Pacific Journal of Mathematics

A SEMILATTICE DECOMPOSITION INTO SEMIGROUPS HAVING AT MOST ONE IDEMPOTENT Mohan S. Putcha and Julian Weissglass

A SEMILATTICE DECOMPOSITION INTO SEMIGROUPS HAVING AT MOST ONE IDEMPOTENT

Mohan S. Putcha and Julian Weissglass

A semigroup \mathbf{S} is said to be viable if $a b=b a$ whenever $a b$ and $b a$ are idempotents. The main theorem of this article proves in part that S is a viable semigroup if and only if S is a semi-latice of \mathscr{S}-indecomposable semigroups having at most one idempotent.

Furthermore, each semigroup appearing in the decomposition has a group ideal whenever it has an idempotent. Also included as part of the main theorem is the more elementary result that S is viable if and only if every \mathcal{J}-class contains at most one idempotent.

Throughout S will denote a semigroup and $E=E(S)$ the set of idemotents of S.

Definition. Let $a, b \in S$. We say $a \mid b$ if there exist $x, y \in S$ such that $a x=y a=b$. The set-valued function \mathfrak{M} on S is defined by $\mathfrak{M}(a)=\{e|e \in E, a| e\}$. The relation δ on S is defined by $a \delta b$ if $\mathfrak{M}(a)=\mathfrak{M}(b)$.

Our first goal is to show that if S is viable then δ is a congruence on S and S / δ is the semilattice described above.

Lemma 1. Let S be viable. If $a b=e \in E$, then $b e a=e$.
Proof. $(b e a)^{2}=b e a b e a=b e a$. Hence bea $\in E$. But cleary $a b e=$ $e \in E$. Hence $b e a=a b e=e$.

Lemma 2. Let S be viable. Suppose $a \in S$ and $e \in E$. Then $a \mid e$ if and only if $e \in S^{1} a S^{1}$.

Proof. If $a \mid e$, then $e \in S^{1} a S^{1}$ by definition. Conversely assume $e=s a t$ with $s, t \in S^{1}$. By (1), ates $=e$ and tesa $=e$. Therefore $a \mid e$.

Theorem 3. Let S be viable. Then
(i) δ is a congruence relation on S containing Green's relation \mathscr{H}.
(ii) S / δ is a semilattice and
(iii) each δ-class contains at most one idempotent and a group ideal whenever it contains an idempotent.

Proof. (i) Clearly δ is an equivalence relation. We will show that δ is right compatible. Assume $a \delta b$. If $a c \mid e \in E$, then
$a c x=e$ for some $x \in S$. By (1), cxea $=e$. Hence $a \mid e$. Thus $b \mid e$, so $y b=e$ for some $y \in S$. Therefore $y b c x e a=e$, so $b c \mid e$ by (2). Hence $\mathfrak{M}(a c) \subseteq \mathfrak{M}(b c)$. Similary $\mathfrak{M}(b c) \subseteq \mathfrak{M}(a c)$ and hence $a c o \delta b c$. That δ is left compatible follows analogously. Consequently, δ is a congruence. It is immediate that $\mathscr{C} \cong \delta$.
(ii) To show S / δ is a band, let $a \in S$. If $a^{2} \mid e \in E$ then by (2), $a \mid e$. Hence $\mathfrak{M}\left(a^{2}\right) \subseteq \mathfrak{M}(a)$. Suppose $a \mid e \in E$, say $a x=y a=e, x, y \in$ S. Then $y a^{2} x=e$. Again using (2), $a^{2} \mid e$. Thus, $\mathfrak{M}\left(a^{2}\right)=\mathfrak{M}(a)$ and $a \delta a^{2}$. So S / δ is a band. Now let $a, b \in S$. If $e \in \mathfrak{M}(a b)$, then there exist $x, y \in S$ such that $a b x=y a b=e$. Hence $y a(b a) b x=e$, and by (2), $e \in \mathfrak{M}(b a)$. Therefore $\mathfrak{M}(a b) \subseteq \mathfrak{M}(b a)$. By symmetry, $\mathfrak{M l}(b a) \subseteq$ $\mathfrak{M}(a b)$. Hence $a b \delta b a$ and S / δ is a semilattice.
(iii) Suppose, $e_{1} \delta e_{2}$ with $e_{1}, e_{2} \in E$. Then $e_{1} \in \mathfrak{M}\left(e_{1}\right)=\mathfrak{M}\left(e_{2}\right)$, so $e_{2} \mid e_{1}$. Similarly $e_{1} \mid e_{2}$. Hence $e_{1} \mathscr{H} e_{2}$ and by [2], Lemma 2.15, $e_{1}=$ e_{2}. Thus each δ-class contains at most one idempotent. Now suppose A is a δ-class containing an idempotent e. Let $a \in A$. Since $e \in$ $\mathfrak{M}(e)=\mathfrak{M}(a)=\mathfrak{M}\left(a^{2}\right)$, there exists $x \in S$ such that $a^{2} x=e . \quad$ Now $a \delta$ a^{2} implies $a x$ o $a^{2} x$, so $a x$ o e e ò a. Hence $a x \in A$ and $a(a x)=e$ implies e is a right zeroid of A. Similarly e is a left zeroid and by [2], §2.5, Exercise 6, A has a group ideal.

A semigroup is said to be \mathscr{S}-indecomposable if it has no proper semilattice decomposition.

Corollary 4. If the viable semigroup S is S-indecomposable then $S / \delta=1$ and is either idempotent-free or has a group ideal and exactly one idempotent.

Lemma 5. Assume I is an idempotent-free ideal of S. Then S is viable if and only if the Rees factor semigroup S/I is viable.

Proof. Assume S is viable and that $a b, b a \in E(S / I)$. If $a b \in I$, then $b a=b(a b) a \in I$, so $a b=b a$ in S / I. So we may assume $a b$ and $b a$ are not in I. But then $a b, b a \in E(S)$. Hence $a b=b a$ in S and so in S / I. Therefore S / I is viable. Conversely, let $a b, b a \in E(S)$. Since S / I is viable $a b=b a$ in S / I. But $a b, b a \notin \mathrm{I}$ since I is idempotent-free. Hence $a b=b a$ in S and S is viable.

A semigroup S is said to be E-inversive if for every $a \in S$ there exists $x \in S$ such that $a x \in E$.

Theorem 6. The following are equivalent.
(i) Every \mathcal{J}-class of S contains at most one idempotent
(ii) S is viable.
(iii) S is a smilattice of Se-indecomposable semigroups each of
which contains at most one idempotent and a group ideal whenever it contains an idempotent.
(iv) S is a semilattice of semigroups having at most one idempotent.
(v) S is viable and E-inversive or an ideal extension of an idempotent-free semigroup by a viable E-inversive semigroup.

Proof. $\quad(i) \Rightarrow$ (ii) If $a b$ and $b a$ are idempotents then $a b=a(b a) b \in$ $S^{1} b a S^{1}$. Similarly $b a \in S^{1} a b S^{1}$. Hence $a b \not \mathscr{J} b a$, so $a b=b a$.
(ii) \Rightarrow (iii) By Tamura [3], S is a semilattice of \mathscr{S}-indecomposable semigroups. Since subsemigroups of viable semigroups are viable, each component is viable. The result follows from (4).
(iii) \Rightarrow (iv) a fortiori
(iv) \Rightarrow (i) Suppose $e, f \in E$ with $e \mathscr{J} f$. Then e and f are in the same component of the given semilattice decomposition. Hence $e=f$.
(ii) \Rightarrow (v) Let $I=\{a \in S \mid \mathfrak{M}(\alpha)=\varnothing\}$. If I is empty then S is E-inversive. Otherwise, I is obviously an idempotent-free δ-class of S. Moreover if $a x \mid e$ or $x a \mid e, e \in E$, then by (2), $a \mid e$. Hence, $a \in I$ implies $a x, x a \in I$ so that I is an ideal of S. By (5), S / I is viable. Since S / I has a zero, it is E-inversive. In fact, every nonzero element of S / I divides a nonzero idempotent of S / I.
(v) \Rightarrow (ii) Follows from (5).

Remark. Observe that the semilattice decomposition of (iii) in general will not be isomorphic to S / δ since in fact S may be idempotent free. Also, \mathscr{F} may be replaced \mathscr{O} in the theorem.

Lemma 7. S is an ideal extension of a group by a nil semigroup if and only if S is a subdirect product of a group and a nil semigroup.

Proof. Suppose S is an ideal extension of a group G by a nil semigroup N. Let e be the identity of G. It is easy to see that e is central in S. It is well known that S is a subdirect product of subdirectly irreducible semigroups $S_{\alpha}(\alpha \in \Omega)$. Let $\sigma_{\alpha}: S \rightarrow S_{\alpha}$ be the natural map. Let $e_{\alpha}=e \sigma_{\alpha}$. Then e_{α} is a central idempotent in S_{α} and hence is zero or 1 (cf. [1]). If $e_{\alpha}=0$, then $\sigma_{\alpha}(G)=0$ and hence $S_{\alpha}=\sigma_{\alpha}(S)$ is a nil semigroup. If $e_{\alpha}=1$, then all of S_{α} is contained in $\sigma_{\alpha}(G)$ and hence S_{α} is a group. Consequently each S_{α} is a nil semigroup or a group. Let $\Omega_{1}=\left\{\alpha \mid \alpha \in \Omega, S_{\alpha}\right.$ is nil $\}$ and let $\Omega_{2}=$ $\left\{\alpha \mid \alpha \in \Omega, S_{\alpha}\right.$ is a group $\}$. Let $\psi_{i}=\prod_{\alpha \in \Omega_{i}} \sigma_{\alpha}: S \rightarrow \prod_{\alpha \in \Omega_{i}} S_{\alpha}$ be defined for $i=1,2$. One can check that S is a subdirect product of $S \psi_{1}$ and $S \psi_{2}$ with $S \psi_{1}$ a nil semigroup and $S \psi_{2}$ a group.

Conversely, suppose S is a subdirect of a group G and a nil
semigroup N. Consider S embedded in $G \times N$. Let e be the identity of G. There exists $a \in N$ such that $(e, a) \in S$. There exists a positive integer k such that $a^{k}=0$. Hence $(e, 0)=\left(e, a^{k}\right)=(e, a)^{k} \in S$. If $g \in$ G, there exists $b \in N$ such that $(g, b) \in S$. Thus $(g, 0)=(e, 0)(g, b) \in$ S. Hence $G \times\{0\} \subseteq S$ and $G \times\{0\}$ is an ideal of S. Let $(g, a) \in S$. Since $a \in N$, there exists a positive integer k such that $\mathrm{a}^{k}=0$. Hence $(g, a)^{k}=\left(g^{k}, a^{k}\right)=\left(g^{k}, 0\right) \in G \times\{0\}$. Therefore S is an ideal extension of the group $G \times\{0\}$ by a nil semigroup.

Corollary 8. The following are equivalent.
(i) S is viable and a power of each element lies in a subgroup.
(ii) S is a semilattice of semigroups which are ideal extensions of groups by nil semigroups.
(iii) S is a semilattice of semigroups each of which is a subdirect product of a nil semigroup.
Moreover the decompositions in (ii) and (iii) are the same and coincide with the δ-decomposition as specified in Theorem 3.

A semigroup S is separative if $x^{2}=x y=y^{2}(x, p \in S)$ implies $x=y$.
Corollary 9. The following are equivalent.
(i) S is viable, separative and a power of each element of S lies in a subgroup.
(ii) S is a semilattice of groups.

Proof. (i) \Rightarrow (ii) By (8), it suffices to show that if T is separative and an ideal extension of a group G by a nil semigroup, then $T=G$. Let e be the identity of G. Then e is central in T. If $T \neq$ G, then there exists $a \in T, a \notin G$ with $a^{2} \in G$. Then $a^{2}=(a e)^{2}=a(a e)$. Thus $a=a e \in G$, a contradiction. Hence $T=G$.
(ii) \Rightarrow (i) Obvious.

References

1. M. Chacron and G. Thierrin, σ-reflexive semigroups and rings, Canad. Math. Bull., (to appear).
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, vol. 1, Amer. Math. Soc., Providence, Rhode Island, 1961.
3. T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Academy, 40 (10), 1964, 777-780.

Received October 31, 1970.
University of California, Santa Barbara

PACIFIC JOURNAL OF MATHEMATICS

EDITORS	
H. Samelson	J. Dugundji
Stanford University	Department of Mathematics
Stanford, California 94305	University of Southern California Los Angeles, California 90007
C. R. Hobby	Richard Arens
University of Washington	University of California
Seattle, Washington 98105	Los Angeles, California 90024
ASSOCIATE EDITORS	
$\begin{array}{ll}\text { E. F. Beckenbach } & \text { B. H. Neumann }\end{array}$	F. Wolf K. Yoshida
SUPPORTING INSTITUTIONS	
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY	UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA	WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY	UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY	*
UNIVERSITY OF OREGON	AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY	NAVAL WEAPONS CENTER

Pacific Journal of Mathematics
Vol. 39, No. $1 \quad$ May, 1971
Charles A. Akemann, A Gelfand representation theory for C^{*}-algebras1
Sorrell Berman, Spectral theory for a first-order symmetric system of ordinary differential operators 13
Robert L. Bernhardt, III, On splitting in hereditary torsion theories 31
J. L. Brenner, Geršgorin theorems, regularity theorems, and bounds for determinants of partitioned matrices. II. Some determinantal identities 39
Robert Morgan Brooks, On representing F^{*}-algebras 51
Lawrence Gerald Brown, Extensions of topological groups 71
Arnold Barry Calica, Reversible homeomorphisms of the real line 79
J. T. Chambers and Shinnosuke Oharu, Semi-groups of local Lipschitzians in a Banach space 89
Thomas J. Cheatham, Finite dimensional torsion free rings 113
Byron C. Drachman and David Paul Kraines, A duality between transpotence elements and Massey products 119
Richard D. Duncan, Integral representation of excessive functions of a Markov process 125
George A. Elliott, An extension of some results of Takesaki in the reduction theory of von Neumann algebras 145
Peter C. Fishburn and Joel Spencer, Directed graphs as unions of partial orders 149
Howard Edwin Gorman, Zero divisors in differential rings 163
Maurice Heins, A note on the Löwner differential equations 173
Louis Melvin Herman, Semi-orthogonality in Rickart rings 179
David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations 187
Michael Joseph Kallaher, On rank 3 projective planes 207
Donald Paul Minassian, On solvable O^{*}-groups 215
Nils Øvrelid, Generators of the maximal ideals of $A(\bar{D})$ 219
Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotent 225
Robert Raphael, Rings of quotients and π-regularity 229
J. A. Siddiqi, Infinite matrices summing every almost periodic sequence 235
Raymond Earl Smithson, Uniform convergence for multifunctions 253
Thomas Paul Whaley, Mulitplicity type and congruence relations in universal algebras 261
Roger Allen Wiegand, Globalization theorems for locally finitely generated modules 269

