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Abstract—Recent years have witnessed the success of deep
learning methods in human activity recognition (HAR). The
longstanding shortage of labeled activity data inherently calls for
a plethora of semi-supervised learning methods, and one of the
most challenging and common issues with semi-supervised learn-
ing is the imbalanced distribution of labeled data over classes.
Although the problem has long existed in broad real-world HAR
applications, it is rarely explored in the literature. In this paper,
we propose a semi-supervised deep model for imbalanced activity
recognition from multimodal wearable sensory data. We aim to
address not only the challenges of multimodal sensor data (e.g.,
inter-person variability and inter-class similarity) but also the
limited labeled data and class-imbalance issues simultaneously.
In particular, we propose a pattern-balanced semi-supervised
framework to extract and preserve diverse latent patterns of
activities. Furthermore, we exploit the independence of multi-
modalities of sensory data and attentively identify salient regions
that are indicative of human activities from inputs by our recur-
rent convolutional attention networks. Our experimental results
demonstrate that the proposed model achieves a competitive
performance compared to a multitude of state-of-the-art methods,
both semi-supervised and supervised ones, with 10% labeled
training data. The results also show the robustness of our method
over imbalanced, small training datasets.

Index Terms—human activity recognition, semi-supervised
learning, class imbalance, attention.

I. INTRODUCTION

HUMAN Activity Recognition (HAR) is a fundamen-

tal technique popular in healthcare and surveillance

domains [1]. In particular, wearable physical sensor signal

processing-based HAR has been widely applied to ubiquitous

applications and profoundly revolutionized our daily lives,

thanks to its high resistance to environmental variation without

significantly violating individual privacy.

Although remarkable efforts have been contributed to differ-

ent aspects of HAR, three challenges remain for the research

community. The first is insufficient labeled observations [2].

Most existing works follow a supervised learning approach

[3], [4], thus requiring a significant amount of training data to
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recognize meaningful activities. However, ground truth anno-

tation is usually both costly and error-prone. Semi-supervised 
methods, in contrast, additionally leverage unlabeled data to 
train the model and therefore are considered more promis-

ing in many scenarios. Although researchers have already 
investigated several semi-supervised techniques [5], [6], they 
neglect the benefit o f c ombining m ultimodality s ensor data 
and overlook the inner patterns of each activity. Considering 
its superiority in dealing with multimodalities, we resort to a 
co-training method [7]. Previous studies [8] suggest that co-

training algorithms can work well when the multiple views 
(or multimodalities) are not strongly correlated [9], with each 
view containing sufficient information to learn a weakly useful 
classifier a nd o ther v iews r edundant f or t his v iew [ 7]. The 
above property makes co-training appropriate for the multi-

modal activity recognition problem.

The second challenge concerns the expense and convenience 
of labeling activity data, where the class imbalance is often 
a concurrent issue. Especially in HAR tasks, some activity 
data (e.g., those related to falls of elder people) are difficult 
to obtain and label. In fact, semi-supervised learning on 
imbalanced classification i s e ven m ore c hallenging. While 
most classifiers t end t o p redict m ajority c lass s amples with 
high accuracy and treat the minority classes as outliers [10], 
the situation becomes more severe when only a small amount 
of data is available. Previous works directly apply under-

sampling or over-sampling [11], but they are unsuitable for 
our case as they both change the distribution of the training 
data. Since in our case, the same individual may perform 
the same activity in different ways because of stress, fatigue, 
emotion and other environmental factors, it is reasonable to 
assume that samples in each class can form several latent 
patterns. Therefore, we select training samples in each training 
round in line with the extracted latent patterns to sustain 
the diversity of activity patterns. Such a pattern-preserving 
framework maintains the distribution of training data and 
improves the labeling performance during training.

The third challenge contains two parts and is longstanding 
for HAR: inter-person variability and inter-class similarity 
[2]. The inter-person variability means the same activity can 
be performed differently by different people and inter-class 
similarity results from the similarity in the behavior patterns 
of different activities like walking and running. Since deep 
learning based methods have the strength of modeling the 
high-level representations of data and have achieved outstand-

ing performance in the field of HAR, we aim to explore more 
potentials of deep learning models in the field o f H AR. We
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train “attentive” deep models to extract the salient information

indicative of the true activity to obtain useful information from

limited training data and address the influences of the inter-

person variability and inter-class similarity.

In brief, we deploy a pattern-balanced recurrent convolu-

tional attention model to address the above concerns. Our

approach achieves high accuracy on a small size, imbalanced

data. To the best of our knowledge, this paper is the first that

uses semi-supervised learning in imbalanced activity recogni-

tion. The key contributions of this research are as follows:

• We propose a novel method that employs semi-supervised

learning for imbalanced HAR, which is a significant

challenge yet rarely explored in the literature.

• Considering the influence of class imbalance on limited

training data, we propose a pattern-balanced co-training

for extracting and preserving the latent activity patterns

from imbalanced datasets. The patterns maintain the

distribution of training data and improve the robustness

of co-training on imbalanced data.

• To better utilize the limited labeled data and get higher

labeling accuracy during training, we employ Recurrent

Attention Models (RAMs) [12] and let them collaborate

to exploit unlabeled samples.

• We compare our model with state-of-the-art methods on

three public benchmarked datasets and a new dataset

collected in the real world. The experimental results

show that our approach achieves competitive performance

compared to state-of-the-art semi-supervised and even

supervised methods with 10% labeled training data.

II. RELATED WORK

A. Semi-Supervised Learning for Imbalanced HAR

While deep learning methods achieve high recognition

performance in HAR [4], they require a substantial amount

of labeled activity data for training. Semi-supervised learning

allows leveraging both labeled and unlabeled data to train

a recognition system. Some works use self-learning based

approaches [6], and some utilize graph-based approached [5],

[13]. Nevertheless, these approaches all rely on ad-hoc hand-

crafted features, which makes it hard and expensive to build

a recognition system. [14], [15] resort to deep generative

models such as Restricted Boltzmann Machines (RBM) and

autoencoders to train the model with a significant amount of

unlabeled data and get a well-trained feature extractor. The fea-

ture extracted can be further recognized with classifiers trained

with labeled data. Methods like these, however, suffer from

three defects. Firstly, none of these methods takes advantage

of the relations between multimodalities of activity data which

is of great significance since modalities carry information from

different perspectives and complement each other. Secondly,

they fail to explore the potential activity category information

of those unlabeled data [4]. The reason why discriminative

models cannot directly participate in semi-supervised learning

is that the small size of labeled data is not enough for

training. In contrast, our method utilizes the disagreement

between modalities and introduce attention mechanisms, so

deep learners can learn to exploit potential class information

of unlabeled samples with small labeled sets.

However, none of these semi-supervised methods consider a

more common case where the class distribution is imbalanced.

Although some approaches [16], [10] have been proposed

to solve the imbalance issue, their performance deteriorates

owing to the small data size in semi-supervised learning.

Works like [11], [17] are devoted to semi-supervised learning

for imbalanced learning, yet they aim at solving a binary

classification problem, which is more straightforward than rec-

ognizing multiple activities in HAR. So far, semi-supervised

learning for imbalanced HAR problems still has not been

carefully studied in the literature.

B. Attention Mechanisms

Attention originates from biology and psychology that im-

plies focusing the power of noticing or thinking on something

special to achieve better cognitive processes. Tracing back the

history of selecting effective regions using attention mech-

anisms or similar theories, attention-based RNN model has

achieved success in both speech recognition [18] and computer

vision [19], [12]. Bahdanau et al. [18] build a vocabulary

continuous speech recognition system using an attention-based

RNN as it requires fewer training stages, fewer auxiliary data,

and less domain expertise. Some works [19], [12] formulate

the selection process into a sequential decision task. Our

previous work [20] adopts the attention mechanism for HAR.

We fuse attention with CNN and RNN to automatically extract

the most salient modality-specific features and further convert

the information to higher-level representation. In this work,

our approach allows the attention mechanism to fully leverage

its strengths to strive for a balance from less labeled data.

III. THE METHODOLOGY

A. Overview

In this section, we propose an integrated system for

semi-supervised and imbalanced HAR. Firstly, we propose

a pattern-balanced framework that preserves and balances

diverse intent patterns of activities. The proposed framework

improves the performance of conventional co-training under

imbalanced labeled data (Section III-B). Secondly, considering

the limited labeled data, we aim at maximizing the utilization

of salient features and ignoring the irrelevant signals. We intro-

duce attention mechanism and deploy recurrent convolutional

attention models to get better labeling accuracy on limited

labeled data and deal with the inter-person variability and

inter-class similarity of HAR (Section III-C).

Since the modalities in our case satisfy the sufficiency,

redundancy and weak relations that co-training requires, we

develop an effective semi-supervised framework based on co-

training method [7] to handle limited labeled data.

The basic framework of co-training is as follows: 1) The

training data contains two parts: labeled set L and unlabeled

set U . 2) Three classifiers are trained on L of acceleration,

angular velocity, and magnetism, respectively. 3) Each model

is applied to U to make a prediction and vote to label the most

confident samples. These selected samples are removed from
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Fig. 1: Workflow of the proposed pattern-balanced co-training framework. The framework contains two flows. 1) Training

flow (indicated as solid lines): Labeled data are categorized into N patterns via k-means clustering and data of patterns are

sampled evenly to train multimodal classifiers. 2) Labeling flow (indicated as dashed lines): Predict the unlabeled data with

trained models. If most of the classifiers reach an agreement on predicting a sample, this sample is labeled, otherwise, keep

it unlabeled.

U and added to L to improve the classifiers in the following

training rounds. 4) Repeat steps 2) – 3) until no more samples

can be voted or U turns empty. 5) Train a classifier with

the final L and all modalities. Owing to the prevalence and

excellent performance of deep learning methods in HAR, we

deploy deep learning classifiers and embed them into the co-

training framework.

While the framework above seems to be valid, we observe

that the labeling accuracy decreases with training rounds since

the problem of class imbalance is severe when the labeled data

size is small. The practical difficulty of obtaining and labeling

some specific activity data (e.g., falls of elder people) make

the problem even more challenging. Therefore, we propose

to tackle the class imbalance by pattern-balanced training in

Section III-B.

B. Class Imbalance Mitigation

Our proposed pattern-balanced training is robust to class-

imbalanced labeled data. Fig. 1 shows the overall workflow of

our framework. The workflow contains a training flow and a

labeling flow.

Training Flow. Its goal is to train weak classifiers with labeled

data so that they can vote to label samples from unlabeled

data with high accuracy even in class-imbalanced situations.

For clarity, the labeled set L contains L labeled samples. Each

sample (x, y) consists of a vector that represents the collected

sensory data x and the activity label y. Since most IMUs

used in HAR community contains three inertial sensors, an

accelerometer, a gyroscope and a magnetometer, we suppose

that

x = (Acc,Gyro,Magn) (1)

and

y ∈ [1...C] (2)

(a) SVM

(b) CNN

Fig. 2: Labeling Accuracy and Numbers of Labeled Samples

vs. Training Rounds on 2000 original labeled data and 18000

unlabeled data. The orange lines represent the labeling ac-

curacy and the blue bars represent the numbers of samples

labeled in each training round.

where C denotes the number of activity classes. To focus

on the class imbalance problem, L is separated to C classes

according to their labels so that

L =

C⋃

i=0

Ci (3)
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where

Ci = {(x, y) | y = i} = {(x0, i), ...(xj , i)...(xCard(Ci), i)}
(4)

and Card(Ci) represents the cardinality of Ci.
A basic solution to class imbalance is to over-sample small-

class data or under-sample large-class data [21], but it may

change the distribution of training data and lead to “covariate

shift”. On the other hand, considering the intra-class variation

of HAR, we aim at preserving the diversity of patterns within

each class to avoid the distribution shift. As the latent patterns

rely on expertise, we adopt k-means clustering to each class

Ci to extract activity patterns by minimizing the measurement:

D =

Card(Ci)∑

m=1

Ki∑

k=1

µkm ‖xm − zk‖ (5)

where Ki denotes the number of clusters of Ci and it is

adaptively decided by its covariance [22]. µkm = 1 if xm

belongs to the cluster Zk with center zk; otherwise, µkm = 0.

Therefore,

Ci =

Ki⋃

n=0

Zn (6)

After extracting the activity patterns Z , we apply over-

sampling and under-sampling to classes to maintain the dis-

tribution. In particular, we randomly select a same number

of samples from patterns Z of classes C to make sure that

samples from all patterns evenly participate in the next training

round. We conduct clustering and sampling in the training

flow rather than the labeling flow to avoid repeatedly labeling

samples. Then, four classifiers are trained separately for accel-

eration, angular velocity, magnetism and the combination of

all modalities. All modalities are treated as the fourth modality

to guarantee the labeling accuracy.

Labeling Flow. In the labeling flow, the trained classifiers are

applied to unlabeled data to make a prediction. Four classifiers

vote to select confident samples and label them. These selected

samples are removed from the unlabeled set U and added to

L. Next, the training flow and the labeling flow are repeated

until no confident samples can be labeled or U is empty. The

last step is to train a classifier on the final labeled set with

all modalities. In our framework, we only fine-tune the fourth

classifier (which is repeatedly trained in the training flow) with

the newly-labeled samples. The target of the labeling flow is

to leverage the sufficiency and redundancy of multi-modalities

so that four classifiers can learn from each other.

C. Limited Data Exploitation

Even with pattern-balanced training, another issue hinders

the HAR concerning imbalanced, small labeled sets. After

the sampling, the already limited labeled set becomes even

smaller. As a result, it is hard to train satisfactory models

with so limited labeled data in our case, especially when HAR

data naturally suffers from inter-person variability and inter-

class similarity. Fig. 2 shows the labeling accuracy and the

numbers of samples labeled in each training round with 2000

balanced labeled data and 18000 unlabeled data. Firstly, CNN

enjoys the merit of deep learning, so the labeling accuracy of

CNN is higher than that of SVM in the first round. However,

as the models only have 2000 original labeled samples, the

labeling accuracy is low (0.45 for SVM and 0.72 for CNN).

As SVM labeled about 900 samples with 0.45 accuracy,

which means they introduce 550 falsely labeled samples to L
approximately. The falsely labeled samples create a vicious

circle and further decreases the labeling accuracy in the

following training rounds until the accuracy is 0. With respect

to CNN, as CNN has a relatively higher accuracy in the first

round, it has a more stable decrease in both the labeled data

number and the labeling accuracy, but still cannot avoid the

continuously decreasing accuracy. Therefore, it is necessary

to train classifiers that can fully exploit salient features from

limited data and achieve high labeling accuracy. In this section,

we use RAMs [12] which extracts the informative features.

They can learn modality-specific information and distinguish

disagreement among the modalities so that these models can

learn from each other and do not incorrectly vote samples to

the same labels.

Motivations. Intuitively, the motion of different body parts has

various contributions to different activities [23]. For example,

jumping involves legs while running is related to both arms

and legs; another example is that recognizing patterns of

walking depends more on the acceleration of legs while

distinguishing sitting from lying would rely more on the

orientation of sensor placement. With these characteristics

of motion data considered, the natural idea is to focus on

the most highly contributing part of several modality data.

Inspired by the procedures of human brains processing visual

information, we introduce the attention mechanism into HAR

systems. RAM is particularly efficient in the scenario when

the number of labeled data is limited as it maximizes the

effect of useful information and alleviates the influence of

inter-person variability and inter-class similarity. Hence, it can

work effectively even when the labeled data size is small.

Fig. 3 shows the basic structure, where the whole process

sits on a core LSTM. At each time step t, the model only

focuses on a small patch which is called a glimpse. To extract

the most salient patch, we train the model using reinforcement

learning [12]. RAM consists of four key components: (i) a

glimpse layer, (ii) a convolutional network, (iii) a glimpse

representation layer, and (iv) a core recurrent attention unit.

We explain the details in the following.

Glimpse Layer. The first part of the proposed model is a

glimpse layer. The glimpse layer not only avoids the system

processing the whole data in their entirety but also maxi-

mally eliminates the information loss raised by traditional

dimensionality reduction and feature selection [12], [19]. As

sensory data do not have fixed ordering arrangement, we

preprocess the multimodal sensor data by transforming them

from sequences to matrices with the arrangement algorithm

proposed in our previous work [20]. This arrangement extracts

the full correlations between feature pairs so that the glimpses

selected may contain relations between both adjacent and non-

adjacent features. Inspired by the human visual system, in

RAM, each input matrix I will be “understood” within T

glimpses. Simulating the process of how the human eye works,
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Fig. 3: RAM. The input data are represented as matrices. At

each time step t, a small glimpse patch is extracted with the

glimpse layer and processed by a convolutional network. The

processed glimpse information is then encoded with location

information in the following step. A recurrent network with

two sub-networks predict the activity at the current time step

and decide the glimpse location for the next time step.

RAM extracts a glimpse region denoted by ρt from the input

matrix I at the location lt at each time step t.

Convolutional Network. Human visual system converts retina

images into brain signals via the optic nerves. Likewise, we

convert the glimpse directly extracted from the input ma-

trix into higher-level information. RAM uses a convolutional

network to encode ρt to be ct, parameterized by θc, which

generates a high-level representation that characterizes the

local salience of the low-level sensor data:

ct = Conv(ρt; θc) (7)

Glimpse Representation Layer. The glimpse needs to be fur-

ther processed by a glimpse representation layer [12], [19]. ct
and the location lt are linearly transformed independently with

two linear layers parameterized by θcg and θlg , respectively.

Next, the summation of these two parts is further transformed

with another linear layer parameterized by θg and a rectified

linear unit. The whole process is summarized as follows:

gt = fg(ct, lt; θ
c
g, θ

l
g, θg) = relu(L(L(ct) + L(lt))) (8)

where L(•) denotes a linear transformation. Therefore, the

glimpse representation gt finally contains information from

both “what” (ct) and “where” (lt).

Recurrent Attention Unit. We use a recurrent neural network

as the core to process data step by step within several glimpses.

As Fig. 3 shows, the basic structure of the recurrent attention

unit is an LSTM. At each time step t, the LSTM receives the

glimpse gt and the previous hidden state ht−1 as the inputs

parameterized by θh. Meanwhile, it outputs the current hidden

state ht according to the equation:

ht = fh(ht−1, gt; θh) (9)

The recurrent attention unit also contains two sub-networks:

the location network and the action network. These two sub-

networks receive the hidden state ht as the input to decide

the next glimpse location lt+1 and the current action at.

The location network outputs the location at time t + 1
stochastically according to the location policy defined by a

Gaussian distribution stochastic process, parameterized by the

location network fl(ht; θl):

lt+1 ∼ P (· | fl(ht; θl)) (10)

Similarly, the action network outputs the corresponding

action at time t and predicts the activity label ŷt given the

hidden state ht. The action ŷT at the last time step T indicates

the final prediction of the activity. ŷt obeys the distribution

parameterized by f(ht; θa). Owing to its prediction function,

the network uses a softmax formulation:

at = ŷt = fa(ht; θa) = softmax(L(ht)) (11)

Training and Optimization. Our proposed model in-

volves the parameters of the convolutional network, the

glimpse representation layer and the two sub-networks, Θ =
θc, θ

c
g, θ

l
g, θg, θh, θa, θl. Since the action network relies on

classification methods, θa can be trained by optimizing the

cross-entropy loss and the backpropagation. However, we

expect the location network to be able to select a sequence

of salient regions from input matrices adaptively. In view that

the location network is stochastic and non-differentiable, the

salient region selection problem can also be seen as a control

problem, and it can be trained by reinforcement methods to

learn the optimal policies. Based on the above discussion,

we deploy a Partially Observable Markov Decision Process

(POMDP) to solve the training and optimization problems

[24]. In particular, we call the sequence of the input, loca-

tion and action pairs, s1:t = x, l1, ŷ1; ...x, lt, ŷt, an attention

sequence and use this sequence to represent the order of the

regions that the model focused on. In our case, the location

network is formulated as a random stochastic process (the

Gaussian distribution) parameterized by Θ. Each time after

the location selection, the prediction ŷ is evaluated to back

feed a reward r for conducting the backpropagation training

process. rt = 1 if ŷt = yt and 0 otherwise. The process

is also defined as policy gradient. Our goal is to maximize

the simulated rewards R using gradient. Given a sample x

with reward f(x) and probability p(x), the gradient can be
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calculated as follows:

∇θEx[f(x)] = ∇θ

∑

x

p(x)f(x)

=
∑

x

∇θp(x)f(x)

=
∑

x

p(x)
∇θp(x)

p(x)
f(x)

=
∑

x

p(x)(∇θlogp(x))f(x)

= Ex[f(x)(∇θlogp(x))] (12)

In our case, given the reward R and the attention sequence

s1:T , the reward function to be maximized is as follows:

J(Θ) = Ep(s1:T ;Θ)[

T∑

t=1

rt] = Ep(s1:T ;Θ)[R] (13)

By considering the training problem as a POMDP, a sample

approximation to the gradient is calculated as follows accord-

ing to the REINFORCE rule [25]:

∇ΘJ =

T∑

t=1

Ep(s1:t;Θ)[R∇Θlogπ(y|s1:t; Θ)] (14)

We use Monte Carlo sampling which utilizes randomness to

yield results that might be deterministic theoretically. Suppos-

ing M is the number of Monte Carlo sampling copies, we

duplicate the same input for M times and average them as the

prediction results to overcome the randomness in the network,

where the M duplication generates M subtly different results

owing to the stochasticity, we have:

∇ΘJ ≈
1

M

M∑

i=1

R(i)
T∑

t=1

∇Θlogπ(y
(i)|si1:t; Θ) (15)

where i denotes the ith training sample, y(i) is the correct

label for the ith sample, ∇Θlogπ(y
(i)|si1:t; Θ) is the gradient

of LSTM calculated by backpropagation, and M denotes the

number of Monte Carlo sampling copies used for overcoming

the randomness of the networks.

Therefore, although the best attention sequences are un-

known, RAM can learn the optimal policy in the light of

the reward. The experiments show that RAM outperforms the

state-of-the-art in the initial phase of co-training.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on four

datasets. Three of them, MHEALTH [29], PAMAP2 [30] and

UCI HAR [1], are public benchmarked datasets on activity

recognition. They are the latest available multimodal wearable

sensor-based datasets with complete annotation. The other

one, MARS (Multimodal Activity Recognition with Sensing),

is a real-world dataset that we collected to re-examine the

practicability of the proposed method. This dataset is collected

while 8 participants (six males, two females) are performing

five basic activities (sitting, standing, walking, ascending stairs

and descending stairs).

We firstly compare our method with different state-of-the-

art works and baselines under both supervised and semi-

supervised schemes. Then we explore the robustness to class

imbalance by comparing the proposed method with state-

of-the-art and baselines in five class imbalance situations.

Thirdly, we perform a detailed ablation study to examine the

contributions of the proposed components to the prediction

performance. Lastly, we visualized the selected features by

the attention model. Due to the page constraint, some details

and experimental results are presented in the supplementary

materials. The materials contain model implementation, con-

fusion matrices, time latency comparison, empirical studies on

annotation scarcity and class imbalance, analysis of training

evolution and hyper-parameter study.

A. Robustness to Annotation Scarcity

To verify our semi-supervised approach’s robustness to data

scarcity, we extensively compare our model with a set of

state-of-the-art and baseline methods trained with different

numbers of labeled samples. The compared methods include

both supervised approaches and semi-supervised approaches.

We compare our approach with supervised approaches not only

to exhibit the robustness to annotation scarcity but also to show

that our classifiers are stronger than these supervised methods.

Table I presents the comparison between the proposed

approach and the state-of-the-art methods as well as baselines.

The datasets used in these experiments are class balanced.

The notation “sup” indicates supervised methods while “semi-

sup” indicates semi-supervised methods. For fairness, we only

deploy the supervised methods with sufficient labeled data.

Similar to [3], the experiments conducted on the PAMAP2

and MHEALTH datasets perform background activity recog-

nition tasks [30]. The activities belong to six classes: lying,

sitting/standing, walking, running, cycling and other activities.

All the models are implemented on the above four datasets

with parameters either indicated in the literature or via careful

parameter tuning. We can observe that from 1,000 labeled

data to 2,000 labeled data, there is a relatively large gap.

However, the performance of the model trained with 2,000

labeled samples is only slightly worse than that of the model

trained with 20,000 labeled samples. Moreover, with only

2,000 labeled samples and 18,000 unlabeled samples, our

approach achieves competitive or better results than the super-

vised methods. Even with only 1,000 samples, the results are

acceptable. Compared to the other semi-supervised methods,

the proposed method shows significant improvement (at least

9%), which demonstrates the effectiveness of the pattern-

balanced co-training framework. Also, when we train RAM in

a supervised manner (i.e., with 20,000 labeled samples), the

results are better than the state-of-the-art supervised methods,

indicating that RAM outperforms the other methods.

B. Robustness to Class Imbalance

We conduct experiments in five class imbalance situations

to explore the robustness to class imbalance. As the back-

ground activity class “others” makes a considerable impact
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TABLE I: The classification accuracy of proposed approach and six state-of-the-art methods and baseline methods on different

sizes of labeled sets. The numbers of the labeled data used by the semi-supervised models are denoted in each column (x)

and the numbers of the unlabeled samples are 20,000-x. * indicates our approach with 2,000 labeled data outperforms or is

competitive with the compared methods with full labeled data.

Dataset Method Training Scheme
Labeled Samples

1000 2000 5000 7000 10000 13000 17000 20000

MHEALTH

Multichannel CNN [4] Sup 0.6226 0.6285 0.6936 0.7108 0.7573 0.8304 0.8587 0.8719
Attention [20] Sup 0.8152 0.8573 0.8970 0.9002 0.9178 0.9149 0.9242 0.9392

Modality-Specific [26] Sup 0.6358 0.6655 0.7616 0.7697 0.8336 0.8486 0.8620 0.8967
Co-Training+CNN Semi-Sup 0.6331 0.6495 0.6538 0.7029 0.7932 0.8110 0.8503 0.8604

Diversity Preserving [27] Semi-Sup 0.7023 0.7572 0.8271 0.8535 0.8721 0.8789 0.8892 0.8904
Tri-Net [28] Semi-Sup 0.6938 0.6963 0.7288 0.8076 0.8582 0.8603 0.8661 0.8754

Our Approach Sup 0.8059 0.8327 0.8714 0.8924 0.8935 0.9194 0.9326 0.9405
Our Approach Semi-Sup 0.8895 0.9194 0.9208 0.9264 0.9385 0.9425 0.9411 0.9405

PAMAP2

Multichannel CNN [4] Sup 0.5405 0.6255 0.6435 0.6483 0.7167 0.7400 0.7976 0.8116
Attention [20] Sup 0.6443 0.7484 0.7756 0.7785 0.7869 0.8045 0.8187 0.8239

Modality-Specific [26] Sup 0.5578 0.5641 0.6169 0.6949 0.7728 0.7949 0.8040 0.8208
Co-Training+CNN Semi-Sup 0.5998 0.6042 0.6321 0.6612 0.6857 0.7328 0.7768 0.7922

Diversity Preserving [27] Semi-Sup 0.6412 0.6471 0.6783 0.7394 0.7729 0.7861 0.7913 0.8023
Tri-Net [28] Semi-Sup 0.6329 0.6429 0.6541 0.6954 0.7252 0.7624 0.7955 0.8088

Our Approach Sup 0.6289 0.7305 0.7654 0.7749 0.7935 0.8069 0.8228 0.8342
Our Approach Semi-Sup 0.7338 0.8125 0.8137 0.8135 0.8204 0.8329 0.8318 0.8342

UCI HAR

Multichannel CNN [4] Sup 0.5355 0.5531 0.5584 0.5696 0.6724 0.7368 0.7469 0.7586
Attention [20] Sup 0.6683 0.6969 0.6996 0.7104 0.7297 0.7733 0.8073 0.8129

Modality-Specific [26] Sup 0.5465 0.5502 0.5879 0.6269 0.6785 0.7360 0.7582 0.7753
Co-Training+CNN Semi-Sup 0.5212 0.5739 0.6215 0.7106 0.7059 0.7248 0.7201 0.7336

Diversity Preserving [27] Semi-Sup 0.6113 0.6502 0.7054 0.7008 0.7129 0.7310 0.7316 0.7408
Tri-Net [28] Semi-Sup 0.6156 0.6446 0.6607 0.6675 0.6852 0.7013 0.7207 0.7365

Our Approach Sup 0.6427 0.6863 0.6981 0.7124 0.7249 0.7554 0.7804 0.8132
Our Approach Semi-Sup 0.7281 0.7762 0.7818 0.7851 0.8073 0.8143 0.8084 0.8132

MARS

Multichannel CNN [4] Sup 0.6628 0.6699 0.6868 0.7029 0.7351 0.7559 0.7921 0.8138
Attention [20] Sup 0.7223 0.7832 0.8018 0.8357 0.8434 0.8408 0.8497 0.8538

Modality-Specific [26] Sup 0.6751 0.6787 0.6867 0.6884 0.7009 0.7334 0.7680 0.8354
Co-Training+CNN Semi-Sup 0.6442 0.6538 0.6968 0.7162 0.7321 0.7259 0.7954 0.8125

Diversity Preserving [27] Semi-Sup 0.7158 0.7370 0.8157 0.8294 0.8238 0.8169 0.8191 0.8208
Tri-Net [28] Semi-Sup 0.6904 0.7084 0.7376 0.7594 0.7691 0.7857 0.8052 0.8193

Our Approach Sup 0.7058 0.7444 0.7689 0.7841 0.7902 0.8173 0.8318 0.8592
Our Approach Semi-Sup 0.8041 0.8325 0.8429 0.8416 0.8457 0.8393 0.8364 0.8592

TABLE II: Five Class Imbalance Situations of Experiments.

S1 is the baseline situation containing evenly distributed

classes. S2 to S5 are four situations where data of three classes

are reduced to 2,000 while data of the rest classes are increased

to 7,000.

Classes S1 S2 S3 S4 S5

Class
Distribution

Sitting 4000 2000 7000 7000 2000
Standing 4000 2000 2000 7000 7000
Walking 4000 2000 2000 2000 7000
Ascending Stairs 4000 7000 2000 2000 2000
Descending Stairs 4000 7000 7000 2000 2000

on HAR task, we filter the “other” class and perform five-

class classification. We design five class-imbalance situations

as shown in Table II. S1 is the basic situation containing

evenly distributed classes. S2 to S5 are four situations where

data of three classes are reduced to 2,000 while data of the rest

classes are increased to 7,000. Note that MHEALTH does not

include ascending and descending stairs, so we replace them

with cycling and climbing stairs. In addition to three state-of-

the-art methods [16], [11], [10], we also compare our method

with two baselines, Over-Sampling and Under-Sampling that

perform sampling by randomly selecting or filtering out a

certain number of samples. For fairness, we use RAMs as

the classifiers for comparison.

Table III shows the performance of these methods on four

datasets in five class situations. As F1 score is the most suitable

measurement for class imbalanced problems, we use the F1

score in this table. After eliminating the impact of “others”,

the overall classification performance on MHEALTH and

PAMAP2 is boosted. Since S1 enjoys even class distribution,

we can observe that the overall performance in S1 is higher

than that in other situations. Besides, both the sampling models

and subspace generation use RAMs and achieve the same

performance as ours in the balanced situation, because the

classifiers are regularly trained without any strategy. Another

observation is that the results in S2 are relatively low because

the two activities, ascending and descending stairs, are hard

to be distinguished even though there are plenty of data.

Regarding the methods, our approach outperforms the others

in all situations, and the difference between the performance

in class balanced situation and class imbalanced situations is

not apparent. Among the other compared methods, sampling

models and subspace generation have the most similar perfor-

mance to our model owing to the same classifiers that they

use, and subspace generation is more robust on imbalanced

data. It is hard to distinguish which sampling strategy is better:

under-sampling simply throws out the information while over-

sampling may repeat some samples many times and lead to

overfitting of models. One-class classification is supposed to

perform well on imbalanced datasets, but the performance is

not that outstanding. Although the method is not affected by

the class distribution, the insufficient data of those reduced
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TABLE III: The F1 Scores of All Compared Methods on Five Different Class Situations. The details about S1 to S5 are listed

in Table II.

MHEALTH PAMAP2

Over-
Sampling

Under-
Sampling

One-Class
[16]

Subspace
Generation [11]

Ensemble
LSTM [10]

Our

Approach

Over-
Sampling

Under-
Sampling

One-Class
[16]

Subspace
Generation [11]

Ensemble
LSTM [10]

Our

Approach

S1 0.9921 0.9921 0.7975 0.9921 0.9338 0.9921 0.9287 0.9287 0.7320 0.9287 0.8704 0.9287

S2 0.9425 0.9580 0.7630 0.9627 0.9052 0.9832 0.8818 0.8679 0.7064 0.9024 0.8350 0.9207

S3 0.9672 0.9659 0.7712 0.9715 0.9078 0.9854 0.8858 0.8746 0.7152 0.9134 0.8435 0.9143

S4 0.9608 0.9605 0.7756 0.9874 0.9184 0.9916 0.8903 0.8867 0.7281 0.9157 0.8361 0.9141

S5 0.9590 0.9735 0.7673 0.9824 0.9139 0.9834 0.8910 0.8939 0.7176 0.9093 0.8526 0.9223

UCI HAR MARS

Over-
Sampling

Under-
Sampling

One-Class
[16]

Subspace
Generation [11]

Ensemble
LSTM

Our

Approach

Over-
Sampling

Under-
Sampling

One-Class
[16]

Subspace
Generation [11]

Ensemble
LSTM

Our

Approach

S1 0.7212 0.7212 0.6255 0.7212 0.6804 0.7212 0.8437 0.8437 0.7383 0.8437 0.8273 0.8437

S2 0.6797 0.6615 0.5619 0.7026 0.6641 0.7013 0.8097 0.8114 0.6983 0.8158 0.8002 0.8312

S3 0.6820 0.6959 0.5844 0.7060 0.6613 0.7191 0.8265 0.8201 0.6943 0.8205 0.7945 0.8349

S4 0.6947 0.6967 0.6086 0.7095 0.6820 0.7099 0.8090 0.8219 0.6986 0.8377 0.8133 0.8314

S5 0.6836 0.6732 0.5927 0.7048 0.6644 0.7159 0.8038 0.8235 0.6925 0.8283 0.8079 0.8564

TABLE IV: Ablation Study. The table presents the accuracy, training time (s) and test time (ms) of the models on 2000

balanced training data and the F1 scores on 5000 imbalanced training data. The imbalanced ratio is as S2. The training time

is shown in the parenthesis.

Ablation Datasets Balanced Imbalanced
Test Time

(ms)
Datasets Balanced Imbalanced

Test Time
(ms)

RAM

MHEALTH

0.8327 (121.84) 0.8329 (182.98) 24.0

UCI HAR

0.6863 (94.31) 0.6084 (124.78) 19.7
Co-Training 0.6495 (127.42) 0.7208 (142.60) 8.9 0.5739 (116.94) 0.552 (121.28) 7.6

Pattern-Balanced Training 0.7462 (305.93) 0.9232 (621.85) 8.9 0.6533 (274.12) 0.6854 (554.35) 7.6
Co-Training+RAM 0.9123 (445.05) 0.7753 (674.14) 24.0 0.7503 (382.04) 0.5839 (574.91) 19.7

Our Approach 0.9194 (503.91) 0.9832 (719.08) 24.0 0.7762 (450.71) 0.7013 (615.05) 19.7

RAM

PAMAP2

0.7305 (184.25) 0.7359 (222.01) 27.8

MARS

0.7444 (126.83) 0.7148 (163.22) 21.5
Co-Training 0.6042 (212.38) 0.6837 (146.11) 10.3 0.6538 (118.22) 0.6104 (143.27) 8.2

Pattern-Balanced Training 0.6453 (471.48) 0.8629 (640.47) 10.3 0.737 (304.32) 0.7972 (606.97) 8.2
Co-Training+RAM 0.8085 (513.21) 0.7043 (683.27) 27.8 0.8233 (434.29) 0.6376 (644.72) 21.5

Our Approach 0.8125 (623.83) 0.9027 (753.98) 27.8 0.8325 (517.84) 0.8312 (697.19) 21.5

(a) Standing (b) Going Upstairs

(c) Lying (d) Running

Fig. 4: Visualization of the selected glimpses on MHEALTH. Three rows represent modalities collected from chests, arms

and ankles, respectively. Each column denotes one modality. Acc, Ang and Magn denote acceleration, angular velocity and

magnetism, respectively. Note that chests only contains 3-axis acceleration and two ECG signals. The values in the grids

represent the frequency with which this modality is selected. Lighter colors denote higher frequency.

classes still influence the training process. On the contrary, ensemble LSTM only has satisfactory results in S1, but it
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shows relatively better robustness to imbalanced data.

C. Ablation Study

We examine the effectiveness of the proposed components

in our method in this section. Table IV presents the accuracy,

training time and test time of the ablation models on 2000

balanced data and the F1 scores on 5000 imbalanced training

data. The imbalanced ratio is as S2 shown in Table II. To

examine the contributions of co-training framework and the

pattern balanced training framework without the influence

of RAM, we list the performance of these frameworks with

regular CNNs. It can be seen that RAM based methods need

longer time for test as RAM has more parameters. There is

a considerable increase in the training time when RAM is

trained with co-training since labeling is conducted in several

training rounds. Pattern balanced training further increases

the training time as it includes complex data processing.

With respect to the performance, it can be observed that

RAM in both situations obtains good performance. In the

imbalanced situation, pattern balanced training significantly

improves the performance than regular co-training since it

mitigates the class imbalance. In our experiments, co-training

combined with RAM is not that effective on imbalanced

data because the imbalance severely influences the F1 scores

of classification. In the balanced situation, pattern-balanced

training also makes an improvement. The reason of this is

that the balanced labeled data may become imbalanced during

training rounds, which is avoided by the pattern-balanced

training. We can also observe that RAM combined with regular

co-training considerably improves the performance with its

outstanding voting accuracy. Based on the observations, our

method, composing of these components, is comparable with

the state-of-the-art approaches.

D. Visualization of Selected Glimpses

The attention model extracts salient parts of the input sen-

sory data for recognition, which makes the model explainable.

In this section, we present visualized glimpses in recognizing

standing, going upstairs, lying and running on MHEALTH.

The subjects wear sensors on their chest, dominant arms and

ankles, each sensor collecting multiple modalities. The avail-

able modalities collected from arms and ankles include 3-axis

acceleration, 3-axis angular velocity and 3-axis magnetism.

And from chests, the dataset only includes 3-axis acceleration

and two ECG signals.

Fig. 4 shows the glimpse heatmaps of four activities. The

glimpses are selected by a well-trained attention model for

10000 times on input data that represent standing, going

upstairs, lying and running. The training is on 5000 labeled

data and 15000 unlabeled data in a semi-supervised fashion.

We observe that when recognizing a specific activity, the

model does focus on only a part of modalities. For example,

magnetism (orientation) in standing and lying is selected as

one of the most active features. And the fact is that it is

easy to distinguish between standing and lying with people’s

orientation. Another example is that the most distinguishing

characteristic of going upstairs is “up”. Therefore, Z-axis ac-

celeration is specifically selected by agents for going upstairs.

Also, identifying running involves acceleration, ECG, and

arm swing, which conforms to the experiment evidence as

well. The model also selects several other features with lower

frequencies, which avoids losing effective information.

V. CONCLUSION

This paper presents an integrated semi-supervised activity

recognition system based on multimodal wearable sensor data

and addresses a rarely explored problem, i.e., semi-supervised

learning for imbalanced human activity recognition (HAR).

We first propose a co-training framework that balances the

latent patterns of activity data, and then deploy recurrent

convolutional attention models as classifiers to exploit unla-

beled samples. Comprehensive experiments conducted on four

datasets validate the robustness and reliability of the proposed

method.
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