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S

A common objective in longitudinal studies is to characterise the relationship between
a failure time process and time-independent and time-dependent covariates. Time-
dependent covariates are generally available as longitudinal data collected periodically
during the course of the study. We assume that these data follow a linear mixed effects
model with normal measurement error and that the hazard of failure depends both on
the underlying random effects describing the covariate process and other time-independent
covariates through a proportional hazards relationship. A routine assumption is that the
random effects are normally distributed; however, this need not hold in practice. Within
this framework, we develop a simple method for estimating the proportional hazards
model parameters that requires no assumption on the distribution of the random effects.
Large-sample properties are discussed, and finite-sample performance is assessed and
compared to competing methods via simulation.

Some key words: Conditional score; Measurement error; Mixed effects model; Regression calibration;
Semiparametric; Survival analysis.

1. I

Many longitudinal studies collect information on each participant both on a time-to-
event, henceforth ‘survival’ or ‘failure’, and covariates, some of which vary with time. A
frequent objective is to characterise the relationship between survival and covariates; the
proportional hazards model (Cox, 1972) is a standard framework. To implement the Cox
model with time-dependent covariates, complete knowledge of the true covariate history
for each subject is required; however, time-dependent covariates are generally measured
intermittently, often at different times for each subject and with error. A naive approach
is to substitute for each subject at each failure time in the Cox partial likelihood (Cox,
1975) the closest observed covariate value prior to that time, often termed ‘last value
carried forward’. It is well known (Prentice, 1982) that substituting mismeasured values
for true covariates in the Cox model leads to biased estimation.

Recent interest has focused on joint models for longitudinal covariate data and a survival
endpoint. A popular approach assumes that the longitudinal data follow a linear mixed
effects model (Laird & Ware, 1982) and that survival depends on the covariate through
a proportional hazards relationship with the underlying random effects. A common strat-
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egy for estimation of the proportional hazard regression parameters is a two-stage
approach, where

(i ) the mixed effects model is fitted to data at each risk set assuming normality both
of random effects and intra-subject error from which estimated empirical Bayes, i.e.
best linear unbiased predictors of the random effects are obtained, and

(ii) predictors for the covariate for each subject at each failure time based on the relevant
fit are substituted for the true covariate values in the Cox partial likelihood (Pawitan
& Self, 1993; Tsiatis et al., 1995; Dafni & Tsiatis, 1998).

This approximate method uses regression calibration (Carroll et al., 1995, Ch. 3) to reduce
bias of the naive approach but may still yield biased estimators for large measurement
error. Alternatively, the joint likelihood of the survival and longitudinal data may form
the basis for inference. DeGruttola & Tu (1994) assumed the covariate process and survival
times to be multivariate normal and fitted the model via parametric maximum likelihood;
Wulfsohn & Tsiatis (1997) adopted the less rigid proportional hazards relationship and
used nonparametric maximum likelihood, but continued to assume normal random effects.
Henderson et al. (2000) used normal random effects in Gaussian covariate processes.
Faucett & Thomas (1996) assumed normality and took a Bayesian approach.

These strategies rely heavily on the assumption of normality of random effects charac-
terising the true covariate process; however, this assumption may be over-restrictive and
the consequences if it is violated are unknown, so it is natural to be concerned that
inference on parameters describing the relationship between survival and covariates may
be compromised. In this paper, we assume that survival is related to the covariate through
a proportional hazards relationship with the underlying random effects; the model is
formulated in § 2. In § 3, we develop a simple method for inference that does not put any
restrictions on the distribution of the random effects by exploiting the conditional score
approach of Stefanski & Carroll (1987). Large-sample properties are discussed in § 4, and
performance in finite samples of both the new and competing estimators is demonstrated
in § 5.

2. M  

For each subject i (i=1, . . . , n) let T
i
and C

i
denote times to failure and censoring,

respectively, where time on study V
i
=min(T

i
, C

i
) and failure indicator D

i
=I(T

i
∏C

i
) are

observed; all variables are independent across i. Let Z
i
denote time-independent covariates

and X
i
(u) denote time-dependent covariates at time u for subject i; for simplicity, we

assume X
i
(u) scalar, but generalisation to vector-valued X

i
(u) is straightforward. Assume

that X
i
(u) follows a subject-specific linear model; we take X

i
(u)=a

0i
+a

1i
u, where a

i
=

(a
0i

, a
1i

)T are the intercept and slope for i, which may be generalised to more complex
polynomial or regression spline growth curves. The covariate process X

i
(u) is not directly

observed; rather, longitudinal measurements W
i
(t
ij
) are obtained at ordered times

t
i
=(t

i1
, . . . , t

im
i

)T , for t
im
i

∏V
i
, where W

i
(t
ij
)=X

i
t
ij
)+e

ij
, with e

i
= (e

i1
, . . . , e

im
i

)T . The
errors e

ij
reflect uncertainty in measuring X

i
(u) at t

ij
and are assumed identically norm-

ally distributed and independent with mean zero and variance s2, independent of
(T
i
, C

i
, a
i
, Z

i
, t
i
, m

i
). More precisely,

(e
i
|T
i
, C

i
, a
i
, Z

i
, t
i
, m

i
)~N

m
i

(0, s2I
m
i

), (1)

where N
q

denotes the q-variate normal distribution and I
q

the q-dimensional identity
matrix. Although normality may be a reasonable assumption for within-subject error in
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continuous covariates, the standard assumption that the a
i
are multivariate normal may

be too restrictive or unrealistic to represent the nature of the true covariate trajectories
X
i
(u) in the population.
The survival model assumes that the hazard of failure is related to X

i
(u) and Z

i
through

a proportional hazards regression model; that is,

l
i
(u)= lim

du�0
du−1 pr{u∏T

i
<u+du |T

i
�u, a

i
, Z

i
, C

i
, e
i
(u), t

i
(u)}

= lim
du�0

du−1 pr{u∏T
i
<u+du |T

i
�u, a

i
, Z

i
}

=l0(u) exp{cX
i
(u)+gTZ

i
}, (2)

where l0(u) denotes an unspecified baseline hazard function, the collection of times
of longitudinal measurements up to and including u is denoted by t

i
(u)=( t

ij
∏u),

e
i
(u)=(e

ij
: t
ij
∏u), and g is (q×1). Equation (2) makes explicit the nature of our assump-

tion that timing of measurements and censoring are noninformative. In particular, timing
of measurements is noninformative in the sense that it does not impart additional prognos-
tic effect beyond that given by the covariates and the a

i
. A natural question involves the

restriction of conditioning to the set t
i
(u) in (2). Conditioning on all of t

i
would be

informative and invalidate the hazard relationship in (2), which is critical to the develop-
ments of the next section.

Interest focuses on estimation of the parameters c and f. We seek an estimator that
requires no distributional assumption on the random effects.

3. C  

Let XC
i
(u) be the ordinary least squares estimator of X

i
(u) using all the longitudinal data

up to and including time u, that is based on t
i
(u). Note that this requires at least two

longitudinal measurements on i up to and including u, for t
i2
∏u. Define the counting

process increment

dN
i
(u)=I(u∏V

i
<u+du, D

i
=1, t

i2
∏u)

and the ‘at risk’ process

Y
i
(u)=I(V

i
�u, t

i2
∏u);

that is dN
i
(u) puts point mass at time u corresponding to the observed death time for the

ith subject as long as this occurs after the second longitudinal measurement, and Y
i
(u) is

the indicator that subject i is at risk with at least two longitudinal measurements at time
u. Then the estimator XC

i
(u), conditional on {a

i
, t
i
(u), Y

i
(u)=1, Z

i
}, is normally distributed

with mean X
i
(u)=a

0i
+a

1i
u and variance s2h

i
(u), the usual variance of the estimated mean

XC
i
(u) at u using data up to and including u, which depends on timing of measurements

for i up to and including u. For X
i
(u)=a

0i
+a

1i
u,

h
i
(u)=1/m

i,u
+(u−t:

i,u
)2/

i,u
,

where t
i
(u) contains m

i,u
time-points t

ij
with mean t:i,u , and 

i,u
=Wm

i,uj=1
(t
ij
−t:i,u )2. For now,

we will assume that s2 is known; this will be relaxed subsequently.
Our approach is motivated by the conditional score method of Stefanski & Carroll

(1987) and the following heuristic argument. At any time u, the conditional density for
{dN

i
(u)=r, XC

i
(u)=x}, given i is at risk at time u so that Y

i
(u)=1, random effects a

i
,
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longitudinal measurements taken up to and including time u at times t
i
(u), and time-

independent covariates Z
i
, is

pr{dN
i
(u)=r |Y

i
(u)=1, XC

i
(u)=x, a

i
, Z

i
, t
i
(u)}×pr{XC

i
(u)=x |Y

i
(u)=1, a

i
, Z

i
, t
i
(u)},

which equals

[l0(u) du exp{cX
i
(u)+gTZ

i
}]r[1−l0 (u) du exp{cX

i
(u)+gTZ

i
}]1−r

{2ps2h
i
(u)}D

expC− {x−X
i
(u)}2

2s2h
i
(u) D ;

thus, the conditional likelihood of {dN
i
(u), XC

i
(u)} given {Y

i
(u)=1, a

i
, Z

i
, t
i
(u)}, up to order

du, is

[l0 (u) du exp{cX
i
(u)+gTZ

i
}]dN

i
(u)

exp[−{XC
i
(u)−X

i
(u)}2/{2s2h

i
(u)}]

{2ps2h
i
(u)}D

=expCXi
(u) qcdN

i
(u)+

XC
i
(u)

s2h
i
(u)rD {l0 (u) exp (gTZ

i
) du}dN

i
(u)

{2ps2h
i
(u)}D

expq−XC 2
i
(u)+X2

i
(u)

2s2h
i
(u) r .

(3)

This representation implies that, conditional on Y
i
(u)=1,

S
i
(u, c, s2 )=cs2h

i
(u) dN

i
(u)+XC

i
(u)

is a complete sufficient statistic for a
i
, suggesting that, at each time u, conditioning on

S
i
(u, c, s2 ) would remove the dependence of the conditional distribution on the random

effects a
i
. In the Appendix, we show that the conditional intensity process defined as

lim
du�0

du−1 pr{dN
i
(u)=1 |S

i
(u, c, s2), Z

i
, t
i
, (u), Y

i
(u)}

is equal to

l0(u) exp{cS
i
(u, c, s2 )−c2s2h

i
(u)/2+gTZ

i
}Y
i
(u). (4)

We now outline the reasoning underlying the conditional score estimator, which follows
by analogy with that for estimators for the proportional hazards model with no measure-
ment error. The conditional intensity of dN(u)=Wn

j=1
dN

j
(u) given

{S
i
(u, c, s2 ), Z

i
, t
i
(u), Y

i
(u), i=1, . . . , n}

is l0 (u)E0(u, c, g, s2 ), where

E0 (u, c, g, s2)= ∑
n

j=1
E
0j

(u, c, g, s2 ),

E
0j

(u, c, g, s2 )=exp{cS
j
(u, c, s2 )−c2s2h

j
(u)/2+gTZ

j
}Y
j
(u).

This suggests that a reasonable estimator for l0 (u) du is given by

l@0 (u) du=dN(u)/E0 (u, c, g, s2).

By analogy with the usual score equations derived from the partial likelihood in a pro-
portional hazards model, we suggest estimating (c, g) by solving the (q+1)×1 set of
estimating equations

∑
n

i=1
P {Si (u, c, s2 ), ZT

i
}T{dN

i
(u)−E

0i
(u, c, g, s2 )l@0(u) du}=0,
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which, upon substitution of l@0(u) for l0(u), may be written as

∑
n

i=1
P {Si (u, c, s2 ), ZT

i
}T qdN

i
(u)−

dN(u)E
0i

(u, c, g, s2 )
E0(u, c, g, s2 ) r=0. (5)

Defining

E
1j

(u, c, g, s2 )={S
j
(u, c, s2 ), ZT

j
}T exp{cS

j
(u, c, s2 )−c2s2h

j
(u)/2+gTZ

j
}Y
j
(u),

E1(u, c, g, s2 )= ∑
n

j=1
E
1j

(u, c, g, s2 ),

and interchanging the sums in (5), we may express the estimating equations as

∑
n

i=1
P C{Si (u, c, s2 ), ZT

i
}T−

E1 (u, c, g, s2 )
E0 (u, c, g, s2)D dN

i
(u)=0. (6)

With no measurement error, s2=0, (6) is identical to the score equations for the maxi-
mum partial likelihood estimator of Cox (1975). Moreover, with X

i
(u) time-independent

and s2 known, it is straightforward to show that the equations are asymptotically equival-
ent to those proposed by Nakamura (1992). Nakamura claimed that his estimator is
approximate, with the asymptotic theory only holding for s2 decreasing to zero with
sample size; however, because of the equivalence, the results of § 4 suggest that
the Nakamura estimator is consistent and asymptotically normal even for fixed s2>0.
An alternative semiparametric estimator with time-independent covariates is given by
Buzas (1998).

4. L- 

We give a heuristic sketch of steps involved in showing that solving (6) with s2 known
should yield consistent, asymptotically normal estimators for (c, g). We demonstrate these
properties via simulation in § 5.

Defining S9 (u, c, g, s2 )=E1(u, c, g, s2 )/E0(u, c, g, s2 ) to be the weighted average of vec-
tors {S

i
(u, c, s2 ), ZT

i
}T among individuals i at risk at time u, and letting m(u, c, g, s2 ) denote

the probabilistic limit of S9 (u, c, g, s2 ), by adding and subtracting common terms, the
equivalent version of (6), (5), may be written

∑
n

i=1
P [{Si(u, c, s2), ZT

i
}T−S9 (u, c, g, s2 )]{dN

i
(u)−E

0i
(u, c, g, s2)l0 (u) du}, (7)

which may be reexpressed as

∑
n

i=1
P [{Si(u, c, s2 ), ZT

i
}T−m(u, c, g, s2 )]{dN

i
(u)−E

0i
(u, c, g, s2)l0 (u) du} (8a)

+ ∑
n

i=1
P {m(u, c, g, s2 )−S9 (u, c, g, s2 )}{dN

i
(u)−E

0i
(u, c, g, s2 )l0(u) du}. (8b)

We first outline steps needed to conclude the existence of consistent solutions to (6) by
exploiting its representation as the sum of (8a) and (8b). If set equal to zero with the
function m(u, c, g, s2 ) known, (8a) is an unbiased estimating equation for (c, g), which
follows as, at the true values (c0 , g0), (8a) is a sum of independent and identically distributed
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zero-mean random vectors. This may be shown by taking the expectation inside the
integral for the ith summand and conditioning on [{S

i
(u, c0 , s2 ), ZT

i
}T, Z

i
, t
i
(u), Y

i
(u)],

which yields

P E{[{S
i
(u, c0 , s2 ), ZT

i
}T−m(u, c0 , g0 , s2 )]

× (E[dN
i
(u) |{S

i
(u, c0 , s2 ), ZT

i
}T , Z

i
, t
i
(u), Y

i
(u)]−E

0i
(u, c0 , g0 , s2 )l0 (u) du)}; (9)

as

E[dN
i
(u) |{S

i
(u, c0 , s2 ), ZT

i
}T , Z

i
, t
i
(u), Y

i
(u)]=E

0i
(u, c0 , g0 , s2 )l0 (u) du

is the conditional intensity in (4), the inner expectation is equal to zero, so that (9) is
zero, demonstrating the unbiasedness. That n−1 times (8b) converges in probability to
zero uniformly in a neighbourhood N (c0 , go) of (c0 , g0 ) follows from the inequality

sup
N(c

0
,g
0
) K P {m(u, c, g, s2 )−S9 (u, c, g, s2 )}n−1 ∑

n

i=1
{dN

i
(u)−E

0i
(u, c, g, s2 )l0(u) du}K

∏ sup
N(c

0
,g
0
)Csup

u
{|m(u, c, g, s2 )−S9 (u, c, g, s2 ) |}D (10)

×Cn−1 ∑n
i=1
P dN

i
(u)+n−1 ∑

n

i=1
sup

N(c
0
,g
0
) qP E0i (u, c, g, s2 )l0(u) durD . (11)

The first term in (11) is bounded by 1, and the second converges to

E q sup
N(c

0
,g
0
) P E0i (u, c, g, s2)l0 (u) dur

in probability. Uniform convergence of n−1E0(u, c, g, s2 ) and n−1E(u, c, g, s2 ), and hence
of S9 (u, c, g, s2 ), both in u and (c, g) in N (c0 , g0 ), could be established by a modification
of the Glivenko–Cantelli lemma, thus showing convergence in probability to zero of (10).
Collecting these developments demonstrates the result.

Combining these arguments, we deduce that the behaviour of the estimators solving
(6) will be dictated by (8a). Since (8a) set to zero is an unbiased estimating equation,
under regularity conditions, a consistent sequence of solutions to it exists, indicating the
existence of consistent solutions to (6). By analogy with Stefanski & Carroll (1987),
(6) need not have a unique solution, and inconsistent solutions may exist. Our experience
shows, however, that this problem may not be a significant drawback in practice; we
discuss this issue further in § 5.

We now argue that, at (c0 , g0 ), n−D times (6), equal to the sum of n−D times the sum of
(8a) and (8b), is asymptotically normal with mean zero, so that the consistent solution
(c@, g@ ) should be asymptotically normal. In contrast to the case s2=0, standard martingale
theory arguments do not apply. However, evaluated at (c0 , g0 ), n−D times (8a) is a normal-
ised sum of independent and identically distributed zero-mean random vectors from above,
so is asymptotically normal. Expression (8b) times n−D may be written

P nD{m(u, c0 , g0 , s2 )−S9 (u, c0 , g0 , s2 )}n−1 ∑
n

i=1
{dN

i
(u)−E

0i
(u, c0 , g0 , s2 )l0 (u) du}.

(12)



453Proportional hazards model with longitudinal covariates

By arguments similar to those in Breslow & Crowley (1974, Theorem 4) or Tsiatis (1981,
Theorem 5.1), we expect that, under regularity conditions, (12) converges in probability
to zero. If we combine these results, n−D times (6), evaluated at the truth, is asymptotically
equivalent to n−D times (8a), and thus converges to a normal random vector with mean
zero and covariance matrix equal to that of a single element in the sum (8a).

The derivation of § 3 and the above arguments assume s2 is known; in practice, s2 will
almost always be unknown. A natural strategy is to replace s2 in (6) by the pooled
estimator

s@2=
Wn
i=1

I(m
i
>2)R

i
Wn
i=1

I(m
i
>2)(m

i
−2)

, (13)

where R
i
is the residual sum of squares for the least squares fit to all m

i
observations for

subject i, and solve for (c, g). That s@ 2 is a consistent estimator for s2 under our assumptions
is shown in the Appendix. It is straightforward to show that

nD (s@2−s2)=n−D ∑
n

i=1
{E(m

i
)−2}−1{R

i
− (m

i
−2)s2}+o

p
(1).

Thus, because (6) is asymptotically equivalent to the sum (8a) of independent and ident-
ically distributed terms, standard M-estimator arguments as in Carroll et al. (1995, §§ A.3.3,
A.3.6) apply, from which it may be concluded that (6) with s2 replaced by s@2 again
converges to a zero-mean multivariate normal random vector.

To obtain approximate standard errors for the estimators (c@, g@ ), these developments
suggest that the usual ‘sandwich’ technique may be used; for example, when s@2 is substi-
tuted, the asymptotic variance of (c@, g@ ) may be deduced by appealing to the results of
Carroll et al. (1995, § A.3.6). In the simulations of § 5, we demonstrate that this strategy
yields reliable estimates of uncertainty.

5. S 

We carried out a number of simulation studies under the following scenario, a modifi-
cation of that in Dafni & Tsiatis (1998). For simplicity, we focus on the situation of a
single, time-dependent covariate X

i
(u) and no time-independent covariate, so that g=0,

and estimation of c only is of interest. In each case, E(a
i
)= (4·173,−0·0103)T , c=−1·0,

and the censoring distribution was exponential with mean 110 weeks, with additional
censoring at the end of the study, 80 weeks. Nominal times of observation for X

i
(u) were

at (0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80) weeks, with a 10% chance of a missing
observation at any time except baseline, and the hazard was given by (2) for u�16 and
0 otherwise to represent the common clinical trial situation where early observation is
frequent and events are not seen immediately following enrolment. Three true, underlying
random effects distributions were considered: normal, with cov(a

i
)=D, where D has dis-

tinct elements (D11 , D12 , D22)= (1·24,−0·0114, 0·003); a bimodal mixture of normals with
mixing proportion 0·5 generated as described in Davidian & Gallant (1993, § 5) with their
sep=4 and R chosen to yield cov(a

i
) with the same diagonal elements in the normal case

and D12=0·039; and a bivariate skew-normal distribution (Azzalini & Dalla Valle, 1996)
chosen so that cov(a

i
) was the same as the normal case and the components a

0i
and a

1i
had coefficients of skewness of −0·07 and 0·85, respectively, representing moderately
skewed a

1i
.
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In each scenario, 500 Monte Carlo datasets were generated, and, for each, c was
estimated in five ways:

(i) using the ‘ideal’ estimator that could be obtained by fitting by partial likelihood
with time-dependent covariates if the true values X

i
(u) were available for all subjects

at each failure time;
(ii ) via the conditional score method with s2 estimated as in (13);
(iii ) using a version of regression calibration as in Dafni & Tsiatis (1998), described

below, where empirical Bayes predictors were substituted in the usual partial
likelihood;

(iv) using ‘naive regression’, where predicted values were imputed at each failure time
from a single least squares fit to all the available longitudinal data for each i with
m
i
�2 and substituted in the usual partial likelihood; and

(v) via ‘last value carried forward’ as described in § 1.
Ideally, implementation of regression calibration (iii), as discussed by Tsiatis et al. (1995)
and Dafni & Tsiatis (1998), would require that a linear mixed model be fitted to the
longitudinal data from all individuals at risk at each failure time and that predicted values
be imputed for each subject still at risk at each failure time based on the relevant fit. This
is computationally prohibitive in a simulation, as the number of mixed model fits equals
the number of failures. As an alternative, we implemented this method by fitting the mixed
model four times, using available data up to the 25th, 50th, 75th and 100th percentiles of
the ordered failure times, respectively, and imputed values for each i still at risk at each
failure time within each quartile. Preliminary simulations demonstrated that differences
in performance between full regression calibration and this simpler modification are negli-
gible. To calculate approximate standard errors, the expression for the usual Cox partial
likelihood was used in (i) and (iii)–(v), with no adjustment for imputation in (iii)–(v). This
coincides with suggestions in the literature and standard practice; (iv) and (v) are typically
used in this way, and, for (iii ), several authors (Tsiatis et al., 1995; Dafni & Tsiatis, 1998)
have remarked that adjustment of standard errors to account for repeated fitting of the
mixed model seems unnecessary in Monte Carlo studies, and, moreover, calculation of
such adjustment would be difficult. For (ii), standard errors were calculated using the
‘sandwich’ method outlined in § 4; the expression for the asymptotic variance of the con-
ditional score estimator of c is given in the Appendix. For all methods, 95% Wald confi-
dence intervals for c based on the standard normal critical value 1·96 were constructed.
Although previous studies of (iii ) have investigated validity of standard errors, performance
of confidence intervals has not been evaluated.

For a range of n and s2 values and over the three a
i
distributions, we investigated the

severity of the problem of multiple roots for (6), discussed in § 4; as pointed out by L. A.
Stefanski in an unpublished paper presented at the Third International Workshop on
Statistical Modeling, this issue is expected to persist for all n. In the context of generalised
linear models, Stefanski conjectured that the consistent root of the conditional score
equation will be closest to the naive estimator obtained by solving the usual estimating
equation with mismeasured covariates treated as the true values. Accordingly, Stefanski
suggested that using the naive estimator as the starting value would be a practical strategy
for locating the consistent root. We have observed that a similar phenomenon holds true
for our estimator. Figure 1 shows (6) as a function of c for one of the simulated datasets
with n=200, s2=0·30 and a

i
following the mixture of normals, and is representative of

the pattern for all datasets inspected across choices of n, s2 and a
i
distribution. Figure 1(a)

shows that the solution to (6) near c=−1·0 is well determined and close to those for the
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‘naive’ last value carried forward and naive regression estimators. Figure 1(b) indicates
further that, if Stefanski’s strategy were employed, other potential solutions to (6) would
not be considered.
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Fig. 1. Equation (6) as a function of c for a representative dataset, n=200, s2=
0·30, a

i
from the mixture scenario. (a) shows a plot over the range of c near the true

value;  denotes the conditional score estimate,  denotes the regression calibration
estimate,  denotes the naive regression estimate, and  denotes the last value carried

forward estimate. (b) shows a plot over a wide range of c values.

Results for n=200 and s2=0·30 are summarised in Table 1. The conditional score
estimator shows negligible bias coinciding with that of the unachievable ‘ideal’ estimator
across all distributions, and estimated standard errors track the Monte Carlo standard
deviation well. In contrast, the regression calibration, naive regression and last value
carried forward methods all exhibit nonnegligible biases; this is most dramatic for the
latter two. The most striking results are those for Wald coverage probabilities. The con-
ditional score method provides intervals that achieve the nominal level, as does the ‘ideal’;
the remaining feasible methods achieve coverages well below the nominal level. We investi-
gated other choices for n and s2 with similar results. The conditional score estimator

Table 1. Simulation results for three underlying random eVect distributions

Normal Mixture Skewed

Method Mean   Cov Mean   Cov Mean   Cov

 −1·01 0·08 0·09 0·96 −1·02 0·10 0·12 0·95 −1·01 0·09 0·08 0·97
 −1·01 0·11 0·12 0·95 −1·03 0·24 0·25 0·95 −1·01 0·12 0·12 0·95
 −0·93 0·08 0·09 0·87 −0·88 0·07 0·09 0·75 −0·92 0·07 0·09 0·85

 −0·88 0·07 0·08 0·65 −0·83 0·06 0·08 0·44 −0·88 0·07 0·08 0·68
 −0·87 0·07 0·08 0·67 −0·87 0·06 0·08 0·65 −0·86 0·07 0·08 0·61

, Monte Carlo standard deviation; , average of estimated standard errors; Cov, Wald coverage
probabilities. Methods: , ‘ideal’; , conditional score; , regression calibration; , naive regression; , last

value carried forward.
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always showed the same, negligible degree of bias as the ideal and achieved nominal
coverage, and the bias and optimism of confidence intervals for methods (iii)–(v) worsened
with increasing s2.

6. D

We have proposed an estimator for a popular joint model for survival and longitudinal
data that is semiparametric in not requiring a distributional assumption on random effects
characterising the longitudinal covariate process. The estimator is easily computed; S-Plus
functions implementing all approaches studied in § 5 are available from the authors.
Although technically the proposed estimating equation may have multiple roots, using
the strategy outlined in § 5 we have found that the ‘correct’ consistent solution may
be identified reliably in practice. Rigorous proofs of the large-sample properties of the
estimator would be highly technical and are an open problem.

When the hazard is thought to depend on a
i
through X

i
(u), for data where the proportion

of individuals with few longitudinal measurements that do not span the entire range of
time on study is large, this method may yield unstable results. However, under such
conditions, attempting to deduce reliably the relationship of hazard to X

i
(u) may be a

fruitless enterprise regardless of estimation method. Although we have presented the esti-
mator for this case, the conditional score approach we propose could be applied when
the hazard depends on any linear combination of the elements of a

i
. Moreover, the method

is applicable to the case of time-independent covariates at baseline; if replicate such
measurements were available, s2 could be estimated by analogy with the method given
in § 4.

Since we focus on the situation where no assumption is made on the distribution of the
random effects, our approach requires that, at any risk time u, estimation of X

i
(u) does

not involve longitudinal covariate data beyond time u. This may result in a loss of efficiency
relative to models in which a parametric specification for the random effects is made. A
parametric specification provides the necessary structure for making use of these data;
see, for example, the  algorithm of Wulfsohn & Tsiatis (1997), where the random effects
are assumed normally distributed.

If one wishes to relax parametric assumptions, an alternative strategy to the one pro-
posed here would be a likelihood-based approach such as an extension of the semipara-
metric method proposed by Hu et al. (1998, § 3.2) in the case of time-independent X

i
,

where the distribution of true X
i
is restricted only in the sense that it is required to have

a ‘smooth’ density. However, in the presence of additional covariates Z
i
, the likelihood

approach requires modelling of the joint distribution of X
i
and Z

i
and can entail a signifi-

cant computational challenge.
Our estimator is semiparametric in the sense that the random effects distribution is left

unspecified. The semiparametric efficiency bound and construction of a semiparametric
efficient estimator are open problems.
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A

T echnical details

Derivation of (4). After some straightforward algebra, (3) can be expressed as

{l0 (u) du exp (gTZ
i
)}dN

i
(u) expq−S2

i
(u, c, s2)

2s2h
i
(u)
+cS

i
(u, c, s2) dN

i
(u)−

c2s2h
i
(u) dN

i
(u)

2 r
×K{u, X

i
(u), S

i
(u, c, s2)}, (A1)

where

K{u, X
i
(u), S

i
(u, c, s2 )}={2ps2h

i
(u)}−D expq2X

i
(u)S

i
(u, c, s2 )−X2

i
(u)

2s2h
i
(u) r .

The conditional probability pr{dN
i
(u)=1 |S

i
(u, c, s2 )=s, Z

i
, t
i
(u), Y

i
(u)=1} is

∆ pr{dN
i
(u)=1, S

i
(u, c, s2 )=s |a

i
, Z

i
, Y

i
(u)=1}p{a

i
|Z

i
, t
i
(u), Y

i
(u)=1} da

i
num+∆ pr{dN

i
(u)=0, S

i
(u, c, s2 )=s |a

i
, Z

i
, Y

i
(u)=1}p{a

i
|Z

i
, t
i
(u), Y

i
(u)=1} da

i
, (A2)

where ‘num’ denotes the numerator of (A2), and p{a
i
|Z

i
, t
i
(u), Y

i
(u)=1} is the density of a

i
con-

ditional on Z
i
, t
i
(u) and Y

i
(u). By (A1), the numerator of (A2) up to order du is

l0 (u) du exp (gTZ
i
) expq− s2

2s2h
i
(u)
+cs−

c2s2h
i
(u)

2 r P K{u, X
i
(u), s}p{a

i
|Z

i
, t
i
(u), Y

i
(u)=1} da

i

and the denominator up to order 1 is given by

expq− s2
2s2h

i
(u)r P K{u, X

i
(u), s}p{a

i
|Z

i
, t
i
(u), Y

i
(u)=1} da

i
.

Thus, (A2) is equal to l0 (u) du exp(gTZ
i
) exp{cs−c2s2h

i
(u)/2}+o

p
(du), which implies (4).

Consistency of s@ 2 in (13). If we define W
i
=A

i
a
i
+e

i
, where A

i
is the (m

i
×2) matrix with first

column all ones and second column t
i
, s@2 is the solution to the estimating equation

∑
n

i=1
I(m

i
>2){(W

i
−A

i
a@
i
)T(W

i
−A

i
a@
i
)−(m

i
−2)s2}=0,

where

a@
i
= (AT

i
A
i
)−1AT

i
W
i
=a

i
+ (AT

i
A
i
)−1AT

i
e
i
.

As

(W
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i
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)T(W

i
−A

i
a@
i
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i
{I
m
i

−A
i
(AT
i
A
i
)−1AT

i
}e
i
,

that this is an unbiased estimating equation for s2 follows by noting that

E(I(m
i
>2)[eT

i
{I
m
i

−A
i
(AT
i
A
i
)−1AT

i
}e
i
− (m
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−2)s2])
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, C
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)}. (A3)

By the assumption on e
i
in (1) and standard results on quadratic forms,

E[I(m
i
>2)eT

i
{I
m
i

−A
i
(AT
i
A
i
)−1AT

i
}e
i
|T
i
, C

i
, a
i
, Z

i
, t
i
, m

i
]=I(m

i
>2)(m

i
−2)s2,

showing that the inner conditional expectation in (A3) is zero, as required.
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Expression for the ‘sandwich’ variance of the conditional score estimator for the model of § 5. Here
there is no time-independent covariate, so g=0. The derivatives of (5),

L
c
(c, s2)= ∑

n

i=1
P ∂/∂c{Si (u, c, s2 )−S9 (u, c, 0, s2 )} dN

i
(u),

L
s2

(c, s2 )= ∑
n

i=1
P ∂/∂s2{Si (u, c, s2)−S9 (u, c, 0, s2 )} dN

i
(u)

are straightforward to compute. If we let (c@, s@ 2 ) denote the estimators, the variance estimator is
given by

L−2
c

(c@, s@2 ) ∑
n

i=1
ACP {Si (u, c@, s@2 )−S9 (u, c@, 0, s@ 2 )} qdN

i
(u)−dN(u)

E
0i
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+
L
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(c@, s@ 2 ){Ri
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−2)s@ 2}I(mi
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Wn
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I(m
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>2)(m
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