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Resumo: Duongrupo de operatoroj en la teorio pri konvekseco
Ni konsideras tri operatorojn kiuj aperas nature en la teorio pri konvekseco kaj
plene determinas la strukturon de la duongrupo generita de ili.

Abstract: We consider three operators which appear naturally in convexity theory
and determine completely the structure of the semigroup generated by them.

1. Introduction

The simplest convex functions on a vector space are the affine functions, and it is
of interest to represent a convex function as a supremum of these simple functions.
Such a representation is possible only if the function has three properties: it must
be convex; it must be lower semicontinuous with respect to an appropriate topology;
and it cannot take the value minus infinity unless it is identically minus infinity. Con-
versely, using the Fenchel transformation one can prove that these three properties
are also sufficient for such a representation to hold; indeed, the function is then equal
to its second Fenchel transform, or second conjugate function.

There are thus three operations naturally associated with the Fenchel transfor-
mation: that of taking the largest convex minorant; that of taking the largest lower
semicontinuous minorant; and that of taking the constant minus infinity if the func-
tion attains that value and leaving it unchanged otherwise. These three operations
generate a semigroup in the semigroup of all operators on the set of functions on the
vector space in question. How many elements are there in this semigroup? What
structure does it have with respect to composition and with respect to the natural
order? Is it a lattice under this order? Is there a representation of the semigroup
as a semigroup of matrices? The purpose of this note is to provide answers to these
questions. A quick look at Figure 1 will reveal the order structure of the semigroup.

We now define the three operations more precisely. Let E be a real vector space.
To any function f on E with values in the extended real line R ∪ {−∞,+∞} =
[−∞,+∞] we associate its convex hull or largest convex minorant c(f), defined as
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the supremum of all its convex minorants. It can be shown that

(1.1) c(f)(x) = inf
( N∑

1

λjf(xj);N > 1,
N∑
1

λjxj = x
)
, x ∈ E,

where the infimum is taken over all representations of x as a barycenter of finitely
many points xj with f(xj) < +∞, j = 1, ..., N , N > 1, and taking positive weights
λj with sum equal to 1.

The second operator is that of taking the largest lower semicontinuous minorant
of the function, thus the supremum of all its lower semicontinuous minorants for some
topology τ on E, also given by the formula

(1.2) l(f)(x) = lim inf
y→x

f(y), x ∈ E.

It is not difficult to see that this operation corresponds to taking the closure of the
epigraph of the function, i.e., epi(l(f)) = epi f , where the closure is taken with respect
to the Cartesian product of τ and the usual topology on R.

In Fenchel duality we consider a vector space F of linear forms on E, thus a
subspace of the algebraic dual E∗ of E. The topologies that are of interest are
σ(E,F ), the weakest topology on E such that all linear forms in F are continuous, and
σ(F,E), the weakest topology on F such that all evaluation mappings F 3 ξ 7→ ξ(x),
x ∈ E, are continuous. We can for instance choose F = E∗, or F = E′, the topological
dual of E under a given topology. We do not require that E and F be in duality; it
is even allowed to take F = {0}.

The third operator is the operator m defined as

(1.3) m(f)(x) =
{

f(x), if f is everywhere > −∞;
−∞, if f assumes the value−∞.

The three operators c, l, m generate a semigroup G(E) with composition as mul-
tiplication.

The plan of the paper is as follows. First we study operations on functions
defined on vector spaces (Section 2). Next we define an abstract semigroup G of
eighteen elements generated by the identity and three elements c, l, m subject to
the relations c2 = c, l2 = l, m2 = m, and clc = lcl = lc, cmc = mcm = mc,
lml = mlm = ml (Theorem 3.2). We find a matrix representation of this semigroup
using 3× 3 matrices (Theorem 3.3). For every vector space E, the semigroup G(E)
is then a homomorphic image of G, and we determine this homomorphic image for
spaces of dimension zero, one, two and higher (Theorem 4.1).

The order of G(E) can be 1, 6, 15, 16, 17, or 18, depending on the dimension of
E and its topology. The order is 15 for E = R, 16 for E = Rn, n > 2, and 18 for
every normed space E of infinite dimension.

I am grateful to Sten Kaijser for helpful comments concerning matrix represen-
tation of semigroups, in particular for bringing the paper by Hewitt and Zuckerman
[1955] to my attention. Svante Janson carefully read an early draft of the paper and
saved me from some embarrassing errors; I am very grateful to him.
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2. Closure operators and Galois correspondences

An order relation in a set X is a relation (a subset of X ×X) which satisfies three
conditions: it is reflexive, antisymmetric and transitive. This means, if we denote the
relation by 6, that for all x, y, z ∈ X,

(2.1) x 6 x;

(2.2) x 6 y and y 6 x implies x = y;

(2.3) x 6 y and y 6 z implies x 6 z.

An ordered set is a set X together with an order relation. (Sometimes one says
partially ordered set.)

A basic example is the set P (W ) of all subsets of a set W , with the order relation
given by inclusion, thus A 6 B being defined as A ⊂ B for A,B ∈ P (W ).

A closure operator in an ordered set X is a mapping X 3 x 7→ x ∈ X which is
expanding (or extensive), increasing (or isotone, order preserving), and idempotent ;
in other words, which satisfies the following three conditions for all x, y ∈ X:

(2.4) x 6 x;

(2.5) x 6 y implies x 6 y;

(2.6) x = x.

The element x is said to be the closure of x. Elements x such that x = x are
called closed (for this operator). An element is closed if and only if it is the closure
of some element (and then it is the closure of itself).

A basic example of a closure operator is of course the topological closure operator
which associates to a set in a topological space its topological closure, i.e., the smallest
closed set containing the given set.

Another closure operator of great importance is the operator which associates
to a set in Rn its convex hull, the smallest convex set containing the given set.

A Galois correspondence is a pair (f, g) of two decreasing mappings f :X → Y ,
g:Y → X of two given ordered sets X, Y such that g ◦ f and f ◦ g are expanding.
In other words we have f(x) > f(x′) and g(y) > g(y′) if x 6 x′ and y 6 y′, and
g(f(x)) > x and f(g(y)) > y for all x ∈ X, y ∈ Y .

The notion of Galois correspondence originates in Galois theory, which deals
with the correspondence between all intermediate subfields of a field extension and
the set of subgroups of the Galois group of the extension. The notion was introduced
in the general setting of ordered sets by Oystein Ore [1944: 495] under the name of
Galois correspondence or Galois connexion. (Sometimes he calls each of the mappings
f and g a correspondence, the two of them together a connexion.) See also Everett
[1944: 516], Birkhoff [1948: 56, 57], and Kuroš [1962: 6: 11].
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Proposition 2.1 (Ore [1944: 496]). Let f :X → Y , g:Y → X be a Galois corre-
spondence. Then g ◦ f :X → X and f ◦ g:Y → Y are closure operators. Moreover,
f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Proof. That g ◦ f and f ◦ g are expanding is part of the definition of a Galois corre-
spondence; that they are increasing follows from the fact that they are compositions
of two decreasing mappings. We know that f ◦g is expanding, so (f ◦g)(f(x)) > f(x);
thus f ◦ g ◦ f > f . On the other hand, also g ◦ f is expanding, i.e., g ◦ f > idX , so
f ◦ g ◦ f 6 f ◦ idX = f , hence f ◦ g ◦ f = f . By symmetry, g ◦ f ◦ g = g. From either
one of these identities we easily obtain that g ◦ f and f ◦ g are idempotent.

It is now natural to ask whether the closure operators one obtains from Galois
correspondences have some special property. The answer is no: every closure operator
comes in a trivial way from some Galois correspondence.

Proposition 2.2. Let x 7→ x be a closure operator defined in an ordered set X.
Then there exist an ordered set Y and a Galois correspondence f :X → Y , g:Y → X
such that x = g(f(x)) for all x ∈ X.

Proof. We define Y as the set of all closed elements in X with the opposite order;
thus y 6Y y′ shall mean that y >X y′. Let f :X → Y and g:Y → X be defined by
f(x) = x and g(y) = y. Then both f and g are decreasing, and g ◦ f(x) = x >X x,
f ◦ g(y) = y >Y y. So g ◦ f and f ◦ g are expanding, and x = g(f(x)) as desired.

Proposition 2.2 is, in a sense, completely uninteresting. This is because the
Galois correspondence is obtained from X and the closure operator in a totally trivial
way. However, there are many Galois correspondences in mathematics that are highly
interesting and represent a given closure operator. This is so because they allow for
important calculations to be made or for new insights into the theory.

We now ask whether the composition of two closure operators is a closure op-
erator. It is for instance well-known that if we first take the topological closure of a
set and then its convex hull, we get an operator which is not idempotent, thus not a
closure operator.

Proposition 2.3. Let f, g:X → X be two closure operators. The following properties
are equivalent:
(a) g ◦ f is a closure operator;
(b) g ◦ f is idempotent;
(c) g ◦ f ◦ g = g ◦ f ;
(d) f ◦ g ◦ f = g ◦ f ;
(e) g(x) is f-closed if x is f-closed.
If one of these conditions is satisfied, then g ◦ f is the supremum of the two closure
operators f and g in the ordered set of all closure operators; moreover f ◦ g 6 g ◦ f .

Proof. That h = g ◦ f is expanding and increasing is true for any composition of
expanding and increasing mappings, so it is clear that (a) and (b) are equivalent. It is
also easy to see that (d) and (e) are equivalent. If (c) holds, then h◦h = g◦f ◦g◦f =
g ◦ f ◦ f = g ◦ f = h, so h is idempotent. Similarly, (d) implies (b). Conversely, if
(b) holds, then

g ◦ f 6 g ◦ f ◦ g 6 h ◦ h = h = g ◦ f
and
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g ◦ f 6 f ◦ g ◦ f 6 h ◦ h = h = g ◦ f,

so we must have equality all the way in both chains of inequalities, which proves that
(c) and (d) hold. The last statement is easy to verify.

Corollary 2.4. Two closure operators f and g commute if and only if both g ◦f and
f ◦ g are closure operators.

Proof. If g ◦ f = f ◦ g, then (c) obviously holds, so g ◦ f is a closure operator.
Conversely, if g ◦ f is a closure operator, then (c) applied to f and g says that
g ◦ f ◦ g = g ◦ f ; if also f ◦ g is a closure operator, then (d) applied to g and f says
that g ◦ f ◦ g = f ◦ g. Thus f and g commute.

When two closure operators f and g are given, it may happen that f 6 g. Then
the semigroup generated by f and g consists of at most three elements: idX , f, g. If
both g ◦ f and f ◦ g are closure operators, then the semigroup generated by f and g
has at most four elements: idX , f, g, and g ◦ f = f ◦ g. If precisely one of g ◦ f and
f ◦ g is a closure operator, then the semigroup generated has exactly five elements,
idX , f, g, g ◦ f , and f ◦ g, of which four are closure operators. When none of g ◦ f
and f ◦ g is a closure operator, the semigroup of all compositions fm ◦ · · · ◦ f1, with
fj = f or fj = g, m ∈ N, may be finite or infinite.

Applying Proposition 2.3 to the case of the two operators f(A) = cvxA and
g(A) = A, we see that the operation of taking the topological closure of the convex
hull, A 7→ cvx A, is a closure operator. Indeed, it can be proved that the closure
(with respect to a reasonable topology; see Proposition 2.5 below) of a convex set is
always convex, so condition (e) is satisfied. (On the other hand the convex hull of a
closed set is not always closed.) We call cvx A the closed convex hull of A. This is a
case where the semigroup generated by f and g consists of five elements.

Next we consider three closure operators f, g, h such that one of f ◦ g and g ◦ f
is a closure operator, and similarly for the other pairs {g, h}, {h, f}. Up to renaming
the operators there are then only two cases. Either g ◦ f , h ◦ g and h ◦ f are closure
operators (alphabetical order), or g ◦ f , h ◦ g and f ◦ h are closure operators (cyclic
order). It turns out that the operators defined by (1.1)–(1.3) belong to the first case.
More precisely we have:

Proposition 2.5. Let c, l, m denote the three operators defined by (1.1)–(1.3) on a
vector space E equipped with a topology τ . They are all closure operators, in particular
they are idempotent:

(2.7) c ◦ c = c, l ◦ l = l, m ◦m = m.

Moreover, they satisfy

(2.8) c ◦m ◦ c = m ◦ c ◦m = m ◦ c, l ◦m ◦ l = m ◦ l ◦m = m ◦ l,

which means that the m-closure of a convex function is convex and that the m-closure
of a lower semicontinuous function is lower semicontinuous. If the topology τ is such
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that all translations x 7→ x − a, a ∈ E, and all dilations x 7→ λx, λ ∈ R, are
continuous, then we also have

(2.9) c ◦ l ◦ c = l ◦ c ◦ l = l ◦ c,

which means that the largest lower semicontinuous minorant of a convex function is
convex.

Proof. All statement except perhaps the last have routine proofs. Let f be a convex
function on E and define g = l(f). To prove that g is convex, we fix xj ∈ E such
that g(xj) < +∞, j = 0, 1, and a number t ∈ ]0, 1[, and shall then prove that
g((1 − t)x0 + tx1) 6 (1 − t)g(x0) + tg(x1). Given any numbers Aj > g(xj) and
any neighborhood U of x = (1 − t)x0 + tx1, we can find a neighborhood U0 of x0

such that (1 − t)U0 + tx1 ⊂ U . By the definition of g = l(f), there exists a point
y0 ∈ U0 such that f(y0) < A0. Next we can find a neighborhood U1 of x1 such
that (1 − t)y0 + tU1 ⊂ U . By the definition of g = l(f) again, there exists a point
y1 ∈ U1 such that f(y1) < A1. Since f is assumed to be convex, we know that
f((1 − t)y0 + ty1) 6 (1 − t)f(y0) + tf(y1) < (1 − t)A0 + tA1. Hence infy∈U f(y) <
(1− t)A0 + tA1. Since this is true for all choices of the Aj , we see that infy∈U f(y) 6
(1− t)g(x0) + tg(x1). Finally, since this is true for any neighborhood U of x, we get

g(x) = l(f)(x) = lim inf
y→x

f(y) = sup
U

inf
y∈U

f(y) 6 (1− t)g(x0) + tg(x1).

This shows that l(f) is convex.

It follows from (2.8) and (2.9) that m ◦ c, m ◦ l, and l ◦ c are closure operators;
cf. Proposition 2.3. We shall see later that in general c, l and m do not commute
(Theorem 4.1).

We form all possible compositions of these operators, fk ◦ · · · ◦ f2 ◦ f1, where
k > 0 and the fj = c, l, or m. Thus we get a semigroup G(E) in the set of all
operators on [−∞,+∞]E . We shall now investigate its structure. We shall do so by
defining first an abstract semigroup G, of which each G(E) is a homomorphic image.

3. An abstract semigroup of order eighteen

Definition 3.1. We let G denote the semigroup generated by the identity id = 1 and
three other elements c, l, m which are subject to the relations

(3.1) c2 = c, l2 = l, m2 = m;

(3.2) clc = lcl = lc, cmc = mcm = mc, lml = mlm = ml.
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Theorem 3.2. The semigroup G defined by Definition 3.1 has eighteen elements,
which can be represented by products of the generators c, l and m as follows.
(0) One element using zero factors: id = 1;
(i) Three elements using one factor: c, l, m;
(ii) Six element using two factors: cl, cm, lc, lm,mc,ml;
(iii) Six elements using three factors: clm, cml, lcm, lmc, mcl,mlc = 0;
(iv) Two elements using four factors: lcml, lmcl.
Of these, eight are idempotent, viz. id = 1, c, l, m, lc, mc, ml, mlc = 0, while the
other ten, viz. cl, cm, lm, clm, lcm, cml, lcml, lmc, mcl, lmcl, are not.

Proof. After the elements representable by zero, one or two factors we form all three-
letter combinations. Since it does not pay to repeat a letter immediately in view of
(3.1), there are only 3 · 2 · 2 = 12 combinations that could possibly represent a new
element:

clc, clm, cmc, cml,
lcl, lcm, lmc, lml,
mcl, mcm, mlc, mlm.

Of these twelve combinations, six are equal to elements representable by two factors:

clc = lcl = lc; cmc = mcm = mc; lml = mlm = ml.

The remaining six are listed under (iii).
So far we have found sixteen elements, not yet known to be distinct. Using (3.1)

and (3.2), we can prove by induction on the length of a that cac = ac and mam = ma
for all a ∈ G, thus that there is no use in repeating c or m. If we multiply the six
elements listed under (iii) by l from the left, we get lclm = lcm, lcml, llcm = lcm,
llmc = lmc, lmcl, lmlc = mlc. So possibly lcml and lmcl represent new elements.
Five or more letters will not give anything new.

Thus we see that G has at most the eighteen elements listed in (0)–(iv). It
remains to be proved that these elements are in fact all different. This will follow
from the next theorem, where we represent G as a semigroup of matrices with exactly
eighteen elements.

Any finite semigroup with a neutral element admits a faithful representation as
a semigroup of n × n matrices, where n is the order of the semigroup; see Hewitt
and Zuckerman [1955, Theorem 3.21]. Thus G admits, by this general theorem, a
representation in terms of 18 × 18 matrices. However, we shall see that we can find
a representation in terms of 3× 3 matrices.

Theorem 3.3. Define

I =

 1 0 0
0 1 0
0 0 1

 , C =

 1 0 1
0 1 1
0 0 0

 , L =

 1 1 0
0 0 0
0 0 1

 , M =

 0 0 0
0 1 0
0 0 1

 .

Then C,L and M satisfy the relations corresponding to (3.1) and (3.2). They gen-
erate a semigroup H of matrices with eighteen elements; in particular the products
corresponding to (0)–(iv) are all different.
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Proof. It is easy to prove the relations corresponding to (3.1) and (3.2); it follows
that H is a homomorphic image of G.

We may calculate all elements of H. In addition to I, C, L, M they are:

CL =

 1 1 1
0 0 1
0 0 0

 , CM =

 0 0 1
0 1 1
0 0 0

 , LM =

 0 1 0
0 0 0
0 0 1

 ,

CLM =

 0 1 1
0 0 1
0 0 0

 ,

LC =

 1 1 2
0 0 0
0 0 0

 , MC =

 0 0 0
0 1 1
0 0 0

 , ML =

 0 0 0
0 0 0
0 0 1

 ,

LCM =

 0 1 2
0 0 0
0 0 0

 , LCML =

 0 0 2
0 0 0
0 0 0

 , CML =

 0 0 1
0 0 1
0 0 0

 ,

LMC =

 0 1 1
0 0 0
0 0 0

 , LMCL =

 0 0 1
0 0 0
0 0 0

 , MCL =

 0 0 0
0 0 1
0 0 0

 ,

MLC =

 0 0 0
0 0 0
0 0 0

 .

Since they are all different, it follows that H has eighteen elements. Therefore H is
isomorphic to G.

One forms the abelization of a group by taking the quotient over the subgroup
generated by all commutators g−1h−1gh. For a semigroup this procedure is not avail-
able. Instead we may define the abelization of a semigroup by adding all commutative
laws to the defining relations of the semigroup. In this case we obtain a commutative
semigroup G0 of order eight: it has three idempotent generators c, l, m satisfying the
relations cl = lc, cm = mc and lm = ml, and consists of the elements 1, c, l, m, cl,
cm, lm, clm = 0.

It is easy to represent G0 by matrices: we define

C0 =

 1 0 0
0 1 0
0 0 0

 , L0 =

 1 0 0
0 0 0
0 0 1

 , M0 = M =

 0 0 0
0 1 0
0 0 1

 .

These matrices define orthogonal projections of R3 onto the two-dimensional co-
ordinate planes x3 = 0, x2 = 0, and x1 = 0, respectively; C and L map R3 obliquely
onto the same planes. Obviously C and L are perturbations of C0 and L0, and the
semigroup G can be viewed as a perturbation of its abelization G0.
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It is not possible to use 2 × 2 matrices in the representation in Theorem 3.3.
This is because for 2× 2 real or complex matrices A and B such that A and BA are
idempotent, either AB is idempotent or BA = 0. Therefore, with 2× 2 matrices C,
L, and M such that C, MC, and LC are idempotent whereas CM and CL are not,
we must have MC = LC = 0: the representation cannot be faithful.

4. The semigroup generated by the three closure operators

As stated in Proposition 2.5, the three operators c, l, m defined on the set [−∞,+∞]E

of all functions on a topological vector space E are idempotent, i.e., they satisfy (2.7).
They are closure operators, since the other requirements for being a closure operator
are obviously satisfied. Moreover, they satisfy the relations (2.8) and (2.9). The
semigroup G(E) they generate consists of all compositions fk ◦ · · · ◦ f2 ◦ f1, where
k > 0 and fj = c, l, m for j = 1, ..., k. This semigroup is a homomorphic image of the
abstract semigroup G constructed in Section 3. We shall now determine its structure
for all finite-dimensional topological vector spaces as well as for all normed spaces.

If E is a topological vector space of finite dimension, then {0}, the closure of
the origin, is a vector subspace and the quotient E

/
{0} is separated (Hausdorff).

The space is isomorphic to {0} ×
(
E

/
{0}

) ∼= (Rk)χ × Rn−k, where the index χ
indicates that we equip Rk with the chaotic topology, i.e., the topology such that
the only neighborhood of the origin is the whole space. The dimensions of E and {0}
determine the semigroup G(E); equivalently, the dimension of the algebraic dual E∗

and that of the topological dual E′ determine the semigroup, since dim E′ is equal
to the codimension of {0} in the finite-dimensional case.

Theorem 4.1. On any real topological vector space E the three closure operators
c, l, m defined by (1.1)–(1.3) generate a semigroup G(E) of at most eighteen elements.
They can be represented as compositions of c, l, m as follows (for simplicity we write
composition as juxtaposition):
(0) One element with zero factors: id = 1;
(i) Three elements with one factor: c, l, m;
(ii) Six element with two factors: cl, cm, lc, lm,mc,ml;
(iii) Six elements with three factors: clm, cml, lcm, lmc, mcl,mlc = 0;
(iv) Two elements with four factors: lcml, lmcl.
Of these, the elements represented by id = 1, c, l, m, lc, mc, ml, mlc = 0 (not
necessarily distinct) are closure operators.

(A1) If E has dimension zero, then G(E) consists of only one element.
(A15) If E = R with the usual topology, then G(E) has fifteen elements; we have

lmc = lmcl = mcl = 0 and all other elements are different from 0 and each
other.

(A16) If E = Rn, n > 2, with the usual topology, then G(E) has sixteen elements; we
have lmc = lmcl = 0 and all other elements are different from 0 and each other.

(B6) If E is nonzero and equipped with the chaotic topology, then G(E) has six ele-
ments, 1, c, m, cm, mc, and l, the last being equal to all other products.

(B16) If E is of finite dimension and {0} has codimension one and dimension at least
one, then G(E) has sixteen elements; we have mcl = lmcl = 0 and all other
elements are different from 0 and each other.
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(B17) If E is finite-dimensional and {0} has codimension at least two and dimension
at least one, then G(E) has seventeen elements; we have lmcl = 0 and all other
elements are different from 0 and each other.

(C) Finally, if E is a normed space of infinite dimension, then G(E) has eighteen
elements and so is isomorphic to G as defined in Definition 3.1.

To sum up, the order of G(E) in the finite-dimensional case is 1, 6, 15, 16 or 17
according to the following table, where n = dim E and k = dim {0}.

k 0 1 2 3 4 5
n
0 1
1 15 6
2 16 16 6
3 16 17 16 6
4 16 17 17 16 6
5 16 17 17 17 16 6

Proof. The proof is organized as follows. We first present examples to show that the
number of elements in G(E) is a least as large as that indicated in the statement of
the theorem. Then we shall prove that in finite-dimensional spaces, the number is
not larger than stated.
Example 4.2. Define a function f1 on the real line by putting f1(x) = +∞ for x < 0,
f1(0) = 1, and f1(x) = −x2 for x > 0. Then G(R)(f1) consists of the following six
different functions:

f1 = m(f1), c(f1) = cm(f1), l(f1) = lm(f1) = ml(f1),

cl(f1) = clm(f1) = cml(f1), lc(f1) = lcm(f1) = lcml(f1),

mc(f1) = lmc(f1) = lmcl(f1) = mcl(f1) = mlc(f1) = −∞.

Example 4.3. Let E = R with the usual topology and define f2(x) = +∞ for x < 0,
f2(0) = 0, and f2(x) = log x for x > 0. Then f2 does not assume the value −∞, so
m(f2) = f2, cm(f2) = c(f2). We see that G(R)(f2) consists of five different functions,
viz.

f2 = m(f2), c(f2) = cm(f2), l(f2) = lm(f2),

cl(f2) = clm(f2) = lc(f2) = lcm(f2),

ml(f2) = mc(f2) = cml(f2) = lmc(f2) = mcl(f2) = lcml(f2) = lmcl(f2) = mlc(f2),

where the last function is equal to minus infinity identically.
Example 4.4. Define f3 on the real line by putting f3(x) = +∞ for x < 0; f3(0) = 1,
and f3(x) = 0, x > 0. Then G(R)(f3) consists of two functions, viz.

f3 = c(f3) = m(f3) = cm(f3) = mc(f3),

and the function l(f3), which is also the result of applying all other operators to f3.
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Example 4.5. Define f4 on R by putting f4(x) = +∞ for negative x, f4(0) = −∞,
and f4(x) = 0 for x positive. Then G(R) consists of three functions, viz.

f4 = l(f4), c(f4) = cl(f4) = lc(f4),

and the function −∞, which is the result of applying all other elements to f4.
Combining Examples 4.2–4.5 we see that there are at least fifteen elements in

G(R), the only elements which have not been isolated being the four elements lmc,
mcl, lmcl and mlc = 0. Indeed, these four elements always give the same result when
E = R as we shall prove in Proposition 4.11. Let us now look at examples in two
variables.
Example 4.6. Let E = R2 with the usual topology and define g1 by the requirement
that g1(x) = 0 when x2 > 0 and |x1|x2 = 1, and with the value +∞ otherwise.
Then g1 is lower semicontinuous, so l(g1) = g1, but c(g1)(x) is zero when x2 > 0 and
+∞ otherwise, thus lc(g1) 6= c(g1). We see that G(R2)(g1) consists of three different
functions, viz.

g1 = l(g1) = m(g1) = lm(g1) = ml(g1),

c(g1) = cl(g1) = cm(g1) = clm(g1) = mc(g1) = cml(g1) = mcl(g1),

lc(g1) = lcm(g1) = lmc(g1) = lcml(g1) = lmcl(g1) = mlc(g1).

In particular, lmcl and mcl yield different results. Together with Examples 4.2–4.5
this shows that there are at least sixteen elements in G(R2).
Example 4.7. Let E = R2 be equipped with the topology generated by the seminorm
x 7→ |x2|. Define a function on E by putting g2(x) = +∞ when x2 6 0, and
g2(x) = x1 when x2 > 0. Then g2 is not lower semicontinuous, and l(g2) takes the
value −∞ without being −∞ identically. We see that G(E)(g2) consists of three
different functions, viz.

g2 = c(g2) = m(g2) = cm(g2) = mc(g2),

l(g2) = cl(g2) = lm(g2) = clm(g2) = lc(g2) = lcm(g2) = lmc(g2),

ml(g2) = cml(g2) = lcml(g2) = mcl(g2) = lmcl(g2) = mlc(g2) = −∞.

The function g2 shows that lmc is not equal to lmcl nor to mlc in this case.

Let us finally look at an infinite-dimensional space.
Example 4.8. Let E be a normed space of infinite dimension and fix a closed hyper-
plane H in E. There exists a strictly increasing sequence (Ej)∞0 of subspaces of
H. Pick points pj , qj ∈ Ej r Ej−1 of norms ‖pj‖ = 1/j and ‖qj‖ = j, j > 2. We
define a function g3 as being equal to −k at the points p2k ± q2k+1 and equal to +∞
everywhere else, k > 1. Since the set of all points p2k±q2k+1 is closed, this function is
lower semicontinuous: l(g3) = g3. We note that the midpoint p2k = 1

2 (p2k + q2k+1)+
1
2 (p2k − q2k+1) tends to the origin as k → +∞, and that c(g3)(p2k) 6 −k → −∞;
hence lc(g3)(0) = −∞. On the other hand, the origin does not belong to the convex
hull of the points p2k ± q2k+1, so c(g3)(0) = +∞, which shows that c(g3) cannot be
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lower semicontinuous: we must have lc(g3) 6= c(g3). Moreover, lc(g3)(x) = +∞ when
x /∈ H, so that lc(g3) 6= mlc(g3).

To sum up, G(E)(g3) consists of four different functions:

g3 = l(g3) = m(g3) = lm(g3) = ml(g3),

c(g3) = cl(g3) = cm(g3) = clm(g3) = mc(g3) = cml(g3) = mcl(g3),

lc(g3) = lcm(g3) = lmc(g3) = lcml(g3) = lmcl(g3), mlc(g3),

where the last is equal to minus infinity identically.
Thus we have finally found a space where the zero element mlc can be separated

from all the other elements.
Examples 4.2–4.6 are available to show that all elements separated in G(R2) are

also separated in the semigroup G(E). To show this we consider g(x) = fj(ξ1(x)),
j = 1, ...4, and g(x) = g1(ξ1(x), ξ2(x)), where ξ1 and ξ2 are two linearly independent
continuous linear forms on E. However, we need to separate also lmc and lmcl
as in Example 4.7. This can be done using g(x) = g2(η(x), ξ1(x)), where η is a
discontinuous linear form on E, thus η ∈ E∗rE′. Such a form always exists, at least
if we admit the existence of Hamel bases. Define first θ(pj) = 1, and then extend θ
to the union of all Ej by linearity. Then, using a Hamel basis, θ can be extended to a
linear form η on all of E. Since η(pj) = θ(pj) = 1 and ‖pj‖ = 1/j, η is discontinuous.

With all these examples in mind we can now finish the proof. Examples 4.2–4.5
show that the number of different elements is at least that stated in the case (A15).
Combined with Example 4.6 they show the same thing in case (A16). With Example
4.8 we can complete the proof of (C), since G(E) can never have more than eighteen
elements. We shall now see that there are not more elements in the other cases.

Proposition 4.9. Let E be a topological vector space of finite dimension. Then
lmcl(f) = mlc(f) for all functions f :E → [−∞,+∞]. If the topology is separated,
then lmc(f) = lmcl(f) = mlc(f) for all functions. More generally, the last conclusion
holds whenever E is a topological space such that all linear forms are continuous.

Lemma 4.10. If E is a finite-dimensional topological vector space and if cl(f) >
−∞, then lc(f) > −∞. If we assume the topology to be separated, then c(f) > −∞
implies that also lc(f) > −∞. The last conclusion holds whenever E is a topological
vector space such that all linear forms are continuous.

Proof. It is classical that a convex function on a vector space which does not take
the value −∞ admits an affine minorant. In case E∗ = E′, this affine function is
continuous, so it is also a minorant of lc(f).

In the general case we know that cl(f) > −∞, so, again, there is an affine
function ϕ such that cl(f) > ϕ, hence lc(f) = lcl(f) > l(ϕ). The affine function is
given by ϕ(x) = ϕ(0) + ξ(x), where ξ is a linear form on E.

If cl(f) is identically +∞, then also lc(f) is identically +∞, and so does not
take the value −∞.

If, on the other hand, there exists a point a such that cl(f)(a) < +∞, then
we use the fact that cl(f) is constant along the cosets of {0}, meaning that +∞ >
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cl(f)(a) = cl(f)(a + x) > ϕ(a + x) = ϕ(0) + ξ(a + x) for all x ∈ {0}. Hence ξ is
constant on the cosets of {0}, implying that it is continuous for the given topology
on E. Thus cl(f) > ϕ implies that lc(f) = lcl(f) > l(ϕ) = ϕ, so that lc(f) cannot
take the value −∞. This proves the lemma.
Proof of Proposition 4.9. Assume first that cl(f) takes the value −∞. Then mcl(f)
is identically −∞, and since mcl(f) > lmcl(f) > mlc(f), all three functions are
equal to minus infinity. Next, if cl(f) does not take the value −∞, then neither
does lc(f) (Lemma 4.10), so mcl(f) = cl(f) and mlc(f) = lc(f) and we obtain
lmcl(f) = lcl(f) = lc(f) = mlc(f) as required.

In case E∗ = E′, we assume first that c(f) takes the value −∞. Then mc(f)
is identically minus infinity, as well as lmc(f), lmcl(f), and mlc(f), so the three
functions mentioned in the statement of the proposition are all equal. On the other
hand, if c(f) > −∞, then by Lemma 4.10, lc(f) > −∞ so that mlc(f) = lc(f).
We always have mlc(f) 6 lmcl(f) 6 lmc(f) 6 lc(f), so if mlc(f) = lc(f), then all
elements in this chain are equal. This proves Proposition 4.9.

Proposition 4.11. If E = R with the usual topology, then lmc(f) = mcl(f) =
lmcl(f) = mlc(f) for all functions f :R → [−∞,+∞].

Lemma 4.12. If E = R with the usual topology, then c(f) > −∞ implies that
lc(f) = cl(f).

Proof. If f is any function of one real variable such that c(f) > −∞, then c(f)
is finite, hence continuous, in an open interval I and equal to plus infinity in the
complement of its closure. We therefore have lc(f) = c(f) in I ∪ {I, as well as
c(f) > cl(f) > lc(f) everywhere, which implies that lc(f) = cl(f) in I ∪ {I. The
endpoints of I remain to be studied. For definiteness, let I = ]0, b[ and assume that
lc(f)(0) < cl(f)(0), say lc(f)(0) = 0 < 2ε = cl(f)(0) 6 l(f)(0). Then there exists a
positive number δ such that f(x) > ε for all x with |x| 6 δ. We may of course take
δ < b. Define an auxiliary function g to be equal to +∞ for x < 0, to take the value
ε at the origin and the value min(c(f)(δ), ε) at the point δ, to be affine in the interval
[0, δ], and finally to be equal to (x/δ) min(c(f)(δ), ε) for x > δ. The function g is
convex and a minorant of f , so we get g = c(g) 6 c(f). Then ε = lc(g)(0) 6 lc(f)(0),
contradicting the assumption that lc(f) = 0.
Proof of Proposition 4.11. Comparing with Proposition 4.9, we see that it only
remains to be proved that mcl(f) is equal to the three other functions. If cl(f)
assumes the value −∞, then mcl(f) is −∞ identically, so we are done. If, on the
other hand, cl(f) > −∞, then by Lemma 4.12, lc(f) = cl(f), so mcl(f) = mlc(f)
also in this case.

Corollary 4.13. If E is a topological vector space such that {0} has codimension
one, then mcl = lmcl = 0.

Proof. For any function f on E we define g = l(f) and note that it is constant on
the cosets of {0}, hence a function of one variable. We apply Proposition 4.11 to it
and obtain lmc(g) = mcl(g) = lmcl(g) = mlc(g). Inserting the definition of g we get
lmcl(f) = mcl(f) = mlc(f) as claimed.

We can now finish the proof of Theorem 4.1. If E = {0}, all elements in G(E)
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are equal to the identity, so (A1) follows. On the basis of the Examples 4.2–4.5 and
Proposition 4.11 we can finish the proof in case (A15). Similarly, case (A16) follows
from Examples 4.2–4.6 and Proposition 4.9.

If E is equipped with the chaotic topology, then bla(f) is a constant function
for all elements a, b ∈ G(E); moreover, it is the same constant. Therefore G(E)(f)
cannot contain more than six different functions, viz. f , c(f), m(f), cm(f), mc(f),
and l(f). On the other hand, if E is nonzero, then Examples 4.3–4.5, where we now
use the chaotic topology, show that 1, c, m, cm, mc, and l are actually different. So
(B6) is proved.

Examples 4.2–4.5 and the function g2 constructed in Example 4.7 show that there
are at least sixteen elements in case (B16)—however, not the same sixteen elements
as in case (A16). Corollary 4.13 then shows that the number cannot exceed sixteen.
If the codimension of {0} is at least two we may use the function g2 constructed in
Example 4.7 together with all the functions in Examples 4.2–4.6 to show that the
number is at least seventeen; Proposition 4.9 then shows that there are not more that
seventeen elements in case (B17). Finally, as already remarked, case (C) is dealt with
by Examples 4.2–4.5, 4.7, and 4.8, since they show that there are at least eighteen
elements in G(E) in that case.

5. The multiplicative structure of the semigroup
The multiplicative structure of the semigroup G is as shown in Table 1.

The semigroup is highly noncommutative. To turn that statement into some-
thing quantitative we may argue as follows. We must have ab = ba if a or b are
equal, or if one of them is equal to 0 or 1. There are 84 such pairs; they commute
automatically. The remaining pairs a, b with b following a in the list are 120 in num-
ber; of those there are 90 pairs such that ab 6= ba. In other words, out of the pairs
which do not commute automatically, 75 per cent do not commute. In Table 2 the
30 commuting pairs which do not commute automatically are marked by an equality
sign.

Another measure of noncommutativity is the order of the abelization G0 (eight)
compared with that of G (eighteen).

6. The order structure of the semigroup
For every vector space E we may define an order in the semigroup G(E) by declaring
that a 6 b for two elements a, b of G(E) if a(f)(x) > b(f)(x) for all functions
f :E → [−∞,+∞] and all points x ∈ E. (The order between functions is that of
inclusion between their epigraphs.) Since G(E) is isomorphic to G for large spaces
E, we also get an order in G.

Thus we see that 1 6 c, l, m 6 0, and that cl 6 lc, cm 6 mc, and lm 6 ml.
Multiplication preserves order in the sense that a 6 a′, b 6 b′ implies ab 6 a′b′.

The order structure of G can be read off from its Hasse diagram, which is shown
in Figure 1. Of course the geometric aspect of the arrangement is not uniquely
determined by the order. In the presentation we have chosen, the semigroup consists
basically of two cubes which share a common vertex. The upper cube hangs from
the vertex 1, and its bottom vertex clm is the top vertex of the lower cube, which,
however, is not complete in that there is no edge from clm to mc. In addition to the
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vertices of the two cubes, there is one elements between cl and lcm, viz. lc, and one
between lm and cml, viz. ml. Finally, the zero element mlc = 0 is attached below
the bottom vertex lmcl of the lower cube.

The upper cube realizes the abelization G0 of G mentioned at the end of Section 3.
The whole semigroup possesses a 2-symmetry: it is equal to its mirror image in

the plane determined by 1, 0 and l. Mathematically the symmetry is achieved by
interchanging c and m and then reversing the order of all products (the conditions
(3.1) and (3.2) are invariant under this change). The upper cube in Figure 1 possesses
of course more symmetry, but this does not correspond to any symmetry of the
semigroup, only of its abelization G0.

We emphasize that there is no order relation (no edge) between clm and mc.
This follows from Example 4.2, where the function f1 shows that we do not have
clm > mc, and Example 4.4, where the function f3 shows that we do not have
clm 6 mc. As a consequence, G(R) is not a lattice. The same is then true of G. In
fact, both lmc and mcl are minimal majorants of the set {clm,mc}, so there is no
smallest majorant of that set. Similarly, the infimum of lmc and mcl does not exist;
mc and clm are both maximal minorants of the set {lmc,mcl}.

In Table 3 the infimum and the supremum (when they exist) of two elements of
the semigroup are listed. Only the upper triangle, corresponding to the case where a
precedes b in the listing we have chosen, is entered. When a 6 b in the partial order
of the semigroup, we have of course inf(a, b) = a and sup(a, b) = b; in these cases
nothing is written. A star ? indicates that the supremum or infimum does not exist.

7. Comparison between the supremum and the product of two elements
With the order we have defined in G, it is clear that a, b 6 ab, thus that sup(a, b) 6 ab
when the supremum exists. By symmetry, sup(a, b) 6 ba, so that

(7.1) sup(a, b) 6 inf(ab, ba)

whenever the supremum and infimum exist. In Table 4 we list, for each pair a, b
with a preceding b, sup(a, b) and inf(ab, ba) (a nonexisting supremum or infimum is
indicated by a star). Let us agree to call a pair regular if we have equality in (7.1).
Every pair (a, b) with a or b equal to 0 or 1 is regular. A pair (a, a) is regular if and
only if a is idempotent.

There are 136 pairs (a, b) with a preceding b or a equal to b but with none of
them equal to 0 or 1. Of these, there are 90 regular pairs, thus satisfying sup(a, b) =
inf(ab, ba), marked by an equality sign in Table 4; 41 irregular pairs with sup(a, b) 6=
inf(ab, ba); four pairs where neither sup(a, b) nor inf(ab, ba) exists; and one pair where
sup(a, b) exists but inf(ab, ba) does not exist.
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1 c l m cl cm lm clm lc mc ml lcm cml lcml lmc mcl lmcl 0

c c cl cm cl cm clm clm lc mc cml lcm cml lcml lmc mcl lmcl 0

l lc l lm lc lcm lm lcm lc lmc ml lcm lcml lcml lmc lmcl lmcl 0

m mc ml m mcl mc ml mcl 0 mc ml 0 mcl 0 0 mcl 0 0

cl lc cl clm lc lcm clm lcm lc lmc cml lcm lcml lcml lmc lmcl lmcl 0

cm mc cml cm mcl mc cml mcl 0 mc cml 0 mcl 0 0 mcl 0 0

lm lmc ml lm lmcl lmc ml lmcl 0 lmc ml 0 lmcl 0 0 lmcl 0 0

clm lmc cml clm lmcl lmc cml lmcl 0 lmc cml 0 lmcl 0 0 lmcl 0 0

lc lc lc lcm lc lcm lcm lcm lc lmc lcml lcm lcml lcml lmc lmcl lmcl 0

mc mc mcl mc mcl mc mcl mcl 0 mc mcl 0 mcl 0 0 mcl 0 0

ml 0 ml ml 0 0 ml 0 0 0 ml 0 0 0 0 0 0 0

lcm lmc lcml lcm lmcl lmc lcml lmcl 0 lmc lcml 0 lmcl 0 0 lmcl 0 0

cml 0 cml cml 0 0 cml 0 0 0 cml 0 0 0 0 0 0 0

lcml 0 lcml lcml 0 0 lcml 0 0 0 lcml 0 0 0 0 0 0 0

lmc lmc lmcl lmc lmcl lmc lmcl lmcl 0 lmc lmcl 0 lmcl 0 0 lmcl 0 0

mcl 0 mcl mcl 0 0 mcl 0 0 0 mcl 0 0 0 0 0 0 0

lmcl 0 lmcl lmcl 0 0 lmcl 0 0 0 lmcl 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. The multiplication table of the semigroup.
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1 c l m cl cm lm clm lc mc ml lcm cml lcml lmc mcl lmcl 0

c c cl cm cl cm clm clm lc mc cml lcm cml lcml lmc mcl lmcl 0
c lc mc lc mc lmc lmc = = 0 lmc 0 0 = 0 0 0

l l lm lc lcm lm lcm lc lmc ml lcm lcml lcml lmc lmcl lmcl 0
l ml cl cml ml cml = mcl = lcml cml = lmcl mcl = 0

m m mcl mc ml mcl 0 mc ml 0 mcl 0 0 mcl 0 0
m clm cm lm clm lcm = = lcm cml lcml lmc = lmcl 0

cl lc lcm clm lcm lc lmc cml lcm lcml lcml lmc lmcl lmcl 0
lc mcl lmcl lmcl = mcl 0 lmcl 0 0 lmcl 0 0 0

cm mc cml mcl 0 mc cml 0 mcl 0 0 mcl 0 0
mc lmc lmc lcm = 0 lmc 0 = lmc 0 = 0

lm ml lmcl 0 lmc ml 0 lmcl 0 0 lmcl 0 0
ml cml lcm mcl = lcml cml lcml lmcl mcl lmcl 0

clm lmcl 0 lmc cml 0 lmcl 0 0 lmcl 0 0
lmcl lcm mcl 0 lmcl 0 = lmcl 0 = 0

lc lc lmc lcml lcm lcml lcml lmc lmcl lmcl 0
lc 0 0 0 0 0 0 0 0 0

mc mc mcl 0 mcl 0 0 mcl 0 0
mc 0 lmc 0 = lmc 0 = 0

ml ml 0 0 0 0 0 0 0
ml lcml cml lcml lmcl mcl lmcl 0

lcm 0 lmcl 0 0 lmcl 0 0
0 0 = = 0 = 0

cml 0 0 0 0 0 0
0 = lmcl = = 0

lcml 0 0 0 0 0
0 = = = 0

lmc 0 lmcl 0 0
0 0 = 0

mcl 0 0 0
0 = 0

lmcl 0 0
0 0

0 0
0

Table 2. Listing ab and ba for comparison.
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• 1..............................................................................................................................................................................................................................

.................................................................................................................................................

..........................................................................................................................................................................................................................................•c • l • m.................................................................................................................................................

..........................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................

.................................................................................................................................................

......................................................................................................................................................................................................................

............................................................................................................................... ..................................................................................................•cl • cm • lm................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................

......................................................................................................................................................................................................................

.................................................................................................................................................•lc •clm • ml

................................................................................................................................................................................................................................................................................................

................ ......................................................................................................................................................................................................

..........................................................................................................................................................................................................................................•lcm •mc •cml.................................................................................................................................................

......................................................................................................................... .............................................................................................

..........................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................................................................................................•lmc • lcml •mcl..............................................................................................................................................................................................................................

.................................................................................................................................................

..........................................................................................................................................................................................................................................• lmcl.........................................................................................................................................................................................................................................................• 0

Figure 1. The Hasse diagram of the semigroup.
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1 c l m cl cm lm clm lc mc ml lcm cml lcml lmc mcl lmcl 0

c 1 1 1 1
cl cm clm cml

l 1 1 1
lm clm ?

m 1 1
clm lcm

cl c l c l
clm clm ? cml

cm m c m
clm lcm cml

lm l m
lcm ?

clm cl cm lm
lcm ? cml

lc c l cl cl
lmc lcml lcml lmcl

mc m cm cm cm
mcl lmc mcl lmcl

ml lm lm
lcml lmcl

lcm clm clm
lcml lmcl

cml clm
lmcl

lcml lcm cml
lmcl lmcl

lmc ?
lmcl

mcl

lmcl

0

Table 3. The infimum and supremum (when they exist) of two elements of the semigroup.
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1 c l m cl cm lm clm lc mc ml lcm cml lcml lmc mcl lmcl 0

c c cl cm cl cm clm clm lc mc cml lcm cml lcml lmc mcl lmcl 0
= = = = = = = = = = = = = = = = 0

l l lm cl clm lm clm lc ? ml lcm cml lcml lmc mcl lmcl 0
= = = = = = = ? = = = = = = = 0

m m clm cm lm clm lcm mc ml lcm cml lcml lmc mcl lmcl 0
= = = = = = = = = = = = = = 0

cl cl clm clm clm lc ? cml lcm cml lcml lmc mcl lmcl 0
lc = = lcm = ? = = lcml = = lmcl = 0

cm cm clm clm lcm mc mcl lcm cml lcml lmc mcl lmcl 0
mc = ? = = cml lmc mcl 0 = = 0 0

lm lm clm lcm ? ml lcm cml lcml lmc mcl lmcl 0
ml cml = ? = lcml = = lmcl = = 0

clm clm lcm ? cml lcm cml lcml lmc mcl lmcl 0
lmcl = ? = lmcl lmcl 0 lmcl lmcl 0 0

lc lc lmc lcml lcm lcml lcml lmc lmcl lmcl 0
= = = = = = = = = 0

mc mc mcl lmc mcl lmcl lmc mcl lmcl 0
= = = = 0 = = 0 0

ml ml lcml cml lcml lmcl mcl lmcl 0
= = = = = = = 0

lcm lcm lcml lcml lmc lmcl lmcl 0
0 lmcl 0 0 = 0 0

cml cml lcml lmcl mcl lmcl 0
0 0 = 0 0 0

lcml lcml lmcl lmcl lmcl 0
0 0 0 0 0

lmc lmc lmcl lmcl 0
0 = 0 0

mcl mcl lmcl 0
0 0 0

lmcl lmcl 0
0 0

0 0
0

Table 4. Comparison between sup(a, b) and inf(ab, ba).
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