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Abstract

The evaluation of the impact of an increase in gasoline tax on demand relies crucially

on the estimate of the price elasticity. This paper presents an extended application

of the Partially Linear Additive Model (PLAM) to the analysis of gasoline demand

using a panel of US households, focusing mainly on the estimation of the price

elasticity. Unlike previous semi-parametric studies that use household-level data,

we work with vehicle-level data within households that can potentially add richer

details to the price variable. Both households and vehicles data are obtained from

the Residential Transportation Energy Consumption Survey (RTECS) of 1991 and

1994, conducted by the US Energy Information Administration (EIA). As expected,

the derived vehicle-based gasoline price has significant dispersion across the country

and across grades of gasoline. By using a PLAM specification for gasoline demand,

we obtain a measure of gasoline price elasticity that circumvents the implausible

price effects reported in earlier studies. In particular, our results show the price

elasticity ranges between −0.2, at low prices, and −0.5, at high prices, suggesting

that households might respond differently to price changes depending on the level

of price. In addition, users of regular gasoline seem to be more sensitive to price

changes compared to users of non-regular (premium and midgrade) gasoline.
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1 Introduction

A recent report by the US Department of Energy (2004) estimates that fuel consump-

tion in 2003 contributed to 32% of US and 7.5% of world emissions of carbon dioxide.

Thus, policies aimed at decreasing gasoline demand are likely to have a noticeable impact

in addressing the environmental consequences of emissions of carbon dioxide and local

air pollutants. Two recent studies by the US Congressional Budget Office (2002, 2003)

examine different policy instruments; namely, increasing the standards for the average

fuel economy of vehicles, gasoline taxes, and programs of cap-and-trade1. Comparing the

costs and benefits of the three instruments, the studies conclude that increasing gasoline

taxes might be the most effective way to influence demand. A higher gasoline tax would

affect fuel demand in the short term and also encourage households to replace the stock of

vehicles with more efficient ones in the longer run. In addition, it would spread the cost of

the tax increase between producers and consumers (of gasoline) and encourage different

gas-reduction activities. Price elasticity plays an important role in evaluating the impact

of gasoline tax. Consequently, there has been a considerable amount of research interest

in the estimation of gasoline demand models that focus mainly on the estimation of price

elasticity. Dahl and Sterner (1991) and Graham and Glaister (2002) provide extensive

surveys of the literature on the estimation of gasoline price elasticity. Empirical evidence

from both cross-sectional and time series studies generally suggest that the price elasticity

demand for gasoline is estimated in the range between -0.5 and -1.1 before 1990, but much

lower after the 1990’s. A study by the US Department of Energy (1996), for example,

provides a price elasticity value of -0.38, and this value is adopted by the Congressional

Budget Office (2002, 2003) in evaluating the impact of an increase in gasoline tax. In a

recent paper that assesses the optimal level of taxation in US, Parry and Small (2005) uses

a price elasticity of -0.55 as a compromise between recent low and past high estimates.

By carefully addressing some data issues, we provide new empirical results on the analysis

of US gasoline demand, focusing mainly on the price elasticity. We analyze household

data (including the vehicle-level information) from the Residential Transportation Energy

Consumption Surveys (RTECS) of 1991 and 1994. RTECS has been administered by the

1In this case the government fixes a limit to the emission of carbon dioxide and producers or importers
of gasoline are allowed to trade allowances for the emissions deriving from the consumption of their
gasoline sales.
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Energy Information Administration (EIA) from 1979 until 1994, when it was terminated

for budgetary reasons. Using the 1988 and 1991 RTECS data, Schmalensee and Stoker

(1999) find some relevant nonlinearities when modeling the gasoline demand by using

partially linear models. They allowed the income and age variables to have a general

nonparametric shape while the other control variables being linear (demographic and

location variables). Within the partially linear framework, Schmalensee and Stoker (1999)

also consider gasoline price to have a nonparametric effect on demand. However, they

obtain a price function that is upward sloping for a range of fuel prices in the middle of

the distribution and is negatively sloped in the rest of the interval of variation. Using

similar semiparametric techniques, Hausman and Newey (1995) also found a similar effect

for the pooled RTECS from 1979 until 1981. Puzzled by this “implausible” price effect

and further scrutinizing the price data in RTECS, Schmalensee and Stoker (1999) argue

that the price variable provided in RTECS is unreliable. As a proxy for the price variable

(per household), RTECS assigns each household an average fuel cost per gallon purchased,

where the total expenditure is determined using average regional gasoline prices. This

procedure assumes that all the households living in a broadly defined area such as a region

(e.g., the Mid-West) face the same gasoline price.

While the immediate goal of our paper is to address the empirical problem raised by

Schmalensee and Stoker (1999), the paper has a much wider scope. The main contri-

butions of the paper are outlined as follows. First, we tackle the problem of estimating

price elasticity from RTECS household data. In a follow up study to Schmalensee and

Stoker (1999), Yatchew and No (2001) use Canadian household data from the National

Private Vehicle Use Survey, conducted by Statistics Canada between October 1994 and

September 1996. Using the “complete” price data and applying a similar semiparamet-

ric specification as in Schmalensee and Stoker (1999), Yatchew and No (2001) obtain

plausible nonparametric price elasticity. In this paper, we exploit instead the detailed in-

formation on the “vehicles” owned by households as reported in the RTECS. Such details

include the type of vehicle(s), type and grade (regular, midgrade, or premium) of gasoline

purchased, and the price of the last fuel purchase. By carefully studying these detailed in-

formation, we are able to assign to households an average (over the vehicles) gasoline price

that maintains the geographical variability in gasoline prices (compared to the RTECS

procedure that destroys this variability). Unlike the price variable in RTECS (used in
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Schmalensee and Stoker, 1999), the derived vehicle-based gasoline price has significant

dispersion across regions and across grades of gasoline.

Second, we use the partially linear additive model (hereinafter PLAM) as a reduced model

for the gasoline demand. PLAM is a semiparametric specification in the sense that it in-

volves both a nonparametric and a parametric (linear) part. Compared to the partially

linear model proposed by Robinson (1988) and applied to gasoline demand by Schmalensee

and Stoker (1999), the model assumes additivity of the nonparametric component. In-

troducing this assumption delivers more efficient estimates of the parametric effects and

easier interpretation of the relationship among the variables that enter nonparametrically.

In addition, The PLAM set-up also allows interactions among the variables of the non-

parametric part by incorporating them within the linear part. We estimate the model

following the kernel-based approach proposed by Manzan and Zerom (2005). The result-

ing estimator of the linear parameters are root-n consistent and asymptotically normal

distributed. A convenient feature of this estimator is that it is semiparametric efficient

in the sense of Chamberlain (1992) (when the error is homoskedastic). This is an at-

tractive feature compared to other kernel-based estimators (e.g., Fan et al., 1998; Fan

and Li, 2003; and Moral and Rodriguez-Poo 2004). In our gasoline demand analysis,

the linear part includes up to 20 demographic and location variables (these are mainly

dummy and discrete variables) while the nonparametric part contains log price, log age

and log income. The nonparametric treatment of the price effect is able to show that our

vehicle-based gasoline price solves the implausible price effect that arises when the price

provided in RTECS is used.

Focusing on the price effect, the main empirical findings of the paper can be summarized

as follows. The partial nonparametric price effect is appropriately downward sloping, and

the corresponding elasticity (the derivative of the price effect curve) ranges between −0.2,

at low prices, and −0.5, at high price values. This result suggests that households might

respond differently to price changes depending on the level of the fuel price. We further

investigate this issue by considering separately the households that consume only ”regular”

gasoline and those that purchase “non-regular” grades of gasoline2. The estimation results

for the two groups show that regular users are more sensitive to price changes (estimated

2A household with more than one car might use midgrade or premium for one vehicle and regular for
the others or they might use midgrade or premium fuel for all vehicles.
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elasticity of −0.54) compared to non-regular users (that have an elasticity of −0.33). The

price elasticity of regular gasoline has a tendency to increase from −0.3 toward −0.7 at

high prices. Instead, the demand for “non-regular” fuel is quite inelastic at low prices

and becomes increasingly reactive at high prices. Separate analysis of the two groups also

shows some significant differences in the effects of income, age and number of drivers in

the household.

The remainder of the paper is organized as follows. In Section (2), we describe the semi-

parametric method for the estimation of the PLAM. In Section (3), we apply the PLAM

to investigate the US gasoline demand based on household-level vehicles data from the

RTECS. Several empirical results are also discussed. Finally, Section (4) concludes the

paper.

2 Description of the methodology

Semi-parametric methods have become increasingly popular in empirical work. The wide-

spread acceptance of these methods derives from their flexible specification, which allows

for some variables to be linearly related to the dependent variable without imposing strin-

gent restrictions on other variables whose relationship may be difficult to parametrize.

These models allow for a more general specification compared to the linear regression

model, while retaining ease of interpretability. Various demand studies have successfully

employed semi-parametric methods to tackle the problem of finding appropriate ways

of modeling the effects of expenditure on consumer demand (e.g., Blundell and Duncan

(1998), and Blundell et al. (1998)). There has also been growing interest in the ap-

plication of semi-parametric methods to analyze the demand for gasoline in U.S. and

Canada based on household survey data (e.g., Hausman and Newey (1995), Schmalensee

and Stoker (1999), Coppejans (2003) and Yatchew and No (2001)).

In this paper, we consider the partially linear additive model (hereinafter PLAM)

which has the following form

Yi = β0 + X
′

iβ + m1(Z1i) + . . . + mq(Zqi) + ui (i = 1, . . . , n), (1)

where Yi is a scalar dependent variable, β0 is a scalar parameter, Xi is a p × 1 vector
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of explanatory variables, β = (β1, . . . , βp)
′

is a p × 1 vector of unknown parameters,

Zi = (Z1i, . . . , Zqi)
′ is a q×1 vector of explanatory variables, m1(·), · · · ,mq(·) are unknown

real-valued smooth functions, and ui is an unobservable random variable that satisfies

E[ui|Xi, Zi] = 0. The semiparametric structure of the model derives from the linearity

assumption for the effect of the Xi variables, while the Zi’s are not restricted to any

particular functional form. The function mj(·) (for j = 1, · · · , q) represents the partial

effect of the explanatory variable Zj,i on the dependent variable. The model is additive

in the sense that the nonparametric part is characterized by the sum of the mj(Zj,i)

rather than being a fully nonparametric function of all the Zi variables. Additivity is a

useful simplyfing assumption that allows to reduce the dimensionality of the problem and

estimate the components at the one-dimensional nonparametric rate. Moreover, additive

models allow an easy interpretation of the estimated relation between the independent

and the dependent variables using a simple scatter plot of the estimate of the function

mj(Zj,i) and Zj,i. Instead, for fully nonparametric methods this is an impractical task

when more than one regressor are considered.

Various methods have been proposed to estimate the parametric part of the PLAM.

Recent approaches include those of Fan et al. (1998), Fan and Li (2003), Moral and

Rodriguez-Poo (2004) and Hengartner and Sperlich (2005) using kernel-based methods,

while Li (2000) introduced a series-based estimator. Instead, we follow the kernel-based

approach of Manzan and Zerom (2005). This estimator has two advantages compared

to these alternative estimators. First, it achieves the semiparametric efficiency bound

(Chamberlain, 1992) of the partially linear additive model under the assumption of ho-

moskedastic errors. In addition, it is computationally more efficient because it requires

O(n2) operations, while marginal integration estimators involve an increase of computa-

tions by the order of the sample size n. In the rest of the Section we briefly describe the

estimation method and refer to Manzan and Zerom (2005) for a more detailed discussion.

Assume the additive components in (1) satisfy the identification assumption E[mj(Zji)] =

0 for all j = 1, . . . , q. Denote by Zj the j-th element of Zi and Wj the set of all Zi variables

excluding Zj,i, i.e. Wj = (Z1,i, . . . , Zj−1,i, Zj+1,i, . . . , Zq,i)
′

. Define a generic instrument
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function φ(zj, wj) as follows,

φ(zj, wj) =
pz(zj)pw(wj)

p(zj, wj)

where pz(·) and pw(·) represent the density functions of Zj and Wj, respectively, and p(·)
is the joint probability function of Z = (Zj,Wj). The function φ(zj, wj) has the following

properties: (1) E[φ(Zj,Wj)|Zj = zj] = 1, and (2) E[φ(Zj,Wj)mk(Zk)|Zj = zj] = 0 for

k 6= j. Then, multiplying each side of Equation (1) by the above instrument and taking

conditional expectations on Zj = zj, we obtain

Y ∗
i,j = mj(Zji) + (X∗

i,j)
′

β (j = 1, . . . , q). (2)

where Y ∗
j and X∗

j denote the E[φ(Zj,Wj)Yi|Zj = zj] and E[φ(Zj,Wj)Xi|Zj = zj], respec-

tively. Adding the above q-equations in (2) and subtracting the result from (1) gives

Yi − Y ∗
i = (Xi − X∗

i )
′

β + ui, (3)

where Y ∗
i =

∑q
j Y ∗

i,j and X∗
i =

∑q
j X∗

i,j. This Equation shows that the role of the function

φ(zj, wj) is to reduce the PLAM in Equation (1) to a linear-like model. Then, an estimator

of β can simply be derived by OLS regression of the deviation Yi − Y ∗
i on Xi − X∗

i
3.

The estimation of β depends on Y ∗
i and X∗

i that are unknown quantities. Manzan and

Zerom (2005) propose replacing these quantities by their kernel estimators. Let Â∗
i =

∑q
j=1 Â∗

i,j, denotes an estimator of A∗
i (where A∗

i is either Y ∗
i or X∗

i ). The kernel-based

estimator of Â∗
i,j is

Â∗
i,j =

1

(n − 1)b

n∑

ℓ6=i

K
(

Zjℓ − Zji

b

)
p̂w(Wjℓ)

p̂(Zjℓ,Wjℓ)
Aℓ (i = 1, . . . , n; j = 1, . . . , q), (4)

where K(·) is a kernel function, b is a bandwidth (or smoothing parameter), and p̂w(·)
and p̂(·) are kernel-smoothers of the corresponding densities. The estimator of β is then

obtained by OLS regression of Yi − Ŷ ∗
i on Xi − X̂∗

i . Under some regularity conditions,

Manzan and Zerom (2005) show that β̂ is n1/2-consistent and asymptotically normally

3In empirical work, one may also be interested in estimating the intercept β0. It is easy to see that
when β0 6= 0, equation (3) would become Yi − Y ∗

i = (1 − q)β0 + (Xi − X∗

i )
′

β + ui. Hence, we would

instead regress (Yi − Y ∗

i ) on (1, (Xi − X∗

i )
′

)
′

so as to incorporate the estimation of the intercept.
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distributed.

The implementation of the kernel smoothers Ŷ ∗
i and X̂∗

i requires choices to be made

on both the bandwidth b and the type of kernel function K(·). We use bandwidths b

that decrease to 0 at the rate n−2/7 and a standard Gaussian kernel function. The above

rate for b and the choice of the Gaussian kernel are consistent with Assumption A2 for

q < 4 (see Manzan and Zerom, 2005). In the application to be discussed in section (3),

q < 4 and hence the above choices are optimal. In addition, we allow b to adapt to the

variability of the variable Zj. Hence, the bandwidth is given by bj = a σj n−2/7, where

σj denotes the standard deviation of Zj. Using this argument, the problem of bandwidth

choice reduces to the choice of a. To select this, we use a cross-validation (CV) procedure

over different values of a4.

Now, we discuss how one can estimate the additive non-parametric components of the

PLAM. Based on (2) and using the estimator β̂, we can compute m̂j(·) as

m̂j(Zji) = Ŷ ∗
i,j − (X̂∗

i,j)
′

β̂ (j = 1, . . . , q), (5)

where Â∗
i,j (A can be Y or X) is defined in (4). Because β̂ = β + Op(n

−1/2) and this rate

is surely faster than the possible rates of convergence of the kernel smoothers Y ∗
i,j and

X∗
i,j, the asymptotic distribution of the additive components m̂j(·) will remain unaffected

by the estimation of β and follows from the distribution of Y ∗
i,j − X∗

i,j. In this way, the

estimation of β and that of the additive nonparametric components can be done in a

single step without a need for extra computations to recover the additive components.

However, the estimation of the nonparametric components as in (5) does not lead to

efficient estimates. Using the terminology in Linton (1996) and Kim et al. (1999), the

additive estimates are oracle inefficient. They are inefficient in the sense that if

m1(z1),m2(z2), · · · ,mj−1(zj−1),mj+1(zj+1), · · · ,mq(zq)

4The CV procedure selects a to minimize the following quantity,

â = min
a

n∑

i=1

{(Yi − Ŷ ∗

i ) − (Xi − X̂∗

i )
′

β̂}2

where Ŷ ∗

i and X̂∗

i are the estimators in Equation (4) where the the i-th observation is. The motivation
for the above minimization step comes from the formulation in (3).

8



were known, mj(zj) could be estimated with a smaller variance. Because the empirical

results of this paper are highly dependent on the precise estimation of the nonparametric

components, ensuring their efficiency is vital. For example, the price effect (the main

focus of the paper) will be modeled as being nonparametric in section (3). Following

the approach of Kim et al. (1999), we implement a one-step backfitting procedure in

order to attain efficiency. First, use β̂ to compute Ŷi = Yi − X
′

i β̂. Second, for each

j ∈ (1, 2, ·, q), compute partial residuals ε̂j
i = Ŷi−

∑
k 6=j m̂k(Zki) where the m̂k(·) estimates

are obtained from (5). Finally, apply a local linear smoothing of ε̂j
i on Zji. Let’s denote

the resulting nonparametric component estimators by m̂e
j(·). It should be noted that in

the implementation of the one-step backfitting, one needs to choose a different bandwidth

(other than the ones used in the computation of m̂j(·)) for m̂e
j(·). The asymptotic theory of

local linear smoothing suggests that the bandwidth be chosen as ∼ cn−1/5. Following this,

and allowing different smoothing for different j, we choose the corresponding bandwidth

of m̂e
j(·) by c σj n−1/5 where σj is the standard deviation of the variable Zj. In section (3),

we have experimented with several values of c before settling for a final value.

Finally, we outline a procedure for calculating point-wise confidence intervals of the non-

parametric estimates m̂e
j(·). Because the asymptotic variance of m̂e

j(·) is a very compli-

cated function of unknown quantities (see Kim et al., 1999), we use the alternative route

of bootstrap methods. Given β̂ and m̂e
j(·), the residuals of the PLAM in Equation (1) are

given by

ûi = Yi − X
′

i β̂ −
q∑

j=1

m̂e
j(Zji). (6)

We resample the residuals according to the wild bootstrap method of Liu (1988). This

consists of drawing from the centered residuals, ũi = ûi− 1

n

∑
i ûi, according to the following

scheme

ũi,s =





αũi with probability p = (

√
5 + 1)/(2

√
5)

γũi with probability 1 − p

where α = (
√

5− 1)/2, γ = (
√

5 + 1)/2, and s indicates the number of bootstrap replica-

tions (s = 1, · · · , S). A bootstrap replicate is then obtained as follows

Yi,s = X
′

i β̂ +
q∑

j=1

m̂e
j(Zj,i) + ũi,s.
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For each replicate (Xi, Zi, Yi,s), we compute the nonparametric component (denoted by

me,s
j (zj)) at fixed values Zj = zj. Then, bootstrap confidence interval for mj(zj) is simply

calculated using the appropriate percentiles of {me,s
j (zj)}S

s=1.

3 Empirical Results

In this section we investigate the US demand for gasoline using household-level data

from the RTECS of 1991 and 1994. A study by Schmalensee and Stoker (1999) applies

a partially linear model for the pooled 1988 and 1991 samples and is able to uncover

some interesting empirical regularities. We complement their analysis in at least two

important aspects. First, we use the PLAM set-up as a reduced form model for gasoline

demand. To the extent that PLAM is a plausible specification for modeling gasoline

demand, our theoretical result suggests that ignoring additivity will lead to a less efficient

estimator of the linear parameters. Furthermore, additivity facilitates easy interpretation

of non-parametric estimates. Second, Schmalensee and Stoker (1999) concluded, using

their semiparametric approach, that the price data given in RTECS could not be used to

estimate the price effect (or price elasticity). We address this data problem by deriving

an alternative price variable.

Table (1) provides a summary of the descriptive statistics of the variables of interest.

In the Appendix, we provide details of how the data were constructed. The 1991 and

the 1994 survey data comprise a total of 3045 and 3002 households, respectively. In

our analysis, we remove those households that have zero miles driven, gallons consumed,

number of drivers and vehicles owned. The resulting dataset has 2697 observations in

1991 and 2563 in 1994. The means and standard deviations of the continuous variables

do not vary significantly between the two surveys. However, the discrete variables show

some differences between the surveys. The fraction of households living in urban areas

increases from 28.4% to 42.4% while those of both suburban and rural areas become

lower. This is due to the change of the area classification from 3 to 4 groups. For the

1994 survey we refer to urban as the “city” area and to suburban as the sum of “town”

and “suburbs”. In the 1991 survey we used “inside central city” for the urban area

and “outside central city” for the suburban area dummy variable. The regional dummy

variables also show some changes between the surveys. In 1994 there is an increase of

10



more than 3% of households living in the East-North Central, South and West-South

Atlantic regions. A corresponding decrease is observed in the New England and West-

North Central regions. The lifecycle dummy variables (defined in RTECS by 9 categories

that combine age, number of children and household size) are similar in both survey years

with approximately 40% of households with the oldest child aged below 17, a similar

fraction of households composed of 2 adults, and the remaining 20% of singles.

Table (1) here

3.1 Empirical Specification

We model gasoline demand by considering log price, log age and log income as additive

nonparametric components in the following PLAM specification

log galsi = mP (log pricei) + mA(log agei) + mI(log incomei) + X ′
iβ + ui (7)

where mP (·), mA(·) and mI(·) are unspecified smooth functions, galsi is gasoline con-

sumption of household i measured in gallons, pricei is the average cost per gallon, agei is

the age of the household i head, incomei is the annual income of a household and Xi is a

vector of household characteristics: log numberofdrivers, log householdsize, and dummy

variables for residence (urban, suburban and rural) and for the lifecycle categories.

The above model differs from that in Schmalensee and Stoker (1999) in two important

aspects. First, their model does not consider the gasoline price variable (due to the data

problem mentioned above). Instead they include location (region) variables in order to

ensure that the other parameter estimates do not suffer from possible bias due to the

omission of the price variable. Our study complements Schmalensee and Stoker (1999)

by providing valid price elasticities that are crucial in the analysis of gasoline demand.

Second, unlike model (7) where log income and log age are treated additively, Schmalensee

and Stoker (1999) model these variables as a jointly nonparametric function mA,I(·, ·). We

address the additivity assumption below.

The additive specification of (7) may seem restrictive. But, as we mentioned in Sec-

tion (2), we can augment the model by allowing interactions among log price, log age

and log income. These interactions can be added to the linear part of PLAM and tested
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with standard tests. These interaction terms can not be considered in both pure additive

models and partial linear models. We tested the significance of the interaction terms:

(log price× log age), (log price× log income), and (log age× log income). Both individual

and joint-tests strongly indicate that none of the interactions are significant at the 10%

level. By slicing the estimated surface m̂A,I(·, ·), Schmalensee and Stoker (1999) also no-

ticed that log age and log income could be modeled additively (see their Figures (1) and

(2) on pages 651 and 652). Thus, in addition to being convenient for the computation of

the elasticity and its ease of interpretation, the PLAM seems also to be supported by the

data.

We also consider the possible bias in the estimate of price elasticity due to the endo-

geneity of the variable. Yatchew and No (2001) suggests that fuel price and gasoline

consumption might be negatively correlated. Households that drive more are likely to

come across a wider range of prices and have lower average cost per gallon. In this case

the nonparametric estimator is not consistent due to the correlation between the error

term in Equation (7) and the log price variable. We follow the approach of Blundell et

al. (1998) to account for the possible endogeneity of the price variable. Assume there is

a set of instrumental variables Zi such that

log pricei = Z ′
iπ + vi (8)

with E(vi|Zi) = 0. We can then include the residuals vi in Equation (7), that is,

log galsi = mP (log pricei) + mA(log agei) + mI(log incomei) + ρvi + X ′
iβ + ui (9)

where we assume that E(ui| log pricei) = 0. Under these assumption, the resulting es-

timator of mP (·) is consistent. The null hypothesis of exogeneity of the price variable

can be easily tested using the least squares estimator of ρ. As suggested in Schmalensee

and Stoker (1999) and Yatchew and No (2001), a natural candidate as instrumental vari-

ables in Equation (8) are the regional dummy variables. Equation (9) is estimated by

including in the PLAM specification the fitted residuals v̂i from the first-stage regression

in Equation (8).
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3.2 Results and Discussion

We begin by discussing the method RTECS uses to calculate the price variable and the

undesirable consequence of this procedure on price-elasticity estimates when PLAM is im-

plemented. This problem emerged from the analysis of the RTECS data in Schmalensee

and Stoker (1999). To tackle this problem, we use the vehicle information in the RTECS

to assign a more appropriate price measure to each household. We also obtain some inter-

esting empirical results by estimating separate PLAMs for different categories (categorized

by gasoline type use) of households.

3.2.1 Implausible price effect

The use of semi-parametric methods in Hausman and Newey (1995) and Schmalensee and

Stoker (1999) suggested a puzzling property of the price effect on gasoline consumption.

The non-parametric estimated price function (that relates price with gasoline demand) is

upward sloping for a range of fuel prices in the middle of the distribution and is negatively

sloped in the rest of the interval of variation. Schmalensee and Stoker (1999) investigated

this implausible effect and attributed this finding to the price measure constructed by

RTECS. They computed the price effect from the nonparametric estimate of the function

mP,I(., .) by slicing the curve along the income dimension. The mP,I(·, ·) was estimated

in the framework of the partial linear model using the approach of Robinson (1988).

RTECS does not collect fuel purchase diaries5. Instead, the total fuel expenditure is

calculated based on the miles traveled (reported by the household for each vehicle owned)

and a price is assigned based on the region of residence and grade of gasoline purchased.

The price data are provided by the Bureau of Labor Statistics (BLS) at an aggregate

level for each of 4 census regions (North-East, Mid-West, South, and West6) and for

5The EIA stopped collecting purchase diaries starting from the 1988 RTECS while earlier surveys
contained also this information. Hausman and Newey (1995) considered the 1979, 1980 and 1981 surveys
and they found the upward sloping demand although the price measure is based on diary of fuel purchases.
Schmalensee and Stoker (1999) considered the 1988 and 1991 surveys where in both years the price
measure was constructed by RTECS.

6The Census regions can be further partitioned in Census Divisions:

• North-East: New England and Middle Atlantic

• Mid-West: East-North Central and West-North Central

• South: South Atlantic, East-South Atlantic, and West-South Atlantic

• West: Mountain and Pacific.
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different grades (regular, midgrade, and premium). The problem with this procedure

is that all households in a broad area as a Census region are assumed to face the same

gasoline price. However, this assumption is not realistic due to differences in state gasoline

tax and intra-regional differences in prices. Schmalensee and Stoker (1999) considered

the RTECS average cost per gallon as a measure of price (defined as total household

expenditure divided by total gallons purchased). Figure (1) shows the scatter plot of the

log average cost versus fuel consumed, and the smoothed distribution of the log fuel price.

We consider all the households surveyed in 1991 and 1994 (a total of 5260 households).

Further, we also report plots for the groups of households consuming only one grade

(regular, midgrade, or premium) of gasoline for all the vehicles owned7.

Figure (1) here

Consistent with the observation of Schmalensee and Stoker (1999), the scatter plots show

that the gasoline price clusters around few values corresponding to the regional prices

assigned by RTECS. The procedure creates an artificial discreteness in the price variable

because it destroys the intra-regional variation in prices. This effect largely explains the

bi-modal shape of the (smoothed) price densities for both the aggregate households and

when they are segmented by grade of fuel purchased.

We estimate the PLAM specification in Equation (9) using the average cost (the price

variable) calculated by RTECS. Figure (2) shows m̂P (log price) with bootstrap confidence

intervals. It is clear from the non-parametric price curve that the same problem pointed

out by Hausman and Newey (1995) and Schmalensee and Stoker (1999) also arises in

the pooled sample of 1991 and 19948. The demand for gasoline is upward sloping in

the price range between $1.1 and $1.2. This price region is associated with a transition

from households consuming mostly “regular” gasoline toward mostly “non-regular” (those

households purchasing only midgrade or premium, or different fuel grades for the vehicles

in the household). The discreteness of the price measure implies that for fuel prices

between $1.1 and $1.2 there is an abrupt increase of the fraction of households purchasing

non-regular fuel. These households are characterized by consuming (on average) more

7The sample includes also 1398 households that have more than one vehicle and purchase different
gasoline grades.

8The 1994 data has not been investigated by Schmalensee and Stoker (1999).
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gasoline compared to regular ones. The upward sloping price curve can thus be interpreted

as the result of the sudden concentration (artificially created by the price discreteness) of

high consuming non-regular households that have a determinant role (at least locally) in

determining the shape of the nonparametric estimator.

Figure (2) here

3.2.2 The vehicle based price measure

As the above result suggests, the lack of diaries of fuel purchases complicates the analysis

of the relation between fuel price and quantity consumed. However, as we mentioned

previously, RTECS also collects information on the last fuel purchase of households. Such

information includes fuel price, fuel type, and grade for each vehicle in the household.

These details are useful sources of information about the gasoline price faced by households

that is neglected in the procedure described above9.

A possible drawback of the vehicle information data is the presence of missing values.

Some households did not provide information for any of their vehicles while others reported

information for some or all the cars owned. Table (2) shows the number of households for

which we have partial or complete vehicle information (in the Table indicated as valid)

and those who did not provide any information10. Pooling the surveys of 1991 and 1994

we have a total of 5260 households. For 3020 of these households we have (partial or full)

vehicles information. The Table reports some summary statistics of the main variables

for the subset of households that reported prices and the full sample. The subsample

represents closely the characteristics of the complete sample. The averages of the variables

of interest (gallons consumed, household income, number of drivers) are very similar. Also,

the distribution of the type of gasoline consumed in the subsample reflects quite well the

complete sample. The only difference consists of the share of households having only one

9RTECS collects this information during a phone interview with the household between January and
March of the year following the survey. A concern with using the last fuel price is that it might not
be representative of the average price faced by households during the survey year. For 1994 the EIA
Petroleum Marketing Annual reports an average price (for all grades) of around 73.6, while it ranged
between 70.5 and 71.3 during January and March 1995 (when the interview takes place). The difference
is not very large. Hence, we believe the last fuel price represents a good proxy for the average price paid
by households during the survey year.

10We decided to consider as missing the households that did not report information for any of the
vehicles owned. Instead, we consider as valid those units that reported information for at least one
vehicle.
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car. Their fraction decreases from 28% to 21% in the subsample. This effect is due to

our choice of considering valid the households that have price information for at least

one vehicle. It implies that our sub-sample slightly over-represents the households having

more than one car and under-represents those that have only one vehicle. Overall, the

descriptive statistics indicate that the selection of the sub-sample of households in the

rest of our analysis should not significantly bias our results.

Table (2) here

Table (3) shows the average real prices11 of the different gasoline grades for each of the 9

Census divisions based on the vehicle-based price data from 1991 and 1994. In this case

the unit of analysis is the vehicle: we pooled all the vehicles in the surveys and segmented

them by division and by gasoline grade. We also report the standard deviation of the price

and the number of vehicles in the category. The first aspect that emerge is the significant

inter-divisional (and of course inter-regional) variation in fuel prices. In 1991, a group of

divisions had an average price for regular gasoline around $1 and the other group (New

England, Mid-Atlantic, and Pacific) above $1.1. The difference is probably due to higher

gasoline taxes in some states. Another fact that emerge from the Table is the significant

intra-divisional variation. The standard deviations vary between 0.077$ (regular in New

England) and 0.177$ (premium in the Pacific division). It is thus clear that the vehicle

information delivers a price measure that accounts for the intra-regional dispersion in

prices that is neglected when assigning a common regional price to all households as in

the RTECS methodology.

Table (3) here

We assign an average cost to each household which wes define as total expenditure (calcu-

lated using the last fuel price) divided by the total gallons consumed. For the households

that reported prices for only part of their cars, we input a value given by the average of

the prices reported for vehicles in the same division and using the same grade. In this way,

we use the last fuel price to assign the missing observations an average price that is more

detailed compared to the RTECS procedure (at the division level instead of regional).

11We deflated prices in 1994 to 1991 levels using the CPI Index.
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The average cost, pricei, for household i is given by

pricei =
Total Expenditure of hld i

Total Gallons hld i
=

∑K
k=1 pricei,kgalsi,k

∑K
k=1 galsi,k

where pricei,k denotes the last fuel price reported by household i for vehicle k, galsi,k

the gallons consumed by the same vehicle and K is the total number of cars owned

by household i. Figure (3) is similar to Figure (1) with the difference that the vehicle

information is used to calculate the average fuel price. The scatter plots of the log gallons

consumed and the log price does not show the clusters of observations that characterizes

Figure (1). In addition, the range of price variation is much wider compared to the

RTECS measure. This is due to the effect of accounting for the intra-divisional dispersion

of prices12. The bi-modality that was apparent for the RTECS price measure has now

disappeared. In this sense, the vehicle based price measure is a realistic indicator of the

fuel cost faced by households and should not be affected by the problems discussed in the

previous Section.

Figure (3) here

3.2.3 Corrected price effect

We now consider the model in Equation (9)13 where the price variable is represented

by the average cost based on the vehicle information. For comparison purposes, we also

report the estimation results of Equation (7) for the 1991, 1994 and the pooled households

data (where we exclude the price effect as in Schmalensee and Stoker (1999)). For the

latter case, we adopt the specification with log age and log income treated additively (but

not price) and, as a proxy for the price effect, we also include regional dummy variables

in the linear part of the PLAM specification. Figure (4) shows the estimated components

(with bootstrap-based confidence intervals) for log price, log age and log income along

12Figure (3) shows that there are some extreme prices in the right tail of the price distribution. We
checked the price data for these households; they are mainly consuming midgrade and premium gasoline
and living in the Pacific division. They reported a price for the last fuel purchase between 1.70$ and 2$.

13We selected the bandwidth based on the CV search described in Section (2) for different values of
the constant a in bj = a σj n−2/7 (for j=1,2, and 3). The optimal values used in the application are 0.11
for log price, 0.34 for log age and 0.73 for log income. In estimation we trim the 5% of observations in the
low density region of the explanatory variables.
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with the estimated price elasticity14. Table (4) reports the density-weighted average

derivatives for the additive components and the estimated coefficients for the PLAM

model. The comparison of the PLAM estimation based on the 3020 households (using

the new price variable) and the pooled 1991 and 1994 surveys (5260 observations) with

regional dummy variables does not show significant differences in the results. Thus, the

selection of the subsample of households that reported fuel prices for their vehicle does

not bias significantly the estimates of the other components. The estimation on the full

sample available for 1991 and 1994 shows that there is some variation in the magnitude

of the coefficients for some variables but the results are quite close to the estimates for

the pooled case.

Table (4) here

These results confirm that the use of the vehicle-based data does not substantially alter

the conclusion from the household-level data while permitting the estimation of the price

elasticity. We summarize the results of the PLAM estimation for vehicle-based data

as follows. The first interesting result of the analysis is that the estimated log price

component is negatively sloped in the complete range of variation of the variable. Panel

(c) of Figure (4) shows the nonparametric estimate of the price elasticity. For low prices it

is close to -0.2 and increases toward -0.5 for high prices suggesting that gasoline demand

becomes more responsive to price changes when the fuel price is high. The density-

weighted average derivative is equal to -0.35. A possible interpretation of this finding

is the heterogeneity in the grade purchasing decision of households. At low prices, most

households consume regular gasoline while high prices are typical of those households that

purchase midgrade or premium gasoline. In the next section we segment the sample in

groups based on the gasoline grade purchased. We distinguish between households that

bought for all their vehicles regular gasoline (the “regular” households) and those that

bought (for at least one of their vehicles) midgrade and/or premium (the “non-regular”

households).

The estimated log age component shows a similar pattern to what previously found by

Schmalensee and Stoker (1999). It is flat for households aged below 50 and slopes down

14The elasticity curve is derived from the one-step back-fitting procedure (that implements a local linear
smoothing) discussed in Section (2) of the paper. The standard error for the estimated price elasticity is
obtained by bootstrap.
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significantly for higher ages. The log income variable has a density-weighted average

derivative of 0.16 and the component does not appear to deviate significantly from lin-

earity.

Figure (4) here

Table (4) also reports the estimated coefficients for the variables that enter the PLAM

specification in a linear fashion. The log numberofdrivers variable is highly significant

with an estimated elasticity of 0.69. Households living in urban area consume (on av-

erage) less compared to those living in suburbs, while the opposite is true for those

residing in rural areas. The lifecycle variable reveals that households with the oldest

child aged between 7 and 15 and singles aged below 35 consume (on average) significantly

more. However, households composed of 1 or more adults aged above 60 tend to consume

significantly less. Accounting for endogeneity of the price variable shows that the null

hypothesis of ρ = 0 cannot be rejected at standard significance levels.

3.2.4 Heterogeneity of households

As we discussed above, the estimated price component reveals an interesting feature of a

larger elasticity (in absolute value) for higher prices compared to low prices. To investigate

further this issue we segment the 3020 households in two groups15: those consuming (for

all their vehicles) regular gasoline (1682 households) and those that consume non-regular

(1338 households). The second group includes households that purchase only midgrade

or premium gasoline and those that buy different grades (regular/midgrade/premium) for

their vehicles.

We estimate the PLAM specification in Equation (9) separately for “regular” and “non-

regular” households. Table (5) reports the estimation results for the two groups. Some

interesting results emerge from the comparison. First, the estimated density-weighted

average price derivative for regular users is equal to -0.54 and for non-regular to -0.33.

15Yatchew and No (2001) conduct a similar analysis where they segment households based on the
decision to purchase regular, medium or premium gasoline. We decided to divide our sample in “regular”
and “non-regular” in order to have a large number of observations in each group. The households that
reported prices for their vehicles is composed of 3020 observations of which 1682 consumed regular for
all their vehicles, 319 purchased exclusively midgrade, 190 only premium, and the remaining 829 bought
different grades.
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Although the price elasticities have large standard errors, households that buy exclusively

regular gasoline seem to be more sensitive to price changes compared to households that

purchase non-regular grades. Panels (a)-(c) of Figure (5) shows the estimated price com-

ponent, the price elasticity of the groups and the smoothed price density for the two

groups. The demand for regular gasoline is slightly flat for low prices and then decreases

in a linear fashion. The plot of the price elasticity indicates that it increases from -0.25

toward -0.75 at high prices. Instead, the price component for non-regular users is flat

for prices below $1 and then slopes downward. Non-regular gasoline demand is quite

inelastic at low prices and increases toward -0.50 for high prices. The price component

for the complete sample lies between the regular and non-regular price components. The

distribution of prices faced by the two groups (see Panel (c) in the Figure) implies that

the aggregate curve is close to the regular one for low prices (where most households

consume regular gasoline) and smoothly shifts toward the non-regular price component

at high prices (where most households purchase non-regular grades). The finding for the

full sample that the price elasticity increases (in absolute value) at high prices can be

explained as the result of the larger sensitivity of both regular and non-regular gasoline

demand when prices are large (approximately above $1.1).

Table (5)

Figure (5)

The regressions results for regular and non-regular households also reveal some other

interesting differences between the groups. The role of the log age is remarkably different

for regular and non-regular users. For regular households it has a negative elasticity (equal

to -0.34). However, for non-regular users there hardly exist an age effect. Panel (d) of

Figure (5) gives a graphical intuition for this result. The additive log age component for

regular users has a very similar pattern to the pooled case. It starts flat and then rapidly

slopes downwards when the householder age increases. However, for non-regular users

the estimated component is approximately flat in the range of variation of the log age

variable. This result suggests that the demand for non-regular gasoline is not influenced

by age.

The groups are also heterogeneous in their elasticities to income and the number of drivers

in the household. Non-regular households have a significantly larger income elasticity
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compared to regular (0.20 and 0.13, respectively) while the opposite effect holds for the

drivers effect (0.54 and 0.78, respectively). Households that consume non-regular gasoline

are more responsive to changes in income compared to regular gasoline, and less sensitive

to changes in the number of drivers.

4 Conclusion

In this paper we estimate the Partially Linear Additive Model (PLAM) to model gasoline

demand in the United States. The flexibility of the semiparametric specification derives

from the possibility of including variables both in a parametric and nonparametric fashion.

In addition, for each variable treated non-parametrically we estimate a component that

allows an easy graphical interpretion of the relationship with the dependent variable. We

estimate the model following the approach of Manzan and Zerom (2005). Compared to

alternative estimators, the adopted estimator is semi-parametrically efficient, has better

finite sample properties and it is computationally more convenient.

On the empirical side, we reexamine the issue of the price elasticity of gasoline demand

in the United States discussed by Schmalensee and Stoker (1999). Using the RTECS

data, we construct an average fuel cost for each household based on “vehicles” informa-

tion contained in the survey. This allows us to overcome the difficulties encountered by

Schmalensee and Stoker (1999), who use the average cost provided by RTECS. In par-

ticular, we show that there is significant dispersion in gasoline prices across the US and

across grades of fuel. By estimating the PLAM specification with log price, log income

and log age treated non-parametrically (but additively), we find a density weighted price

elasticity of around −0.35. The non-parametric estimate of the price elasticity also shows

the tendency to increase (in absolute value) at higher prices. This suggests that house-

holds might respond differently to price changes depending on the level of price.

We further investigate the above empirical result by splitting the households in the sample

in two groups depending on the grade of gasoline purchased. The estimation results for

the two groups show that regular users are more sensitive to price changes (estimated

elasticity of −0.54) compared to non-regular users (that have an elasticity of −0.33). The

price elasticities for regular and “non-regular” households have a similar pattern: they are

quite inelastic at low prices and become increasingly responsive for high prices. Separate
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analysis of the two groups also shows significant differences in the effects of income, age

and number of driver.

Finally, it is worth noting that while our estimated density-weighted average price elas-

ticity of -0.35 is well within the range found in the literature, the dependence of the price

elasticity on the level of price (and fuel grade) is a new empirical finding. In light of this

result, further empirical investigation with more recent data is warranted16.

16As we mentioned earlier, the last RTECS was run by the EIA in 1994. For 2001, EIA provides
an equivalent of the RTECS based on information collected by the National Household Travel Survey
(NHTS) of the U.S. Department of Transportation. However, there are relevant differences between the
original RTECS and the 2001 RTECS that significantly limit its use. First, the NHTS does not collect
fuel purchase diaries and household expenditure is constructed in RTECS based on retail gasoline prices
in the state of residence of the household. This procedure is affected by the same problems discussed
in Section (3.2.1). In addition, no information is provided on the gasoline grade purchased for the
vehicles in the households. This prevents a detailed analysis of heterogeneity in gasoline demand between
households buying regular and non-regular fuel. For these reasons we could not include more recent data
in our analysis.
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Appendix: Data Description

The data consists of the 1991 and 1994 RTECS that are publicly available at

http://www.eia.doe.gov/emeu/rtecs/

The EIA stopped the RTECS in 1994 and hence prevented us from studying more re-

cent periods. The survey reports files that include information on characteristics of the

households and of the owned vehicles. The data used in the paper are extracted from the

following survey files:

• househld: contains information about households characteristics, such as: total

gallons purchased, income, number of drivers, members of the household, age of

the householder, location variables (area, census division and region), lifecycle vari-

able (composition and age of the household members), total miles driven, and fuel

expenditure.

• veconexp: contains information about each (up to a maximum of 8) vehicle owned

by the household. The vehicle characteristics reported are: total gallons consumed,

total fuel cost, and average cost (per vehicle). The average cost is determined by

the EIA procedure to assign average prices in the census region where the household

lives and based on the type of gasoline purchased. This file is related to information

that the EIA obtained by the household or assigned by the agency.

• vehchar5 (veh5 in 1994 survey): contains information about each vehicles last fuel

purchase; the information concerns: price, type, and grade of the last fuel purchase

and MPG (Miles per Gallon) estimate. Additional information contained in the file

is the age of the usual driver, if the vehicle is used to commute to work, and the

number of miles to commute. The information contained in this file is based on

responses given by the household during a phone conversation as part of the survey.

• fueltype: information about each vehicle type and grade of fuel purchased. Fuel

type is classified in 4 categories: gasoline, diesel, gasahol and propane. Vehicles

are also classified by fuel grade that can be regular, premium, midgrade, and both

regular and premium.
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The veconexp data is based on the VMT (Vehicles-Miles Traveled) based on the house-

holds reports of odometer readings. From this information the EIA adopts a vehicle-

specific MPG (Miles per Gallons) estimate17 to calculate the amount of gallons consumed

by each vehicle in the household. The sum of the gallons consumed per vehicle provides

the total gallons of fuel consumed by the household. All other information about the

household is based on a phone interview conducted as part of the survey. Households

characteristics are included in the househld file, while vehchar5 contains information

about the last fuel purchase (price and type). In this file some data are missing. Some

households failed to report the price and/or type of fuel purchased for all their vehicles,

whereas other households reported information for only part of the vehicles owned. It

is interesting to notice that there are two sources of information on the gasoline type

purchased: the file veconexp contains the type used by EIA to calculate the MPG, while

vehchar5 reports the information provided by the respondents. As mentioned above, for

some vehicles this information is missing. However, when the gasoline type is reported

in vehchar5 it is also equal to the information reported in veconexp. This suggests that

EIA used the vehicle information provided by the respondents to attribute a gasoline type

to each vehicle. However, it is not clear from the documentation how they attributed the

type of gasoline when this information was not provided by the respondents (the missing

data mentioned earlier).

17The estimate is provided by the Environmental Protection Agency (EPA) and is specific to the type
of vehicles considered and the fuel type purchased.
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Variables 1991 1994
Mean St. Dev. Mean St. Dev.

log(gallons) 6.75 0.718 6.76 0.743
log(income) 3.31 0.794 3.15 0.736
log(drivers) 0.548 0.4 0.54 0.402
log(hld size) 0.882 0.536 0.863 0.528
log(age) 3.76 0.363 3.8 0.363

Residence Dummy V ariables (in % of total):
Urban 0.284 0.424
Suburban 0.445 0.384
Rural 0.271 0.192

Region Dummy V ariables (in % of total):
New England 0.075 0.049
Middle Atlantic 0.128 0.127
East North Central 0.141 0.172
West North Central 0.143 0.088
South Atlantic 0.117 0.183
East South Atlantic 0.082 0.066
West South Atlantic 0.08 0.114
Mountain 0.084 0.062
Pacific 0.148 0.136

Lifecycle Dummy V ariables (in % of total):
Oldest Child < 7 years 0.127 0.112
Oldest Child 7-15 years 0.214 0.198
Oldest Child 16-17 years 0.072 0.076
Two Adults, Head < 35 years 0.084 0.084
Two Adults, Head 35-59 years 0.16 0.182
Two Adults, Head ≥ 60 years 0.16 0.165
One Adult, Head < 35 years 0.045 0.036
One Adult, Head 35-59 years 0.065 0.068
One Adult, Head ≥ 60 years 0.071 0.078

Table 1: Descriptive statistics for the RTECS data of 1991 and 1994.
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Figure 1: RTECS price measure defined as log average cost for the households in the 1991 and 1994 surveys and for those using only one grade
of gasoline (the remaining 1398 households purchased different grades for their vehicles). (top) Scatter plot of gallons of gasoline consumed by an
household and the average price, (bottom) smoothed density of the log(price) attributed by RTECS to household i. The gasoline price for 1994 is
deflated to 1991 levels by the CPI index.
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Figure 2: The estimated price component mp[log(pricei)]
for the PLAM specification in Equation (9) when the
RTECS price measure is considered. The estimate is based
on the pooled 1991 and 1994 surveys (5260 households). 95%
confidence intervals obtained by boostrap.
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1991 1994 Pooled
Valid All Valid All Valid All

log(gallons) 6.86 6.75 6.86 6.76 6.85 6.75
(0.68) (0.72) (0.76) (0.74) (0.72) (0.73)

log(age) 3.78 3.76 3.82 3.80 3.80 3.78
(0.34) (0.36) (0.34) (0.36) (0.34) (0.36)

log(income) 3.45 3.31 3.17 3.06 3.31 3.19
(0.73) (0.79) (0.68) (0.73) (0.72) (0.77)

log(drivers) 0.61 0.55 0.58 0.54 0.60 0.54
(0.39) (0.40) (0.39) (0.40) (0.39) (0.40)

log(hld size) 0.91 0.88 0.88 0.86 0.90 0.87
(0.52) (0.53) (0.52) (0.53) (0.52) (0.53)

log(gallons) by gasoline grade:
Regular 6.78 6.69 6.81 6.72 6.80 6.71

(0.72) (0.74) (0.77) (0.74) (0.75) (0.74)

Midgrade 6.62 6.48 6.54 6.50 6.58 6.49
(0.71) (0.69) (0.89) (0.80) (0.80) (0.75)

Premium 6.67 6.50 6.55 6.51 6.61 6.51
(0.63) (0.69) (0.73) (0.75) (0.69) (0.72)

More grades 7.12 7.07 7.15 7.16 7.13 7.11
(0.49) (0.50) (0.55) (0.52) (0.52) (0.51)

Gasoline Grade (in % of total):
Regular 0.55 0.53 0.56 0.58 0.56 0.55
Midgrade 0.11 0.13 0.10 0.12 0.11 0.13
Premium 0.05 0.06 0.07 0.09 0.06 0.07
More Grades 0.28 0.28 0.26 0.21 0.27 0.24

Number of Vehicles (in % of total):
One 0.21 0.28 0.22 0.31 0.22 0.30
Two 0.40 0.39 0.39 0.39 0.40 0.39
Three 0.24 0.20 0.23 0.18 0.23 0.20
More 0.15 0.12 0.14 0.10 0.15 0.11

Total 1571 2697 1449 2563 3020 5260

Table 2: Summary statistics for the full sample and the subsample of households that
reported the price of the last fuel purchase. In parenthesis the standard deviations of
the households characteristic variables. For gasoline grade and number of vehicles we
reported percentages of households belonging to each category.
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1991 1994
Regular Midgrade Premium Regular Midgrade Premium

New England 115.92 126.53 135.05 109.05 114.21 125.01
(7.71),[118] (7.86),[32] (9.82),[40] (9.58),[89] (9.44),[18] (10.11),[28]

Mid Atlantic 110.31 119.19 131.85 105.31 113.14 121.32
(9.30),[254] (13.02),[31] (12.89),[88] (8.95),[217] (7.33),[48] (10.23),[75]

E/N Central 101.97 110.55 117.38 96.72 102.16 109.43
(9.32),[320] (11.77),[33] (17.62),[52] (7.05),[346] (9.75),[67] (12.02),[76]

W/N Central 100.4 99.08 108.72 95.12 98.81 104.25
(10.6),[344] (9.61),[39] (12.86),[61] (9.28),[190] (8.16),[26] (7.14),[23]

South Atlantic 103.36 112 121.69 96.72 103.88 113.99
(9.19),[182] (8.11),[48] (8.68),[65] (8.95),[270] (13.99),[82] (8.93),[84]

E/S Atlantic 102.34 109.25 115.33 96.48 104.49 113.45
(7.85),[151] (8.69),[24] (9.68),[46] (6.75),[117] (5.68),[23] (113.45),[53]

W/S Atlantic 102.77 112.55 117.07 96.91 106.01 109.45
(8.93),[137] (12.75),[29] (11.56),[59] (7.06),[181] (5.38),[39] (8.95),[63]

Mountain 102.71 103.5 111.65 107.69 112.1 117.24
(8.56),[198] (10.95),[12] (10.79),[26] (8.40),[131] (5.69),[13] (9.65),[22]

Pacific 111.40 113.62 129.63 111.82 120.04 127.61
(11.94),[258] (14.23),[29] (17.88),[95] (7.48),[198] (8.84),[36] (9.55),[60]

Table 3: Average Real Prices in $ cents per gallon based on vehicles data. The number in (·) is
the standard deviation of the price per division and per grade of gasoline and [·] the number of
vehicles for each entry.
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Figure 3: Price measure based on the vehicles price information for the households in the 1991 and 1994 surveys and for those using only one grade
of gasoline (the remaining 829 households are those that purchase more than one grade for their vehicles). (top) Scatter plot of gallons of gasoline
consumed by an household and the average price, (bottom) smoothed density of the log(price) attributed to household i. The gasoline price for 1994
is deflated to 1991 levels by the CPI index.
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1991 1994 Pooled 91&94 Valid
Av. Der. Std. Err. Av. Der. Std. Err. Av. Der. Std. Err. Av. Der. Std. Err.

log(price) -0.355 0.117
log(age) -0.165 0.041 -0.139 0.053 -0.22 0.051 -0.11 0.043
log(income) 0.20 0.017 0.147 0.022 0.132 0.016 0.162 0.017

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

log(drivers) 0.649∗∗ 0.044 0.667∗∗ 0.0458 0.651∗∗ 0.0319 0.692∗∗ 0.0451
log(hld size) 0.116∗ 0.056 0.0529 0.0586 0.0823∗ 0.0404 0.078 0.0552
First-Stage Residuals 0.099 0.143

Residence Dummy Variables:
area - urban -0.165∗∗ 0.027 -0.139∗∗ 0.0258 -0.135∗∗ 0.0185 -0.113∗∗ 0.024
area - rural 0.086∗∗ 0.0283 0.175∗∗ 0.0321 0.124∗∗ 0.0211 0.165∗∗ 0.0266
Lifecycle Dummy Variables:
lifecycle - 7<child<15 0.0935∗ 0.0417 0.0293 0.0443 0.055 0.0305 0.0964∗ 0.0408
lifecycle - 16<child<17 0.0362 0.0568 0.0429 0.0576 0.0234 0.0408 0.0386 0.0526
lifecycle - 2+adlts<35 0.0368 0.0561 -0.0244 0.0605 0.0289 0.0412 0.052 0.0578
lifecycle - 35<2+adlts<59 0.0822 0.0537 0.0107 0.0574 0.0214 0.0396 0.095 0.052
lifecycle - 2+adlts>60 -0.015 0.0646 -0.126 0.0728 -0.176∗∗ 0.0484 -0.088 0.0624
lifecycle - 1adlts<35 0.301∗∗ 0.0864 0.0353 0.0954 0.169∗∗ 0.0641 0.194∗ 0.089
lifecycle - 35<1adlts<59 0.0829 0.0849 -0.13 0.0887 -0.0443 0.0616 0.020 0.0816
lifecycle - 1adlts<60 -0.208∗ 0.0915 -0.442∗∗ 0.099 -0.426∗∗ 0.0667 -0.364∗∗ 0.0895
Division Dummy Variables:
div. - mid atl. -0.039 0.0501 -0.0511 0.06 -0.0373 0.0384
div. - E/N central 0.0748 0.0491 0.0898 0.0579 0.0891∗ 0.0373
div. - W/N central 0.128∗∗ 0.0496 0.155∗ 0.0637 0.127∗∗ 0.0392
div. - S central 0.113∗ 0.0508 0.082 0.0574 0.111∗∗ 0.0375
div. - E/S central 0.098 0.0554 0.151∗ 0.0675 0.124∗∗ 0.043
div. - W/S central 0.137∗ 0.0556 0.0957 0.0612 0.118∗∗ 0.0406
div. - mountain 0.116∗ 0.0548 0.143∗ 0.0687 0.13∗∗ 0.0431
div. - pacific 0.0246 0.0487 0.0643 0.0599 0.0448 0.0379

R2 0.385 0.409 0.392 0.395
N 2697 2563 5260 3020

Table 4: For the 1991, 1994 and the pooled samples we estimated the PLAM model with log-AGE and log-INCOME as additive components
and log-DRIVERS, log-SIZE, residence, lifecycle and regional dummy variables in the linear part. For the subsample of households that reported
price information, we estimate the PLAM specification in Equation (9) with log-PRICE as additive component but excluding the regional dummy
variables (that are used as instruments in the first-stage regression to account for endogeneity of the price variable). Standard errors for the
density-weighted average derivative obtained by bootstrap. Significance at 1% is denoted by ∗∗ and at 5% by ∗. N indicates the sample size.
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Figure 4: Estimated nonparametric components for PRICE, AGE and INCOME of the PLAM specification
in Equation (9) with 95% bootstrap confidence intervals. Panel (c) is the nonparametric estimate of the price
elasticity.
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Regular Non-Regular

Av. Der. Std. Err. Av. Der. Std. Err.

log(price) -0.545 0.209 -0.331 0.144
log(age) -0.344 0.076 0.018 0.053
log(income) 0.135 0.024 0.20 0.023

Coeff. Std. Err. Coeff. Std. Err.

log(drivers) 0.783∗ 0.0635 0.546∗ 0.0621
log(hld size) 0.066 0.0805 0.094 0.0736
Residence Dummy Variables:
urban -0.108∗ 0.0342 -0.137∗ 0.0324
rural 0.177∗ 0.0357 0.171∗ 0.0392
Lifecycle Dummy Variables:
7<child<15 0.118∗ 0.0597 0.102 0.0537
16<child<17 0.007 0.076 0.129 0.0697
2+adlts<35 0.092 0.087 0.018 0.0745
35<2+adlts<59 0.168∗ 0.076 0.087 0.0687
2+adlts>60 0.114 0.093 -0.153 0.0833
1adlt<35 0.22 0.13 0.161 0.118
35<1adlt<59 0.125 0.117 -0.055 0.111
1adlt>60 -0.073 0.129 -0.495∗∗ 0.125

First-stage Residuals 0.069 0.26 -0.118 0.194

R2 0.394 0.413
N 1682 1338

Table 5: Estimation results for the PLAM specification in Equation (9) for regular and non-
regular households. Standard errors for the density-weighted average derivative obtained by boot-
strap. Significance at 1% is denoted by ∗∗ and at 5% by ∗. N indicates the sample size.
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Figure 5: Estimated nonparametric components for PRICE and AGE (Panels (a) and (d)) of the PLAM
specification for regular, non-regular and all households. Panel (b) shows the estimated price elasticities for
regular and non-regular households and Panel (c) the smoothed price density for the two groups.
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