-

Tr(QuX) = Tr(Q2X) = Tr(Q3X) = Tr(QaX) = 7. (66) erators are considered in [20].
To satisfy (66) we choose Suppose thal; andV;, commute up to a phase factor for all

1 5 andk so thatl7;V;, = V,U;e/¢ %) whered (i, k) is an arbitrary

a0y =3 (67) phase function that may depend on the indexasdk. In this

] . ) 1 case, we say that and Q@ commute up to a phase factor (in the
With this choice of, Tr(Q2 X) =Tr(Qs X) =Tr(Q4X)=1/4,  gpecial case in which = 0 so that/;V;, = V;.U; forall i, k, the
o) '_[hzflt as we expect the necessary and sufficient conditions @&ulting state setis GU [21]). Then for allk, ®&* commutes
satisfied. with U;V;, [21], [20]. The reciprocal statds;;) of the vectors

|pix) are, therefore, given by
VIlI. CoMPOUND GEOMETRICALLY UNIFORM (CGU) ~ _

STATE SETS |¢ir) = Tpir) = TU:Vi|¢) = UiViT|¢) = U;Vi|) (70)
ere|¢) = T|4). Thus, even though the state set is not in
eral GU, the reciprocal states can be computed using a single
erating vector. } : }
lternatively, we can expregs;r) as|pix) = U;|dx) Where
generatorgp;.) are given by

In Section VI, we showed that the optimal measurement f0|y\élh
GU state setis the EPM associated with this set. We also showsd
that the reciprocal states are themselves GU and can, therefg?é;:
be computed using a single generator. In this section, we c?ﬁ
sider state sets which consist of subsets that are GU, and ‘&fe 8 .
therefore referred to a®mpound geometrically uniform (CGU) |6r) = Vilo). (71)
[21]. As we show, the reciprocal states are also CGU so that theyym (71), it follows that the generatdi, ) are GU with gen-
can be computed usingsatof generators. Under a certain CONgrating group? = {Vi, 1 < k < r} and generatofe).
dition on the generating vectors, we also show that the EPMe conclude that for a CGU state set with commuting GU
associated with a CGU state set is optimal. generators and generating gro@pthe reciprocal states are also

A CGU state set is defined as a set of vectors CGU with commuting GU generators and generating group

S={lgi), 1 <i<, 1<k <7} . oy
) ) C. The Optimal Measurement for CGU State Sets Satisfying
such thatepix) = U;|$x), where the matricefU;, 1<i<l} are 4 Weighted Norm Constraint
unitary and form a groug, and the vector$|¢y), 1 <k <r}

are the generating vectors. For consistency with the symmetr;}Ne now show that if the generating vects) satisfy
of S, we will assume equiprobable prior probabilities®n (Pr|(@*®) /271 gp) = ay, 1<k<r,1<t<q (72
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r S1 S1 S1 1
> () > Jua(i)? > fua (i) ?
i=1 i=1 i=1
S2 So 52
v1(s1 +1)|? Z va(s1 +1)|? . Z va(s1 + 1)|?
Ho ;| 1(s1 + )] i:1| 2(s1 + 1) Z':1| 2(s1 + 1) (78)

L =1

Zﬂi|v1(m—sq+i)|2 Zﬁi|v2(m—sq+i)|2 Z[}i|v2(m—sq+i)|2
i=1 =1

wheregq is the number of distinct singular values®f then the
EPM is optimal.

the EPM minimizes the probability of an inconclusive re-
sult.

(72) implies
(il (@*®)>7 | gir) = ay,
1<i<l,1<k<r1<t<gq. (73)
Now
(@)~ gi) = (@72)">7 U; |1
=U;(*®)"/*~ |y, (74)
so that
(Dir| (2" )27 pir) = (| UF Us(@* @)1/~ gy
= (k| (®*®)"/*~ i) = a,  (75)

establishing (73).
For CGU state sets with GU generatdigx) = Vi|¢)}

GU with U;V;, = V. U;e?C %) for all i, k, then
a) |¢ix) = U;Vi|p) where|p) = (9d*)T|¢) so that
the reciprocal states are CGU with GU generators;
b) the EPM is optimal;
c) if in additioné(s, k) = 0 for all ¢, k, then the vec-
tors{¢;r, 1 <i <1, 1<k<r}formaGU state
set.

APPENDIX
PROOF OFTHEOREM 3

In this appendix we prove Theorem 3.

Let \;, 1 < i < ¢ denote the singular values @f without
multiplicity so that\; = ; and), = o,,,, and lets; denote the
multiplicity of )\;. Define

whereV,, € Q andG andQ commute up to a phase factor, the Avo A A

EPM is optimal. This follows from the fact that in this case (72) MoA A2
is always satisfied. To see this, we first note thiatcommutes A= C : (77)

with ®®* for eachk [21]. Therefore, for alk ' ’ '

DY DN S Y

1 2 q

(D1 (2*D) /27 1) = (H|Vi (B ®)/*~ 1V | )
= (¢|Vir Vie(@*@)"/2 )
(Bl(®*®)"/271|g). (76)

and (78) as shown at the top of the page, for sgine> 0.
Finally, let N be the matrix with'th column equal te; |a) where
|a) is an arbitrary vector.

Now, supposethat H = N.ThenA|h;) = n;|a), where|h;)

We summarize our results regarding CGU state sets in the fglpotes theth column of . SinceA is invertible, this implies

lowing theorem.
Theorem 5 (CGU State Setslet

be a CGU state set generated by a finite gréug: {U;, 1 <
1 < [} of unitary matrices and generating vectdtg), 1 <
k < r}, and let® be the matrix of columngp;.). Then the
EPM consists of the measurement operators

II; = pldir)(bixl
where{|¢ix) = Uslr), 1 <i <1, 1<k <r}
|b1) = (20%)7| 1),

andp is equal to the smallest eigenvaluedd*.
The EPM has the following properties.
1) If (pp|(@D*)/2 Y pp) = arforl <k <7 1<t <yq,
whereg is the number of distinct eigenvaluesiad*, then

that
1 1 .
— hi(k) = — h;(k), 1<i,7<m,1<k<q. (79)
i N5

Fork = ¢, (79) reduces to (42). We, therefore, conclude that a
sufficient condition for the EPM to be optimal is tha# = N

for someg; > 0. Taking; = 1 for eachi, we can expresd H

as

0'1 0'2 ... O'm

AH - g% Jg 0.72”
P P )P
m@P RGP o R@P |

2Y. (80)

[oa(m)? foa(m)2 - Joa(m)]?



456

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

Then, we have that

m

Y=Y otlu(i)? = (fil(@2*)"72 Ygr).

i=1

(81)

Therefore, AH = N reduces to the condition that

(Bi|(@D*)27 ) = mua,

1<I<m,1<t<q
(82)

for some constants;.
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