RAIRO

InFORMATIQUE THÉORIQUE

Robert Knast

A semigroup characterization of dot-depth one languages

RAIRO - Informatique théorique, tome 17, no 4 (1983), p. 321-330.
http://www.numdam.org/item?id=ITA_1983_17_4_321_0
© AFCET, 1983, tous droits réservés.
L'accès aux archives de la revue «RAIRO - Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

A SEMIGROUP CHARACTERIZATION OF DOT-DEPTH ONE LANGUAGES (*)

by Robert Knast (${ }^{1}$)
Communicated by J.-F. Perrot

Abstract

It is shown that one can decide whether a langage has dot-depth one in the dot-depth hierarchy introduced by Brzozowski. The decision procedure is based on an algebraic characterization of the syntactic semigroup of a langage of dot-depth 0 or 1 .

Résumé. - On démontre que l'on peut décider si un langage est de hauteur 1 dans la hiérarchie de concaténation introduite par Brzozowski. L'algorithme de décision est basé sur une condition algèbrique qui caractérise les semigroupes syntactiques des langages de hauteur inférieure ou égale à 1 .

1. INTRODUCTION

Let A be a non-empty finite set, called alphabet. A^{+}(respectively A^{*}) is the free semigroup (respectively free monoid) generated by A. Elements of A^{*} are called words. The empty word in A^{*} is denoted by λ (the identity of A^{*}). The concatenation of two words x, y is denoted by $x y$. The length of a word x is denoted by $|x|$.

Any subset of A^{*} is called a language. If L_{1} and L_{2} are languages, then $L_{1} \cup L_{2}$ is their union, $L_{1} \cap L_{2}$ is their intersection, and $\bar{L}_{1}=A^{*}-L_{1}$ is the complement of L_{1} with respect to A^{*}. Also $L_{1} L_{2}=\left\{w \in A^{*} \mid w=x y, x \in L_{1}, y \in L_{2}\right\}$ is the concatenation of L_{1} and L_{2}.

Let \sim be an equivalence relation on A^{*}. For $x \in A^{*}$ we denote by $[x]_{\sim}$ the equivalence class of \sim containing x. An equivalence relation \sim on A^{*} is a congruence iff for all $x, y \in A^{*}, x \sim y$ implies $u x v \sim u y v$ for any $u, v \in A^{*}$.

The syntactic congruence of a language L is defined as follows: for $x, y \in A^{*}$, $x \equiv{ }_{L} y$ iff for all $u, v \in A^{*}(u x v \in L$ iff $u y v \in L)$. The syntactic semigroup of L is the quotient semigroup A^{+} / \equiv_{L}.

Let η be any family of languages. Then $\eta M(\eta B)$ will denote the smallest family of languages containing η and closed under concatenation (finite union and complementation respectively).
(*) Received February 1981, revised May 1983.
$\left(^{1}\right)$ Institute of Mathematics, Polish Academy of Sciences, 61-725 Poznan, Poland.

Let $\varepsilon=\{\{\lambda\},\{a\} ; a \in A\}$ be the family of elementary languages. Then define:

$$
\begin{gathered}
\mathscr{B}_{0}=\varepsilon B \\
\mathscr{B}_{k}=\mathscr{B}_{k-1} M B \quad \text { for } \quad k \geqq 1 .
\end{gathered}
$$

This sequence $\left(\mathscr{B}_{0}, \mathscr{B}_{1}, \ldots, \mathscr{B}_{k}, \ldots\right)$ is called the dot-depth hierarchy. A langage L is of dot-depth at most k if $L \in \mathscr{B}_{k}$.

The dot-depth hierarchy was introduced in [3]. It was proved in [2] that it is infinite if the alphabet has two or more letters. In [4] it was shown that $\left(\mathscr{B}_{0}, \mathscr{B}_{1}\right.$, ...) forms a hierarchy of +- varieties of languages. Therefore, in the rest of the paper we consider languages as subsets of A^{+}. For an excellent and general presentation of problems related to this paper the reader is referred to Brzozowski's survey paper [1] or the above mentioned monograph of Eilenberg [4].

In [6] Simon conjectured that a language L is in \mathscr{B}_{1} iff its syntactic semigroup S_{L} is finite and there exists an integer $n>0$ such that for each idempotent e in S_{L}, and any elements $a, b \in S_{L}$:

$$
(e a e b)^{n} e a e=(e a e b)^{n} e=e b e(a e b e)^{n}
$$

Simon also proved that $L \in \mathscr{B}_{1}$ implies this condition. By an example we show that this conjecture fails. We present a necessary and sufficient condition for a syntactic semigroup to be the syntactic semigroup of a language of dot-depth at most one. The main result is as follows: Let L be a language and let S_{L} be its syntactic semigroup. Then $L \in \mathscr{B}_{1}$ iff S_{L} is finite and there exists an integer $n>0$ such that for all idempotents e_{1}, e_{2} in S_{L} and any elements $a, b, c, d \in S_{L}$:

$$
\left(e_{1} a e_{2} b\right)^{n} e_{1} a e_{2} d e_{1}\left(c e_{2} d e_{1}\right)^{n}=\left(e_{1} a e_{2} b\right)^{n} e_{1}\left(c e_{2} d e_{1}\right)^{n}
$$

We will refer to this as the "dot-depth one" condition. This semigroup characterization gives a decision procedure for testing whether or not a regular language is in \mathscr{B}_{1}.

In the proof of this characterization we use a theorem on graphs from [5].
We will say that a language $L \subset A^{+}$is a \sim language, if L is a union of congruence classes of \sim. Let L be a language and let S_{L} be its syntactic semigroup. The class $[x] \equiv_{L}$, as an element of S_{L}, will be also denoted by \underline{x}, where $x \in A^{+}$. Then $x \equiv_{L} y$ iff $\underline{x}=\underline{y}$ in S_{L}.

2. BASIC CONGRUENCE ${ }_{m} \sim_{k}[6]$

Let k, m be integers, $k \geqq 1, m \geqq 0$. Let $v=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ be an m-tuple of words w_{i} of length k, i. e. $\left|w_{i}\right|=k, w_{i} \in A^{*} i=1,2, \ldots, m$. We say that v occurs in
$x, x \in A^{*}$ (we write $v \in x$), if $x=u_{i} w_{i} v_{i}$, for some $u_{i}, v_{i} \in A^{*}(i=1,2, \ldots, m)$ such that $\left|u_{j}\right|<\left|u_{j+1}\right|, j=1,2, \ldots, m-1$.

Let us set:

$$
\tau_{m, k}(x)=\left\{v \mid v \in\left(A^{k}\right)^{m} \text { and } v \in x\right\}
$$

By convention $\tau_{0, k} x=\varnothing$.
For $x \in A^{*}$ and $n \geqq 0$ define $f_{n}(x)$ as follows: if $|x| \leqq n$, then $f_{n}(x)=x$; otherwise $f_{n}(x)$ is the prefix of x of length n. Similarly, $t_{n}(x)=x$ if $|x| \leqq n$, and $t_{n}(x)$ is the suffix of length n of x otherwise.
Now, for $x, y \in A^{*}$ and $k \geqq 0, m \geqq 0$ we define:

$$
\begin{aligned}
& x_{m} \sim_{k} y \text { iff } x=y \text { if }|x| \leqq m+k-1 \\
& \quad \text { or } f_{k}(x)=f_{k}(y), t_{k}(x)=t_{k}(y) \\
& \quad \text { and } \tau_{m, k+1}(x)=\tau_{m, k+1}(y) \text { otherwise. }
\end{aligned}
$$

In the case $k=0$ we write τ_{m} instead $\tau_{m, 0}$ and ${ }_{m} \sim$ instead ${ }_{m} \sim{ }_{0}$. If $m=1$, we also write τ instead τ_{1}.

Proposition 1: $(a)_{m} \sim_{k}$ is a congruence offinite index on $A^{*} ;(b) x_{m} \sim_{k} . y$ implies $x_{m-1} \sim_{k} y$, for $m \geqq 1$ and all $x, y \in A^{*}$; (c) $w(x w)^{m}{ }_{m} \sim_{k} w(x w)^{m+1}$, for $w, x \in A^{*}$ and $\quad|w|=k ; \quad$ (d) $\quad\left(w_{1} x \dot{w}_{2} y\right)^{m} \quad \dot{w}_{1} x \dot{w}_{2} v \dot{w}_{1}\left(u w_{2} v w_{1}\right)^{m}{ }_{m} \sim_{k}\left(w_{1} x w_{2} . y\right)^{m}$ $w_{1}\left(u w_{2} v w_{1}\right)^{m}$, for $w_{1}, w_{2}, x, y, u, v \in A^{*}$ and $\left|w_{1}\right|=\left|w_{2}\right|=k$.

Proof: The verification of $(a),(b)$ and (c) is straightforward.
(d) $\mathrm{By}(b)$:

$$
\tau_{m, k+1}(x)=\tau_{m, k+1}(y)
$$

implies:

$$
\tau_{j, k+1}(x)=\tau_{j, k+1}(y)
$$

for all $x, y \in A^{*}$ and $j \in\{0,1, \ldots, m\}$. If

$$
v_{1}=\left(w_{1}, \ldots, w_{i}\right) \in\left(A^{k+1}\right)^{i}
$$

and

$$
v_{2}=\left(v_{1}, \ldots, v_{j}\right) \in\left(A^{k+1}\right)^{j}
$$

we denote by $\left(v_{1}, v_{2}\right)$ the $i+j$-tuple $\left(w_{1}, \ldots, w_{i}, v_{1}, \ldots, v_{j}\right) \in\left(A^{k+1}\right)^{i+j}$.
Evidently:
vol. $17, n^{\circ} 4,1983$

$$
\begin{aligned}
& \tau_{m, k+1}\left(\left(w_{1} \times w_{2} . y\right)^{m} w_{1}\right) \subseteq \tau_{m, k+1}\left(\left(w_{1} x w_{2} . y\right)^{m} w_{1} x w_{2}\right) \\
& \cong \tau_{m, k+1}\left(\left(\dot{w}_{1} x w_{2} \cdot y\right)^{m+1} w_{1}\right)
\end{aligned}
$$

Using (c), we have:

$$
\tau_{m, k+1}\left(\left(w_{1} x w_{2} . y\right)^{m} w_{1} x w_{2}\right)=\tau_{m, k+1}\left(\left(w_{1} x w_{2} . y\right)^{m} w_{1}\right)
$$

Similarly:

$$
\tau_{m, k+1}\left(w_{2} v w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)=\tau_{m, k+1}\left(w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)
$$

Since $\left|w_{1}\right|=\left|w_{2}\right|=k$, by the above conclusions from (b) and (c):

$$
\begin{aligned}
& \tau_{m, k+1}\left(\left(w_{1} x w_{2} . y\right)^{m} w_{1} x w_{2} v w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)=\bigcup_{\substack{i+j=m \\
m \geqq i, j \geqq 0}}\left\{\left(v_{1}, v_{2}\right) \mid v_{1}\right. \\
& \left.\quad \in \tau_{i, k+1}\left(\left(w_{1} x w_{2} . y\right)^{m} w_{1} x w_{2}\right), v_{2} \in \tau_{j, k+1}\left(w_{2} v w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)\right\} \\
& =\underset{\substack{i+j=m \\
m \geqq i, j \geqq 0}}{\bigcup}\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in \tau_{i, k+1}\left(\left(w_{1} x w_{2} y\right)^{m} w_{1}\right), v_{2} \in \tau_{j, k+1}\left(w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)\right\}
\end{aligned}
$$

$$
=\tau_{m, k+1}\left(\left(w_{1} \times w_{2} \cdot y\right)^{m} w_{1}\left(u w_{2} v w_{1}\right)^{m}\right)
$$

Theorem 2(Simon [6]): A language L is of dot-depth at most one, $L \in \mathscr{B}_{1}$, iff L is $a_{m} \sim_{k}$ language for some $m, k \geqq 0$.

3. GRAPHS AND THE INDUCED SYNTACTIC GRAPH CONGRUENCE

First we briefly recall Eilenberg's terminology for graphs [4]. A directed graph G consists of two sets, an alphabet A and a set of vertices V, along with two functions: $\alpha, \omega: A \rightarrow V$. Elements of A are also called edges in this case.

Two letters (or edges) $a, b \in A$ are called consecutive if $a \omega=b \alpha$. Let $D \subset A^{2}$ be the set of all words ab such that a and b are non-consecutive. Then the set of all paths of G is:

$$
P=A^{+}-A^{*} D A^{*}
$$

Functions α, ω can be extended to $\alpha, \omega: P \rightarrow V$ in the following way: if $p=a_{1} a_{2} \ldots a_{n} \in P, a_{1}, a_{2}, \ldots, a_{n} \in A$, then $p \alpha=a_{1} \alpha, p \omega=a_{n} \omega$. For each vertex v we adjoint to P a trivial path 1_{v} where $1_{v} \alpha=1_{v} \omega=v$. If $p=a_{1} a_{2} \ldots a_{n} \in P$, then the length of $p,|p|=n$.

A path p is called a loop if $p \alpha=p \omega$. We say that two paths p_{1} and p_{2} are consecutive if $p_{1} \omega=p_{2} \alpha$. In this case the concatenation $p_{1} p_{2}$ is again a path. Two paths p_{1} and p_{2} are coterminal if $p_{1} \alpha=p_{2} \alpha$ and $p_{1} \omega=p_{2} \omega$.

An equivalence relation \sim on P is called a graph congruence if it satisfies the following conditions:
(i) if $p_{1} \sim p_{2}$, then p_{1} and p_{2} are coterminal;
(ii) if $p_{1} \sim p_{2}$ and $p_{3} \sim p_{4}$ and p_{1}, p_{3} are consecutive, then $p_{1} p_{3} \sim p_{2} p_{4}$.

For trivial paths, by convention we set $\tau_{m}\left(1_{v}\right)=\emptyset$. Thus the relation ${ }_{m} \sim\left({ }_{m} \sim_{1}\right)$ is also defined on P. In [5] the following theorem is proved:

Theorem 3: Let \sim be a graph congruence of finite index on P satisfying the condition:

$$
\begin{equation*}
\left(p_{1} p_{2}\right)^{n} p_{1} p_{4}\left(p_{3} p_{4}\right)^{n} \sim\left(p_{1} p_{2}\right)^{n}\left(p_{3} p_{4}\right)^{n} \tag{A}
\end{equation*}
$$

for some $n \geqq 1$ and $p_{1}, p_{2}, p_{3}, p_{4} \in P$. (Note that $p_{1} p_{2}$ and $p_{3} p_{4}$ must be loops about the same vertex).

Then there exists an integer $m \geqq 1$ such that for any two coterminal paths x and $y, x_{m} \sim y$ implies $x \sim y$.

We will use this theorem in proving the semigroup characterization of languages of dot-depth at most one $\left(\mathscr{B}_{1}\right)$.

Let A be a finite alphabet. Define a graph $G_{k}=(V, E, \alpha, \omega)$ for $k \geqq 0$ as follows:

$$
\begin{gathered}
V=\left\{w \mid w \in A^{*} \text { and }|w|=k\right\} \text { is the set of vertices, } \\
E=\left\{\left(w_{1}, \sigma, w_{2}\right) \mid \sigma \in A, w_{1}, w_{2} \in V \text { and } t_{k}\left(w_{1} \sigma\right)=w_{2}\right\}
\end{gathered}
$$

is the set of edges (letters)

$$
\alpha, \omega: E \rightarrow V,\left(w_{1}, \sigma, w_{2}\right) \alpha=w_{1},\left(w_{1}, \sigma, w_{2}\right) \omega=w_{2}
$$

Let P be the set of all paths in G_{k}, including the empty path over each vertex from V. Now, let us define the mapping:

$$
: A^{k} A^{*} \rightarrow P
$$

recursively as follows:

$$
\begin{gathered}
\bar{x}=1_{x} \quad \text { if } \quad x \in A^{k}, \\
\bar{x} \vec{\sigma}=\bar{x}\left(t_{k}(x), \sigma, t_{k}(x \sigma)\right) .
\end{gathered}
$$

For $k=0$, by convention $A^{0}=\{\lambda\}$. One can verify that the mapping ${ }^{-}$is bijective. It follows from the definition that $|x|=k+h, h \geqq 0$ iff $|\bar{x}|=h$.

If ρ is a congruence relation on A^{*}, then by $\bar{\rho}$ we will denote the induced congruence on P defined in the following way: for $\bar{x}, \bar{y} \in P, x, y \in A^{k} A^{*}, x \rho y$ if x, y are coterminal paths and $x \rho y$. One can verify that $\bar{\rho}$ is a graph congruence on P.

Proposition 4: Let G_{k} be a graphfor $k \geqq 1$ and P be the set of all paths of G_{k}. Let $x \in A^{k} A^{*}$. If $x=x_{1} x_{2}$, then $\bar{x}=\bar{x}_{1} \overline{t_{k}\left(x_{1}\right) x_{2}}$, for $\left|x_{1}\right| \geqq k$.

Proof: If $|x|=k$, then the only decomposition possible is $x=x \lambda$. But $\bar{x}=1_{x}=1_{x} 1_{x}=\bar{x} \bar{x} \bar{\lambda}=\bar{x} \overline{t_{k}(x) \lambda}$. Induction assumption: the proposition is true for x such that $|x|=k+h, h \geqq 0$. Suppose $x=x_{1} x_{2} \sigma$, where $\left|x_{1} x_{2}\right|=k+h$ and $\left|x_{1}\right| \geqq k$. By definition:

$$
\bar{x}=\overline{x_{1} x_{2}}\left(t_{k}\left(x_{1} x_{2}\right), \sigma, t_{k}\left(x_{1} x_{2} \sigma\right)\right)
$$

By the induction assumption:

$$
\overline{x_{1} x_{2}}=x_{1} \overline{t_{k}\left(x_{1}\right) x_{2}}
$$

Hence:

$$
\bar{x}=\overline{x_{1}} \overline{t_{k}\left(x_{1}\right) x_{2}}\left(t_{k}\left(x_{1} x_{2}\right), \sigma, t_{k}\left(x_{1} x_{2} \sigma\right)\right)
$$

Again by definition:

$$
\overline{t_{k}\left(x_{1}\right) x_{2} \sigma}=\overline{t_{k}\left(x_{1}\right) x_{2}}\left(t_{k}\left(t_{k}\left(x_{1}\right) x_{2}\right), \sigma, t_{k}\left(t_{k}\left(x_{1}\right) x_{2} \sigma\right)\right)
$$

Thus $\bar{x}=\bar{x}_{1} \overline{t_{k}\left(x_{1}\right) x_{2} \sigma}$ because $t_{k}\left(x_{1} x_{2}\right)=t_{k}\left(t_{k}\left(x_{1}\right) x_{2}\right)$. Thus the induction step holds.

Lemma 5: Let $x \in A^{k} A^{*}$ and $\bar{x}=a_{1} a_{2} \ldots a_{n}, a_{j} \in E, j=1,2, \ldots, n$. Then for $i \in\{1,2, \ldots, n\} a_{i}=\left(w, \sigma, t_{k}(w \sigma)\right)$ iff $x=x_{1} w \sigma x_{2}$ for some $x_{1}, x_{2} \in A^{*}$ and $\left|x_{1} w \sigma\right|=k+i$.

Proof: Suppose $f_{k_{-} i}(x)=x_{1} w \sigma$. By Proposition $3 \bar{x}=\overline{x_{1} w} \bar{w} \sigma x_{2}$. By the definition of it follows from Proposition 3 that $\overline{\bar{w} \sigma x_{2}}=\left(w, \sigma, t_{k}(\dot{w} \sigma)\right) \overline{t_{k}(\tilde{w} \sigma) x_{2}}$. Also by the definition of ${ }^{-}\left|\overline{x_{1} \tilde{w}}\right|=i-1$, because $\left|x_{1} w\right|=k+i-1$. Hence $a_{i}=\left(w, \sigma, t_{k}(w \sigma)\right)$.

The converse follows in the similar way.
Proposition 6: For any $x, y \in A^{k} A^{*}$:

$$
x_{m} \sim_{k} y \text { implies } \quad \bar{x}_{m} \sim \bar{y}
$$

where $\bar{x}, \bar{y} \in P$ of G_{k}.
Proof: If $|x| \leqq m+k$, then $x=y$ and consequently, $\bar{x}_{m} \sim \bar{y}$. Otherwise, let $\tau_{m, k+1}(x)=\tau_{m, k+1}(y) \neq \emptyset$. It follows from Lemma 5 that $\left(\left(\tilde{w}_{1}, \sigma_{1}, v_{1}\right), \ldots\right.$, $\left.\left(\ddot{w}_{m}, \sigma_{m}, v_{m}\right)\right) \in \tau_{m}(\bar{x})$ implies $\left(\dot{w}_{1} \sigma_{1}, \ldots, \ddot{w}_{m} \sigma_{m}\right) \in \tau_{m, k+1}(x)=\tau_{m, k+1}(y)$. Hen-
ce, again by Lemma $4\left(\left(w_{1}, \sigma_{1}, v_{1}\right), \ldots,\left(w_{m}, \sigma_{m}, v_{m}\right)\right) \in \tau_{m}(\bar{y})$. Thus, $\tau_{m}(\bar{x}) \subseteq \tau_{m}(\bar{y})$. By symmetry, $\tau_{m}(\bar{y}) \cong \tau_{m}(\bar{x})$.

Since $f_{k}(x)=f_{k}(y)$ and $t_{k}(x)=t_{k}(y)$, then \bar{x} and \bar{y} are coterminal.
Consequently, $\bar{x}_{m} \sim \bar{y}$.
Proposition 7: Let $L \subseteq A^{+}$and let S_{L} be the finite syntactic semigroup of L, satisfying the condition: there exists $m, m>0$, such that for all idempotents e_{1}, e_{2} in S_{L} and any elements $a, b, c, d \in S_{L}$:

$$
\left(e_{1} a e_{2} b\right)^{m} e_{1} a e_{2} d e_{1}\left(c e_{2} d e_{1}\right)^{m}=\left(e_{1} a e_{2} b\right)^{m} e_{1}\left(c e_{2} d e_{1}\right)^{m} .
$$

Then the congruence $\overline{\equiv_{L}}$ on P of G_{K} for $k=$ card $S_{L}+1$, induced by the syntactic congruence \equiv_{L} satisfies condition (A) of Theorem 2 and is of finite index on P.

Proof: Since G_{k} is finite and \equiv_{L} is of finite index on A^{+}, then $\overline{\equiv_{L}}$ is of finite index on P.

We have to show that there is an integer $n, n>0$ such that:

$$
\begin{equation*}
\left(p_{1} p_{2}\right)^{n} p_{1} p_{4}\left(p_{3} p_{4}\right)^{n} \overline{\equiv_{L}}\left(p_{1} p_{2}\right)^{n}\left(p_{3} p_{4}\right)^{n} \tag{A}
\end{equation*}
$$

for $p_{1}, p_{2}, p_{3}, p_{4} \in P$.
Since $p_{1} p_{2}$ and $p_{3} p_{4}$ are loops about the same vertex and since paths p_{1} and p_{4} are consecutive by (A), then $p_{1} \alpha=p_{2} \omega=p_{3} \alpha=p_{4} \omega=w$, and $p_{1} \omega=p_{2} \alpha=p_{3} \omega=p_{4} \alpha=v$ for some $w, v \in A^{k}$. Therefore we may assume that $p_{1}=\overline{w u_{1}}, p_{2}=\overline{v u_{2}}, p_{3}=\overline{w u_{3}}, p_{4}=\overline{v u_{4}}$ for some $u_{1}, u_{2}, u_{3}, u_{4} \in A^{*}$ such that $t_{k}\left(w u_{1}\right)=t_{k}\left(w u_{3}\right)=v, t_{k}\left(v u_{2}\right)=t_{k}\left(v u_{4}\right)=w$. Consequently:

$$
\left(p_{1} p_{2}\right)^{n} p_{1} p_{4}\left(p_{3} p_{4}\right)^{n}=\overline{w\left(u_{1} u_{2}\right)^{n} u_{1} u_{4}\left(u_{3} u_{4}\right)^{n}}
$$

Similarly:

$$
\left(p_{1} p_{2}\right)^{n}\left(p_{3} p_{4}\right)^{n}=\overline{w\left(u_{1} u_{2}\right)^{n}\left(u_{3} u_{4}\right)^{n}}
$$

By the definition of $\overline{\equiv_{L}}$ it is sufficient to show that there exists $n, n>0$, such that:

$$
w\left(u_{1} u_{2}\right)^{n} u_{1} u_{4}\left(u_{3} u_{4}\right)^{n} \equiv_{L} w\left(u_{1} u_{2}\right)^{n}\left(u_{3} u_{4}\right)^{n}
$$

i. e.:

$$
\begin{equation*}
\underline{w}\left(\underline{u}_{1} \underline{u}_{2}\right)^{n} \underline{u}_{1} \underline{u}_{4}\left(\underline{u}_{3} \underline{u}_{4}\right)^{n}=\underline{w}\left(\underline{u}_{1} \underline{u}_{2}\right)^{n}\left(\underline{u}_{3} \underline{u}_{4}\right)^{n} \tag{1}
\end{equation*}
$$

Let $s \in S_{L}$. Since S_{L} is finite, then s^{r} is an idempotent for some $r \geqq 1$ ([4], vol. $17, \mathrm{n}^{\circ} 4,1983$

Proposition 4.2, p. 68). Now, since S_{L} satisfies the dot-depth one condition, there is $m \geqq 1$ such that:

$$
s^{r}\left(s s^{r}\right)^{m}=s^{r}\left(s s^{r}\right)^{m+1}
$$

i. e. $s^{r} s^{m}=s^{r} s^{m} s$. It follows that there exists an integer q such that for any $s \in S_{L}$ $s^{q}=s^{q+1}$ i. e. S_{L} is aperiodic.

We claim that (1) holds for $n>m, q$. First we will show that if $\left|u_{1} u_{2}\right|>0\left(\left|u_{3} u_{4}\right|>0\right)$ then we may consider $u_{1}, u_{2}\left(u_{3}, u_{4}\right.$ respectively) such that $\left|u_{1}\right|,\left|u_{2}\right| \geqq k\left(\left|u_{3}\right|,\left|u_{4}\right|>k\right.$ respectively). Since $n>q$, then by the aperiodicity of S_{L} :

$$
\underline{w}\left(\underline{u}_{1} \underline{u}_{2}\right)^{n}=\underline{w}\left(\underline{u}_{1} \underline{u}_{2}\right)^{n(2 k+1)} .
$$

Let us define:

$$
\tilde{u}_{1}=\left(u_{1} u_{2}\right)^{k} u_{1}, \tilde{u}_{2}=u_{2}\left(u_{1} u_{2}\right)^{k}
$$

Evidently:

$$
\left|\tilde{u}_{1}\right|,\left|\tilde{u}_{2}\right| \geqq k, \quad t_{k}\left(w \tilde{u}_{1}\right)=v, \quad t_{k}\left(v \tilde{u}_{2}\right)=w
$$

and:

$$
\underline{w}\left(\underline{u}_{1} \underline{u}_{2}\right)=w\left(\tilde{u}_{1} \tilde{u}_{2}\right)^{n}
$$

Similarly, we may proceed for u_{3} and u_{4}.
Now, we consider the full case if $\left|u_{1} u_{2}\right|,\left|u_{3} u_{4}\right|>0$. The other cases if $\left|u_{1} u_{2}\right|=0$ or $\left|u_{3} u_{4}\right|=0$ follow in the same way. By the above, instead of proving (1) it is sufficient to show that:

$$
\begin{equation*}
\underline{w}\left(\underline{u}_{1} \underline{v} \underline{u}_{2} \underline{w}\right)^{n} \underline{u}_{1} \underline{v u_{4}} \underline{w}\left(u_{3} \underline{v u_{4}} \underline{w}\right)^{n}=\underline{w}\left(\underline{u}_{1} \underline{v u_{2}} \underline{w}\right)^{n}\left(\underline{u}_{3} \underline{v} \underline{u}_{4} \underline{w}\right)^{n}, \tag{2}
\end{equation*}
$$

holds.
Now, since $|w|=|v|=k>\operatorname{card} S_{L}+1$, then $w=w_{1} w_{2} w_{3}$ and $v=v_{1} v_{2} v_{3}$ for $w_{1}, w_{3}, v_{1}, v_{3} \in A, w_{2}, v_{2} \in A^{+}$such that $\underline{w}_{1}=\underline{w}_{1} \underline{w}_{2}^{i}, \underline{v}_{1}=\underline{v}_{1} \underline{v}_{2}^{i}$ for any $i \geqq 0$. So as before, we can choose i such that \underline{w}_{2}^{i} and \underline{v}_{2}^{i} are idempotents in S_{L}. Thus (2) can be rewritten in a form:

$$
\underline{w}_{1} e_{1}\left(a e_{1} b e_{1}\right)^{n} a e_{2} d e_{1}\left(c e_{2} d e_{1}\right)^{n} \underline{w}_{3}=\underline{w}_{1} e_{1}\left(a e_{2} b e_{1}\right)^{n}\left(c e_{2} d e_{1}\right)^{n} \underline{w}_{3}
$$

where:

$$
\begin{aligned}
& e_{1}=\underline{w}_{2}^{i}, \quad e_{2}=\underline{v}_{2}^{i}, \quad a=\underline{w}_{3} \underline{u}_{1} \underline{v}_{1} \\
& b=\underline{v}_{3} \underline{u}_{2} \underline{w}_{1}, \quad c=\underline{w}_{3} \underline{u}_{3} \underline{v}_{1} \\
& \text { R.A.I.R.O. Informatique théorique/Theoretical Informatics }
\end{aligned}
$$

and $d=\underline{v}_{3} \underline{u}_{4} \underline{w}_{1}$. Thus by the dot-depth one condition, (2) holds.

4. SEMIGROUP CHARACTERIZATION OF \mathscr{B}_{1}

Now we are in a position to prove our main result.
Theorem 8: Let L be a language, $L \subseteq A^{+}$and let S_{L} be its syntactic semigroup. Then the following are equivalent:
(i) $L \in \mathscr{B}_{1}$;
(ii) L is $a_{m} \sim_{k}$ language for some $m, k \geqq 1$;
(iii) S_{L} is finite and there is an integer $n>0$ such that for all idempotents e_{1}, e_{2} in S_{L} and any elements a, b, c, d in S_{L} :

$$
\left(e_{1} a e_{2} b\right)^{n} e_{1} a e_{2} d e_{1}\left(c e_{2} d e_{1}\right)^{n}=\left(e_{1} a e_{2} b\right)^{n} e_{1}\left(c e_{2} d e_{1}\right)^{n}
$$

Proof: (i) \Leftrightarrow (ii) by Theorem 2;
(ii) \Rightarrow (iii) : by (a) of Proposition $1 S_{L}$ is finite.

Now, let $e_{1}=\underline{z}_{1}, e_{2}=\underline{z}_{2}, a=\underline{x}, b=\underline{y}, c=\underline{u}, d=\underline{v}$ for some $z_{1}, z_{2}, x, y, u, v \in A^{+}$. Define $w_{1}=z_{1}^{h}, w_{2}=z_{2}^{h}$ for h such that $\left|w_{1}\right|,\left|w_{2}\right| \geqq k$. Consequently, $e_{1}=\underline{w}_{1}$, $e_{2}=\underline{w}_{2}$. By (d) of Proposition 1 for ${ }_{m} \sim_{k}$:

$$
\left(\underline{w}_{1} \underline{x w}_{2} \cdot y\right)^{m} \underline{w}_{1} \underline{x w}_{2} \underline{v w}_{1}\left(\underline{w}_{2} \underline{v w}_{1}\right)^{m}=\left(\underline{w}_{1} \underline{x} \underline{w}_{2} \cdot y\right)^{m} \underline{w}_{1}\left(u w_{2} \underline{v} \underline{w}_{1}\right)^{m}
$$

Thus S_{L} satisfies the dot-depth one condition with $n=m$.
(iii) \Rightarrow (ii): suppose S_{L} satisfies the dot-depth one condition with n. Let $k=$ card $S+1$. By Proposition 7 the induced syntactic congruence \equiv_{L} on P of G_{k}, satisfies the condition (A) of the theorem on graphs with some $n_{1}>n, q$, and is of finite index on P. Hence by Theorem 3 there exists m such that for any two coterminal paths x, y.

$$
\bar{x}_{m} \sim \bar{y} \quad \text { implies } \quad \bar{x} \bar{\equiv}_{L} \bar{y}
$$

Now, consider $x, y \in A^{k} A^{*}$, and the congruence ${ }_{m} \sim_{k}$. We have that $x_{m} \sim_{k} y$ implies $\bar{x}_{m} \sim \bar{y}$ and that \bar{x}, \bar{y} are coterminal. Hence, $x_{m} \sim_{k} y$ implies $\bar{x} \bar{\equiv}_{L} \cdot \bar{y}$ and consequently, $x \equiv_{L} y$. If $|x| \leqq k$, then $x_{m} \sim_{k} y$ implies $x=y$ and consequently, $x \equiv_{L} y$. Thus L is a ${ }_{m} \sim_{k}$ language.

It is easy to see that if a syntactic semigroup satisfies the dot-depth one condition, then it also satisfies the condition: there exists an integer $n>0$ such that for any idempotent e in S_{L} and any elements $a, b S_{L}$:

$$
(e a e b)^{n} e a e=(e a e b)^{n} e=e b e(a e b e)^{n}
$$

vol. $17, n^{\circ} 4,1983$

The following example shows that the converse is not true.
Let $A=\{0,1,2,3\}$ and let $L=\left(01^{+} \cup 02^{+}\right)^{*} 01^{+} 3\left(2^{+} 3 \cup 1^{+} 3\right)^{*}$. The syntactic semigroups S_{L} of L satisfies the above condition, but it fails the dotdepth one condition. By Theorem $8 L \notin \mathscr{B}_{1}$. On the other hand one can verify that $L \notin \mathscr{B}_{1}$, apart from Theorem 8 , using (d) of Proposition 1 and proving that for any $m, k L$ cannot be a ${ }_{m} \sim_{k}$ language.

REFERENCES

1. J. A. Brzozowski, Hierarchies of a Periodic Languages, R.A.I.R.O., Informatique Théorique, Vol. 10, No. 8, 1976, pp. 33-49.
2. J. A. Brzozowski a,d R. Knast, The Dot Depth Hierarchy of Star-Free Languages is Infinité, J. Computer and System Sc., Vol. 16, No. 1, 1978, pp. 37-55.
3. R. S. Cohen and J. A. Brzozowski, Dot-Depth of Star-Free Events, J. Computer and System Sc., Vol. 5, 1971, pp. 1-16.
4. S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.
5. R. Knast, Some Theorems on Graph Congruences, R.A.I.R.O., Informatique Théorique, Vol. 17, No. 4, pp. 331-342.
6. I. Simon, Hierarchies of Events with Dot-Depth One, Dissertation, University of Waterloo, Canada, 1972.
