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In the analysis of cluster data, the regression coefficients are frequently
assumed to be the same across all clusters. This hampers the ability to study
the varying impacts of factors on each cluster. In this paper, a semiparametric
model is introduced to account for varying impacts of factors over clusters by
using cluster-level covariates. It achieves the parsimony of parametrization
and allows the explorations of nonlinear interactions. The random effect in
the semiparametric model also accounts for within-cluster correlation. Local,
linear-based estimation procedure is proposed for estimating functional coef-
ficients, residual variance and within-cluster correlation matrix. The asymp-
totic properties of the proposed estimators are established, and the method for
constructing simultaneous confidence bands are proposed and studied. In ad-
dition, relevant hypothesis testing problems are addressed. Simulation stud-
ies are carried out to demonstrate the methodological power of the proposed
methods in the finite sample. The proposed model and methods are used to
analyse the second birth interval in Bangladesh, leading to some interesting
findings.

1. Introduction.

1.1. Preamble. Longitudinal data analysis has attracted considerable attention
in the literature. For longitudinal data, the data from the same cluster are dependent
with each other. As far as modeling is concerned, this within-cluster dependency
is usually accounted by random cluster effects and modeled by a within-cluster
correlation matrix. The within-cluster correlation matrix plays a very important
role in longitudinal data analysis, as it can be used to improve the efficiency of
the estimation. Actually, most of the existing literature is devoted to addressing
how to make use of within-cluster correlation matrix to improve the estimation for
unknown parameters or functions.

The methodology for parametric based longitudinal data analysis is quite ma-
ture (see, e.g., Diggle, Heagerty, Liang and Zeger [6] and the references therein).
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The situation with nonparametric based longitudinal data analysis is very differ-
ent. One of the main difficulties is how to incorporate the within cluster correlation
structure into the estimation procedure. Lin and Carroll [18] recommend that we
ignore the within-cluster correlation when kernel smoothing is employed. Welsh,
Lin and Carroll [27] investigate the possibility of using weighted least squares
based on the within-cluster correlation structure when spline smoothing is used.
They suggest that the weighted least squares estimator based on the true within-
cluster correlation structure works better than the estimator based on working in-
dependence when spline smoothing is used. Other literature about nonparametric
longitudinal regression includes Zeger and Diggle [31], Brumback and Rice [2],
Hoover et al. [14], Wu et al. [28], Martinussen and Scheike [21], Chiang et al. [3],
Huang et al. [15], Wang [25], Fan and Li [8], Chiou and Müller [4], Wang, Carroll
and Lin [26], Qu and Li [23], Lin and Carroll [19], Sun et al. [24] and Fan and Wu
[11], among others.

Most of the literature assumes that the regression parameters or functions are
the same across all clusters. However, when the regression effects of some partic-
ular clusters are of interest, it is unreasonable to assume the regression parameters
or functions are the same across all clusters. The interactions of regression effects
with clusters are of interest. A naive method to address this is to let the regression
coefficients or functions vary freely over clusters. However, this naive method will
not be parsimonious, particularly when the number of clusters is large and the issue
of estimability arises. In addition, the within-cluster dependency may be addressed
by the random effect. This leads us to model these cluster-dependent regression co-
efficients or functions by using cluster level variables. It addresses, simultaneously,
the parsimony and cluster dependency of modeling.

1.2. A motivating example. The data that stimulates this project is from
Bangladesh and concerns the second birth interval, which is defined as the duration
between the first birth and the second birth. The data comes from the Bangladesh
Demographic and Health Survey (BDHS) of 1996–1997 (Mitra et al. [22]), which
is a cross-sectional, nationally representative survey of ever-married women aged
between 10 and 49. Of interest is how some factors that are commonly found to be
associated with contraceptive use in Bangladesh, such as education and religion,
affect the second birth interval. The data were collected from different districts
(clusters) in the six different divisions of Bangladesh. Bangladesh is divided into
six administrative divisions: Barisal, Chittagong, Dhaka, Kulna, Rajshahi and Syl-
het. The data from the same cluster are correlated with each other, due to cluster-
level factors such as cultural norms and access to family planning programs. Of
particularly interest is how the factors affect the second birth interval in some par-
ticular clusters. For example, how these factors affect the second birth interval in
a rural area in Chittagong division.

Some of the factors of interest are defined on the individual level, such as edu-
cation, and are called individual level variables. Some of the factors are defined on
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the cluster level, such as type of region of residence, and are called cluster-level
variables. We use yij to denote the length of the second birth interval of the j th
woman in the ith cluster, Xij to denote the vector of the corresponding individual
level variables and Zi to denote the vector of the cluster level variables.

Frequently, the linear model

yij = XT
ij a + ZT

i β + εij , j = 1, . . . , ni, i = 1, . . . ,m(1.1)

would be used to fit the data. The within-cluster dependency would be ac-
counted by εij , j = 1, . . . , ni being correlated. The covariance matrix of εi =
(εi1, . . . , εini

)T can be incorporated into the estimation procedure.
Model (1.1) would be fine if the interest focuses only on the global impact of

the factors. However, if the picture for a particular cluster is of interest, (1.1) would
not be adequate. Let’s take education as an example. It is evident that the impact
of education in the cluster where Muslims predominate would be different from
the cluster where Hindus predominate. To take the difference of this kind into
account, we may relax the assumption imposed on (1.1) and allow the regression
coefficients to vary over clusters. This leads to

yij = XT
ij ai + ZT

i β + εij , j = 1, . . . , ni, i = 1, . . . ,m.(1.2)

While it accounts for the varying impact across clusters, (1.2) is not parsimonious.
In fact, (1.2) involves pm + q regression coefficients, where p and q are the di-
mensions of Xij and Zi , respectively. When the number of clusters m is large,
there would be too many unknown parameters in model (1.2) for us to get reason-
ably accurate estimators. In longitudinal data analysis, we often come across large
number of clusters. For example, there are 296 clusters in the second birth interval
data set that stimulates this paper. If we use (1.2) to fit the data, we would face
296p + q unknown coefficients, and would certainly pay a big price on variances
of the resulting estimators.

A sensible approach is to model the factor loadings ai by using cluster-level
variables. A reasonable model is{

yij = XT
ij ai + ZT

i β + εij , j = 1, . . . , ni , i = 1, . . . ,m,
ai = α0 + AZi + ei , i = 1, . . . ,m,

(1.3)

where A = (α1, . . . ,αq), and ei (i = 1, . . . ,m) are random effects with mean zero.
This achieves, simultaneously, the parsimony and within-cluster dependency, and
the cluster-dependent factor loadings are allowed. In fact, the number of unknown
coefficients in model (1.3) is p(q + 1) + q , which is usually much smaller than
pm + q .

A further extension of model (1.3) is to let the factor loadings vary with time
as the society and technology evolve with time. By allowing the impacts varying
with time, we come up with the model{

yij = XT
ij ai (Uij ) + ZT

i β(Uij ) + εij ,

ai (Uij ) = α0(Uij ) + A(Uij )Zi + ei ,
(1.4)
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where Uij is time, A(Uij ) = (α1(Uij ), . . . ,αq(Uij )). Model (1.4) is the model that
we are going to address. It is a kind of varying coefficient model (Xia and Li [30],
Fan and Zhang [9, 10], Zhang et al. [32] and Li and Liang [17]). To make (1.4)
more mathematically clear and general, from now on, Uij is not necessarily to be
time, and it can be any continuous covariate. This allows the nonlinear interac-
tion of individual variables Xij and cluster level variable Zi with Uij . We assume
that εij is measurement error with mean 0 and variance σ 2 and independent of
Xij , Uij and Zi , and that {ei} are i.i.d. random effects with mean 0p×1 and co-
variance matrix � and independent of all other random variables. We assume that
{(XT

ij ,Uij )
T } are i.i.d., and so are {Zi}.

In (1.4), β(·), αk(·), k = 0, . . . , q , are unknown functions to be estimated, and
so are σ 2 and �. Although (1.4) is stimulated by the second birth interval data,
the modeling concept and estimation methodology, which this paper aims to ex-
plore, are equally applicable to other kinds of data, such as the data obtained from
medicine and engineering.

The paper is organized as follows. We begin, in Section 2, with a description of
the estimation procedure for the proposed model (1.4). In Section 3, we establish
the asymptotic properties of the proposed estimators. Hypothesis test associated
with model (1.4) is discussed in Section 4. The performance of the method is
assessed by a simulation study in Section 5. In Section 6, we use the proposed
model and estimation procedure to analyse the data on the second birth intervals
in Bangladesh and explore how the impacts of the factors of interest on the length
of second birth intervals in some particular clusters change over time.

2. Estimation procedure. In this section, we are going to construct the esti-
mation procedure for the proposed model (1.4). We estimate the unknown func-
tional coefficients first, then σ 2 and �.

2.1. Estimation of functional coefficients. By Taylor’s expansion, we have

αk(Uij ) ≈ αk(u) + α̇k(u)(Uij − u), k = 0, . . . , q,

β(Uij ) ≈ β(u) + β̇(u)(Uij − u),

when Uij is in a small neighborhood of u, which leads to the local least squares
estimation procedure

L =
m∑

i=1

ni∑
j=1

(
yij − XT

ij

[ q∑
k=0

{bk + ck(Uij − u)}zik

]
(2.1)

− ZT
i {J + d(Uij − u)}

)2

Kh(Uij − u),

where zi0 = 1, Kh(·) = K(·/h)/h, h is a bandwidth, and K(·) is a kernel function.
We minimize L, with respect to J, d, bk , ck , k = 0, . . . , q , to get the minimizer Ĵ,
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d̂, b̂k , ĉk , k = 0, . . . , q . We use b̂k to estimate αk(u) and Ĵ to estimate β(u). From
now on, we denote b̂k by α̂k(u) and Ĵ by β̂(u).

Let

xi = (Xi1, . . . ,Xini
)T , �i = (xi{(1,ZT

i ) ⊗ Ip},1ni
⊗ ZT

i

)
,

� = (�T
1 , . . . ,�T

m)T , X = (�,U1�),

Ui = diag
(
(U11 − u)i, . . . , (U1n1 − u)i, . . . , (Um1 − u)i, . . . , (Umnm − u)i

)
,

W = diag
(
Kh(U11 − u), . . . ,Kh(U1n1 − u), . . . ,

Kh(Um1 − u), . . . ,Kh(Umnm − u)
)
,

Y = (y11, . . . , y1n1, . . . , ym1, . . . , ymnm),

where Ip is s size p identity matrix and 1d is a d dimensional vector with each
component being 1. By a simple calculation, we have

α̂k(u) = AkY (k = 0, . . . , q), β̂(u) = BY,(2.2)

where

Ak = (eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1XT W,

B = (0q×((q+1)p), Iq,0q×s

)
(XT WX)−1XT W

with ek,p denoting the unit vector of length p with 1 at position k, 0p×q the size
p × q matrix with all entries 0 and s = (q + 1)p + q .

In practice, some coefficients in (1.4) are constant. Under such a situation,
model (1.4) becomes a semivarying coefficient mixed effects model. An interesting
question is how to estimate the constant coefficients. Fan and Zhang [9] studied a
varying coefficient model with coefficients having different degrees of smoothness.
They proposed a two-stage estimation procedure. Based on their idea, we propose
a very simple estimation procedure for the unknown constant coefficients. Suppose
that the j th component αkj (u) of αk(u) is a constant that is denoted by Ckj . We
first pretend that αkj (u) is a function and get the estimator α̂kj (Uil) of αkj (u) at
Uil , l = 1, . . . , ni , i = 1, . . . ,m, by the above estimation procedure. Then, take the
average of α̂kj (Uil) over l = 1, . . . , ni , i = 1, . . . ,m. This average

Ĉkj = 1

n

m∑
i=1

ni∑
l=1

α̂kj (Uil), n =
m∑

i=1

ni(2.3)

is our estimator of Ckj . We will show, later, that the convergence rate of this estima-
tor is of order OP (n−1/2), when the bandwidth is properly selected. This provides
a simple method for estimating the constant coefficients.

A more efficient estimate for the constant coefficient can be obtained by using
the profile likelihood method (see, e.g., Lam and Fan [16]). For simplicity, we do
not pursue this further.
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2.2. Estimation of σ 2 and �. Let ãi (Uij ) = α0(Uij ) +∑q
k=1 αk(Uij )zik and

ri = (ri1, . . . , rini
)T where rij = yij − XT

ij ãi (Uij ) − ZT
i β(Uij ). Correspondingly,

let âi (·) and r̂i be their substitution estimators. Set

xi = (Xi1, . . . ,Xini
)T and Pi = xi (xT

i xi )
−1xT

i .

For each given i, we have the linear model

ri = xiei + εi , εi = (εi1, . . . , εini
)T .(2.4)

The residual sum of squares of this linear model

rssi = rT
i (Ini

− Pi)ri

would be the raw material for estimating σ 2. The degree of freedom of rssi is
ni − p. Let RSSi be rssi with ri replaced by r̂i . Pooling all {RSSi} together leads
to the estimator of σ 2 as

σ̂ 2 = (n − mp)−1
m∑

i=1

RSSi , n =
m∑

i=1

ni.

Finally, we estimate �. From (2.4), we have the least squares estimator of ei as

ẽi = (xT
i xi )

−1xT
i ri = ei + (xT

i xi )
−1xT

i εi ,

which leads to
m∑

i=1

ẽi ẽT
i =

m∑
i=1

eieT
i +

m∑
i=1

(xT
i xi )

−1xT
i εiε

T
i xi (xT

i xi )
−1 +

m∑
i=1

(xT
i xi )

−1xT
i εieT

i

+
m∑

i=1

eiε
T
i xi (xT

i xi )
−1.

The last two terms are of order OP (m1/2), so they are negligible. Hence,

m−1
m∑

i=1

eieT
i ≈ m−1

{
m∑

i=1

ẽi ẽT
i −

m∑
i=1

(xT
i xi )

−1xT
i εiε

T
i xi (xT

i xi )
−1

}

≈ m−1

{
m∑

i=1

ẽi ẽT
i − σ 2

m∑
i=1

(xT
i xi )

−1

}
.

Therefore, we have

�̂ = m−1
m∑

i=1

êi êT
i − m−1σ̂ 2

m∑
i=1

(xT
i xi )

−1(2.5)

to estimate �. In (2.5), êi is ẽi with ri replaced by r̂i .
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3. Asymptotic properties. In this section, we are going to present the asymp-
totic properties of the proposed estimators. For any p ×p symmetric matrix A, we
use vech(A) to denote the vector consisting of all elements on and below the diag-
onal of the matrix A, and we use vec(A) to denote the vector by simply stacking
the column vectors of matrix A below one another. Obviously, there exists a unique
p2 × p(p + 1)/2 matrix Rp such that vec(A) = Rp vech(A).

We first introduce some notation. For any function or function vector g(·), we
use ġ(·) and g̈(·) to denote its first and second derivatives, respectively. We use
D to denote the collections of all individual and cluster level covariates. Let μi =∫

t iK(t) dt , νi = ∫ t iK2(t) dt , and let

�(u) = E{(XT ,ZT ⊗ XT ,ZT )T (XT ,ZT ⊗ XT ,ZT )|U = u}
=
(

�1(u) �2(u)

�2(u)T �3(u)

)
,

where �1(u) and �3(·) are, respectively, p(q +1)×p(q +1) and q ×q submatrix
of �(u). Without loss of generality, we will assume that μ0 = 1.

Our main asymptotic results are presented through the following 6 theorems.
We leave the proofs of these theorems to the Appendix. The first two theorems
give the asymptotic normality of the estimated functional coefficients.

THEOREM 1. Under the conditions (1)–(6) in the Appendix, when nh5 is
bounded, for k = 0, . . . , q , we have√

nhf (u)

{
α̂k(u) − αk(u) − h2 μ2

2
α̈k(u)

}
D−→ Np

(
0p×1,

ν0
{
eT
(k+1),(q+1) ⊗ Ip

}[σ 2	1(u)−1 + 
1(u)]{e(k+1),(q+1) ⊗ Ip

})
,

where

	1(u) = �1(u) − �2(u)�3(u)−1�2(u)T , 
1(u) = ϒ1(u)�1(u)ϒ1(u)T ,

ϒ1(u) = (	1(u)−1,	2(u)), 	2(u) = −	1(u)−1�2(u)�3(u)−1

and

�1(u) = E{XT �X(XT ,ZT ⊗ XT ,ZT )T (XT ,ZT ⊗ XT ,ZT )|U = u}.
THEOREM 2. Under the conditions (1)–(6) in Appendix, when nh5 is bounded,

we have√
nhf (u)

{
β̂(u) − β(u) − h2 μ2

2
β̈(u)

}
D−→ Nq

(
0q×1, ν0[σ 2	3(u) + 
2(u)]),

where 	3(u) = �3(u)−1 + �3(u)−1�2(u)T 	1(u)−1�2(u)�3(u)−1, 
2(u) =
ϒ2(u)�1(u)ϒ2(u)T and ϒ2(u) = (	2(u)T ,	3(u)).
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We now present the asymptotic normality for the parametric component. To
present the asymptotic property of σ 2, we assume that the following limits exist
and are finite: c1 = limm→∞ n/(n − mp), c2 = limm→∞ m/(n − mp) and

γ = plim
n→∞

(n − mp)−1
m∑

i=1

ni∑
j=1

[XT
ij (x

T
i xi )

−1Xij ]2,

where “plim” denotes convergence in probability.

THEOREM 3. Under the conditions (1)–(7) in the Appendix, when nh8 → 0,
we have

√
n{σ̂ 2 − σ 2} D−→ N

(
0,2σ 4c1(c1 − 1 − γ ) + var(ε2

11)c1(2 − c1 + γ )
)
.

Theorem 3 suggests the estimator σ̂ 2 is of convergence rate OP (n−1/2), which
is the optimal convergence rate of the parametric estimator.

Additional notation is needed for presenting the asymptotic normality of �.
Write

�1 = plim
m→∞

m−1
m∑

i=1

[(xT
i xi )

−1],

�2 = plim
m→∞

m−1
m∑

i=1

[(xT
i xi )

−1 ⊗ (xT
i xi )

−1],

�3 =
⎛⎜⎝ � ⊗ �1(1) + �1 ⊗ �(1)

...

� ⊗ �1(p) + �1 ⊗ �(p)

⎞⎟⎠ ,

where �1(r),�(r) (r = 1, . . . , p) denote the r th row of �1,�, respectively. Let

�4 = plim
m→∞

m−1
m∑

i=1

ni∑
j=1

[vec((xT
i xi )

−1XijX
T
ij (x

T
i xi )

−1)

× vec((xT
i xi )

−1XijX
T
ij (x

T
i xi )

−1)T ],

�5 = plim
m→∞

m−1
m∑

i=1

[(xT
i xi )

−1xT
i P̃ixi (xT

i xi )
−1],

where P̃i is a diagonal matrix generated from the diagonal elements of Pi .

THEOREM 4. Under the conditions (1)–(7) in Appendix, when nh8 → 0, we
have

√
nvech(�̂ − �)

D−→ Nr

(
0r×1, (1/c2 + p)(RT

p Rp)−1RT
p �Rp(RT

p Rp)−1),
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where r = p(p + 1)/2 and

� = E{(e1eT
1 ) ⊗ (e1eT

1 )} − vec(�)vec(�)T + 2σ 4�2

+ σ 2{� ⊗ �1 + �1 ⊗ � + �3}
+ [var(ε2

11) − 2σ 4]{�4 − c2[2 vec(�1)vec(�1)
T

− vec(�1)vec(�2)
T − vec(�2)vec(�1)

T ]}
+ {2σ 4c1(c1 − 1 − γ ) + var(ε2

11)c1(2 − c1 + γ )}vec(�1)vec(�1)
T .

Theorem 4 shows that the estimator �̂ also achieves the convergence rate of
OP (n−1/2).

THEOREM 5. When αkj (u) is a constant, under the conditions (1)–(6) and (8)
in the Appendix and nh4 → 0, we have
√

n{Ĉkj − Ckj }
D−→ N

(
0, eT

kp+j,((q+1)p){σ 2E[	1(U)−1] + E[
1(U)] + �2}ekp+j,((q+1)p)

)
,

where

�2 = plim
n→∞

1

n

m∑
i=1

ni∑
l=1

ni∑
r=1,r �=l

{ϒ1(Uil)E[XT
il�Xir�il�

T
ir |Uil,Uir ]ϒ1(Uir)

T },

with �T
ij = (XT

ij ,Z
T
i ⊗ XT

ij ,Z
T
i ) being the j th row of matrix �i .

When the j th (j = 1, . . . , q) component βj (u) of β(u) is a constant, Theorem 5
applies to its estimator as well, except that the variance is

eT
j,q{σ 2E[	3(U)−1] + E[
2(U)] + �3}ej,q,

where

�3 = plim
n→∞

1

n

m∑
i=1

ni∑
l=1

ni∑
r=1,r �=l

{ϒ2(Uil)E[XT
il�Xir�il�

T
ir |Uil,Uir ]ϒ2(Uir)

T }.

THEOREM 6. Under the conditions (1)–(6), (8) and (9) in the Appendix, with
K(t) having a compact support [−c0, c0] and h = n−ρ,1/5 ≤ ρ < 1/3 for all
u ∈ [a, b], we have

P

((−2 log{h/(b − a)})1/2

×
{

sup
u∈[a,b]

∣∣∣∣ α̂kj (u) − αkj (u) − bias(α̂kj (u)|D)

[var{α̂kj (u)|D}]1/2

∣∣∣∣− ωn

}
< x

)
→ exp

{−2 exp{−x}},
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where

ωn = (−2 log{h/(b − a)})1/2

+ 1

(−2 log{h/(b − a)})1/2

[
log

K2(c0)

ν0π1/2 + 1

2
log log{(b − a)/h}

]
if K(c0) �= 0 and

ωn = (−2 log{h/(b − a)})1/2 + 1

(−2 log{h/(b − a)})1/2 log
{

1

4ν0π

∫
(K̇(t))2 dt

}
if K(c0) = 0, K(t) is absolutely continuous and K2(t), (K̇(t))2 are integrable on
(−∞,+∞).

REMARK. Theorem 6 gives the distribution of the maximum discrepancy be-
tween the estimated functional coefficient and the true coefficient. It is the basis
for constructing the hypothesis test or confidence band. Theorem 6 also applies to
the estimator of any component of β(·).

4. Confidence bands and hypothesis test. In this section, we will investigate
how to construct the confidence bands for the functional coefficients in model
(1.4).

For model (1.4), we often wish to know if an estimated functional coefficient is
significantly different from zero or if the estimated functional coefficient is really
varying. More generally, we wish to test

H0 :αkj (u) = α0(u) ←→ H1 :αkj (u) �= α0(u),(4.1)

where α0(u) is a specific function. This kind of nonparametric testing problem can
be conveniently handled by using the generalized likelihood ratio method (Fan,
Zhang and Zhang [12]). Instead, our test statistics will be based on the constructed
confidence bands.

As the proposed confidence bands and test statistics involve the estimation of the
biases and variances of the proposed estimators of the functional coefficients, we
first construct the estimation procedure for the biases and variances. Throughout
this paper, for any functional vector g(u), we use g(i)(u) to denote the ith derivative
of g(u).

4.1. Estimation for bias and variance. Following Fan and Gijbels [7], by
(2.2), we have, for k = 0, . . . , q, that{

bias(α̂k(u)|D) = (eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1XT WR,

bias(β̂(u)|D) = (0q×((q+1)p), Iq,0q×s

)
(XT WX)−1XT WR,

(4.2)
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where R = (R11, . . . ,R1n1, . . . ,Rm1, . . . ,Rmnm)T with

Rij = XT
ijAi(Uij ) + ZT

i {β(Uij ) − β(u) − β̇(u)(Uij − u)},

Ai(Uij ) =
q∑

k=0

{αk(Uij ) − αk(u) − α̇k(u)(Uij − u)}zik, zi0 = 1.

By Taylor’s expansion, we have

αk(Uij ) − αk(u) − α̇k(u)(Uij − u)

≈ 2−1α̈k(u)(Uij − u)2 + 6−1α
(3)
k (u)(Uij − u)3,

β(Uij ) − β(u) − β̇(u)(Uij − u)

≈ 2−1β̈(u)(Uij − u)2 + 6−1β(3)(u)(Uij − u)3.

This leads to

R ≈ (2−1U2�,6−1U3�)
(
θ̈(u)T , θ (3)(u)T

)T
,(4.3)

where θ(u) = (α0(u)T , . . . ,αp(u)T ,β(u)T )T . The estimators of θ̈(u) and θ (3)(u)

can be easily obtained by using local cubic fit with an appropriate pilot bandwidth
h∗[= O(n−1/7)] in Section 2.1, which is optimal for estimating θ̈(u). We denote

the estimators by ˆ̈θ(u) and θ̂
(3)

(u). Substituting them into (4.3), we obtain R̂ and,
hence, estimated biases b̂ias(α̂k(u)|D) and b̂ias(β̂(u)|D).

We now derive an estimator of variance of α̂k(u) and β̂(u). We notice that the
estimators are linear in Y , according to (2.2). Hence, we need only to estimate
var(Y ). A natural estimator is

v̂ar(Y |D) = σ̂ 2In + diag(x1�̂xT
1 , . . . ,xm�̂xT

m).

This, together with (2.2), give us the estimators

v̂ar(α̂k(u)|D) = Akv̂ar(Y |D)Ak and v̂ar(β̂(u)|D) = Bv̂ar(Y |D)B,

with Ak and B defined in (2.2).

4.2. Confidence bands and hypothesis testing. We first state the theorem,
based on which the confidence bands and hypothesis tests are constructed.

THEOREM 7. Under the conditions (1)–(9) in the Appendix, with K(t) having
a compact support [−c0, c0] and h = n−ρ,1/5 ≤ ρ < 1/3. Furthermore, if α

(3)
kj (·)

is continuous on [a, b] and the pilot bandwidth h∗ is of order n−1/7, then, for all
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u ∈ [a, b], we have

P

((−2 log{h/(b − a)})1/2

×
{

sup
u∈[a,b]

∣∣∣∣ α̂kj (u) − αkj (u) − b̂ias(α̂kj (u)|D)

[v̂ar{α̂kj (u)|D}]1/2

∣∣∣∣− ωn

}
< x

)
→ exp

{−2 exp{−x}},
where ωn is exactly the same as that in Theorem 6.

REMARK. If the component of β(3)(·) is continuous on [a, b], then Theorem 7
applies to its estimator as well.

Based on Theorem 7, the 1 − α confidence bands of αkj (u) can be easily con-
structed as (

α̂kj (u) − b̂ias(α̂kj (u)|D) ± �1,α(u)
)
,

where

�1,α(u) = (ωn + [log 2 − log{− log(1 − α)}](−2 log{h/(b − a)})−1/2)
× {v̂ar(α̂kj (u)|D)}1/2.

It is worthwhile to mention that Xia [29] investigated bias-corrected confidence
bands for univariate nonparametric regression.

By Theorem 7, hypothesis (4.1) can be tested by using the test statistic

(−2 log{h/(b − a)})1/2
{

sup
u∈[a,b]

∣∣∣∣ α̂kj (u) − α0(u) − b̂ias(α̂kj (u)|D)

[v̂ar{α̂kj (u)|D}]1/2

∣∣∣∣− ωn

}
and rejecting H0 when the test statistic exceeds the asymptotic critical value
cα = − log{−0.5 log(1 − α)}. Similarly, we may want to ask whether a specific
functional coefficient is really varying. This amounts to testing the composite null
hypothesis

H0 :αkj (u) = Ckj ←→ H1 :αkj (u) �= Ckj .(4.4)

Based on Theorems 5 and 7, we test the problem (4.4) by computing the statistic

(−2 log{h/(b − a)})1/2
{

sup
u∈[a,b]

∣∣∣∣ α̂kj (u) − Ĉkj − b̂ias(α̂kj (u)|D)

[v̂ar{α̂kj (u)|D}]1/2

∣∣∣∣− ωn

}
and rejecting H0 for large values of the test statistic.
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5. Simulation study. In this section, we are going to use a simulated example
to demonstrate how well the proposed estimation method works and examine how
much loss one could incur by ignoring the structure of ai (·) when the structure
holds. We first demonstrate the accuracy of the proposed estimators.

In model (1.4), we take p = 3, q = 2 and m = 100. The cluster sizes ni

(i = 1, . . . ,m) are generated by the integer part of |2ξ | + 6, ξ ∼ N(0,1). The
covariants {Xij } are independently generated from N(0, Ip), {Zi} are indepen-
dently generated from N(0, Iq) and {Uij } are independently generated from
U(0,1). We also set the random effect ei following the normal distribution
N(0p,�), measurement error εij following normal distribution N(0, σ 2) where
� = (σij ) = 0.52Ip and σ = 0.5. We set β0(u) = sin(2πu) (intercept term),
α0(u) = (α01(·), α02(·), α03(·))T a vector with each component being sin(2πu),
α1(u) = (α11(·), α12(·), α13(·))T a vector with each component being cos(2πu),
α2(u) = (α21(·), α22(·), α23(·))T a vector with each component being sin(πu),
β(u) = (β1(·), β2(·))T a vector with each component being sin(2πu).

For any function or functional vector g(·), if ĝ(·) is an estimator of g(·), we
define the mean integrated squared error (MISE) of ĝ(·) as

E

[∫
‖ĝ(u) − g(u)‖2 du

]
,

where ‖b‖2 = bT b and use it to assess the accuracy of the estimators.
The proposed estimation method is employed to estimate the functional coeffi-

cients. The kernel function is taken to be Epanechnikov kernel 0.75(1 − t2)+ and
bandwidth is taken to be 0.15. The MISEs of the proposed estimators of unknown
functions are presented in Table 1, based on 100 simulations. The MSEs of the
estimators of � and σ 2 are presented in Table 2. From Tables 1 and 2, we can see
the proposed estimators are quite accurate.

To visualize the accuracy of the proposed estimators, among the 100 simula-
tions, we single out the one with median performance and plot the estimated func-
tions together with their 95% confidence bands in Figure 1. It shows, again, that
the proposed estimators are very accurate.

Now, we turn to examine how much loss one could incur when ignoring the
structure of ai (·), namely, examining the gain of our model (1.4). We now assume
the cluster effects ei = 0. Given the sizes of the clusters in the above simulated

TABLE 1
The MISEs of the estimators

Estimator β̂0(·) α̂01(·) α̂02(·) α̂03(·) α̂11(·) α̂12(·)
MISE 0.013 0.019 0.019 0.020 0.019 0.020

Estimator α̂13(·) α̂21(·) α̂22(·) α̂23(·) β̂1(·) β̂2(·)
MISE 0.019 0.016 0.017 0.016 0.014 0.014
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TABLE 2
The MSEs of the estimators

Estimator σ̂11 σ̂12 σ̂13 σ̂22 σ̂23 σ̂33 σ̂ 2

MSE 0.0055 0.0013 0.0013 0.0052 0.0015 0.0054 0.0029

FIG. 1. The solid lines are the true curves, the dashed lines are the estimators, and the dotted lines
are 95% confidence bands.
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FIG. 2. The left panel is the plot of the RMISEs of a(·) against bandwidths, the middle panel is the
plot of the RMISEs of β(·), and the right panel is the density function of the estimated random effects
in real data analysis.

example, many clusters would be too small for one to estimate the corresponding
ai (·) when ignoring the structure of ai (·). So, we now assume all clusters share the
same size of 50, and keep the number of clusters 100. Except the change on the
sizes of the clusters and the assumption of ei = 0, all remain the same as the above
simulated example.

We use MISE1,i to denote the MISE of the estimator of ai (·) obtained by the
proposed estimation method and MISE2,i to denote the MISE of the estimator ob-
tained without using the structure of ai (·); that is, regarding ai (·) as a free unknown
function and estimating it based on the first part of model (1.4). The ratio

RMISE =
m∑

i=1

MISE1,i

/ m∑
i=1

MISE2,i

is used to assess the loss incurred on the estimation for a(·) = (a1(·), . . . ,am(·))
due to ignoring the structure of ai (·), i = 1, . . . ,m. We compute the RMISEs for
different bandwidths and plot the obtained RMISEs against the bandwidths in Fig-
ure 2. It is clear that the RMISE is almost 0 when the bandwidth is less than 0.3,
and it never goes beyond 0.25, which suggests the loss is significant. Similarly,
we define the RMISE for β(·) and plot the RMISEs against different bandwidths.
It again shows the loss incurred on the estimation for β(·) due to ignoring the
structure of ai (·), and i = 1, . . . ,m, is still significant.

6. Real data analysis. The data we study come from the Bangladesh Demo-
graphic and Health Survey (BDHS) of 1996–1997 (Mitra et al. [22]), which is a
cross-sectional, nationally representative survey of ever-married women aged be-
tween 10 and 49. The analysis is based on a sample of 8189 women nested within
296 primary sampling units, or clusters, with sample sizes ranging from 16 to 58.
We allow the hierarchical structure of the data by fitting a two-level model, with
women at level 1 nested within clusters at level 2. A further hierarchical level is
the administrative division. Bangladesh is divided into six administrative divisions:
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Barisal, Chittagong, Dhaka, Kulna, Rajshahi and Sylhet. Effects at this level are
represented in the model by fixed effects, since there are only six divisions.

The dependent variable yij is the duration in months between the first birth
and the second birth for the j th woman in the ith cluster. We consider several
covariates that are commonly found to be associated with fertility in Bangladesh.
The selected individual-level categorical covariates include the woman’s level of
education (none coded by 0 and primary or secondary plus coded by 1) denoted
by xij1, religion (Hindu coded by 1 and Muslim or other coded by 0) denoted
by xij2, first child (boy coded by 1) denoted by xij3. Xij = (xij1, xij2, xij3)

T .
Another individual-level covariate is the year of marriage (Uij ). We also consider
two cluster-level variables, administrative division and type of region of residence
(rural coded by 1 and urban coded by 0). We take urban as the reference, and the
differences between urban and rural clusters are modeled by dummy variables zi1.
We take Barisal as the reference, and the differences among the six administrative
divisions are modeled by a set of dummy variables zil , l = 2, . . . ,6.

The proposed model (1.4) is used to fit the data, and the proposed estimation
procedure is employed to estimate αj (·) = (αj1(·), αj2(·), αj3(·))T , j = 0, . . . ,6
and β(·) = (β1(·), . . . , β6(·))T . The kernel involved in the estimation is taken to be
Epanechnikov kernel, and the bandwidth is chosen to be 35% of the range of Uij .

First, we examine how strong the random effect on each cluster is. To this end,
for each cluster, we estimate the random effect of this cluster. The density function
of the norm of the random effects of all clusters is presented in Figure 2. It is
easy to see that the random effects are close to zero. This indicates that the within-
cluster correlation has been mainly accounted by the deterministic cluster effect in
(1.4).

As we mentioned before, if a coefficient is treated as a function when it is con-
stant, we would pay a price on the variances of the resulting estimators. Thus,
for each coefficient in the model, the proposed hypothesis test is employed to test
whether it is constant or not. The P-value for each coefficient is depicted in Table 3.
Table 3 shows that α01(·), α02(·), α32(·), α42(·), α52(·), β4(·) and β5(·) are non-
constant, and the others are constant. From now on, we use αij to denote constant
function αij (·) and βi for constant function βi(·).

The former indicates the presentness of their nonlinear interactions with the
year of marriage, while the latter shows no such interactions to be present.

The proposed estimation procedure is used to estimate the constant and func-
tional coefficients. The estimated constant coefficients and their standard errors
computed by the leave-one-cluster-out Jackknife are presented in Table 4, and the
estimated functional coefficients together with their 95% confidence bands are pre-
sented in Figure 3.

It is visible, from Table 4, that some constant coefficients are not significantly
apart from zero. This has some practical indications. For example, α41 (its esti-
mated value is −0.014 with standard error 0.016) not significantly apart from zero
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TABLE 3
The P-values of the coefficients being constant

Coefficient β0(·) α01(·) α02(·) α03(·) α11(·) α12(·)
P-value 0.102 0.005 0.008 0.248 0.094 0.217

Coefficient α13(·) α21(·) α22(·) α23(·) α31(·) α32(·)
P-value 0.082 0.074 0.213 0.060 0.618 0.038

Coefficient α33(·) α41(·) α42(·) α43(·) α51(·) α52(·)
P-value 0.283 0.235 0.031 0.135 0.263 0.020

Coefficient α53(·) α61(·) α62(·) α63(·) β1(·) β2(·)
P-value 0.052 0.052 0.148 0.269 0.372 0.174

Coefficient β3(·) β4(·) β5(·) β6(·)
P-value 0.069 0.035 0.023 0.073

indicates that the impact of eduction in the division of Kulna is not significantly
different from that in Barisal.

As explained in the section of introduction, the proposed modeling and estima-
tion methods mainly serve for the inference for a particular cluster. We are now
going to use a cluster in the rural area in Chittagong to illustrate how the proposed
method works.

Based on the model (1.4) and the estimators of the unknown coefficients in-
volved, we have the impact of education on the second birth interval in a rural area
in Chittagong

â1(U) = α̂01(U) + α̂11 + α̂21.

Similarly, we can get the impact of Hindu

â2(U) = α̂02(U) + α̂12 + α̂22

TABLE 4
Estimated constant coefficients

Coefficient β0 α03 α11 α12 α13 α21 α22
Estimate 3.530 0.016 −0.037 0.105 0.011 0.036 0.134
SE 0.004 0.005 0.010 0.004 0.003 0.013 0.006

Coefficient α23 α31 α33 α41 α43 α51 α53
Estimate 0.101 −0.060 0.042 −0.014 0.111 −0.091 0.104
SE 0.005 0.006 0.005 0.016 0.007 0.009 0.005

Coefficient α61 α62 α63 β1 β2 β3 β6
Estimate −0.048 0.171 −0.005 −0.043 −0.103 −0.022 −0.093
SE 4.149 0.010 0.007 0.002 0.004 0.004 0.006

Note: SE stands for standard error of the estimator.
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FIG. 3. The solid lines are the estimated functional coefficients, and dotted lines are the 95%
confidence bands.

and the impact of first child in this area

â3(U) = α̂03 + α̂13 + α̂23.

The functional coefficients â1(·) and â2(·) are presented in Figure 3. The second
one in the bottom panel in Figure 3 is â1(·), which shows that, in rural area of
Chittagong, even the educated women still have a shorter second birth interval than
the uneducated women in urban area in Barisal before 1970. This indicates that
administrative division and the type of region of residence play a very important
role in fertility behavior in Bangladesh before 1970. It is also noticeable that the
second birth intervals of the educated women are getting longer.

From the third one in the bottom panel in Figure 3, which is â2(·), we can
see that, even in rural areas in Chittagong, Hindus still have longer second birth
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intervals than Muslims even in the urban area in Barisal after 1970. This suggests
that religion plays an important role in fertility behavior in Bangladesh.

The impact â3(·) of the first child being a boy in Rural in Chittagong does not
vary with time. It is 0.128, which suggests that, even in the rural area of Chit-
tagong, the women with a first child being a boy still have longer second birth
intervals than the women with first child being a girl or dead even in the urban
area of Barisal. A possible interpretation is that, like many developing countries,
the Bangladesh culture always favors a boy.

APPENDIX

In this section, we will prove the asymptotic distributions of the proposed esti-
mators. For easy description, we write

ε = (εT
1 , . . . ,εT

m)T , x = diag(x1, . . . ,xm), e = (eT
1 , . . . , eT

m)T ,

θ̂(u) = (α̂0(u)T , α̂1(u)T , . . . , α̂q(u)T , β̂(u)T )T ,

τ (u) = {eT
(k+1),(q+1) ⊗ Ip

}[σ 2	1(u)−1 + ϒ1(u)�1(u)ϒ1(u)T ]{e(k+1),(q+1) ⊗ Ip

}
and

H =
(

1 0
0 h

)
⊗ Is,

where s = (q + 1)p + q is defined in (2.2).
Moreover, for any function g(u) on the interval [a, b], define ‖g‖∞ =

supu∈[a,b] |g(u)|, and, for any matrix A(u) = (aij (u))p×p , set

‖A‖∞ =
( p∑

i=1

p∑
j=1

‖aij‖2∞

)1/2

.

The following technical conditions are imposed to establish the asymptotic re-
sults:

(1) Eε4
11 < ∞,E‖e1‖4 < ∞,Ez4

j < ∞, Ex2d
i < ∞ for some d > 2, where

‖e1‖2 = eT
1 e1, zj denotes the j th element of Z and xi denotes the ith element

of X for j = 1, . . . , q, i = 1, . . . , p;
(2) α̈kj (·) is continuous in a neighborhood of u, for k = 0, . . . , q, j = 1, . . . , p,

where α̈kj (·) is the j th element of α̈k(·), and assume α̈kj (u) �= 0; similarly,
β̈l(·) is continuous in a neighborhood of u, for l = 1, . . . , q , where β̈l(·) is the
lth element of β(·), and β̈l(u) �= 0;

(3) The marginal density f (·) of U has a continuous derivative in some neighbor-
hood of u, and f (u) �= 0;

(4) Each element of �(u) and �1(u) are continuous in the neighborhood of u,
and �(u) is positive definite at the point u;

(5) The function K(t) is a symmetric density function with a compact support;
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(6) ni , i = 1, . . . ,m, are bounded. n → ∞, h → 0 and nh2 → ∞;
(7) E‖(xT

i xi )
−1‖4+δ < ∞ for some δ > 0 and i = 1, . . . ,m, where ‖ · ‖ denotes

Frobenium norm of a matrix;
(8) E[XT

il�Xir�il�
T
ir |Uil = u,Uir = v] is continuous in the neighborhood of u

and v respectively for r �= l, r, l = 1, . . . , ni, i = 1, . . . ,m;
(9) �(u) is bounded and has a continuous derivative on [a, b], τ(u) has a bounded

derivative on [a, b], 0 < ‖τ(u)‖∞ < ∞ and the first derivative of K(t) has a
finite number of sign changes over its support.

Note that �(u) is automatically positive semidefinite at the point u, so the sec-
ond part of condition (4) is easily satisfied.

To obtain the proof of the theorems, the following lemmas are required.

LEMMA 1. Let {Uij } be i.i.d. random variables, {ξij } be identically distrib-
uted and ξij be independent of ξlk for i �= l. Assume that the marginal density f (·)
of U has a continuous derivative in some neighborhood of u, E(ξ11|U11 = u) is
continuous in the neighborhood of u and E(ξ2

11) < ∞. Let K(·) be a bounded pos-
itive function with a bounded support. Then, when nh2 → ∞, for λ = 0,1,2, . . . ,

n−1
m∑

i=1

ni∑
j=1

ξij

(
h−1(Uij − u)

)λ
Kh(Uij − u)

= μλf (u)E(ξ11|U11 = u)
(
1 + oP (1)

)
.

PROOF. Let Sn,λ = n−1∑m
i=1
∑ni

j=1 ξij (h
−1(Uij − u))λKh(Uij − u) and

g(v) = E(ξ11|U11 = v). Then,

ESn,λ = n−1
m∑

i=1

ni∑
j=1

E
{
E
[
ξij

(
h−1(Uij − u)

)λ
Kh(Uij − u)|Uij

]}
=
∫

g(v)
(
h−1(v − u)

)λ
Kh(v − u)f (v) dv = μλf (u)g(u)

(
1 + o(1)

)
by continuity of both the density function f (·) and the conditional expectation
function g(·) in the neighborhood of u. Moreover, as K(·) is a bounded function
with a bounded support, |uλK(u)| is bounded. Then, by the Jensen inequality, it
follows that

var(Sn,λ) ≤ ES2
n,λ ≤ n−2

m∑
i=1

ni

ni∑
j=1

E
[
ξ2
ij

(
h−1(Uij − u)

)2λ
K2

h(Uij − u)
]

= O((nh2)−1).

Therefore,

Sn,λ = ESn,λ + OP

(√
var(Sn,λ)

)= μλf (u)E(ξ11|U11 = u)
(
1 + oP (1)

)
. �
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LEMMA 2. Let {ξn, n ≥ 1} be an independent sequence, with Eξn = 0 and

λE|ξj |3 exp(λ|ξj |) ≤ Eξ2
j

for any j ≥ 1 and some λ > 0. If
∑n

i=1 Eξ2
i → ∞, then, on a possibly en-

larged probability space, there exists a sequence of independent random variables
{ηn,n ≥ 1}, ηn ∼ N(0,var(ξn)) such that∣∣∣∣∣

n∑
i=1

ξi −
n∑

i=1

ηi

∣∣∣∣∣≤ 1

λC
log

(
n∑

i=1

var(ξi)

)
,

where C is a positive constant.

See Lin and Lu [20], page 129, Theorem 2.6.3.

PROOF OF THEOREM 1. It can be shown that√
nhf (u)

(
α̂k(u) − αk(u)

)
=
√

nhf (u)
(
eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1XT Wε

+
√

nhf (u)
(
eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1XT Wxe

+
√

nhf (u)
{(

eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1XT WE(Y |D)

− αk(u)
}

≡ Ln1 + Ln2 + Ln3,

as

Ln1 = n
(
eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1H

√
n−1hf (u){H−1XT Wε}

with √
n−1hf (u)E{H−1XT Wε} = 02s×1

and

n−1hf (u) cov{H−1XT Wε} = σ 2f (u)n−1hE{H−1XT W 2XH−1}
= σ 2f 2(u)

(
ν0 0
0 ν2

)
⊗ �(u)

(
1 + o(1)

)
.

Moreover, it follows from Lemma 1 that

1

n
(XT WX) = f (u)H

{(
1 0
0 μ2

)
⊗ �(u)

}
H
(
1 + oP (1)

)
.(A.1)
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Hence,

n
(
eT
(k+1),(q+1) ⊗ Ip,0p×(q+s)

)
(XT WX)−1H

= 1

f (u)

((
eT
(k+1),(q+1) ⊗ Ip,0p×q

)
�(u)−1,0p×s

)(
1 + oP (1)

)
.

By conditions (1), (5) and (6), Lindeberg–Feller Theorem, Slutsky’s theorem and
inverse of block matrix, it follows that

Ln1
D−→ Np

(
0p×1, ν0σ

2{eT
(k+1),(q+1) ⊗ Ip

}
	1(u)−1{e(k+1),(q+1) ⊗ Ip

})
.

Similarly, it can be shown that

Ln2
D−→ Np

(
0p×1, ν0

{
eT
(k+1),(q+1) ⊗ Ip

}

1(u)

{
e(k+1),(q+1) ⊗ Ip

})
.

Since Ln1 and Ln2 are independent, (Ln1 + Ln2) has the asymptotic distribution

Np

(
0p×1, ν0

{
eT
(k+1),(q+1) ⊗ Ip

}[σ 2	1(u)−1 + 
1(u)]{e(k+1),(q+1) ⊗ Ip

})
.

By similar arguments as establishment of Lemma 1 and condition (2), we find
that

XT WE(Y |D) − XT WX
(

θ(u)

θ̇(u)

)
(A.2)

=
( 1

2nh2μ2f (u)�(u)

0s×s

)
θ̈(u)
(
1 + oP (1)

)
.

This, together with (A.1), we get that

Ln3 = μ2

√
nh5f (u)

2
α̈k(u)

(
1 + oP (1)

)
.

Therefore, when nh5 is bounded, we obtain that√
nhf (u)

{
α̂k(u) − αk(u) − h2 μ2

2
α̈k(u)

}
D−→ Np

(
0p×1,

ν0
{
eT
(k+1),(q+1) ⊗ Ip

}[σ 2	1(u)−1 + 
1(u)]{e(k+1),(q+1) ⊗ Ip

})
.

�

PROOF OF THEOREM 2. It follows immediately from the proof of Theorem 1.
�
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PROOF OF THEOREM 3. Let �ri = r̂i − ri , Qi = Ini
− Pi and Q̃i be a diag-

onal matrix generated from the diagonal elements of Qi . Now,

σ̂ 2 = 1

n − mp

m∑
i=1

εT
i (Qi − Q̃i)εi + 1

n − mp

m∑
i=1

εT
i Q̃iεi

+ 1

n − mp

m∑
i=1

E[�rT
i |D]QiE[�ri |D]

+ 1

n − mp

m∑
i=1

{�ri − E[�ri |D]}T Qi{�ri − E[�ri |D]}

+ 2

n − mp

m∑
i=1

{�ri − E[�ri |D]}T QiE[�ri |D](A.3)

+ 2

n − mp

m∑
i=1

εT
i QiE[�ri |D]

+ 2

n − mp

m∑
i=1

εT
i Qi{�ri − E[�ri |D]}

≡ Jn1 + Jn2 + Jn3 + Jn4 + Jn5 + Jn6 + Jn7.

As Qi is an idempotent matrix and all the diagonal components of Qi − Q̃i are
equal to zero, by straightforward calculation, it follows that

E(Jn1|D) = σ 2

n − mp

m∑
i=1

tr(Qi − Q̃i) = 0,

E(Jn2|D) = σ 2

n − mp

m∑
i=1

tr(Q̃i) = σ 2,

cov(Jn1, Jn2|D) = E(Jn1Jn2 |D) = 2σ 4

(n − mp)2

m∑
i=1

tr
(
(Qi − Q̃i)Q̃i

)= 0

and

var(Jn1) = E{E(J 2
n1|D)} = 2σ 4

n − mp
E

{mp −∑m
i=1
∑ni

j=1[XT
ij (x

T
i xi )

−1Xij ]2

n − mp

}
,

var(Jn2) = E{E(J 2
n2|D)} − σ 4 = var(ε2

11)

(n − mp)2 E

m∑
i=1

ni∑
j=1

[1 − XT
ij (x

T
i xi )

−1Xij ]2.

As Jn1 = (n − mp)−1∑m
i=1{
∑ni

l=1
∑ni

r=1,r �=l X
T
il (x

T
i xi )

−1Xirεilεir} is a sum of
independent variables, by Lindeberg–Feller Theorem, it follows that

n1/2Jn1
D−→ N

(
0,2σ 4c1(c1 − 1 − γ )

)
.
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Similarly,

n1/2(Jn2 − σ 2)
D−→ N

(
0,var(ε2

11)c1(2 − c1 + γ )
)
.

Since the two terms are uncorrelated, we have that

n1/2(Jn1 + Jn2 − σ 2)
(A.4)

D−→ N
(
0,2σ 4c1(c1 − 1 − γ ) + var(ε2

11)c1(2 − c1 + γ )
)
.

In the following, we will show that the remaining parts from Jn3 to Jn7 in (A.3)
satisfy n1/2Jnl = oP (1), l = 3, . . . ,7.

By the conditional bias of θ̂(u) and law of large numbers, it follows from nh8 →
0 that

n1/2Jn3 = oP (1).(A.5)

Since 0 ≤ φT Qiφ ≤ φT φ for any i and ni dimensional vector φ, we have

E{|Jn4||D} ≤ (n − mp)−1
m∑

i=1

ni∑
j=1

�T
ij cov(θ̂(Uij )|D)�ij = OP ((nh)−1).

By the conditional bias and covariance matrix of θ̂(u), it follows that

E{|Jn5||D}

= h2μ2(1 + oP (1))

(n − mp)

×
{

m∑
i=1

ni−p∑
k=1

ni∑
j=1

ni∑
r=1

|QikjQikr�
T
ir θ̈(Uir)|

× E
[∣∣�T

ij

(
θ̂(Uij ) − E[θ̂(Uij )|D])∣∣|D]}

≤ h2μ2(1 + oP (1))

(n − mp)

×
m∑

i=1

(ni − p)

{
ni∑

r=1

(�T
ir θ̈(Uir))

2
ni∑

j=1

�T
ij cov(θ̂(Uij )|D)�ij

}1/2

= Op((n−1h3)1/2).

where
ni∑

l=1

QirlQivl = δrv =
{

1, r = v,
0, r �= v,
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and

E(J 2
n6|D) ≤ h4μ2

2σ
2

(n − mp)2

m∑
i=1

ni∑
j=1

[�T
ij θ̈(Uij )]2(1 + oP (1)

)
.

By a similar expression as (A.1) and straightforward calculation, we have

�T
ij [θ̂(Uij ) − E(θ̂(Uij )|D)]εir

= 1

nf (Uij )
�T

ij�(Uij )
−1

(
m∑

t=1

nt∑
l=1

�tlεtlKh(Utl − Uij )

)
εir

(
1 + oP (1)

)
.

Moreover, by boundness of the kernel function and independence of the random
errors, it can be shown that E{|Jn7||D} = OP ((nh)−1).

Therefore, using Markov inequality, when h → 0, nh2 → ∞ we get

n1/2Jnl = oP (1), l = 4, . . . ,7.(A.6)

Combing the results from (A.3) to (A.6), we have

n1/2{σ̂ 2 − σ 2} D−→ N
(
0,2σ 4c1(c1 − 1 − γ ) + var(ε2

11)c1(2 − c1 + γ )
)
. �

PROOF OF THEOREM 4. Using standard arguments as in the proof of Theo-
rem 3 and the law of large numbers, when nh2 → ∞, the conditional bias of �̂ is

bias{vec(�̂)|D} = OP (h4) + oP (n−1/2),

and, by straightforward but tedious calculation and Lindeberg–Feller Theorem,
when nh8 → 0, it follows that

n1/2 vec(�̂ − �)
D−→ Np2

(
0p2×1, (1/c2 + p)�

)
where

� = E{(e1eT
1 ) ⊗ (e1eT

1 )} − vec(�)vec(�)T + 2σ 4�2

+ σ 2{� ⊗ �1 + �1 ⊗ � + �3}
+ [var(ε2

11) − 2σ 4]{�4 − c2[2 vec(�1)vec(�1)
T

− vec(�1)vec(�2)
T − vec(�2)vec(�1)

T ]}
+ {2σ 4c1(c1 − 1 − γ ) + var(ε2

11)c1(2 − c1 + γ )}vec(�1)vec(�1)
T .

Therefore, we have

n1/2 vech(�̂ − �)

D−→ Np(p+1)/2
(
0(p(p+1)/2)×1, (1/c2 + p)(RT

p Rp)−1RT
p �Rp(RT

p Rp)−1).
�
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PROOF OF THEOREM 5. By simple calculation, it can be seen that

Ĉkj − Ckj

= 1

n

m∑
i=1

ni∑
l=1

eT
kp+j,2s

(
XT

(il)W(il)X(il)

)−1XT
(il)W(il)ε

+ 1

n

m∑
i=1

ni∑
l=1

eT
kp+j,2s

(
XT

(il)W(il)X(il)

)−1XT
(il)W(il)xe

+ 1

n

m∑
i=1

ni∑
l=1

eT
kp+j,2s

(
XT

(il)W(il)X(il)

)−1XT
(il)W(il)

×
{
E(Y |D) − X(il)

(
θ(Uil)

θ̇(Uil)

)}
≡ Tn1 + Tn2 + Tn3.

First, we obtain that E(Tn1) = 0, and, for any j , let

FT
il = eT

kp+j,2s

(
XT

(il)W(il)X(il)

)−1XT
(il)W(il), l = 1, . . . , ni, i = 1, . . . ,m,

and F = (F11, . . . ,F1n1, . . . ,Fm1, . . . ,Fmnm)T . Then, we have

var{Tn1|D} = σ 2

n2 1T
n FFT 1n

= σ 2

n2

m∑
i=1

ni∑
l=1

m∑
r=1

nr∑
v=1

eT
kp+j,2s

(
XT

(il)W(il)X(il)

)−1

× XT
(il)W(il)W(rv)X(rv)

(
XT

(rv)W(rv)X(rv)

)−1

× ekp+j,2s

= σ 2

n
eT
kp+j,((q+1)p)E{	1(U)−1}ekp+j,((q+1)p)

(
1 + oP (1)

)
,

by Lemma 1, straightforward but tedious calculation and the law of large numbers.
Therefore, using conditions (1), (5) and (6) and the Lindeberg–Feller Theorem, it
follows that

√
nTn1

D−→ N
(
0, σ 2eT

kp+j,((q+1)p)E{	1(U)−1}ekp+j,((q+1)p)

)
.

By the same way, it can be shown that
√

nTn2
D−→ N

(
0, eT

kp+j,((q+1)p){E[
1(U)] + �2}ekp+j,((q+1)p)

)
.

Moreover, combining the results similar to (A.1) and (A.2), we get

Tn3 = h2 μ2

2

[
1

n

m∑
i=1

ni∑
l=1

α̈kj (Uil)

](
1 + oP (1)

)
.
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Therefore, by independence of Tn1 and Tn2, when nh4 → 0, we have
√

n{Ĉkj − Ckj }
D−→ N

(
0, eT

kp+j,((q+1)p){σ 2E[	1(U)−1] + E[
1(U)] + �2}ekp+j,((q+1)p)

)
.

�

PROOF OF THEOREM 6. Obviously,

α̂kj (u) − αkj (u) − bias{α̂kj (u)|D} = eT
kp+j,2s(X

T WX)−1XT W(ε + xe) ≡ I1(u).

First of all, we approximate the random matrix I1(u). As f (·) and �(·) have
continuous derivatives on [a, b], by similar arguments as Lemma 1 and Neumann
series expansion, it follows that

nH(XT WX)−1H = f (u)−1S(u)−1 + OP

(
(nh2)−1/2 + h

)
(A.7)

uniformly for u ∈ [a, b] where S(u) =
(

μ0 0
0 μ2

)
⊗ �(u).

By the asymptotic normality of
√

n−1hf (u)H−1XT W(ε + xe) in the proof of
Theorem 1, we get that∥∥∥∥1

n
H−1XT W(ε + xe)

∥∥∥∥∞ = OP

(
1√
nh

)
.(A.8)

Therefore, using (A.7) and (A.8), it can be seen that∥∥∥∥I1(u) − 1

n
eT
kp+j,2sf (u)−1S(u)−1H−1XT W(ε + xe)

∥∥∥∥∞
(A.9)

= OP

(
(nh3/2)−1 + (nh−1)−1/2).

Next, we consider

I2(u) ≡ 1

n
eT
kp+j,2sf (u)−1S(u)−1H−1XT W(ε + xe)

=
m∑

i=1

ni∑
l=1

1

nf (u)
eT
kp+j,s�(u)−1�ilKh(Uil − u)(εil + XT

il ei ).

Let wil = eT
kp+j,s�(u)−1�il . Then,

{nhf (u)τ(u)−1ν−1
0 }1/2I2(u)

= {nhf (u)τ(u)ν0}−1/2
m∑

i=1

ni∑
l=1

K

(
Uil − u

h

)
wil(εil + XT

il ei )(A.10)

≡ {nhf (u)τ(u)ν0}−1/2I3(u).
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Divide interval [a, b] into n subintervals Jr = [dr−1, dr), r = 1,2, . . . ,

n − 1, Jn = [dn−1, b] where dr = a + b−a
n

r . Define Ũil = drI (Uil ∈ Jr), r =
1, . . . , n, and it is obvious that |Uil − Ũil| = O(n−1). Then, by law of large num-
bers for random sequence {wil(εil + XT

il ei )}, it follows that

I3(u) =
m∑

i=1

ni∑
l=1

[
K

(
Uil − u

h

)
− K

(
Ũil − u

h

)]
wil(εil + XT

il ei )

+
m∑

i=1

ni∑
l=1

K

(
Ũil − u

h

)
wil(εil + XT

il ei )

(A.11)

= OP (h−1) +
m∑

i=1

ni∑
l=1

K

(
Ũil − u

h

)
wil(εil + XT

il ei )

≡ OP (h−1) + I4(u)

uniformly for u ∈ [a, b]. By the definition of Ũil , we have that

I4(u) =
n∑

r=1

K

(
dr − u

h

) m∑
i=1

ni∑
l=1

I (Uil ∈ Jr)wil(εil + XT
il ei ).

Let ζt = ∑t
r=1
∑m

i=1
∑ni

l=1 I (Uil ∈ Jr)wil(εil + XT
il ei ) = ∑m

i=1
∑ni

l=1 I (a ≤
Uil < dt )wil(εil + XT

il ei ), ζ0 ≡ 0. Then, by Lemma 2, for any t = 1, . . . , n and
u ∈ [a, b], we get

|ζt − n1/2W(G(dt ))| = O(n1/4 logn) a.s.,

where W(·) is a Wiener process and

G(c) =
∫ c

a
σ 2[E(w2

11|U11 = v) + E(XT
11�X11w

2
11|U11 = v)]f (v) dv

+
∫ c

a

∫ c

a

{
n−1

m∑
i=1

ni∑
l=1

ni∑
r=1,r �=l

E[wilX
T
il�Xirwir |Uil = v1,Uir = v2]

}

× f (v1)f (v2) dv1 dv2.

It follows, from Abel’s transform, that

I4(u) = K

(
b − u

h

)
ζn −

n−1∑
r=1

[
K

(
dr+1 − u

h

)
− K

(
dr − u

h

)]
ζr
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and ∥∥∥∥∥
n−1∑
r=1

[
K

(
dr+1 − u

h

)
− K

(
dr − u

h

)]
[ζr − n1/2W(G(dr))]

∥∥∥∥∥∞
≤
∥∥∥∥ max

1≤r≤n
|ζr − n1/2W(G(dr))|

n−1∑
r=1

∣∣∣∣K(dr+1 − u

h

)
− K

(
dr − u

h

)∣∣∣∣∥∥∥∥∞
= OP (n1/4 logn).

Hence,

I4(u) = n1/2K

(
b − u

h

)
W(G(b))

− n1/2
n−1∑
r=1

[
K

(
dr+1 − u

h

)
− K

(
dr − u

h

)]
W(G(dr))(A.12)

+ OP (n1/4 logn)

uniformly for u ∈ [a, b].
For a Wiener process, it is known that (Csörgö and Révész [5], page 44)

sup
t∈[a,b]

|W(G(t + δ)) − W(G(t))| = O({δ log(1/δ)}1/2) a.s.,

when δ is any small number. Using this property and the boundness of K(·), we
have

n−1∑
r=1

[
K

(
dr+1 − u

h

)
− K

(
dr − u

h

)]
W(G(dr))

=
∫ b

a
W(G(v)) dK

(
v − u

h

)
+ OP

(
{n−1 logn}1/2

)
uniformly for u ∈ [a, b]. Together with (A.11) and (A.12), it follows that∥∥∥∥(nh)−1/2I3(u) − h−1/2

∫ b

a
K

(
v − u

h

)
dW(G(v))

∥∥∥∥∞
(A.13)

= OP

(
(nh2)−1/4 logn + (nh3)−1/2).

Let

Y1n(u) = h−1/2
∫ b

a
K

(
v − u

h

)
dW(G(v)),

Y2n(u) = h−1/2
∫ b

a
K

(
v − u

h

)
[τ(v)f (v)]1/2 dW(v − a)
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and

Y3n(u) = h−1/2
∫ b

a
K

(
v − u

h

)
dW(v − a).

For a Gaussian process, following the similar proof of lemmas in Härdle [13], we
have

‖Y1n(u) − Y2n(u)‖∞ = OP (h1/2),
(A.14)

‖(f (u)τ (u))−1/2Y2n(u) − Y3n(u)‖∞ = OP (h1/2).

Therefore, by (A.13) and (A.14),

‖{nhf (u)τ(u)}−1/2I3(u)−Y3n(u)‖∞ = OP

(
(nh2)−1/4 logn+ (nh3)−1/2 +h1/2).

From Theorem 2 and Theorem 3.1 of Bickel and Rosenblatt [1], when h =
n−ρ,1/5 ≤ ρ < 1/3, we have

P
((−2 log{h/(b − a)})1/2{

ν
−1/2
0 ‖{nhf (u)τ(u)}−1/2I3(u)‖∞ − ωn

}
< x
)

→ exp
{−2 exp{−x}},

where ωn is defined in Theorem 6, as

var{α̂kj (u)|D} = {nhf (u)τ(u)−1ν−1
0 }−1(1 + oP (1)

)
(A.15)

uniformly for u ∈ [a, b] by straightforward calculation and similar arguments as
Lemma 1. Using the same proof of the first part of Theorem 2 of Fan and Zhang
[10], the result of Theorem 6 is easily obtained. �

PROOF OF THEOREM 7. To prove the theorem, we first derive the rate of con-
vergence for the bias and variance estimators. By (A.7) and its similar arguments,
we have

‖b̂ias(α̂kj (u)|D) − bias(α̂kj (u)|D)‖∞ = OP

(
h2{n−1/7 + o(h)}),

where the rate n−1/7 comes from the pilot estimation of ˆ̈θ(·) and the term o(h)

comes from the coefficient in front of θ̂
(3)

(·).
Furthermore, by similar proof to Lemma 1, we get∥∥∥∥hnH−1XT W 2XH−1 − f (u)S̃(u)

∥∥∥∥∞ = oP (1)

where S̃(u) =
(

ν0 0
0 ν2

)
⊗ �(u) and∥∥∥∥hnH−1XT WxxT WXH−1

∥∥∥∥∞ = OP (1).

These results, together with (A.7) and the results of Theorem 3 and 4, give us

‖v̂ar(α̂kj (u)|D) − var(α̂kj (u)|D)‖∞ = OP

(
(nh)−1{n−1/2 + (nh8)−1/2}).

Using (A.15) and the same proof of the second part of Theorem 2 of Fan and
Zhang [10], the result of Theorem 7 is obtained. �
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