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Abstract This paper is concerned with extreme value den-
sity estimation. The generalized Pareto distribution (GPD)
beyond a given threshold is combined with a nonparametric
estimation approach below the threshold. This semiparamet-
ric setup is shown to generalize a few existing approaches
and enables density estimation over the complete sample
space. Estimation is performed via the Bayesian paradigm,
which helps identify model components. Estimation of all
model parameters, including the threshold and higher quan-
tiles, and prediction for future observations is provided.
Simulation studies suggest a few useful guidelines to evalu-
ate the relevance of the proposed procedures. They also pro-
vide empirical evidence about the improvement of the pro-
posed methodology over existing approaches. Models are
then applied to environmental data sets. The paper is con-
cluded with a few directions for future work.
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1 Introduction

Extreme value theory was shown to provide a very useful
tool in many areas of application where precise knowledge
of the tail behavior of a distribution is of central interest. The
areas where most impact was achieved are environmental
science and finance.

Problems associated with large amounts of rain have al-
ways plagued the society due to the social and economic
loss they potentially inflict. Understanding their pattern of
occurrence specially for higher values allows for prevention
and/or mitigation of their potentially harmful effects. Simi-
lar reasoning applies to other environmental variables such
as wind speed, sea tides and river flows. Applications to fi-
nance are even more obvious since they are directly related
to money. Risk management involves dealing with potential
loss both in actuarial applications and in stock market trad-
ing (Embrechts et al. 1997).

A fundamental result to this end was proved by Pickands
(1975). He showed that the limiting distribution of ex-
ceedances over suitably large thresholds behaves in a very
stable fashion, converging to a the generalized Pareto distri-
bution (GPD). The result does not provide any information
below the threshold.

There are many possibilities for handling both parts (be-
low and above the threshold) and for combining them. Non-
parametric estimation and extreme value theory will be used
as building blocks in our modelling strategy. Therefore, the
main ideas behind these approaches are briefly introduced
next.

1.1 Extreme value theory

Extreme value theory is designed to describe atypical situa-
tions that may have a substantial impact in the phenomenon
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under study. The classical result in this area is the Fisher and
Tippett (1928) theorem. It establishes the three possible dis-
tributions for maxima of blocks of observations. von Mises
(1954) and Jenkinson (1955) unified these distributions in a
single class called generalized extreme value (GEV).

Pickands (1975) proved that if X is a random variable
whose distribution function F , with endpoint xF , is in the
domain of attraction of a GEV distribution, then as u → xF ,
the conditional d.f. F(x|u) = P(X ≤ u + x|X > u) is the
d.f. of a generalized Pareto distribution (GPD), whose den-
sity is provided below. Loosely speaking, this result states
that if u is large enough, the conditional distribution F(x | u)

can in general be approximated by a properly scaled GPD,
as u tends to the endpoint of F . In addition to u, the GPD
depends on a scale parameter σ and a shape parameter ξ . Let
the parameter vector be denoted Ψ = (ξ, σ,u). The density
of the GPD can be written as

g(x|Ψ ) =
{ 1

σ
(1 + ξ

(x−u)
σ

)−(1+ξ)/ξ , if ξ �= 0,

1
σ

exp{−(x − u)/σ }, if ξ = 0,
(1)

where x − u > 0 for ξ ≥ 0 and 0 ≤ x − u < −σ/ξ for
ξ < 0. Thus, the GPD is always bounded from below by u,
is bounded from above by u − σ/ξ if ξ < 0 and unbounded
from above if ξ ≥ 0. Hereafter, description of GPD will con-
centrated over its range Cξ of possible values to simplify
notation.

Smith (1984) proposed parameter estimation via maxi-
mum likelihood. He showed that the maximum likelihood
estimators do not obey the regularity conditions if ξ ∈
(−1,−0.5), and do not exist if ξ < −1. According to Coles
and Tawn (1996), situations where ξ < −0.5 are extremely
rare in environmental data. It is also worth noting that the
scale parameter and the threshold are related. If the threshold
is changed to u′ > u, then the new exceedances are also de-
scribed by a GPD with same shape parameter ξ and scale pa-
rameter σ ′ = σ + ξ(u′ − u). The next section describes how
this lack of identification may be partially resolved through
appropriate model specifications.

Extreme value theory is also concerned with determi-
nation of higher quantiles, i.e., q-values satisfying P(X >

q) = 1 − p for large values of p. The theory above al-
lows also estimation of these higher quantiles beyond the
threshold as they are simply functions of the GPD param-
eters. Thus, q can be found by inversion of the d.f. of the
GPD equation p = G(q | ξ, σ,u) for any given probability
p ∈ [0,1]. This gives

q = u + ((1 − p)−ξ − 1)σ

ξ
. (2)

These quantiles are important design parameters specially
in extreme cases with p approaching 1 and we shall concen-
trate on their estimation. They will also illustrate the advan-
tage of incorporation of the GPD into the model.

1.2 Nonparametric estimation of curves

Mixture modeling can be included among the many non-
parametric techniques for density estimation. It provides an
interesting illustration of the development of more com-
plex models that was helped by the advance in computa-
tionally complex methods. Finite mixture of normal distri-
butions are used in nonparametric density estimation by Tit-
terington et al. (1985), Diebolt and Robert (1994), Roeder
and Wasserman (1997) and Richardson and Green (1997) to
name a few.

In many applications, data is restricted to positive val-
ues. In these cases, a more appropriate basis for building a
mixture model is the Gamma family of distributions. Based
on theoretical results by De Vore e Lorenz (1993) and As-
mussen (1987), Wiper et al. (2001) used mixtures of Gamma
densities to approximate any density defined over [0,∞).
See also Dalal and Hall (1983) and Dey et al. (1995) for
related work.

The mixture model used in this paper is denoted by MGk

with distribution function (d.f.) H and density h defined as

h(x | θ,p) =
k∑

j=1

pjfG(x | μj ,ηj ) (3)

where θ = (μ,η) denotes the Gamma parameters μ =
(μ1, . . . ,μk) and η = (η1, . . . , ηk), p = (p1, . . . , pk) de-
notes the mixture weights and fG is the density of the
Gamma distribution given by

fG(x|μ,η) = (η/μ)η

�(η)
xη−1 exp

(−(η/μ)x
)
, for x > 0. (4)

The μj ’s and ηj ’s can take any positive value and the
pj ’s must be non-negative and add up to 1. Note that the
parametrization is in terms of the mean μ and the shape pa-
rameter η. This choice will simplify model specifications in
the sequel.

The above papers provide theoretical and empirical evi-
dence that mixture of Gammas can be used for density esti-
mation. They will cover adequately the data span but are not
designed for handling extrapolation towards the tail of the
distribution where little or no data is available. This short-
coming will be illustrated later on in this paper. Extreme
value theory provides a precise description of the tail, de-
signed to overcome these difficulties.

1.3 Related work

Different approaches have been proposed in the literature re-
cently under the Bayesian paradigm to analyse extreme val-
ues and to determine the threshold. Bermudez et al. (2001)
suggest a Bayesian approach to the peaks over threshold
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(POT) method. They only consider the probability cumu-
lated up to the threshold and estimate it based on the data fre-
quency. Frigessi et al. (2002) considers mixture of two dis-
tributions: GPD and Weibull, with data dependent weights.
Threshold choice is performed indirectly. Tancredi et al.
(2006) uses a mixture of uniform densities for the central
part of the data and the number of observations beyond
the threshold is a parameter to be estimated. Behrens et al.
(2004) uses a Gamma distribution below the threshold and
a GPD above it, where the threshold is a parameter to be es-
timated. Diebolt et al. (2005) uses a continuous mixture of
Gamma distributions for extreme modeling but assumes the
threshold to be fixed and the model is only valid for positive
shape GPD parameter. This paper builds on their work by
applying a mixture of Gammas to the central part. It will be
shown that this generalization provides gains in flexibility
and adequacy.

1.4 Outline of the paper

Section 2 will present our model for extreme data analysis,
based on a combination of mixture of Gamma below the
threshold and GPD for the tail. Inference procedure is car-
ried out under the Bayesian paradigm, with prior informa-
tion playing an important role in the estimation procedures.
Estimation was implemented via MCMC and some compu-
tational details are also provided there. Section 3 illustrates
the method with a few simulated examples. This exercise
will also provide a useful benchmark for the model com-
parisons carried out. It also shows that the models proposed
here outperform existing approaches. Section 4 presents two
applications to extreme data analysis: river flow levels in
Puerto Rico and rainfall in Portugal. The results are com-
pared with those obtained with other approaches. Section 5
draws some concluding remarks and points out at possible
extensions.

2 Model

In view of the introductory discussion, it seems reasonable
to contemplate a model that incorporates a nonparametric
specification, using mixture of Gamma’s when there is data
to estimate it and uses the GPD for the tail of the distribution.
The result of Pickands (1975) suggests one would expect to
get better results, specially in the tail, by using (1) instead
of a simple mixture of Gamma when data on excesses is
involved.

Let h be the density of a MGk as in (3) and g be the
density of the GPD, as in (1). The density of our proposed
model, denoted by MGPDk , is given by

f (x|θ,p,Ψ ) =
{

h(x | μ,η,p), if x ≤ u

[1 − H(u | μ,η,p)]g(x|Ψ ), if x > u
(5)

where H is the d.f. of the mixture of Gammas, already pre-
sented in Sect. 1. Pickands’ (1975) theorem is only applica-
ble when H belongs to the domain of attraction of a GEV
distribution. It is well known that the Gamma distribution
belongs to the maximum domain of attraction of a Gumbel
distribution. It can be easily shown that the result can be
extended for mixture of Gamma distributions based on the
results of Embrechts et al. (1997), p. 156. Thus, the limit-
ing conditional distribution of excesses from a mixture of
Gamma distributions follows a GPD and the GPD assump-
tion for the tail behavior of mixtures of Gammas is justified.

Forms for this density are shown in Fig. 1. Notice that
model specification allows for a discontinuity of the density
at the threshold. Continuity constraints could be imposed
but this is an unnecessary condition. Appropriate applica-
tion of Bayesian estimation procedures along with appro-
priate choice of models will basically remove this problem
as explained in Sect. 2.2. Simulation studies and real data
applications will show that the model is well estimated and
does not exhibit any discontinuity.

The nonparametric nature of the central part of the den-
sity allows for appropriate adaptation. As a result, the den-
sity shows no noticeable break for typical real data applica-
tions and all relevant calculations can be made without any
theoretical or applied difficulties.

The advantage of this model formulation is flexibility.
A non-parametric approach with only mild continuity as-
sumptions is considered for the center of the distribution
without imposing any specific parametric form or con-
straints such as unimodality. A parametric approach can be
safely assumed for the tail due to its theoretical backing.
The combination of these two blocks gives rise to the semi-
parametric nature of our approach. The flexibility is also
present in the choice of the threshold, performed through
parametric estimation. This allows for the division of the
sample space into two data regimes: the central part and the
tail. This task is performed automatically, incorporating un-
certainty about all model components, and is governed by
the data.

Recall from Sect. 1.1 that the GPD parameters are not
uniquely identified. The model (5) introduces an important
element to help identification. Provided enough data is ob-
served, The Gamma mixture for the central part of the distri-
bution can be separated from the GPD and this change can
be picked up from the likelihood. As a result, clear iden-
tification of the threshold is obtained thus leading to cor-
rect identification of the other GPD parameters. This is not
an easy task and, as will be shown, requires a substantial
amount of data information. When there is no such infor-
mation, mild probabilistic constraints in the form of a prior
distribution provide a suitable complement.

Once again, it is important to obtain higher quantiles of
this distribution. This is another advantage of this class of
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Fig. 1 Probability density function of the proposed model for a num-
ber of parameter values: (a) σ = 2 and ξ = −0.4. (b) σ = 2 and
ξ = 0.4. (c) σ = 3 and ξ = −0.4. (d) σ = 3 and ξ = 0.4. The central

part is based on a mixture of 2 Gamma distributions. The dashed lines
represent the continuation of the mixture of Gamma densities beyond
the threshold

distributions over the Gamma mixture MGk . The p-quantile
q , satisfying P(X < q) = p, is obtained for this latter class
of models after solving

p = H(q | μ,η,p) =
k∑

j=1

pj

∫ q

0
fG(x | μj ,ηj )dx. (6)

There is no explicit solution for (6) analytically. These quan-
tiles must be computed numerically. In this work, this was
achieved by an exhaustive search over a range of values.

Another advantage of the MGPDk class is the case with
which higher quantiles can be obtained. For values beyond
the threshold, the d.f. of the MGPDk model is given by

F(x | θ,p,Ψ ) = H(u | μ,η,p)

+ [
1 − H(u | μ,η,p)

]
G(x|Ψ ).

Therefore, it is straightforward to obtain the p-quantile as
(2), where the quantity p in equation is replaced by

p∗ = p − H(u | μ,η,p)

1 − H(u | μ,η,p)
,

for quantiles beyond the threshold. Typically, one is inter-
ested in high quantiles well above the threshold but similar
calculations can be performed for lower quantiles, even be-
low the threshold.

Note that this quantile is a highly nonlinear function of
the model parameters. Therefore, its posterior distribution
can only be obtained via approximating techniques. Once
this distribution is (approximately) obtained for any given
probability p, it can provide useful information about the
extreme behaviour of the data both in terms of point esti-
mates through posterior means or medians and in terms of
uncertainty through their credibility intervals.

2.1 Prior distribution

A relevant aspect of mixture models is the inherent lack of
identifiability. Therefore, some restriction must be imposed
to allow identification of the model parameters. Diebolt and
Robert (1994) and Frühwirth-Schnatter (2001) among oth-
ers impose order restrictions over the means in Gaussian
mixtures. This procedure is also applied here as in Wiper et
al. (2001) and the parameter space is hereafter restricted to
C(μ) = {μ|0 < μ1 < μ2 < · · · < μk}. Therefore, the prior
for μ is taken in the form

p(μ1, . . . ,μk)

= K

k∏
i=1

fIG(μi | ai/bi, bi)I (μ1 < · · · < μk),
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where K−1 = ∫
C(μ)

∏k
i=1 p(μi)d(μ1, . . . ,μk) and fIG is

the inverse Gamma density with parameters defined as in
the corresponding Gamma.

The prior for shape parameters η is taken as a prod-
uct of Gamma distributions with η ∼ G(cj /dj , cj ), for
some positive constants cj and dj , for j = 1, . . . , k. The
prior for weights is taken as p ∼ Dk(γ1, . . . , γk), where
Dk(w1, . . . ,wk) represents the Dirichlet distribution with
density proportional to

∏k
i=1 p

wi

i .
There are many possibilities available for the GPD pa-

rameters σ and ξ . Coles and Tawn (1996) define Gamma
prior distributions for quantiles based on expert opinion.
They then used the relation between the quantiles and the
parameters to induce their priors. Castellanos and Cabras
(2007) obtained the non-informative prior for (σ, ξ) as

π(σ, ξ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2,

ξ > −0.5, σ > 0. (7)

They also showed that this prior leads to proper posterior
distributions.

The prior distribution for the threshold was taken as a
normal distribution N(μu,σ

2
u ), as suggested by Behrens et

al. (2004). Care must be exercised when specifying these
models hyperparameters. The mean μu may have a strong
influence over the resulting inference. Thus, the recommen-
dation is that it should be placed around suitably large or-
der statistics of the sample. Also, this prior should not be
too concentrated unless there is substantial prior knowledge
about this parameter. This is rarely the case since this is an
artificial parameter, governing only when approximation of
the tail by the GPD can be safely assumed. It should not be
made entirely vague either because of the identification is-
sue referred to in Sect. 1.2. It seems reasonable to have the
threshold concentrated around the upper end of the sample.
In doing that, it also rules out the possibility of a negative
value for the threshold for all practical purposes. An alter-
native is to truncate the prior from below to avoid negative
values but this was not needed in our applications.

2.2 Posterior and predictive distributions

Assuming the presence of a sample x = (x1, . . . , xn)

from (5), the posterior density is obtained in the log scale
as

logπ(θ,p,Ψ |x)

= Z +
∑

i:xi≤u

log

(
k∑

j=1

pjfG(xi |μj ,ηj )

)

+
∑

i:xi≥u

log

[
1 −

k∑
j=1

pjFG(u|μj ,ηj )

]

−
∑

i:xi≥u

[
log(σ ) − 1 + ξ

ξ
log

(
1 + ξ(xi − u)

σ

)]

+
k∑

j=1

[
(cj − 1) log(η) − djηj

− (aj + 1) log(μ) − bj/μj

]
− 1

2

(
u − μu

σu

)2

− log(σ ) − log(1 + ξ)

− (1/2) log(1 + 2ξ), (8)

where Z is a log normalizing constant, the first two lines
above come from the likelihood and the remaining ones
come from the prior.

Inference cannot be performed analytically and approx-
imating MCMC methods are used (Gamerman and Lopes
2006). Convergence was assessed by running two parallel
chains with different starting values. Parameters were sep-
arated into blocks and each block was updated according
to a Metropolis rule, since none has a full conditional den-
sity in recognizable form. Unlike previous work on mixtures
(e.g. Diebolt and Robert 1994 and Wiper et al. 2001), the in-
troduction of latent variables indicating the mixture compo-
nents does not lead to full conditional distributions that can
be easily sampled from. This difficulty is mainly due to the
combination of the mixture with another distribution for the
tail.

The code was developed in OxMetrics4 (Doornik 1996)
in a PC with processor Intel Atom N270 1.66 Hz and 1 Gb
RAM. 15,000 iterations were used for burn-in and the last
10,000 iterations were used for inference after thinning at
every 20 iterations. The processing time allowed for 20 (or
2) iterations per second when n = 1,000 (or n = 10,000).
Details of the sampling algorithm are provided in the Ap-
pendix. Proposal variances were tuned with a variation of
the method proposed by Roberts and Rosenthal (2009), with
variances smaller than their target value since our blocks are
multidimensional.

Prediction for a new observation is as important as pa-
rameter and quantile estimation. Different combinations of
parameters may lead to the same, undistinguishable predic-
tions. These evaluations are better performed through the
predictive density. For any given data set x, the density for a
new observation xn+1 is given by

f (xn+1|x) =
∫

f (xn+1, θ,p,Ψ |x)dθdpdΨ

=
∫

f (xn+1|θ,p,Ψ )p(θ,p,Ψ |x)dθdpdΨ

= E(θ,p,Ψ )|x
(
f (xn+1|θ,p,Ψ )

)
.

This predictive density is the appropriate quantity to be
used for making inference about the resulting density for the
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data. Another way to justify it is by considering the density
as a parameter function. Under squared error loss function,
the posterior mean is the best estimator for any given value
of xn+1. The above equation clearly states that the predictive
density is the posterior mean of the sampling density.

This result has important practical consequences. The
predictive density gets naturally smoothed out by taking
into account all possible threshold values and averaging
them with respect to their posterior density, irrespective of
the possible jumps associated with each particular value.
Smooth densities are obtained as a result and these will be
presented in the following sections. Similar situations are
encountered in other models that are based on partitions. An
example is Gramacy and Lee (2008) where they show that
the resulting predictive density virtually smooths out model
discontinuities for all practical purposes.

This integration above can not be performed analytically
and Monte Carlo approximation may be used instead. This
gives f̂ (xn+1|x) = 1

J

∑J
i=1 f (xn+1|θ(i),p(i),Ψ (i)), where

(θ(i),p(i),Ψ (i)) is a value sampled from π(θ,p,Ψ |x), for
i = 1, . . . , J . For model MGPDk , f (xn+1 | θ(i),p(i),Ψ (i))

is given by (5). The expression of the sampling density sim-
plifies to (3) for model MGk .

3 Simulations

Simulations based on samples from the proposed model
were made with a number of purposes. Initially they can
provide empirical evidence of model identifiability. But they
also allow for appropriate validation of model selection cri-
teria used. This latter exercise will enable the use of these
criteria for the analysis of real data in the next section. The
rationale behind this idea is that if the criteria appropriately
selects the correct model when we know which one it is,
then it should behave well in practical situations, when we
do not know which, if any, is the best model. Simulations
based on samples from mixture of Gamma’s were also made
and showed that mixtures with GPD are not preferred in this
case. These findings only reinforce the adequacy of the cri-
teria used.

It could be argued that mixture models MGk are capable
of handling any positive data by selecting an appropriately
large number of components in the mixture. If that were
true, models MPGDk would be an unnecessary complica-
tion. The exercises in this section will show that in practice
clear gains are obtained with models MPGDk when extreme
data is present.

The simulation exercise was performed with samples of
sizes 1,000 and 10,000. The exercises are based on mixture
of two Gamma distributions with μ = (2,8) and η = (4,8).
Different values were used for the GPD tail with σ = 2,3
and 5, ξ = −0.4 and 0.4 and threshold at the 90% and 99%

data quantiles. Note that the number of observations in the
tail can be quite small despite the large sample sizes since
the threshold is always set at a high data quantile. When the
threshold is set at a very high value (99% quantile), reliable
estimation can only be performed for larger data sets (n =
10,000). For this threshold, only the results with larger data
sets are reported.

Prior distribution for mixture parameters were μj ∼
IG(2.1,5.5) and ηj ∼ G(6,0.5), for j = 1, . . . , k, and
π(p) ∼ Dk(1, . . . ,1). These distribution have mean around
the actual parameter value but with large variance to repre-
sent lack of information: μj ’s have variance 250 and ηj ’s
have variance 24. Prior distribution for the GPD parameters
was given by Jeffreys prior for (ξ, σ ) and for the thresh-
old was used a normal distribution with mean given by ac-
tual value and a suitably large variance. This is reasonably
vague but does provide some information. The prior vari-
ance for the threshold was chosen in a way that the 95%
credibility intervals for the threshold range a priori from
around the 50% to the 99% data quantiles. Thus, they are
only mildly informative, giving enough flexibility for influ-
ence of the likelihood. Very large variances for the threshold
could also be considered and cause no problem to the in-
ference for large data sets. Problems associated with such
vague prior distributions for small to moderate sample sizes
are illustrated below.

Figures 2, 3 and 4 show the predictive densities in three of
the simulation exercises. They clearly show the inadequacy
of model MGPD1 with predictions far from the true den-
sity. Results from models MGPD2 and MGPD3 are undistin-
guishable and very close to the true density, specially when
n = 10,000 (see Figs. 3 and 4), showing the efficiency of
the Gamma mixture model to reproduce the true underly-
ing density. The models MGk involving only mixtures of
Gamma provide a good fit in the central part of the distri-
bution but do not perform so well in the tail, as expected.
This is illustrated in Figs. 2 and specially 3 and 4 for the
best fit model in this class according to deviance informa-
tion criterion (DIC) Spiegelhalter et al. (2002).

Figures 5 and 6 illustrates the effect of large prior vari-
ances for the threshold for sample size 1,000 and 10,000.
Figure 5 shows that suitable values are required for the prior
variance for the threshold to ensure appropriate inference
with good recovery of the true value, when n = 1,000. Large
prior variances may lead to erroneous estimation, indicating
possible divergence. For larger data sets (n = 10,000), the
specific value of the prior variance for the threshold does
not seem to affect the posterior inference. Figure 6 shows
that the threshold is well estimated and point and interval
estimates are virtually the same for a large range of values
for the prior variance for the threshold. This is a clear indi-
cation that the likelihood here is strong enough to correctly
identify the true values.
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Fig. 2 Predictive density for data simulated with ξ = 0.4, σ = 3,
n = 1,000 and threshold set at 8.85, the 90% data quantile. Left panel:
full density; right panel: detail of density in the tail. Full line is true
density, dashed lines are predictive densities from MGPDk , k = 1,2,3

and dotted line is the predictive density from model MG3, the best in
the MGk class. The results from MGPDk , k = 2,3 are undistinguish-
able visually and the MGPD1 provided the worst result. Vertical line
indicates location of the threshold

Fig. 3 Predictive density for data simulated with ξ = 0.4, σ = 5,
n = 10,000 and threshold set at 9.08 (the 90% data quantile). Left
panel: full density; right panel: detail of density in the tail. Full line
is true density, dashed lines are predictive densities from MGPDk ,

k = 1,2,3 and dotted line is the predictive density from model MG5,
the best in the MGk class. The results from MGPDk , k = 2,3 are undis-
tinguishable visually and the MGPD1 provided the worst result. Verti-
cal line indicates location of the threshold

Fig. 4 Predictive density for data simulated with ξ = 0.4, σ = 2,
n = 10,000 and threshold set at 13.97 (the 99% data quantile). Left
panel: full density; right panel: detail of density in the tail. Full line
is true density, dashed lines are predictive densities from MGPDk ,

k = 1,2,3 and dotted line is the predictive density from model MG3,
the best in the MGk class. The results from MGPDk , k = 2,3 are undis-
tinguishable visually and the MGPD1 provided the worst result. Verti-
cal line indicates location of the threshold

The prior variance for the threshold affects the poste-
rior correlation. When σ 2

u = 10, it changed from 0.08 when
n = 1,000 to 0.69, when n = 10,000. Despite the corre-
lation, all parameters are well within their respective 95%
posterior credibility interval limits. Similar results were ob-
tained in other situations for a variety of values for the GPD
parameters.

Tables 1 and 2 shows the fit results of different models to
a number of data generating conditions. It shows that in most

cases, the best fitted models are the true ones, indicating the
model ability to identify itself correctly. Table 1 shows that
75% of the results (9 out of 12) with the DIC identified the
model correctly. This figure is slightly increased to 10 out of
12 with the BIC Schwarz (1978). Theses figures also indi-
cate that BIC and DIC seem to provide reliable sources for
comparison of model fit even in these mixture settings.

A good example is the exercise with n = 1,000, σ = 3
and ξ = 0.4. The effective number of components is basi-
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Fig. 5 Predictive density for data (represented in histogram form)
simulated with k = 2, σ = 2, ξ = 0.4, u = 8.85 and n = 1,000.
Left panel: full density; right panel: density around the true thresh-
old value. The full line indicates the true density, the dashed line is
the predictive density for model with prior variance σ 2

u = 10 for the

threshold, the dotted line is the predictive density for model with prior
variance σ 2

u = 10,000 for the threshold. Vertical lines indicates loca-
tion of threshold: full—true; dashed—model with σ 2

u = 10. The 95%
posterior credibility interval for the threshold is (8.06,11.97), when
σ 2

u = 10, and (14.60,27.25), when σ 2
u = 10,000

Fig. 6 Predictive density for data (represented in histogram form) sim-
ulated with k = 2, σ = 2, ξ = 0.4, u = 9.08 and n = 10,000. Left
panel: full density; right panel: density around the true threshold value.
The full line indicates the true density and, the dashed line is the predic-
tive density for σ 2

u = 10 and the dotted line is the predictive density for

σ 2
u = 10,000. Vertical lines indicates location of threshold: full—true;

dashed—model with σ 2
u = 10, dotted—model with σ 2

u = 10,000. The
95% posterior credibility interval for the threshold are (8.73,10.14),
when σ 2

u = 10, and (8.76,10.18), when σ 2
u = 10,000

Table 1 Measures of fit for the
simulations with threshold set at
the 90% data quantile

aIndicates the best MGk model,
i.e., with smallest DIC value

σ = 2 σ = 3 σ = 5
k DIC BIC k DIC BIC k DIC BIC

n = 1,000
ξ = 0.4

1 4653.7 4691.5 1 4603.9 4648.1 1 4699.8 4747.6
2 4468.2 4542.5 2 4547.1 4624.6 2 4660.6 4728.1
3 4469.1 4563.1 3 4547.4 4645.4 3 4662.5 4749.3
3a 4466.6 4543.9 3a 4552.2 4628.4 3a 4684.8 4742.3

ξ = −0.4

1 4388.9 4435.3 1 4462.7 4510.1 1 4754.9 4807.6
2 4345.5 4421.7 2 4426.3 4501.9 2 4522.6 4603.8
3 4345.8 4442.3 3 4425.7 4522.6 3 4522.1 4624.6
2a 4366.1 4418.1 2a 4440.9 4493.1 2a 4556.0 4607.9

n = 10,000
ξ = 0.4

1 46817 46857 1 47610 47665 1 48621 48691
2 44718 44814 2 45530 45621 2 46548 46644
3 44727 44842 3 45534 45649 3 46548 46671
4a 44734 44859 3a 45560 45656 5a 46594 46753

ξ = −0.4

1 45372 45440 1 44416 44467 1 47215 47275
2 43171 43272 2 43986 44083 2 45008 45106
3 43172 43300 3 43997 44112 3 45009 45133
5a 43211 43368 2a 44064 44129 4a 45057 45181
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Table 2 Measures of fit for the
simulations with threshold set at
the 99% data quantile

aIndicates the best MGk model,
i.e., with smallest DIC value

σ = 2 σ = 3 σ = 5

k DIC BIC k DIC BIC k DIC BIC

n = 10,000

ξ = 0.4

1 46656 46718 1 46771 46813 1 46906 46967

2 44623 44708 2 44696 44791 2 44799 44893

3 44623 44736 3 44695 44819 3 44798 44921

4a 47116 47244 3a 44731 44824 4a 44855 44978

ξ = −0.4

1 44535 44592 1 47610 47665 1 46415 46469

2 44104 44198 2 44187 44279 2 44288 44381

3 44105 44226 3 44193 44307 3 44289 44409

5a 44122 44272 3a 44204 44298 5a 44307 44462

Fig. 7 Trace plots of weights p
when n = 1,000, σ = 3 and
ξ = 0.4: left—weights from
model MGPD2; right—weights
from model MGPD3

cally the same for k = 2 and k = 3. Figure 7 shows that
when the true model has k = 2 components, and a model
MGPD3 is estimated, the weight of the 3rd component is
about 0. Also, the weights of the first two components mimic
the weights of model MGPD2. In other words, the correct
model is recovered.

Table 2 shows the performance of the different models
for data generated with threshold at the 99% data quantile.
Model MGPD2 obtained the best performance and no model
in the MGk class outperforms it.

The validity of the BIC and DIC criteria for detecting
the correct model in these settings was tested further with
data generated from a mixture of Gamma’s. The DIC cor-
rectly pointed at the Gamma mixture as the best model when
n = 1,000. The BIC provided very similar values for the cor-
rect MG2 model and the incorrect MGPD2. The latter esti-
mates the threshold beyond the largest observed value indi-
cating the in practice it also pointed at the MG2 as the best
model description. Both criteria agree to indicate the correct
Gamma mixture model when n = 10,000. Thus, irrespective
of the sample size, the BIC and DIC criteria are capable of
indicating the correct model in our simulation exercise.

3.1 Extreme quantile estimation

One of the main interests in extreme data analysis is the
correct identification of extreme points or higher quantiles.
These can also estimated for all models considered and also
compared against the true quantiles and those estimated by
other procedures. They are generally well estimated with
MGPD, as illustrated in Fig. 8, indicating that the model can
also be used to accurately estimate high quantiles.

There are a few existing techniques that were devel-
oped for quantile estimation with the help of graphical tools
for threshold determination. They are usually referred to as
peaks over threshold (POT) methods and are very popular
in practice. Some of the most used techniques are the mean
excess plot (MEP) (Davison and Smith 1990) and the dis-
persion index plots (DIP) (Cunnane 1979). They are easy to
use but the accurate determination of the threshold is not an
easy task.

Table 3 illustrate this issue with some numerical re-
sults. POT estimates rely on appropriate determination of
the threshold. When this task is not performed adequately,
they fail to provide sound estimates. The approach of this
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Fig. 8 Posterior histograms of the 99.99% quantile for simulations with ξ = 0.4, σ = 2 and threshold at the 90% quantile (u = 8.85). Left panel:
n = 1,000; right panel: n = 10,000. The vertical line indicates the true quantile value

Table 3 Higher quantile
estimation for simulated data
with n = 1,000, ξ = 0.4, σ = 3
and varying thresholds

MGPD—posterior mean
quantile based on MGPD,
POT—POT estimated quantile

u = 6 u = 9 u = 12

Quantile True MGPD POT True MGPD POT True MGPD POT

0.99 20.06 23.13 22.07 21.56 20.48 20.21 17.55 17.77 17.11

0.999 65.21 53.19 42.68 51.49 41.44 38.06 37.30 31.59 28.54

0.99999 419.44 314.54 130.58 319.43 191.20 116.41 211.45 319.09 72.86

paper is model-based and therefore more involved but pro-
vides more reliable estimates. Our simulations seem to indi-
cate that the MGPD estimates outperform the POT estimates
in situations where graphical determination of the thresh-
old is difficult but also provide comparable estimates when
graphical determination is accurate.

This section serves a few purposes. The first and most ob-
vious one is to ensure that the model is capable to identify
data generated from itself. One could have anticipated that
using only a mixture of Gammas would provide a fit just
as adequate by enlarging the number of components on the
mixture. The exercises performed in this section seem to in-
dicate that this is not true. The results also show that use of
the information below the threshold is beneficial for correct
threshold specification. Also, the specification of mildly in-
formative prior distribution for the threshold was discussed
and shown to lead to sensible inference without the need for
strong prior inputs or for ad-hoc procedures for its determi-
nation. Basic assumptions about the threshold, available in
any problem, are enough to ensure appropriate inference. In
passing, the results indicate that DIC and BIC are reliable
sources of comparison, even in these mixture settings.

4 Applications

This section shows results of real data analyses of extreme
data from environmental sciences: river flow levels in Puerto
Rico and pluviometric levels in Portugal. Comparisons of
the models proposed here against versions of those in Wiper
et al. (2001) and Behrens et al. (2004) are also carried out.

Fig. 9 Predictive densities for data from Espiritu Santo river: full
line—MGPD3; dashed line—MGPD1, dotted line—MG3, vertical
lines: respective posterior means of the threshold

4.1 River flow in Puerto Rico

This analysis is based on datasets consisting in the measure-
ment of the levels of flow of two rivers located in Northeast
Puerto Rico in f t3/s: Fajardo and Espiritu Santo. The data
was recorded daily from April 1967 to September 2002 and
is freely available from waterdata.usgs.gov. We analysed a
total of 864 fortnightly maxima data.

Figure 9 shows the predictive density of the three classes
of models where differences are apparent. Model MGPD3

presents higher values up to around 200. Model MG3 fol-
lows model MGPD3 closer than model MGPD1 but gets
away around the most likely threshold locations. All mod-
els place the mean posterior threshold at around the 80%
data quantile.

http://waterdata.usgs.gov
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Fig. 10 Posterior histogram for
the GPD parameters of the
analysis of the Espiritu Santo
river flow. From left to right: u,
σ and ξ

Table 4 Fit measures for the
applications k Espiritu Santo Fajardo Barcelos Grandola

Pd DIC BIC Pd DIC BIC Pd DIC BIC Pd DIC BIC

MGk

1 2.12 11330 11353 2.01 11441 11463 2.02 8149 8172 1.98 6676 6701

2 3.87 11275 11322 4.65 11310 11355 3.94 7951 8001 4.21 6391 6442

3 3.87 11275 11342 4.53 11307 11371 4.50 7931 8003 4.18 6391 6462

4 4.68 11273 11362 9.31 11293 11391 3.88 7933 8022 4.26 6391 6483

5 11.04 11288 11410 7.22 11265 11382 4.55 7868 7980 4.05 6391 6503

MGPDk

1 0.83 11299 11336 1.05 11327 11361 3.41 8143 8184.1 0.20 4491 4522

2 4.11 11264 11329 0.53 11327 11380 5.76 7639 7712 5.31 4325 4397

3 6.71 11255 11349 6.28 11264 11357 7.08 7612 7709 7.01 4304 4400

4 5.32 11265 11377 6.89 11268 11384 6.63 7614 7729 6.42 4303 4417

Figure 10 provides a summary of parameter estimation
for the analysis of the Espiritu Santo river flow. There is
strong evidence of an infinite tail based on the large prob-
ability associated with positive values of ξ . The posterior
mean threshold is 426.82.

Fit measures are provided in Table 4. According to the
BIC, model MG2 was the best fit for both rivers while ac-
cording to the DIC, model MGPD3 was the best fit for both
rivers. In any case, there is clear indication of relevance of
using mixtures for the central part of the data.

4.2 Pluviometric levels in Portugal

This analysis is based on datasets consisting in the measure-
ment of the amount of rain in two monitoring stations in

Portugal: Barcelos, in the North, and Grandola, in the South.
These two stations were chosen to characterize contrasting
climatological patterns between a rainier region (North) and
a drier region (South). The data was recorded daily from
1931 to 2008. It is freely available from www.snirh.pt. We
analysed a total of 918 fortnightly maxima data points for
Barcelos station and 925 fortnightly maxima data points for
Grandola station due to a large number of missing values in
the complete dataset.

Figure 11 shows the predictive density of the three classes
of models where differences are apparent. Model MGPD1

estimates a very low threshold, resulting in a prediction that
is not compatible with the data histogram. The predictive
densities for models MGPD3 and MG3 are close in the cen-
tral part of the distribution.

http://www.snirh.pt
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Fig. 11 Predictive densities for data from Barcelos station: full
line—MGPD3; dashed line—MGPD1, dotted line—MG3, vertical
lines: respective posterior means of the threshold

Table 5 Higher quantiles for river Espiritu Santo and Barcelos station

Prob Espiritu Santo (in t3/s)

E 1 2 3 MGk

0.95 798 793.29 813.52 807.54 842.7

0.99 1360 1426.04 1450.79 1443.85 1398.8

0.999 N/A 2677.56 2726.55 2718.29 2197.0

0.9999 N/A 4612.30 4734.16 4710.35 3014.0

0.99999 N/A 7844.89 8151.99 8032.95 3804.0

Barcelos (in mm)

0.95 73.5 74.54 77.54 73.29 74.71

0.99 99.4 101.73 105.38 102.24 104.09

0.999 N/A 137.84 139.91 137.77 151.50

0.9999 N/A 171.41 176.12 184.54 233.00

0.99999 N/A 203.13 236.24 454.26 333.00

Prob = P (X ≤ q), E = Empirical, 1 = MGPD1, 2 = MGPD2, 3 =
MGPD3, MGk refers to the best model in this class

Table 4 presents the measures of fit for data from the two
stations. The models proposed here presented superior per-
formance for both rivers and for both assessment criteria:
BIC and DIC. These results provide substantial evidence of
their potential relevance in practical data analyses.

4.3 Estimation of higher quantiles

Precise determination of higher quantiles is one of the main
interests in extreme data analysis. These quantiles were eval-
uated for both data sets. Illustration of this task is provided
for river Espiritu Santo and for station Barcelos in Table 5.

According to our preferred model, Espiritu Santo river
flows above 2,718 ft3/s occur on average with 0.1% prob-
ability or around once every 10 years. Figure 12 shows
the posterior histogram for the 99.9% quantile, denoted
qx,0.999. The distribution is skew as expected and concen-
trated around the corresponding data quantile. It may be
compared against the corresponding quantile estimated by

maximum likelihood (ML) methods, as in Coles (2001). Set-
ting the threshold value at the 3 posterior quartiles, the re-
spective ML estimates of qx,0.999 are given by 2,607, 2,509
and 2,562 ft3/s. In this case, the posterior point estimate of
this quantile is closer to the classical estimate obtained with
the a choice of the threshold at its lower tail.

Similarly, rainfall levels around Barcelos station that are
above 159 mm occur on average with 0.01% probability or
around once each four centuries. Figure 12 shows the pos-
terior histogram for the 99.99% quantile, denoted qx,0.9999.
The distribution is also skew as expected and concentrated
around the corresponding data quantile. It may also be com-
pared against the corresponding quantile estimated by max-
imum likelihood (ML) methods. Setting the threshold value
at the 3 posterior quartiles, the respective ML estimates of
qx,0.9999 are given by 148, 150 and 152 mm. In this case, the
posterior point estimate of this higher quantile is closer to
the classical estimate obtained with a choice of the thresh-
old at its upper tail. No such choice is required to obtain
the posterior distribution or its mean since these are based
on integration over the other parameters, thus automatically
incorporating their uncertainty.

In the absence of knowledge of the true quantiles, com-
parisons can be made using the empirical quantile as bench-
mark to compare with. Results are inconclusive for the data
of river Espiritu Santo with alternation between models MG

and MGPD. Results are very clear for the Barcelos station
with all higher quantiles from the MGPD class closer to the
empirical estimates than the estimates from the MG class.
These results provide further reassurance that the models
proposed here provide sensible results and can be used for
extreme value data analysis.

5 Conclusion

This paper presents a methodology for extreme value esti-
mation based on a complete model for the entire sample
space. Presence of a model component that takes into ac-
count theoretical results about the limiting behavior of ex-
tremes seem to improve the performance of the models. Ad-
ditionally, the region where extreme behavior takes place is
explicitly characterized through threshold estimation. This
may prove useful for practitioners wishing to establish the
extreme region.

Simulation results suggest that this class of models can
be identified from the data even in the presence of vague
prior information. The only exception is the threshold that
requires some form of prior information. This should not be
too much of a problem because the threshold is usually lo-
cated in the region of higher empirical quantiles and this in-
formation suffices for correct identification. Simulation also
showed that BIC and DIC provide sound indication of model
performance in these mixture settings.
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Fig. 12 Posterior histogram of high quantiles of applications, under MGPD3. Left: Espiritu Santo river, quantile 99.9%. Right: Barcelos station,
quantile 99.99%. Vertical lines: full—posterior mean; dashed—maximum observed data

These models may be improved and extended in a num-
ber of directions. Cabras et al. (2011) considered the inclu-
sion of covariates in a GPD model formulation. One natural
extension would be the consideration of a regression struc-
ture for the GPD component on our models (Nascimento et
al. 2011). Another extension is the consideration of tempo-
ral data dependence. Initial efforts in this direction were pro-
posed by Lopes et al. (2011). Further developments in this
direction to include trend and seasonality can provide useful
additions to the understanding of these processes.
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Appendix: MCMC algorithm

Sampling was made in blocks with Metropolis-Hastings
proposals for each block due to unrecognizable form of the
respective full conditionals. Each GPD parameter was sam-
pled separately, the pair (μ,η) for each mixture component
was sampled in a block and the weights p were sampled in
a single block.

Details of the MCMC sampling scheme are given below.
At iteration s, parameters are updated as follows:

Sampling ξ : Proposal transition kernel for ξ is given by
a truncated normal

ξ∗ | ξ (s) ∼ N
(
ξ (s),Vξ

)
I
(−σ (s)

(
M − u(s)

)
,∞)

,

where Vξ is a variance appropriately chosen to ensure chain
mixing and M = max(x1, . . . , xn). So, ξ (j+1) = ξ∗ with
probability αξ , where

αξ = min

{
1,

π(Θ∗|x)Φ((ξ (s) + σ (s)/(M − u(s))/
√

Vξ ))

π(Θ̃|x)Φ((ξ∗ + σ (s)/(M − u(s))/
√

Vξ ))

}
,

where Φ is the d.f. of the standard normal distribution,
Θ∗ = (μ(s), η(s),p(s), u(s), σ (s), ξ∗) and Θ̃ = (μ(s), η(s),

p(s), u(s), σ (s), ξ (s)).
Sampling σ :
If ξ (s+1) > 0, then σ ∗ is sampled from the Gamma dis-

tribution G(σ (s), σ (s)2
/Vσ ), where Vσ is the variance of the

proposal distribution appropriately chosen to ensure chain
mixing.

If ξ (s+1) < 0, then σ ∗ is sampled from a N(σ (s),

Vσ )I (−ξ (s+1)(M − u(s)),∞).
So, σ (s+1) = σ ∗ with probability ασ where, if ξ (s+1) < 0,

ασ = min

{
1,

π(Θ∗|x)Φ((σ (s) + ξ(s+1)(M − u(s))/
√

Vσ ))

π(Θ̃|x)Φ((σ∗ + ξ(s+1)(M − u(s))/
√

Vσ ))

}
,

and if ξ (s+1) > 0,

ασ = min

{
1,

π(Θ∗|x)fG(σ (s)|σ ∗, σ ∗2/Vσ )

π(Θ̃|x)fG(σ ∗|σ (s), σ (s)2/Vσ )

}
,

where Θ∗ = (μ(s), η(s),p(s), u(s), σ ∗, ξ (s+1)) and Θ̃ =
(μ(s), η(s),p(s), u(s), σ (s), ξ (s+1)).

Sampling u:
The threshold u∗ is sampled from a N(u(s),Vu) ×

I (a(s+1),∞) distribution where a(s+1) = min(x1, . . . , xn)

if ξ (s+1) ≥ 0 and a(s+1) = M +σ (s+1)/ξ (s+1), if ξ (s+1) < 0.
The lower limit of the truncation is chosen to satisfy the
sample space of the GPD in (1). Vu is the variance chosen to
ensure appropriate chain mixing. Then, accept u(s+1) = u∗
with probability αu, where

αu = min

{
1,

π(Θ∗|x)Φ((u(s) − a(s+1))/
√

Vu)

π(Θ̃|x)Φ((u∗ − a(s+1))/
√

Vu)

}
,

where Θ∗ = (μ(s), η(s),p(s), u∗, σ (s+1), ξ (s+1)) and Θ̃ =
(μ(s), η(s),p(s), u(s), σ (s+1), ξ (s+1)).

Sampling (μj , ηj ): For j = 1, . . . , k.
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Since ηj is positive, the proposal kernel is taken as the
Gamma distribution

η∗
j |η(s)

j ∼ G
(
η

(s)
j , η

(s)2

j /Vηj

)
,

where η
(s)
j is the value ηj at iteration s and Vηj

is the vari-
ance chosen to ensure appropriate chain mixing. Note that
E(η∗

j | η(s)
j ) = η

(s)
j , and Var(η∗

j | η(s)
j ) = Vηj

, j = 1, . . . , k.
Since μj is also positive, the proposal kernel is taken as

the Gamma distribution

μ∗
j |μ(s)

j ∼ G

(
μ

(s)
j ,

μ
(s)2

j

Vμj

)
I
(
μ

(s+1)
1 < · · · < μ

(s+1)
j−1 < μ

(s)
j

< · · · < μ
(s)
k

)
,

where μ
(s)
j is the value of μj at iteration s and Vμj

is the
variance chosen to ensure appropriate chain mixing.

The values η
(s+1)
j = η∗

j and μ
(s+1)
j = μ∗

j are accepted
with probability αμj ,ηj

, where

αμj ,ηj
= min

{
1,

π(Θ∗|x)fG(μ
(s)
j |μ∗

j ,μ
∗2
j /Vμ)

π(Θ̃|x)fG(μ∗
j |μ(s)

j ,μ
(s)2
j /Vμ)

× fG(η
(s)
j |η∗

j ,η∗2
j /Vη)I (μ

(s+1)
1 <···<μ∗

j<···<μ
(s)
k )

fG(η∗
j |η(s)

j ,η
(s)2
j /Vη)I (μ

(s+1)
1 <···<μ

(s)
j <···<μ

(s)
k )

}

where Θ∗ = (η
(s+1)
<j , η∗

j , η
(s)
>j ,μ

(s+1)
<j ,μ∗

j ,μ
(s)
>j ,p

(s), u(s+1),

σ (s+1), ξ (s+1)) and Θ̃ = (η
(s+1)
<j , η

(s)
≥j ,μ

(s+1)
<j ,μ

(s)
≥j ,p

(s),

u(s+1), σ (s+1), ξ (s+1)).

Sampling p:
The vector of weights is proposed from a Dirichlet distri-

bution p∗ ∼ Dk(Vpp
(s)
1 , . . . , Vpp

(s)
k ). So, p(s+1) = p∗ with

probability

αp = min

{
1,

π(Θ∗|x)fD(p(s)|p∗)
π(Θ̃|x)fD(p∗|p(s))

}
,

where Θ∗ = (η(s+1),μ(s+1),p∗, u(s+1), σ (s+1), ξ (s+1)) and
Θ̃ = (η(s+1),μ(s+1),p(s), u(s+1), σ (s+1), ξ (s+1)).
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