A SEMISHRINKING BASIS WHICH IS NOT SHRINKING

J. R. RETHERFORD¹

A Schauder basis (x_i, f_i) for a Banach space X is

(1) shrinking provided (f_i) is a basis for X^* ; and

(2) semishrinking provided $0 < \inf_n ||x_n|| \le \sup_n ||x_n|| < +\infty$ and (x_n) is weakly convergent to 0.

A. Pełczynski and W. Szlenk [2], answering a question raised by I. Singer, constructed a Banach space with a semishrinking basis which was not shrinking. Their construction, while elegant, is very complicated. Our purpose here is to show that the space (d) constructed by Davis and Dean [1, p. 214] has such a basis.

The space (d) consists of those real sequences $a = (a_i)$ for which

$$\left\|a\right\| = \sup_{p \in \mathcal{O}} \sum_{i=1}^{\infty} \frac{\left|a_{p(i)}\right|}{i} < +\infty$$

where \mathcal{O} denotes the collection of all 1-1 maps from the positive integer ω into ω . Davis and Dean [1, p. 214] have shown that the unit vectors (e_n) form a semishrinking basis for (d) (although their terminology is different). We show that (e_n) is not shrinking.

Let $h_n = \sum_{i=1}^n (1/i)$ and define $\mathfrak{U}_n \in (d)$ by $\mathfrak{U}_n = h_n^{-1} \sum_{i=1}^i e_i$. Clearly $||\mathfrak{U}_n|| = 1$ for $n = 1, 2, 3, \cdots$. Define a linear functional F on (d) by $F(x) = \sum_{i=1}^{\infty} (x_i/i)$ where $x = (x_i)$. By the definition of the norm on (d) it follows that $F \in (d)^*$. Moreover, $F(\mathfrak{U}_n) = 1$ for each n and so (\mathfrak{U}_n) does not converge weakly to 0. However if (f_i) denotes the coefficient functionals associated with (e_n) then $\lim_{n \to \infty} f_i(\mathfrak{U}_n) = \lim_{n \to \infty} h_n^{-1} = 0$. Thus by a theorem of Wilansky [4] (see also [3, property (E)]) (e_n) is not shrinking.

Bibliography

1. W. J. Davis and D. W. Dean, The direct sum of Banach spaces with respect to a basis, Studia Math. 28 (1967), 209-219.

2. A. Pełczynski and W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961-966.

3. J. R. Retherford, Shrinking bases in Banach spaces, Amer. Math. Monthly 73 (1966), 841-846.

4. A. Wilansky, The basis in Banach space, Duke Math. J. 18 (1951), 795-798.

LOUISIANA STATE UNIVERSITY

Received by the editors October 6, 1967. ¹ Research supported by NSF GP 5854.