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'e unavailability of large amounts of well-labeled data poses a significant challenge in many medical imaging tasks. Even in the
likelihood of having access to sufficient data, the process of accurately labeling the data is an arduous and time-consuming one,
requiring expertise skills. Again, the issue of unbalanced data further compounds the abovementioned problems and presents a
considerable challenge for many machine learning algorithms. In lieu of this, the ability to develop algorithms that can exploit
large amounts of unlabeled data together with a small amount of labeled data, while demonstrating robustness to data imbalance,
can offer promising prospects in building highly efficient classifiers. 'is work proposes a semisupervised learning method that
integrates self-training and self-paced learning to generate and select pseudolabeled samples for classifying breast cancer his-
topathological images. A novel pseudolabel generation and selection algorithm is introduced in the learning scheme to generate
and select highly confident pseudolabeled samples from both well-represented classes to less-represented classes. Such a learning
approach improves the performance by jointly learning a model and optimizing the generation of pseudolabels on unlabeled-
target data to augment the training data and retraining the model with the generated labels. A class balancing framework that
normalizes the class-wise confidence scores is also proposed to prevent the model from ignoring samples from less represented
classes (hard-to-learn samples), hence effectively handling the issue of data imbalance. Extensive experimental evaluation of the
proposed method on the BreakHis dataset demonstrates the effectiveness of the proposed method.

1. Introduction

Breast cancer is one of the most frequent cancers among
women and the second most common cancer globally, af-
fecting about 2.1 million women yearly. Statistics from a
global cancer report recorded that an estimated 627,000
women died from breast cancer in 2018 [1]. 'is figure is
approximately 15% of all cancer deaths among women. Also,
a recent report from the American Cancer Society’s forecast
for 2019 predicts that there will be almost 286,600 new cases
of invasive breast cancer, about 63,930 new noninvasive
cases, and about 41,760 deaths among women in the United
States [2]. 'is worrisome trend necessitates the need for
automated breast cancer detection and diagnosis [3].
Computer-aided detection or diagnosis (CAD) systems can
contribute significantly in the early detection of breast

cancer. Early detection is vital as it can help in reducing the
morbidity rates among breast cancer patients [4].

Existing manual methods for breast cancer diagnosis
include the use of radiology images in identifying areas of
abnormalities. 'ese images, however, cannot be used to
accurately determine cancerous areas [5]. Biopsy [6] does
help to identify a cancerous area in an image. Breast tissue
biopsies help pathologists to histologically assess the mi-
croscopic structure and elements of breast tissues. 'e
outcome of biopsy still requires a histopathologist to double-
check on the results since a confirmation from a histopa-
thologist is the only clinically accepted method. However,
since the diagnosis provided by biopsy tissue and hema-
toxylin and eosin stained images is nontrivial, there is often
some disagreements on the final diagnosis by histopathol-
ogists [7]. 'e drawbacks associated with the methods
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mentioned above drive the need for computer-aided systems
for breast cancer diagnosis systems to improve diagnosis
efficiency, increase the diagnosis concordance between
specialists, reduce time, and lessen the burden on histopa-
thologists [4, 8].

Deep convolutional neural networks (CNNs) have
achieved tremendous successes in several disciplines in-
cluding but not limited to object detection [9, 10], segmen-
tation [11], and classification [12, 13]. Recent advancements in
machine learning and deep learning in medical diagnosis are
motivating lots of research in the classification of breast
cancer histopathological images [14, 15]. 'e build nature of
CNNs makes them capable of learning hierarchical feature
representation from categorical data, and this is the under-
lying principle behind the success of CNNs in accomplishing
tasks. In the specific case of breast cancer classification,
existing work in the literature has adopted CNNs in achieving
state-of-the-art results. Some of these methods mentioned in
the literature are based on hand-engineered features [16–18].
However, methods that rely on hand-crafted features are
inefficient and not robust, and they merely extract sufficient
features that are beneficial in classifying histopathological
images, not to mention that the entire process is a laborious
and computationally expensive one. Other methods men-
tioned in the literature adopt deep learning approaches for
classifying breast cancer histopathological images. Deep
learning methods offer a better alternative to methods that
rely on hand-engineered features, achieving excellent per-
formances inmany classification tasks [19–22]. Convolutional
neural networks in particular have achieved state-of-the-art
performances in classifying breast cancer histopathological
images. In [23], the authors compared two machine learning
schemes for binary and multiclass classification of breast
cancer histology images. In the first approach, the authors
extracted a set of hand-crafted features via bag of words and
locality-constrained linear coding.'ey trained these features
with support vectormachines. Next, they experimentedwith a
combination of hand-engineered features with a CNN as well
as CNN features with the classifier’s configuration. On the
BreakHis dataset, the authors reported accuracy between
96.15% and 98.33% for binary classification and accuracy
between 83.31% and 88.23% for multiclassification. Similar
successes have also been reported in [8, 24, 25].

In spite of these successes, it is also pertinent to note that
the deep layers associated with CNN models imply the fact
that they require large amounts of well-labeled data during
training to achieve satisfactory results. Training on relatively
small amount of data leaves the models prone to overfitting
and, subsequently, poor generalization. In the medical
imaging domain, obtaining abundant labels for image
samples is a major challenge, not to mention that a large
amount of image samples are also required to aid in a
model’s ability to generalize well on data. Again, the process
of labeling image samples is a time-consuming and an ex-
pensive one, requiring expertise knowledge. Existing
methods mentioned in the literature that perform classifi-
cation of histopathological images resort to training CNN
models with random initialization and data augmentation
techniques in a bid to improve a model’s performance

[23, 25, 26]. Such an approach enables a model to adapt to
new data patterns on its own with augmented data samples
that improve the number of training samples. 'ese
methods typically use only labeled data, since the learning
process involved is a supervised one. However, an effective
way of reducing labeling cost and generating more training
samples is to make use of labeled and unlabeled data, via
semisupervised learning (SSL) [27, 28]. Semisupervised
learning aims to incorporate both labeled and unlabeled data
in building better learners by fully considering the super-
vised knowledge delivered by labeled data and unsupervised
data structure under unlabeled ones [27]. At the heart of
semisupervised learning is training a learner on labeled data
and using the learner to predict labels for unlabeled data.
Moreover, compared to the process of obtaining well-labeled
data, unlabeled data is rather inexpensive and abundant.
Semisupervised learning algorithms have been adopted in
some works mentioned in the literature for some classifi-
cation tasks [27, 29–34].

In [35], the authors reported a cost-effective active
learning approach for classifying deep images. 'eir pro-
posed approach first progressively feeds samples from the
unlabeled data into the CNN.'en clearly classified samples
and the most informative samples are selected via a selected
criterion and applied on the classifier of the CNN.'e CNN
model is then updated after adding user-annotated minority
uncertain samples to the labeled set and pseudolabeling the
majority certain samples. However, this approach acquires
the least certain unlabeled examples for labeling and while
simultaneously assigning predicted pseudolabels to most
certain examples, and such a technique is not always helpful
[36]. In [30], the authors use both labeled and unlabeled data
for training a deep model across learning cycles. 'e authors
employed both unsupervised feature learning and semi-
supervised learning. Unsupervised feature learning is used
on all data once at the beginning of the active learning
pipeline and the resulting parameters are used to initialize
the model at each active learning cycle. 'e authors used
semisupervised learning on all data at every learning cycle,
replacing supervised learning on labeled examples alone,
which is typical of tradition active learning methods. 'e
approach adopted in this work parallels the works in [30, 37]
in that a pseudolabel is generated for each unlabeled example
but it differs from the work in [37] in that all unlabeled ones
are pseudolabeled as opposed to only the majority high-
confidence samples. 'is work employs semisupervised
learning with self-training for training a classifier, rather
than employing active learning. 'e work in [29] tackles the
issue of classical multimedia annotation problems ignoring
the correlations between different labels by combining label
correlationmining and semisupervised feature selection into
a single framework. 'eir approach utilizes both labeled and
unlabeled data to select features while label correlations and
feature corrections are simultaneously mined. In contrast,
unlike selecting features via semisupervised learning, our
work generates pseudolabels for the unlabeled samples and
selects the most confident pseudolabeled samples via the
pseudolabel generation and selection algorithm. By incor-
porating the self-paced learning concept into the selection

2 Computational Intelligence and Neuroscience



process, the model learns samples from both well- and less-
represented classes, which tackles the issue of model bias
when selecting samples. 'e base model then learns features
from both the labeled data and the selected pseudolabeled
samples during training. We also solve the issue of class
imbalance by introducing a class balancing framework.
'ese two issues were not addressed in their work.

In [31], the authors proposed a semisupervised model
named adaptive semisupervised feature selection for cross
modal retrieval. In their semisupervised framework, the labels
for unlabeled data are predicted by the graph-based label
propagation. 'en the unlabeled data with the predicted labels
are combined with the labeled data to learn the mapping
matrices. Meanwhile, the mapping matrices update the pre-
dicted label matrices, which can ensure that the raw feature
distribution will be as consistent as possible with the semantic
distribution in the subspace after several iterations. Our work
parallels this proposed work with respect to predicting labels
for unlabeled data and combining both the predicted labels
with labeled data in updating training data for another iterative.
'e differences lie in the fact that our approach first uses the
base learner to predict pseudolabels for the unlabeled samples
after first training the learner with labeled samples, rather than
graph-based label propagation. 'en, a pseudolabel selection
algorithm selects the most confident pseudolabeled sampled
samples before updating the training samples with these se-
lected pseudolabeled samples and labeled samples via self-
training. 'is contrasts mapping matrices which are used to
update the predicted label matrices in their approach. Again,
our work focuses on generating confident pseudolabeled
samples to augment the training data, making more reliable
data available to the learner during training, as well as solving
the issue of class imbalance in the data set while ensuring the
fact that the model exhibits fairness in the selection process by
learning from both well- and less-represented samples. Also,
the work in [32] introduces a novel discriminative least squares
regression (LSR) which equips each label with an adjustment
vector.'is technique avoids incorrect penalization on samples
that are far from the boundary and at the same time facilitates
multiclass classification by enlarging the geometrical distance
of instances belonging to different classes. 'e authors assign a
probabilistic vector fit each sample, hence ensuring the im-
portance of labeled data while characterizing the contribution
of unlabeled instance according to its uncertainty. Our ap-
proach primarily focuses on the generation of reliable pseu-
dolabeled samples in augmenting the training data. 'e
reliability of a pseudolabeled sample is determined by the
pseudolabel selection algorithm which ensures the selection of
pseudolabeled samples with the most confident probability.
'is prevents the situation where incorrectly labeled samples
are added to the training samples. Also, our semisupervised
learning approach hinges on the concept self-training and self-
paced learning, which distinguishes our approach from the one
reported in our work. 'e similarities lie in the fact that their
proposedwork and ours utilize both labeled and unlabeled data
in the learning process.

To this end, this work proposes a novel semisupervised
learning framework that uses self-training and self-paced
learning (SPL) [38] to classify breast cancer

histopathological images. Self-training is a semisupervised
technique capable of learning a better decision boundary for
labeled and unlabeled data. Self-training is accomplished by
alternating between the generation of a set of pseudolabels
corresponding to a large selection scores in the unlabeled-
target domain and training a network (usually by fine-
tuning) based on these selected pseudolabels and their
corresponding pseudolabeled samples and labeled training
data. 'e assumption here is that the target samples with
higher prediction probability are right and have better
prediction accuracy. In the proposed method, the process of
generating and selecting pseudolabels is achieved via a novel
pseudolabel generation and selection algorithm that selects
only pseudolabels with the highest probability. 'e selection
process is based on SPL, where in the initial learning stage,
“easy” samples are selected and then “hard-to-transfer”
samples are gradually added in a meaningful manner,
making the classifier more robust. In a nutshell, the main
contributions of this work are as follows:

We propose a novel semisupervised learning frame-
work that utilizes self-training with self-paced learning
in classifying breast cancer histopathological images by
formulating the problem as a loss minimization scheme
which can be solved using an end-to-end approach.

We introduce a novel pseudolabel generation and se-
lection algorithm for selecting pseudolabels with rel-
atively high-confidence probabilities to augment the
training samples for retraining the model. In retraining
the model, the optimization process begins by selecting
pseudolabeled samples with relatively higher confi-
dence (“easy” samples) then gradually adds “hard”
samples to the training data. 'is ensures the selection
of pseudolabels with high precision and prevents
mistake reinforcement.

To tackle the issue of class imbalance associated with
self-training methods when generating and selecting
pseudolabels, we implement confidence scores that use
class-wise normalization in generating and selecting
pseudolabels with balanced distribution.

We obtain significant accuracy performance on the
BreakHis dataset compared to the state-of-the-art
approaches.

2. Methods

We provide an overview of the formulation of the problem
as a loss minimization scheme which can be solved using an
end-to-end approach. 'e concepts of self-training and self-
paced learning as applied to the proposed scheme are also
presented.

2.1. Preliminaries. For a given number of sample classes, the
classification task is defined as a standard softmax loss on the
labeled source data as inputs xs, ys and the target data xt, yt:

Lc χ, y: θc( )W � −∑
k

1[y � k]logPk. (1)
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In equation (1), the aim is to produce a classifier θc that
can correctly classify target samples at the time of testing, with
minimal loss. Nonetheless, based on the assumption that
there is usually a limited amount of labeled target data
(potentially from only a small subset of the categories of
interest), effective transfer of representations becomes lim-
ited. Consequently, a classifier abandons the less-represented
class samples in the learning process, focusing only on well-
represented class samples. 'is ultimately impedes the clas-
sifier’s ability to learn robust representations. 'e two key
issues of learning the classifier lie in an effective formulation
of a score function and a robust formulation of the loss
function. Again, the robustness of a learner depends on the
formulation of the loss function to relieve the influence of
noisy and confusing data [39]. Moreover, the works in [40, 41]
proved that the optimization problem of SPL solved by the
alternative optimization algorithm is equivalent to a robust
loss minimization problem solved by a majorization-mini-
mization algorithm. In view of this, the problem is formulated
as minimizing the loss function:

min Lc(W)W � −∑L
l�1

∑N
n�1

Y
L
l,nlog Pn W, Il( )( )

−∑T
t�1

∑N
n�1

Y
T
t,nlog Pn W, It( )( ).

(2)

Il denotes the image in the source domain indexed by
l � 1, 2, 3, . . . , L. Yl,n represents the true labels for the nth
image (n� 1,2, . . ., N) for Il. W denotes the network weights.
Pn(w, Il) is the softmax output containing the class prob-
abilities. Similar definitions hold for It,Yt,n and pn(w, It)
during evaluation. 'is problem formulation is different
from [35] where the number of samples is represented as
union of self-labeled high-confidence samples and manually
annotated samples by an active user.We further formulate to
minimize the loss function in equation (3). In the case where
some target labels are unavailable, these labels are assumed
to be hidden and the model learns from approximate target

labels Ŷ for Ĉ (number of samples). In equation (3), Ŷ is
termed as pseudolabels:

minLc(W, Ŷ)
W,Ŷ

� −∑L
l�1

∑N
n�1

Y
L
l,nlog Pn W, Il( )( )

−∑T
t�1

∑N
n�1

Ŷ
T

t,nlog Pn W, It( )( ).
(3)

2.2. Self-Training with Self-Paced Learning.
Semisupervised learning approaches typically adopt self-
training to utilize unlabeled samples [42–45]. Based on the
assumption of conventional self-training, an early mistake
by the learner can reinforce wrong predictions into the
training set for the next training iteration. To tackle this
problem, a better alternative is to resort to adding samples by
adopting an “easy-to-hard” approach via self-paced learning.
'e principal idea in self-paced learning is generating
pseudolabels from “easy” predictions on the grounds that
these approximate labels are right and correctly approximate
the ground truth labels, then later exploring the “hard” or
less-confident pseudolabels to update the model. 'e self-
training process used in this work is outlined in Algorithm 1.
A deep CNNmodel is first trained with labeled samples. 'e
model then is then used to make predictions on the unla-
beled data to generate pseudolabels It. Similar to [30], all
unlabeled samples are pseudolabeled. A novel selection al-
gorithm with a class balancing mechanism is then used to
select the nonannotated samples with the highest-confident
probability predictions. 'ese samples together with their
approximated labels are added to the training set for the next
training iteration. 'is cycle is executed iteratively until a
stopping criterion is met. 'e overall workflow of our
method is illustrated in Figure 1.

To incorporate the self-paced learning and self-training
scheme, the loss function is modified as follows:

minLc(W, Ŷ)
W,Ŷ

� −∑L
l�1

∑N
n�1

Y
L
l,nlog Pn W, Il( )( ) −∑T

t�1

∑N
n�1

Ŷ
T

t,nlog Pn W, It( )( ) + kcY(c)
t,n[ ]

s.t. Yt,n ∈ e(i) ∈ RC{ }, kc > 0.
(4)

During training, Y is assigned to zero, implying that Ŷ
is ignored. To regulate the amount of pseudolabeled samples
to be selected from the classes, kc is introduced.'e selection
of a large quantity of pseudolabels is synonymous to a large
value of kc. Adding kc in equation (4) introduces a class-wise
bias scheme that handles the issue of class imbalance when
selecting pseudolabels. 'e pseudolabel selection process is
accomplished in two steps: (1) initializeW and minimize the
loss (in equation (4)) w.r.t. Ŷt,n and (2) set Ŷt,n and optimize
the objective function in w.r.t.W. We considered the process
of executing steps 1 and 2 as a single iteration and the two
steps were repeated alternatively for several iterations. 'e

task of solving Step 1 requires a nonlinear function and as
such, Step 1 was reexpressed as

min
Ŷ
−∑T
t�1

∑N
n�1

∑C
c�1

Ŷ
(c)

t,y log pn C|wt, nIt( )( ) + kcŶ(c)

t,n[ ]
s.t. Ŷt,n � Ŷ

(1)

t,n , . . . , Ŷ
(c)

t,n[ ] ∈ e(i) ∈ RC{ }, kc > 0.
(5)

'e introduction of a class-wise bias by normalizing
class-wise confidence scores distinguishes this formulation
from the one proposed in [21] where the authors adopted an
L1 regularizer in a bid to avoid the scenario where most of

4 Computational Intelligence and Neuroscience



the pseudolabels are ignored. In solving the pseudolabel
framework optimizer, the work in [21] utilized the solver
expressed in the following equation:

Ŷ
(c∗)
t,y �

1, if c � argmaxpn c|w, It( ), pn c|w, It( )> exp(−k)
0, otherwise.

{
(6)

With such a formulation, the process of generating and
selecting pseudolabels hinges on the output probability
(pn(c|wt, nIt)). Inherently, such an approach does not

handle the issue of class imbalance. To resolve this, equation
(3) is reexpressed as follows:

min Lc(W, Ŷ)W,Ŷ
� −∑L

l�1

∑N
n�1

YLl,nlog Pn W, Il( )( )
−∑T
u�1

∑N
n�1

∑C
c�1

Ŷ
T

t,nlog Pn W, It( )( ) + kcŶ(c)

t,n[ ]
s.t.Ŷt,n � Ŷ

(1)

t,n , . . . , Ŷ
(c)

t,n[ ] ∈ e(i) ∈ RC{ }, kc > 0.
(7)

input: Deep Learning Network D(w), unlabeled Images It, amount Kc
output: Trained Classifier (C)
Train a deep network D(w) with labeled samples Il
for k⟵ 1 to N do

Test and predict on unlabeled samples It;
Generate pseudolabels for It using predictions;
Select Kc pseudolabeled samples after filtering out balancing class-wise scores
Augment labeled training set (Il +Kc(It)) with selected Kc pseudolabeled samples
Retrain D(w) with Il and Kc pseudolabeled samples (Il +Kc(It))

end

C � updated(D(w));
Return C

ALGORITHM 1: Self-paced learning workflow.
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Figure 1: Workflow of the proposed approach. A deep CNN model is first trained with labeled data samples. 'e trained model is then
evaluated on unlabeled data to generate pseudolabels for the unlabeled data. A pseudolabel selection algorithm that integrates a class
balancing mechanism is used to select pseudosamples that have the highest confidence probability confidence score. 'e selected samples
together with their pseudolabels are used to augment the training sample for the next training iteration and the cycle is repeated iteratively
until a stopping criterion is met.
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Minimizing the optimization framework in equation (7)
was accomplished by using the loss function in equation (5)
but with a solver that incorporates the class-wise normal-
izing term (different from the one proposed in [21])
expressed as

Ŷ
(c∗)
u,y �

1, if c � argmax
pn c|w, Iu( )
exp −kc( ) ,

pn c|w, Iu( )
exp −kc( ) > 1

0, otherwise.


(8)

'e process of generating and selecting pseudolabeled
samples is dependent on the normalized class-wise output
(pn(c|w, Iu))/(exp(−kc)) in equation (8). Using the nor-
malized output ensures a balance towards classes with relatively
low score but with a high intraclass confidence score during the
process of assigning pseudolabels to an unlabeled sample.

To regulate the amount of pseudolabeled samples to be
selected to update the model in each training iteration, Kc is
set using the process in Algorithm 2. In finding and fixing a
value forKc, the algorithm ranks the class C probabilities on
all the image samples predicted as class C.Kc is set such that
exp(−Kc) is equivalent to the probability ranked at iteration
(p∗Nc), with Nc being the number of images predicted as
class C. For each unlabeled sample, the maximum output
probability M was taken in descending order and these
probabilities are sorted out across all samples. Optimizing
the pseudolabels resulted in the p × 100% most confident
pseudolabeled samples to be used in training the model
(where p is a scaled proportion between [0, 1]). Such a
scheme ensures that the probability ranked at p × 100% is
taken independently from each class to (1) threshold the
confidence scores and (2) normalize the confidence scores. p
is first initialized with 10% of the most confident predictions
and at each additional round, the top 5% is added to the next
pseudolabel generation and selection process.

3. Materials and Experiments

3.1. Dataset. We have carried out experiments on the
BreakHis dataset [18]. 'e BreakHis dataset contains mi-
croscopic biopsy images of benign and malignant breast
tumors totaling 7909 images. 'e image samples were gen-
erated from breast tissue biopsy slides, stained with hema-
toxylin and eosin (HE). Each image has a pixel size of
700× 460 (in PNG format), with a 3-channel RGB, and 8-bit
depth in each channel. 'e benign and malignant classes are
each further subdivided into four distinct types. 'e subtypes
for the benign class are adenosis, fibroadenoma, phyllodes
tumors, and tabular adenoma. 'e malignant class subtypes
are ductal carcinoma, lobular carcinoma, mucinous carci-
noma, and papillary carcinoma. 'e images are obtained
using fourmagnification factors −40X, 100X, 200X, and 400X.
'e images exhibit fine-grained characteristics with only
subtle differences between images from different classes as
well as high coherency, which is typical of cancerous cells.
'ese factors, compounded with the fact that images in the
same class have different contrasts and resolutions, make the

BreakHis dataset challenging, not to mention the high im-
balance in subtype classes (2,480 images belong to the benign
class and 5,429 images belong to the malignant class). Figure 2
shows sample images from each subtype class and Table 1
shows the distribution of images per each class.

3.2. Experimental Settings. 'e pretrained Inception_-
ResNetV2 [46], a variant of the Inception_V3 model [47],
was used as the baseline model for all experiments.
Inception_ResNetV2 is able to greatly improve classifi-
cation and recognition performance at low computational
costs. Input images are resized to 299 × 299 before being
fed to the model. At the fully supervised learning phase,
the baseline model is fine-tuned to initialize the model
weights and also reduces variance. Fine-tuning of pre-
trained models has demonstrated to be an effective ap-
proach for achieving significantly higher results even on
small-scale data. For the supervised learning phase, the
model is trained for a total of fifty (50) epochs using the
Adam optimizer [48], β1 � 0.9, β2 � 0.99 and an initial
learning rate of 0.001 which is decayed via a polynomial
decay scheduling (expressed in equation (9)). A poly-
nomial decay scheduling allows the learning rate to decay
over a fixed number of epochs:

α � initLR∗ 1 −
epoch

Tepochs

( )p, (9)

initLR is the base learning rate, Tepochs is the total number of
epochs, and p is the exponential power, which is set to 1.'e
model is trained with a batch size of 32. Random rotation
with a range of 90° and horizontal flipping have been
implemented as data augmentation techniques to help
combat overfitting. For the self-training phase, the model is
also retrained with hyperparameters for top Kc using 5%,
10%, and 20% of the pseudolabeled samples of the unlabeled
data. 70% of the data is used as training data and 30% is
added to the test samples to be used as the unlabeled data for
the self-training scheme. 'e training data was further split
into 70 : 30 percent ratio as training and validation data,
respectively. 'e model is trained for a total of 5 iterations
during the semisupervised phase. We experimented with 5,
8, and 10 iterations and realized that not only did the 8 and
10 iterations take too much time to train, they also did not
contribute significantly to the accuracy of the model com-
pared to training for 5 iterations. To efficiently optimize
training time, we decided to train for 5 iterations as this
resulted in excellent accuracy within a limited time. Each
experiment is repeated three times and the results are av-
eraged. 'e iterations were stopped when there was no
further improvement in accuracy.

'e proposed approach does not add extra computa-
tional overhead during training, allowing training to be
completed in an efficient manner. 'e averaged total
training time for all experiments is shown in Tables 2 and 3,
respectively. All experiments are carried out using Keras
(version 2.2.4) with TensorFlow backend (version 1.12) and
CUDA 9.0. Two RTX 2080 graphic cards, each with 8 GB
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memory and a 32 GB RAM, served as the hardware plat-
forms. 'e evaluation metrics used in accessing the model
were classification accuracy, precision, recall, F1-score, and
confusion matrix. 'ese parameters are related to the true

positive (TP), true negative (TN), false positive (FP), and
false negative (FN) rates, respectively. True positive mea-
sures how correctly a classifier predicts the positive class.
True negative measures how correctly a classifier predicts the
negative class. False positive measures how, incorrectly, a

input: Deep CNN D(w), unlabeled samples It, selected pseudolabels p
output: Kc

for t⟵ 1 to T do

PIt � D(w, It);
LPIt � argmax(P, axis � 0);
MPIt � max(P, axis � 0);
M � [M,from −matrix − to − vector(MPIt)]for c⟵ 1 to C do

MPc, It �MPIt(LPIt �� c);
Mc � [Mc,Matrix − to − vector(MPc, It)]

end
end

for c⟵ 1 to C do
Mc � sort(Mc, order � descending);
lenc,th � length(Mc) × p;
Kc � −log(Mc[lenc,th])

end
return(Kc)

ALGORITHM 2: Determining Kc.

Adenosis Fibroadenoma Phyllodes tumor Tubular adenoma

Ductal carcinoma Lobular carcinoma Mucinous carcinoma Papillary carcinoma

Figure 2: Sample image from each of the eight cancer subtypes in the BreakHis dataset.'e images have subtle differences across classes due
to their fine-grained nature, with different contrast and resolutions. 'ese characteristics, coupled with the high coherency of the cancerous
cells, make the dataset a challenging one. 'e images are obtained at a magnification factor of 200X.

Table 1: 'e distribution of images per individual subtype classes
of the BreakHis histopathological images dataset.

Class Subtype
Magnification factors

40X 100X 200X 400X

Benign

Adenosis 114 113 111 106
Fibroadenoma 193 260 264 137

Phyllodes tumors 149 150 140 130
Tabular adenoma 109 121 108 115

Malignant

Ductal carcinoma 864 903 896 788
Lobular carcinoma 156 170 163 137
Mucinous carcinoma 205 222 196 169
Papillary carcinoma 145 142 135 138

'e distribution shows unequal number of image distribution per classes,
resulting in class imbalance which makes the dataset a challenging one.

Table 2: Average training times for the binary classification task
based on the amount of selected pseudolabels.

% of pseudolabels 40X 100X 200X 400X

K(top-5)
pseudolabels

1 hour
59min

2 hours
2min

2 hours
4min

1 hour 50min

K(top-10)
pseudolabels

1hour
56min

2 hours
2min

1 hour
59min

1 hour 50min

K(top-20)
pseudolabels

1 hour
59min

2 hours
3min

2 hours 1 hour 53min

All pseudolabels
1 hour
58min

2 hours
4min

1 hour
57min

1 hour 49min

min represents minutes.
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classifier predicts the positive class. False negative measures
how, incorrectly, a classifier predicts the negative class.

4. Results and Discussion

'e proposed scheme was evaluated using the top 5%, 10%,
and 20% pseudolabeled samples. For purposes of reporting
and investigation, we also report on values obtained when all
pseudolabeled samples (100%) were used. We present and
discuss results for both binary and multiclass classification
tasks.

4.1. Binary Classification. 'e experimental outcomes for
the binary classification task are shown in Table 4. For
images with magnification factor of 40X, the best accuracy
result was 99.52% when the top-10% pseudolabeled samples
were selected. Similarly, for a magnification factor of 100X,
the best accuracy result was 99.44% with the top-5%
pseudolabeled samples. Using the top-10% pseudolabeled
samples resulted in 99.48% accuracy for images with a
magnification factor of 200X, and using the top-10% yielded
an accuracy result of 99.47% with images scanned at 400X.

'e generation and selection of the topKc pseudolabeled
samples via the proposed schemed was a vital key in con-
trolling and determining the amount of pseudolabeled
samples to be selected in updating the model at the next
iteration. 'e selection scheme, coupled with the self-paced
learning and self-training approach ensured that classes with
the least representations which would have otherwise been
ignored, was still selected and added to the training samples.
'is proved to be an effective and efficient step in the
learning process. Again, the results in Table 4 show that
selecting the top Kc pseudolabels proved to be a more ef-
fective approach rather than using all the pseudolabeled
samples. 'e accuracy results obtained with the proposed
approach show significant accuracy gains.

'e accuracy and loss plots for 40X and 100X are shown
in Figures 3 and 4 denotes plots for 200X and 400X, re-
spectively. When training deep networks, overfitting re-
mains a vital issue that needs to be addressed as it affects the
ability of a trained model to generalize well on new data. It is
observed from the plots that both accuracy and loss values
were unstable until after epoch thirty (during the supervised
learning stage). Values kept bouncing within different in-
tervals from the start of training till the epoch thirty. We
attribute this to the distance disparity between the source
and target data. In fine-tuning a pretrained model on a
secondary task, there is the assumption that the source and

target domains are related to each other. However, in cases
where this assumption is not met, brute-force transfer
learning may not be successful and even in the worst case,
degrading learning performance in the target domain [49].

'e pretrained model used as the baseline model was
trained on the ImageNet dataset (which consists of natural
images) as against the BreakHis dataset which contains
breast cancer histopathological images. As such, at the start
of supervised training stage, the model begins to learn the
relatively new patterns from the target domain (breast
cancer images) resulting in the spikes as depicted in the
plots. However, past epoch thirty, a drastic drop in loss value
is observed and the accuracy values increase steadily. At the
end of epoch fifty, the loss value is greatly reduced and the
training and validation accuracy (for both the supervised
learning stage and the self-training stage) are almost aligned.
'is is an indication that the proposed approach also ef-
fectively curbs overfitting. 'e imbalanced nature of the
BreakHis dataset implies that accuracy alone cannot be used
to access the performance of the model. Results for preci-
sion, recall, and F1-score values are also presented in Table 5.
'e confusion matrices are also presented in Figure 5. 'e
BreakHis dataset contains more samples for the malignant
class compared to the benign class, and this is also reflected
in the confusion matrices. Nonetheless, the selection process
together with the class balancing framework adopted in this
work ensured the fact that the model accurately classified the
respective classes with minimal misrepresentations.

4.2. Multiclass Classification. 'e accuracy results for the
multiclass classification are summarized in Table 6. For
images scanned at 40X, the highest accuracy obtained was
94.28% when the top-10% pseudolabels were selected. For
100X, the best accuracy was 93.84% when the top-20%
pseudolabels were selected. Selecting the top-5% pseudo-
labels yielded an accuracy of 94.93% for images scanned at a
magnification factor of 200X. For images scanned at a
magnification factor of 400X, the best accuracy was 93.75%
when the top-10% pseudolabels were selected. Similar to the
binary classification task, selecting the top Kc pseudolabels
to augment the training samples in the next training iter-
ation proved to be more effective than selecting all the
pseudolabels. 'is outcome further rubber-stamps the sig-
nificance of Kc in the proposed approach.

'e plots for loss and accuracy (for images scanned at
40X and 100X) are shown in Figure 6 and the corresponding
plots for 200X and 400X are shown in Figure 7.'e nature of
the plots follow from the explanations provided for the

Table 3: Average training times for the multiclass classification task based on the amount of selected pseudolabels.

% of pseudolabels 40X 100X 200X 400X

K(top-5) pseudolabels 2 hours 2 hours 5min 2 hours 1min 1 hour 47min
K(top-10) pseudolabels 1hour 58min 2 hours 5min 1 hour 57min 1 hour 49min
K(top-20) pseudolabels 2 hours 1min 2 hours 2 hours 2min 1 hour 49min
All pseudolabels 2 hours 2 hours 5min 2 hours 1 hour 49min

min represents minutes.
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binary classification plot. 'e precision, recall, and F1-score
values are provided in Table 7 and the confusionmatrices for
all magnification factors are provided in Figure 8.

'e confusion matrices also bring out the imbalance in
the dataset. 'e ductal carcinoma class has more samples
than the remaining classes with the adenosis class having the
least number of samples. As a result, these two classes
represent the most and least number of samples, as depicted
in Figure 8. Again, the subtle nature of the appearance of the
different images per different classes also does pose chal-
lenges for models in accurately discriminating between
classes. In [23], the authors pointed out this difficulty, es-
pecially when discriminating between ductal carcinoma and

lobular carcinoma as well as fibroadenoma and tabular
adenoma. However, from the confusion matrices, it is ob-
served that such misrepresentations are effectively handled
by the proposed approach. Between ductal carcinoma and
lobular carcinoma, an average of four samples are mis-
represented while between fibroadenoma and tubular ade-
noma, only two samples are misrepresented for images
scanned at a magnification factor of 200X.

'e accuracy, precision, recall, and F1-score values as
well as the confusion matrices all show the effectiveness of
using Kc in determining the proportions of pseudolabels to
be used in updating the model in each training iteration and
also prove that adding samples in an “easy-to-hard”

Table 4: Accuracy (%) performance for binary classification. Baseline indicates that the model was fine-tuned with labeled samples only.Kc

(top-N) indicates the portion of the most confident pseudolabels used. Best results are indicated in italics.

ST approach 40X 100X 200X 400X

Baseline 97.14 ± 0.33 98.22 ± 0.40 98.55 ± 0.57 98.43 ± 0.44
Kc(Top-5%) pseudolabels 99.28 ± 0.6 99.44± 0.41 99.03 ± 0.34 99.04 ± 0.73
Kc(Top-10%) pseudolabels 99.52± 0.33 98.85 ± 0.32 99.48± 0.30 99.47± 0.37
Kc(Top-20%) pseudolabels 99.27 ± 0.37 97.95 ± 0.01 98.79 ± 0.68 98.92 ± 0.22
All pseudolabels 98.09 ± 0.21 98.20 ± 0.13 98.5 ± 0.72 98.69 ± 0.58
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Figure 3: Accuracy plot for images scanned at 40X and 100X for the binary classification task. (a) 'e loss plot for 40X and (b) the
corresponding accuracy plot. (c) 'e loss plot for 100X and (d) the corresponding accuracy plot. ST represents the self-training plot.
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approach ensures that even the least-represented samples are
still considered in the training process. Overall, these
schemes resulted in the model being very versatile and

robust even in the face of the similarities and coherence
between the images samples in the dataset.

4.3. Comparison with Other Works. We compare the per-
formance of the proposed approach with other works
mentioned in the literature as shown in Table 8 for the binary
classification task) and Table 9 (for the multiclass classifi-
cation task), respectively. All these underlisted state-of-the-
art methods were evaluated on the BreakHis dataset, offering
a fair comparison and assessment with the proposed ap-
proach in this work. 'e work in [23] used a CNN model
consisting of five convolutional layers and two fully con-
nected layers for both binary and multiclass classification
tasks. Using an ensemble method, the authors report ac-
curacy of 98.33%, 97.12%, 97.85%, and 96.15% for magni-
fication factors 40X, 100X, 200X, and 400X for the binary
classification task. For the multiclass classification, they
reported accuracy of 88.23%, 84.64%, 83.31%, and 83.39%
for magnification factors of 40X, 100X, 200X, and 400X.

In [24], the authors proposed a structured deep learning
model for classifying breast cancer histopathological images.
In their work, the authors considered the feature space
similarities of histopathological images by leveraging intra-
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Figure 4: Accuracy plot for images scanned at 200X and 400X for the binary classification task. (a) 'e loss plot for 200X and (b) the
corresponding accuracy plot. (c) 'e loss plot for 400X and (d) the corresponding accuracy plot. ST represents the self-training plot.

Table 5: Precision (Prec.), recall (R), and F1-score (F1) values for
binary classification.

Mag. factor % of pseudolabels Prec. (%) R (%) F1 (%)

40X

Kc(top-5%) 99.50 99.23 99.38
Kc(top-10%) 99.89 99.79 99.81
Kc(top-20%) 99.50 99.21 99.36

All pseudolabels 98.72 98.63 98.49

100X

Kc(top-5%) 99.73 99.58 99.69
Kc(top-10%) 99.28 99.17 99.23
Kc(top-20%) 98.62 98.24 98.71

All pseudolabels 99.12 99.06 99.19

200X

Kc(top-5%) 99.43 98.91 99.18
Kc(top-10%) 99.84 99.80 99.49
Kc(top-20%) 99.27 99.00 99.13

All pseudolabels 99.18 99.10 99.22

400X

Kc(top-5%) 99.40 99.17 99.20
Kc(top-10%) 99.85 99.77 99.54
Kc(top-20%) 99.25 99.18 99.21

All pseudolabels 99.20 99.00 99.14
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and interclass labels as prior knowledge. 'ey also adopted a
data augmentation scheme that generated more data for the
model during training. Using a pretrained deep CNNmodel
as their base network, the authors reported accuracy of
95.8%, 96.9%, 96.7%, and 94.9% for the binary classification
task. For the multiclass task, they reported accuracy of
92.8%, 93.9%, 93.7%, and 92.9% for magnification factors of
40X, 100X, 200X, and 400X, respectively. It can be observed
that their approach yielded a 0.06% gain in accuracy for
images scanned at 100X for the multiclass task compared to
our approach.'e data augmentation approach used in their
work amassed more data for model during the fine-tuning
stage compared to our approach and their overall approach
was a supervised one (meaning only labeled data was used)
as opposed the semisupervised fashion in ours (SSL dwells
on the assumption that there are more unlabeled samples
than labeled samples [27]). 'at notwithstanding, our ap-
proach yielded significant accuracy improvements for all the
other magnification factors.

In [51], the authors proposed a novel L-Isomap-aided
manifold learning and stacked sparse autoencoder
framework for a robust BC classification using HIs. 'e
authors reported accuracy of 96.8%, 98.1%, 98.2%, and
97.5% for images with magnification factors 40X, 100X,
200X, and 400X, respectively. In [50], the authors used a
CNN model to extract local and frequency domain in-
formation from input images for classifying breast
cancer images on the BreakHis dataset. 'ey report
accuracy of 94.40%, 95.93%, 97.19%, and 96.00% for the
binary classification task. 'ese algorithms mentioned in
the literature only utilize supervised learning
approaches.

In this work, we have used 70% of the data for training at
the supervised learning stage and the remaining 30% was
added to the test set which was used as unlabeled data for the
self-training stage. 'e selection of the most confident
pseudolabeled samples to augment the training sample has
been proven effective in providing the model with reliable
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Figure 5: Confusion matrix for binary classification. (a) 40X. (b) 100X. (c) 200X. (d) 400X.

Table 6: Accuracy (%) for multiclass classification.

ST approach 40X 100X 200X 400X

Baseline 91.42 ± 0.54 89.04 ± 0.70 90.07 ± 0.21 90.70 ± 0.63
Kc(top-5%) pseudolabels 94.27 ± 0.28 91.78 ± 0.61 94.93± 0.17 92.97 ± 0.37
Kc(top-10%) pseudolabels 94.28± 0.29 92.46 ± 0.48 94.32 ± 0.22 93.75± 0.72
Kc(top-20%) pseudolabels 94.14 ± 0.14 93.84± 0.35 91.48 ± 0.28 92.19 ± 0.16
All pseudolabels 92.87 ± 0.71 90.41 ± 0.63 92.19 ± 0.38 91.40 ± 0.11
Baseline indicates that the model was fine-tuned with labeled samples only. Kc (top-N) indicates the portion of the most confident pseudolabels used. Best
results are indicated in italics.
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Figure 6: Accuracy and loss plot for images scanned at 40X and 100X for the multiclass classification. (a) 'e loss plot for 40X and (b) the
corresponding accuracy plot. (c) 'e loss plot for 100X and (d) is the corresponding accuracy plot. ST represents the self-training plot.
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Figure 7: Continued.
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Figure 7: Accuracy plot for images scanned at 200X and 400X for the multiclass classification task. (a) 'e loss plot for 200X and (b) the
corresponding accuracy plot. (c) 'e loss plot for 400X and (d) the corresponding accuracy plot. ST represents the self-training plot.

Table 7: Precision (Prec.), recall (R), and F1-score (F1) values for multiclass classification.

Mag. factor % of Pseudolabels Prec. (%) R (%) F1 (%)

40X

Kc(top-5%) 94.96 94.71 94.67
Kc(top-10%) 95.15 94.78 94.80
Kc(top-20%) 94.63 94.55 94.59

All pseudolabels 93.25 93.0 93.21

100X

Kc(top-5%) 91.85 91.71 91.89
Kc(top-10%) 93.14 92.85 92.38
Kc(top-20%) 94.24 94.71 94.33

All pseudolabels 90.63 90.39 90.51

200X

Kc(top-5%) 95.85 95.90 95.56
Kc(top-10%) 95.47 94.91 95.32
Kc(top-20%) 91.44 91.07 91.64

All pseudolabels 92.65 92.0 92.75

400X

Kc(top-5%) 93.48 93.23 93.51
Kc(top-10%) 94.36 94.28 94.38
Kc(top-20%) 92.69 92.14 92.32

All pseudolabels 90.63 90.57 90.41

7

7

7

7

0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0

0

0

0 0

0 0 0

00 0 0

0 00 0

0 0 00

0

0

0

0

0

0

0

0

0 0 0 0 0 0

11

8

21

62 1

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

1

T
r
u

e
 l

a
b

e
l

Predicted label

60

45

30

15

0

4

2

1

2

(a)

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

1

T
r
u

e
 l

a
b

e
l

Predicted label

0

0

0

0

0

0

0

0

0 0 0 0

00 0 0

00 0 0

0 0

0

0

0

0

0 0 0

0 0 0

0 00 0

0 0 00

0

0

0 0 0 0 0 0

0

1

1

5

54

20

15

15

13

10

5

2 1

3

0

1

50

40

30

20

10

0

(b)

Figure 8: Continued.
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samples, and ultimately expanding the training set, thereby
making more data available to the model (to satisfy the
hunger of deep models for more data). 'e effectiveness of
the proposed method is evident in the results obtained,

which depict significant accuracy improvements compared
to the abovementioned methods which are mostly super-
vised learning approach where only labeled data was used.
'e proposed algorithm has been tested on breast cancer
histopathological images since it is in line with our research
objective. 'erefore, we are quick to add that, the signifi-
cance of the proposed algorithm is not limited or specifically
designed for breast cancer classification. Based on the results
obtained, we are confident that this algorithm can be ex-
tended to other classification tasks in medical imaging or
computer vision that seek to employ semisupervised
learning techniques in solving various tasks.
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Figure 8: Confusion matrix for multiclass classification for the respective magnification factors.'e imbalance in the sample distribution is
evident in the plot. Nonetheless, there are not so many misrepresentations among classes. Order of class names: 1: adenosis, 2: ductal
carcinoma, 3: fibroadenoma, 4: lobular carcinoma, 5: mucinous carcinoma, 6: papillary carcinoma, 7: phyllodes tumor, and 8: tubular
adenoma. (a) 40X. (b) 100X. (c) 200X. (d) 400X.

Table 8: Accuracy comparison with some state-of-the-art algo-
rithms for the binary classification task on the BreakHis dataset.

Ref.
Mag.
fac.

Acc. (%)
Prec.
(%)

R
(%)

F1
(%)

Nahid and Kong
[50]

40X 94.40 94.00 96.00 95.00
100X 95.93 98.00 96.36 97.00
200X 97.19 98.00 98.20 98.00
400X 96.00 95.00 97.79 96.00

Han et al. [24]

40X 95.8 ± 3.1 — — —
100X 96.9 ± 1.9 — — —
200X 96.7 ± 2.0 — — —
400X 94.9 ± 2.8 — — —

Pratiher and
Chattoraj [51]

40X 96.8 — — —
100X 98.1 — — —
200X 98.2 — — —
400X 97.5 — — —

Bardou et al. [23]

40X 98.33 97.80 97.57 97.68
100X 97.12 95.58 96.98 97.77
200X 97.85 95.61 99.28 97.41
400X 96.15 97.54 96.49 97.07

Kc(top-10%
pseudolabels)

40X 99.52 ± 0.33 99.50 99.23 99.38

Kc(top-5%
pseudolabels)

100X 99.44 ± 0.41 99.73 99.58 99.69

Kc(top-10%
pseudolabels)

200X 99.48 ± 0.30 99.84 99.80 99.49

Kc(top-10%
pseudolabels)

400X 99.47 ± 0.37 99.85 99.77 99.54

Acc. denotes the accuracy, Prec. is the precision, R is the recall, and F1 is the
F1-score.

Table 9: Accuracy comparison with some state-of-the-art algo-
rithms for the multiclass classification task on the BreakHis dataset.

Ref.
Mag.
fac.

Acc. (%)
Prec.
(%)

R
(%)

F1
(%)

Han et al. [24]

40X 92.8 ± 2.1 — — 92.9
100X 93.9 ± 1.9 — — 88.9
200X 93.7 ± 2.2 — — 88.7
400X 92.9 ± 1.8 — — 85.9

Bardou et al. [23]

40X 88.23 84.27 83.79 83.74
100X 84.64 84.29 84.48 84.31
200X 83.31 81.85 80.83 80.48
400X 83.98 80.84 81.03 80.63

Kc(top-10%
pseudolabels)

40X 94.28 ± 0.29 95.15 94.78 94.80

Kc(top-20%
pseudolabels)

100X 93.84 ± 0.41 94.24 94.71 94.33

Kc(top-5%
pseudolabels)

200X 94.93 ± 0.17 95.85 95.90 95.56

Kc(top-10%
pseudolabels)

400X 93.75 ± 0.72 94.36 92.28 94.38

Acc. denotes the accuracy, Prec. is the precision, R is the recall, and F1 is the
F1-score.
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5. Conclusion

Obtaining a significant amount of well-labeled data in the
medical domain is a challenging task and more tedious is the
task of accurately providing labels to data. In this work, we
have proposed a semisupervised learning scheme that in-
tegrates self-paced learning paradigm and self-training for
training a model on both labeled and unlabeled data. Self-
paced learning plays a vital role in curbing the issue of
mistake reinforcement, where wrongly generated pseudo-
labels are reinforced into the training sample. In the light of
selecting pseudolabels with the most confident probabilities,
we show a novel selection algorithmwas proposed to present
the CNN model with only the most confident pseudolabels.
Experimental results obtained using the top 5%, 10%, and
20% generated pseudolabels for training showed significant
accuracy improvements for both binary and multiclass
classification task when compared with state-of-the-art
approaches. For future work, we intend to incorporate di-
versity into the self-paced learning scheme and as well as
incorporate the similarities in feature space of histopatho-
logical images. A combination of these elements into the
self-paced learning scheme will result in a versatile and
robust learner.
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