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Automatic image annotation is for more accurate image retrieval and classi	cation by assigning labels to images. �is paper
proposes a semisupervised framework based on graph embedding and multiview nonnegative matrix factorization (GENMF) for
automatic image annotation with multilabel images. First, we construct a graph embedding term in the multiview NMF based
on the association diagrams between labels for semantic constraints. �en, the multiview features are fused and dimensions are
reduced based on multiview NMF algorithm. Finally, image annotation is achieved by using the new features through a KNN-
based approach. Experiments validate that the proposed algorithm has achieved competitive performance in terms of accuracy and
e
ciency.

1. Introduction

�e advent of Internet age brings the explosive growth of
image resources. Although managing and retrieving images
by semantic tags is a common and e�ective way, there are
still a large number of untagged or not fully tagged images.
However, it is not easy to carry outmanual annotation regard-
ing the cost of human resources and the semantic nuances
of annotation under the background of various cultures,
religions, and languages. Moreover, the cognition bias caused
by subjectivity could induce semantic discrepancies as well.
�us, how to design an e
cient automatic image annotation
algorithm to provide accurate labels for untagged images has
been an urgent problem.

Automatic image annotation (AIA) refers to the process
that computers automatically provide one or more semantic
tags that can re�ect the content of a speci	c image through
algorithms. It is a mapping from images to semantic con-
cepts, namely, the process of understanding images. Image
annotation is based on image feature representations, and fea-
tures utilized in di�erent tasks have di�erent representation
abilities [1–3]. For example, global color and texture features

have been successfully used in retrieving similar images [4],
while local structure features perform well in tasks of object
classi	cation and matching [5, 6]. In general, features that
depict images from di�erent views can provide complemen-
tary information.�us a rational fusion of multiview features
contributes to more comprehensive depiction for images,
which can be bene	cial to image searching, classi	cation, or
other related tasks.

Many multiview learning algorithms have been proposed
for operating some tasks such as classi	cation, retrieval, and
clustering based on multiview features. According to the
levels of feature fusion, multiview learning methods can be
grouped into two categories [7]: feature-level fusion such
as MKL [8], SVM-2K [9], and CCA [10] and classi	er-level
fusion such as hierarchical SVM [11]. Some experimental
studies show that classi	er-level fusion outperforms simple
feature concatenation, whereas sophisticated feature-level
fusion usually performs better than classi	er-level fusion [11,
12].

Recently, many image annotation algorithms use a variety
of underlying features to improve annotation performance
[8–10]. On one hand, the multiview features improve the
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accuracy, but on the other hand the strategies decrease the
e
ciency and applicability of the algorithms because of the
increase of feature dimensions. Moreover, many existing
multiview learning algorithms are unsupervised; that is, they
do not make use of the label information in the training set.
Such fused features may not e�ectively contain the semantic
relationship between samples. �is paper proposes a semisu-
pervised learning framework based on graph embedding and
multiview NMF (GENMF). In GENMF, feature fusion and
dimension reduction are 	rstly performed by the proposed
graph embedded multiview NMF algorithm, and then the
new obtained features are used to annotate images through
KNN-based approach.

2. Related Works

Existing image annotation algorithms can be roughly divided
into two categories [13]: model-based learning methods and
database-based retrieval methods. Model-based methods
explore the relationship between high-level semantic con-
cepts and low-level visual features to discover a mapping
function through machine learning or knowledge models for
image annotation. Unlike model-based methods, database-
based methods do not need to set up the mapping function
based on the training set but directly provide a sequence of
candidate labels according to the already annotated images
in the database.

�ere are three kinds of model-based learning methods
for image annotation: classi	cation based methods, pos-
sibility based methods, and topic model-based methods.
Classi	cation based methods [14–16] treat tags as speci	c
class labels and explore the mapping relations between low-
level visual features and labels through machine learning
methods.�e essence of this kind ofmethods is transforming
image annotation to image classi	cation. Di�erent classi	ers
are used to establish mapping functions between low-level
features (from images or regions) and semantic concepts.
Labels with the high con	dence from the classi	ers are
annotated to images. Di�erent from classi	cation based
methods, possibility based methods [17, 18] do not use
classi	ers to build the mapping functions but explore the
relationship between the underlying features of the image
and the semantic labels based on unsupervised probability
and statistics models. �ey utilize the relations to calculate
the joint probability of images and labels or the conditional
probability of labels given an image and then estimate the
possible labels through statistical inference. Topic model-
based methods [19, 20] use latent topics to associate low-
level visual features with high-level semantic concepts to
implement image annotation.

�e model-based methods have three di
culties in prac-
tical applications. First, the learning models trained on the
datasets with 	nite image types and semantic labels can
hardly re�ect the characteristics of feature distributions in the
real world, which leads to unsatisfactory annotation perfor-
mance when facing new features and semantic labels. Second,
the limited size of training sets may result in over	tting
and low generalization ability of the models. �ird, low-
level features may o�en fail to express high-level semantic

information because they belong to di�erent feature spaces.
�us, it is also hard to establish a mapping model between
image features and semantic concepts because of the semantic
gap.

�e essence of retrieval based method is directly pro-
viding a list of candidate labels for the images to be tagged
based on the existing datasets with complete and valid label
information. Most common retrieval methods are based
on KNN [21–23]: they retrieve k images with the highest
similarity to the input image from the database, and the
labels of the k images are sorted based on the statistical
relationship or weighted statistical relationship to generate
the candidate labels of the input images. �e other category
is graph-based methods [24–27] that utilize image feature
distance to establish relevant graphs of samples. Based on the
assumption that neighboring images in the relevant graph
have similar labels (label smoothness), the similarity between
nodes and the global structural characteristics of the relevant
graph are used to propagate and enrich the node information
including labels and classes. �is kind of semisupervised
learning methods is suitable for not fully tagged datasets
existing on the Internet.

Traditional graph-based methods usually label images by
aggregating multiple features into one feature and building
a relation graph based on this feature. In [25], it is pointed
out that traditional methods cannot e�ectively capture the
unique information for each feature and proposes to utilize
di�erent features to establish relation subgraphs and then
link these subgraphs to form a supergraph. Based on the
supergraph, label propagation is achieved through the graph-
basedmethod. In [26], di�erent feature graphs are built based
on di�erent features of the images and then the relationship
between images is constructed through the graph-based
method based on di�erent feature graphs. Furthermore, the
relationship between images and di�erent features can be
also constructed. Finally, the two relationships, namely, the
relation between images and the relation between images
and di�erent features, can be fused by a designed objective
function to obtain good candidates for the labels.

In [27], a graph learning KNN (GLKNN) is proposed
by combining KNN-basedmethod and graph-basedmethod.
GLKNN 	rst uses graph-based method to propagate the
labels of the K nearest neighbors to the new image and obtain
one sequence of candidate labels, then GLKNN employs
the naive-Bayes nearest neighbor algorithm to establish the
relationship between labels and image features for obtain-
ing another sequence of candidate labels. Finally, the two
candidate label sequences are linearly combined as the 	nal
predicted labels. In [28], graph embedding discriminant anal-
ysis is applied to classify marine 	sh marine 	sh species by
constructing intraclass similarity graph and interclass penalty
graph. Although the algorithm improves the performance
of classi	cation and clustering by utilizing class labels to
build graph embedded term, the traditional graph embed-
ding algorithm is not suitable for multilabel problems with
multilabel images because there is no intraclass and interclass
relationship. In [21, 22], di�erent models based on metric
methods are proposed to enhance the representation ability
of features and further improve the performance of image
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annotation. However, the metric based feature processing
only linearly embeds the original features and does not reduce
the feature dimension. In [13], multiple features are fused
by concatenation, which ignores the manifold characters of
di�erent features and high feature dimension results in low
e
ciency of the algorithm.

For reducing the dimensions of each feature for anno-
tation, an extended local sensitive discriminant analysis
algorithm is proposed by constructing relevant and irrele-
vant graphs in [29]. Generally, feature dimension reduction
methods based on NMF decomposition are for single-view
features. References [30, 31] extend this method to multiview
features by simply concatenating multiple vectors into one
feature vector before further dimension reduction. However,
this concatenation way can cause vector dimension disaster.
Besides, multiview features are descriptions from di�erent
views for images so that simple connection does not make
good sense. �en a multiview NMF model based on shared
coe
cientmatrix is developed for capturing the latent feature
patterns in multiview features [32], where di�erent view
features have their own basis matrices and share a coe
cient
matrix. �e proposed model is used for solving classi	cation
and clustering problems and is not suitable for multilabel
problems with multilabel images.

Based on the above reviews, this paper proposes a
semisupervised learning model based on multiview NMF
and graph embedding. A novel multiview NMF algorithm
based on graph embedding is developed to fuse themultiview
features and reduce the dimension of the fused features by
designing appropriate graph embedded regularization terms.
�en, the image annotation is performed by using the new
features through a KNN-based algorithm.

3. The Proposed Methods

In this section, we elaborate the proposed semisupervised
framework for automatic image annotation. First, the graph
embedding terms for multilabel problems are constructed
through semantic similarity matrix. Second, an objective
function is established by adding graph embedded semantic
constraints.�ird, the update rules for optimizing are derived
in detail. Finally, the overall framework of the algorithm is
presented.

3.1. Graph Embedding for Multilabel Problem. �e traditional
graph embedding model is introduced for classi	cation
problems, in which each sample has only one label, so that
the Laplacian matrices L and �� can be given according to
whether they belong to the same category or not. However,
for multilabel problems, a sample usually contains multi-
ple category labels. �erefore, traditional graph embedding
methods cannot be directly applied to multilabel problems.
In this paper, we give a relation matrix according to whether
samples are related or not. By setting appropriate thresholds,
the relevantmatrix and the irrelevantmatrix can be obtained,
and they can be used to calculate Laplacianmatrices L and��,
respectively.

Let {��, ��} denote the i-th sample and � ∈ R
�1∗� denote

labelmatrix, where �1 is the number of samples in the training

set,� is the number of labels, �� represents the i-th row of Y,
and �:� represents the i-th column. �e semantic similarity
between sample i and sample j can be formulated as ��	��,
whereC is a priori label relationmatrix similar to that in [33].

	�� = cos (�:�, �:�) = ⟨�:�, �:�⟩�����:����� ������:������
(1)

�:� ∈ R
�1∗1 denotes the sample vector and ‖�:�‖ denotes

the L2-norm of �:�. �en, the semantic similarity matrix of
samples can be obtained by the following formula:

(��)�� = ��	�� (2)

Given thresholds �	 and �
 (�	 ≥ �
), samples with similarity
greater than �	 are relevant, and samples with similarity less
than �
 are irrelevant. �erefore, the relevant matrix W and
the irrelevant matrix�� are constructed as follows:

��� = {{{
����, ���� > �	
0, ���� ≤ �	

(3)

���� =
{
{{
1, ���� ≤ �

0, ���� > �


(4)

�e corresponding Laplacian matrices are formulated as
follows:

� = � −� (5)

�� = D� −�� (6)

where��� = ∑
��
 and���� = ∑
���
 .
Having the relevant and irrelevantmatrices, the following

two constraint items 	1 and 	2 are incorporated to make
feature representations in the new feature space consist with
semantic concepts:

	1 =
�1∑
�,�=1

�����V� − V�
�����
2��� =

�1∑
�=1
V�
�
V���� −

�1∑
�,�=1

V�
�
V����

= �� (����) − �� (����) = �� (����)
(7)

	2 =
�1∑
�,�=1

�����V� − V�
�����
2���� =

�1∑
�=1
V�
�
V����� −

�1∑
�,�=1

V�
�
V�����

= �� (�����) − �� (�����) = �� (�����)
(8)

where �1 denotes the number of samples in the training set
and V� and V� represent the visual feature vectors of sample i
and sample j, respectively.

3.2. An Automatic Image Annotation Model Based on Multi-

view Feature NMF and Graph Embedding. Let � = {�(V)}�
V=1

denote the data matrix, where �(V) ∈ R

(V)∗� is the feature

matrix corresponding to the V-th view, �(V) is the dimension
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of feature vectors, M is the number of views, and N is the
number of samples.�e objective function can be formulated
as

�1 =
�
∑
V=1

������(V) −  (V)�������
2

s.t. !(V)�� ≥ 0, V�� ≥ 0
(9)

where  (V) ∈ R

(V)∗� and � ∈ R

�∗� are nonnegative
matrices and K denotes the dimension of the new low-
dimensional feature.

Furthermore, graph embedding regularization terms (7)
and (8) are combined with the above loss function, then

�1 =
�
∑
V=1

������(V) −  (V)�������
2 + �� ((�
)� �̌�
)

s.t. !�� ≥ 0, V�� ≥ 0
(10)

where �̌ = (%� − &��) and % and & are two equilibrium
coe
cients. Equation (10) consists of two terms, where the
	rst is the error term, and the second is the constraint
term that makes semantic constrains on V by using graph
embedding regularization. It implies that the semantic related
sample features are closer and vice versa. It is worth noting

that the model is semisupervised since that �
 refers to
data with labels, and the graph embedding term is used to

constrain �
.
3.3. Update Rules Derivation. �e established model is
semisupervised, and only part of the data has label infor-
mation. �e objective function can be rewritten in the form
of block matrix. �e following subsection will give the
derivation of update rules.

�e update rule of formula (10) is derived as follows:

�1 =
�
∑
V=1
�� ((�(V) −  (V)��) (�(V) −  (V)��)�)

+ %�� ((�
)� ��
) − &�� ((�
)� ���
)

=
�
∑
V=1
[�� (�(V)�(V)�) − 2�� (�(V)� (V)�)

+ �� ( (V)��� (V)�)] + %�� ((�
)� ��
)

− &�� ((�
)� ���
)

(11)

Let -(V)�� and /�� be the Lagrange multipliers of constraint

conditions !(V)�� ≥ 0 and v�� ≥ 0, respectively, Ψ(V) = [-(V)�� ],Φ = [/��]. �en the Lagrange function can be written as

� =
�
∑
V=1
[�� (�(V)�(V)�) − 2�� (�(V)� (V)�)

+ �� ( (V)��� (V)�) + �� (Ψ(V) (V)�)]
+ %�� ((�
)� ��
) − &�� ((�
)� ���
)
+ �� (Φ��)

(12)

�e partial derivative of L with respect to  (V) is as follows:
5�
5 (V) = −2�

(V)� + 2 (V)��� + Ψ(V) (13)

where �(V) = [�(V)
, �(V)	], � = [(�
)�, (�	)�]�, and Φ =
[(Φ
)�, (Φ	)�]�, the symbol 6means labelled and the symbol

! means unlabelled. �us, �(V)
 and �
 refer to the data with
labels. �en (12) can be rewritten as

� =
�
∑
V=1
[�� (�(V)�(V)�) − 2��([�(V)
, �(V)	]

⋅ [(�
)� , (�	)�]� (V)�)

+ ��( (V) [(�
)� , (�	)�] [(�
)� , (�	)�]�

⋅  (V)�) + �� (Ψ(V) (V)�)] + %�� ((�
)� ��
)

− &�� ((�
)� ���
) + ��([(Φ
)� , (Φ	)�]�

⋅ [(�
)� , (�	)�]) =
�
∑
V=1
[�� (�(V)�(V)�)

− 2�� (�(V)
�
 (V)�) − 2�� (�(V)	�	 (V)�)
+ �� ( (V) (�
)��
 (V)�) + �� ( (V) (�	)�

⋅ �	 (V)�) + �� (Ψ(V) (V)�)] + %�� ((�
)� ��
)
− &�� ((�
)� ���
) + �� (Φ
 (�
)�

+ Φ	 (�	)�) .

(14)

Separating the terms associated with �
 and �	, the above
equation can be written as

� = � (�
) + � (�	) (15)

� (�
) =
�
∑
V=1
[−2�� (�(V)
�
 (V)�)

+ �� ( (V) (�
)��
 (V)�)] + %�� ((�
)� ��
)
− &�� ((�
)� ���
) + �� (Φ
 (�
)�) + @A�BC

(16)
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Figure 1: Schematic diagram of the GENMF model.

� (�	) =
�
∑
V=1
[−2�� (�(V)	�	 (V)�)

+ �� ( (V) (�	)��	 (V)�)] + �� (Φ	 (�	)�)
+ @A�BC

(17)

�e partial derivatives of L with respect to �
 and �	 are as
follows:

5�
5�
 =

�
∑
V=1
[−2 (�(V)
)� (V) + 2�
 (V)� (V)]

+ 2%��
 − 2&���
 + Φ

(18)

5�
5�	 =

�
∑
V=1
[−2 (�(V)	)� (V) + 2�	 (V)� (V)] + Φ	 (19)

Using the KKT conditions -(V)�� !(V)�� = 0 and /��v�� = 0 (i.e.,
-(V)�� = 0 and /�� = 0), consider formulae (13), (18), and (19)

and let the derivatives equal 0; the following three equations
can be obtained:

− (�(V)�)�� !�� + ( (V)���)�� !�� = 0 (20)

�
∑
V=1
[−2 (�(V)
)� (V) + 2�
 (V)� (V)]

��
V��

+ (%��
 − &���
)�� V�� = 0
(21)

�
∑
V=1
[−2 (�(V)	)� (V) + 2�	 (V)� (V)]

��
V�� = 0 (22)

�e following update rules can be obtained through the above
three equations:

!(V)�� ←E !(V)��
(�(V)�)��
( (V)���)��

(23)

V


�� ←E

V


��

(∑�
V=1 (�(V)
)� (V) + %��
 + &���
)��

(∑�
V=1 �
 ( (V))� (V) + %��
 + &���
)��

(24)

V
	
�� ←E V

	
��

(∑�
V=1 (�(V)	)� (V))��

(∑�
V=1 �	 ( (V))� (V))��

(25)

It is mentioned in [34] that in order to ensure the convexity
of the loss function, & needs to be taken as an appropriately

small value, which is suggested by & = 10−4. Besides, [35]
gives amodi	ed strategy to the original update rules to ensure
convergence.�e same strategy can be applied to the derived
update rules.

3.4. Framework of the GENMF. �eschematic diagramof the
proposed GENMF model can be illustrated as in Figure 1.
First, multiview features are extracted from images as the
input matrix X in (10). Equations (1)-(8) are utilized to build
graph embedding regularization terms as the input matrices

L and �� in (10). �en,  (V) and � are updated iteratively
by using updated equations (23) to (25) until the maximum
number of iterations is reached or the loss value is within
the permissible range. Finally, the new features �	 of the test
set and the training set features �
 are input to the KNN-
based labelling algorithm to obtain the predicted labels. �e
�owchart of the algorithm is shown in Figure 2.
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Input: Image set � = [������, �����] and label matrix �	 of the training set.
Output: Predicted label matrix �
�� for the test set �����.
(1) Extract di�erent feature�(�) ∈ R�(�)∗�+ for image set �;
(2) Construct Laplacian graph � and �
;
(3) Initialize�(�) ∈ R�(�)∗�+ and � ∈ R�∗�+ randomly;
(4) do

(5) Update�(�) and � based on equation (23)-(25);
(6) while the terminating condition is not satis	ed
(7) Input � into 2PKNN [21] image annotation algorithm;
(8) Output predicted labels �
�� for the test set.

Algorithm 1: Multiview NMF with graph embedding for image annotation.

Construct objective function

Iteratively apply updating rules

terminated? NO

KNN based annotation

Predicted labels for test set

Construct similarity graph W and penalty graph ７Ｊ

Extract M Kinds of features {＆1,＆2,· · ·,＆－}

labels Y∈２Ｈ1∗Ｇ
Images X∈２(Ｈ1+Ｈ2)∗Ｇ

Figure 2: Flowchart of the GENMF.

Algorithm 1 gives the pseudocode of the GENMF.

4. Experimental Studies

4.1. Dataset and Experiment Design. �e main purpose of
the proposed algorithm is to improve the performance of
automatic image annotation by fusing the multiview fea-
tures and reducing the feature dimension, which makes
it better to represent semantic concepts under semantic
constraints in new low-dimensional feature spaces. So this
paper selects the dataset Corel5k with 15 di�erent features,
and Corel5k consists of 4500 images for training and 499
images for test, which is available on http://lear.inrialpes.fr.
�e 15 features are all low-level image features including
Gist, DenseSi�, DenseSi�V3H1, HarrisSi�, HarrisSi�V3H1,
DenseHue, DenseHueV3H1, HarrisHue, HarrisHueV3H1,

Rgb, RgbV3H1, Lab, LabV3H1, Hsv, and HsvV3H1. In the
experiment, we select a local feature DenseSi�V3H1, a global
feature Gist, and a color feature Hsv.

In the experiments, the multiple features except Gist are
regularized through L2-normalization, and the normalized
features are input into theGENMF to obtain low-dimensional
representations. �en the low-dimensional feature vectors
are input into the 2PKNN annotation algorithm to obtain
the predicted labels for the test set. �e performance of the
algorithm is evaluated in terms of four metrics Pre, Rec, F1,
and N+. Table 1 lists the parameters used in the experiments.

4.2. Experimental Results

4.2.1. Convergence Curve of Loss Function. Figure 3 shows the
convergence curves of loss function with di�erent parame-
ters. It can be observed that, a�er about 300 iterations, the
trend of the loss curve tends to be stable.

4.2.2.�e In	uence of Di
erent�	 and�
. �e relationmatrix

�� ∈ R
4500∗4500 can be established according to formula (2).

Observed by experimental methods, the maximum value of
�� is 12.9554 and the minimum value of�� is 0. �e values
of�	 = {1, 2, . . . , 10} and�
 = {0, . . . , �	} are traversed, where�	 ≥ �
. Figure 4 shows the changes in the performance
of the annotation when the di�erent values of parameters
are selected. On the whole, when �	 = 2 and �
 = 1, the
algorithm obtains the highest F1 value.�us, in the following
experiments �	 is taken as 2 and �
 is taken as 1.

4.2.3.�e In	uence of Di
erent %. Figure 5 shows the varying
curve of Pre, Rec, F1, and N+ in the case of K = 300
with di�erent % values. Figure 5-1 shows that the annotation
accuracy increases 	rst and then decreases with the increase
of %. When % = 1000, the accuracy reaches the highest
value. Figure 5-2 shows that the recall rate generally increases
	rst and then decreases. When % = 2000, the recall rate
reaches the highest value. From Figure 5-3, it can be seen that
the F1 value also increases 	rst and then decreases with the
increase of %, but a concave point appears at % = 1500. When
% = 1000, the F1 value reaches the highest value. In Figure 5-
4, the N+ value �uctuates in the interval [0, 1500], and its
value reaches the highest value at % = 2000 and decreases
a�erwards.

http://lear.inrialpes.fr
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Figure 3: Convergence curves of loss function.

0.28

0.29

1

p
re

2

0.3 

3 10

0.31

9 4 8 

tu

5 7 6 6

tl

5 7 4 8 3 2 9 1 10 0 

0.26

0.27

1

re
c

2

0.28

3 10

0.29

9 4 8 

tu

5 7 6 6

tl

5 7 4 8 3 2 9 1 10 0 

0.28 

1

0.285

f1

2
3 10

0.29 

9 4 8 

tu

5 7 6 6

tl

5 7 4 8 3 2 9 1 10 0 

144

146

1

N
+

148

2
3 10

150

9 4 8 

tu

5 7 6 6

tl

5 7 4 8 3 2 9 1 10 0 

Figure 4: Impact of di�erent values for �	 and �
.



8 Mathematical Problems in Engineering

Fig5-1 Fig5-2

Fig5-3 Fig5-4

test alpha

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

F
1

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

p
re

ci
si

o
n

140

145

150

155

160

165

N
+

0.24

0.26

0.28

0.3

0.32

0.34

re
ca

ll

0 500 1000 1500 2000 2500 3000 3500−500

dimension

0 500 1000 1500 2000 2500 3000 3500−500

dimension

0 500 1000 1500 2000 2500 3000 3500−500

dimension

0 500 1000 1500 2000 2500 3000 3500−500

dimension

Figure 5: Curve of Pre, Rec, F1, and N+ with di�erent % values.

Table 1: Parameters required in the algorithm and their ranges of values.

Notation Description Range of values

	 Weight for graph embedding terms {0, 500, 1000, 1500, 2000, 2500, 3000}

 Dimension of the new features {100, 200, 300, 400, 500, 600, 700, 800}
�� Label-relevant coe
cient {1, 2, . . . , 10}
�	 Label-irrelevant coe
cient {0, 1, . . . , �	}

4.2.4. �e In	uence of Di
erent Feature Dimensions N. Fig-
ure 6 shows the annotation performance curves when % is
taken as 0, 1000, and 2000, respectively, and the value of
K changes from 100 to 800 with an increase of 100 each
time. �e three curves with di�erent values of parameter
% show the consistent trend of change. In Figure 6-1, the
accuracy increases with the increase of dimension because
more information can be retained, and the curve becomes
stable until % reaches 2000. �e worst performance is at %
= 0. Figure 6-2 shows that the recall rate decreases slightly
with the increase of dimension because the requirement for
retrieval is higher with the increase of dimension. In Figure 6-
3, F1 is re�ecting the comprehensive e�ect of the accuracy
and recall rate. It can be observed that the F1 increases
in the interval [100, 300] with the increase of dimension
and then tends to be stable except for % = 0. Figure 6-
4 shows that N+ value �uctuates but the overall trend is
stable. In general, the performance of proposed algorithm on
four metrics outperforms using the original features when
% = 1000 or % = 2000 with dimension in the range of
[200-800].

4.2.5. Comparison with Existing Annotation Algorithms.
Table 2 presents the comparison results with existing annota-
tion algorithms. RMLF [36] optimizes the 	nal prediction tag
score by fusing prediction tag scores of 15 di�erent features.
LDMKL [14] and SDMKL [14] use the di�erent classi	ers
based on the nonlinear kernel of three-layer network to anno-
tate images. 2PKNN [22] uses two steps for annotation: a�er
dealing with data imbalance, images are annotated through
a KNN-based method in data-balanced dataset. LJNMF [31],
merging features [31], and Scoe
cients [31] consider di�erent
kinds of NMF modeling, extract new features, and annotate
images through a KNN-based method. TagProp (ML) [21]
andTagProp (OML) [21] acquire discriminative feature fusion
on the training set by designing a metric learning model and
annotate images using weighted KNN method. JEC [37] is
a KNN-based algorithm based on the average distance of
multiple features, which is a benchmark algorithm for image
annotation. MRFA [38] proposes a new semantic context
modeling and learning method based on multimarkov ran-
dom 	elds. SML [39] is a discriminative model that treats
each label as one class in multiclass classi	cation problems;
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Figure 6: Annotation performance curves for di�erent values of K.

Table 2: Comparison results with other annotation algorithms.

Methods Pre Rec F1 N+

SML 23 29 25.7 137

JEC 27 32 29.3 139

GS 30 33 31.4 146

MRFA 31 36 33.3 172

TagProp(ML) 31 37 33.7 146

TagProp(OML) 33 42 37.0 160

RMLF 29.7 32.6 31.1 -

Merging features 33 40 36.5 -

Scoe
cients 30 39 34.6 -

LJNMF(3f ’) 35 43 39.1 -

2PKNN(3f) 32 28 30.6 177

SDMKL 38 25 30 158

LDMKL 44 29 34.9 179

GENMF (3f) 38 39 39.2 168

GS [38] introduces the regularization-based feature selection
algorithm to exploit the sparsity and clustering properties of
features.

In Table 2, the note (3f) denotes using the three features
selected in this paper, and the note (3f ’) indicates using three

features that are not the same as in this paper. �e results of
other algorithms are directly taken from respective literatures
and all the 15 features are utilized. Our algorithm uses only
three features, and it can be seen in Table 2 that the proposed
GENMF achieves the competitive performance.
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Table 3: �e maximum, mean, and standard deviation of results
using 10 independent runs.

metrics Precision Recall F1 N+

mean 0.38 0.39 0.392 168

SD 0.017 0.010 0.012 4.50

maximum 0.41 0.40 0.398 175

4.2.6.�e Best, Average, and StandardDeviation of the Results.
Table 3 shows the best, average, and standard deviation
of the results using 10 independent runs. �e NMF-based
algorithms have a certain randomness, and di�erent initial
values may produce di�erent results. Table 3 shows that
the in�uence of di�erent initialization values is limited, but
better performance could be expected if a better initialization
strategy is chosen. Besides, the average time consumption of
the proposedGENMFwith the new low-dimensional features
is 13.945 seconds to label all 499 test images, whereas utilizing
the original features to label takes 34.652 seconds, which is
about 2.5 times that of GENMF.

5. Conclusions

In this paper, we propose a semisupervised framework based
on graph embedding and multiview nonnegative matrix
factorization for automatic image annotation with multilabel
images. �e main purpose of the proposed algorithm is to
improve the performance of automatic image annotation by
fusing multiview features and reducing feature dimension,
which makes it better to represent semantic concepts under
semantic constraints in new low-dimensional feature spaces.
For feature fusion and dimension deduction, a novel graph
embedding term is constructed based on the relevant graph
and the irrelevant graph. �en, the fusion of multiview fea-
tures and the reduction of dimensionality are realized based
onmultiviewNMFmodel.Moreover, the updated rules of the
model are derived. Finally, images are annotated by using a
KNN-based approach. Experimental results validate that the
proposed algorithm can achieve competitive performance in
terms of accuracy and e
ciency.
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