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As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activ-
ities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector
machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process.
In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into
control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the
time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied
to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in
discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of
CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two
BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.
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1. INTRODUCTION

A brain-computer interface is a communication system that
does not depend on brain’s normal output pathways of pe-
ripheral nerves and muscles. It provides a new augmenta-
tive communication technology to those who are paralyzed
or have other severe movement deficits [1].

For many BCI systems, a tedious and time-consuming
training process is needed to train the user and system pa-
rameters, for example, the parameters of the translation algo-
rithm. In BCI competition III, reducing the training process
has been explicitly proposed as a task by Schalk et al. [2].

In this paper, we resort to semisupervised learning to
train an SVM classifier. Compared with the case of super-
vised learning, semisupervised learning can build better clas-
sifiers by using large amounts of unlabeled data, when the la-
beled data are expensive or time consuming to obtain [3, 4]
(in BCI systems, the training process can be taken as the
labeling process). Thus, the performance of semisupervised
learning can still be satisfactory. The semisupervised learning

algorithms that have been developed so far include EM algo-
rithm [5], self-training algorithm [6], cotraining algorithm
[7], graph-based methods [8, 9], and so forth. A survey of
semisupervised learning can be found in [3, 4].

In [10], Bennett and Demiriz proposed a semisupervised
SVM. Given a set of labeled data and a set of unlabeled data, a
semisupervised SVM was trained using both the labeled data
and unlabeled data. This algorithm can be implemented us-
ing mixed integer programming. However, since the compu-
tational burden of mixed integer programming will increase
greatly with the number of integer variables (i.e., the num-
ber of unlabeled samples), it is unacceptable when the size
of the unlabeled data set is large, especially when we apply
this algorithm to the online BCI system. Thus, we propose a
batch-mode incremental training method for the semisuper-
vised SVM.

There are two basic ideas in this method: (1) we assume
that the users’ electroencephalography (EEG) change grad-
ually during the use of BCI systems. Therefore we can de-
compose the unlabeled data set into several subsets; then we
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use mixed integer programming to adjust the parameters of
the semisupervised SVM incrementally with the entering of
each subset, that is, we do mixed integer programming only
based on a small-scale unlabeled data set each time. (2) For
each unlabeled subset, we first select and label the most reli-
able data; then do the mixed integer programming based on
the remaining unlabeled data set. This can further reduce the
number of integer variables (i.e., the number of unlabeled
data) for each running of the mixed integer programming.

Additionally, in BCI systems, the common spatial pat-
terns (CSP) method is very effective for extracting features
from the EEG recordings [11–13] (we refer to the feature ex-
tracted by CSP method as “CSP feature” in this paper). The
extraction of the CSP feature is label dependent, that is, the
CSP feature should be extracted from the labeled data set. If
the number of labeled samples is too small, the transforma-
tion matrix for CSP feature extraction cannot be estimated
accurately. This will result in an ineffective CSP feature. In
order to overcome the drawback of CSP feature, we suggest
a two-stage feature extraction method, that is, we first ex-
tract a dynamic power feature and perform an initial clas-
sification on a part of the unlabeled data at the first stage
(the first several loops) of our semisupervised learning algo-
rithm. Next, we extend the small labeled data set by including
the most confidently classified unlabeled data with the pre-
dicted labels. Based on the extended labeled data set, some-
what reliable CSP features and better classification result can
be obtained at the second stage (the remaining loops) of our
semisupervised learning algorithm.

We evaluate the semisupervised SVM algorithm using a
data set from an EEG-based cursor control experiment car-
ried out in Wadsworth Center [14] and a data set from a
movement imagination experiment provided by Department
of Computer Engineering University of Tübingen, Germany,
and Institute of Medical Psychology and Behavioral Neuro-
biology [15]. Data analysis results demonstrate the validity of
our algorithm.

The organization of this paper is as follows. In Section 2,
we introduce the proposed methods, including feature ex-
traction, semisupervised SVM, and batch-mode incremen-
tal training. Section 3 presents the data analysis results. In
Section 4, we discuss our algorithm in detail.

2. METHODS

In this section, we first present the dynamic CSP feature ex-
traction and the dynamic power feature extraction method;
then we combine them to form a two-stage feature extraction
method. Next, we introduce the semisupervised SVM algo-
rithm. Finally we present the batch-mode incremental learn-
ing method for training the semisupervised SVM.

2.1. Dynamic CSP feature extraction

The common spatial patterns (CSP) is a method that has
been applied to EEG analysis to classify the normal versus ab-
normal EEGs [16] and find spatial structures of event-related
(de-)synchronization [12]. We define two CSP feature in this

paper: (1) nonnormalized CSP feature, (2) normalized CSP
feature. The nonnormalized CSP feature is extracted directly
from the covariance matrix of the raw or filtered EEG sig-
nal. The normalized CSP feature is extracted from the nor-
malized covariance matrix of the raw or filtered EEG signal.
The advantages of the nonnormalized CSP feature are: (1) it
keeps the amplitude information of the EEG signal; (2) its
dimension is usually half of the normalized CSP feature. The
normalized CSP feature also has its advantages. It can reduce
the influence of the scaling (due to the change of the elec-
trode impedances or other causes) of the amplitude of the
recorded EEG.

Now, we present the extraction of the dynamic nonnor-
malized CSP feature, which is similar to the method de-
scribed in [11]. First, we filter the raw EEG in µ rhythm fre-
quency band. The following CSP feature extraction is based
on the filtered signals. In order to reflect the change of brain
signals during a trial, we extract a dynamic CSP feature, that
is, we separate the time interval of each trial into f over-
lapped time segments. For each time segment, we calculate
a CSP feature vector as follows. The CSP analysis in the ith
(i = 1, . . . , f ) time segment involves calculating a matrix
Wi and diagonal matrix Di through a joint diagonalization
method as (1):

WiZ
n
i W

T
i = Di, WiZ

m
i W

T
i = 1−Di, (1)

where Z
n
i and Z

m
i are covariance matrices of EEG data matri-

ces E
n
i and E

m
i (one row of the EEG data matrices corresponds

to one channel EEG signal). n and m denote two different
classes (for the cursor control experiment, n and m repre-
sent two different targets; for the movement imagination ex-
periment, n and m denote two different movement imagi-
nations). Using all trials with class n, we construct the matrix
E
n
i by trial-concatenating the filtered EEG data in the ith time

segments of every trial. E
m
i is obtained similarly except that it

corresponds to the trials with class m. The diagonal elements
of Di are sorted with a decreasing order.

After obtaining the transformation matrix Wi, we now
extract CSP feature in the ith time segment of a trial (i =
1, . . . , f ). We first calculate a covariance matrix using the fil-
tered EEG signals in the ith time segment; then we take the
first p or the last p main diagonal elements of the trans-
formed (by Wi) covariance matrix. Note that the first p diag-
onal elements correspond to p largest eigenvalues in the di-
agonal matrix Di above, the last p correspond to its p small-
est eigenvalues. Thus we obtain a p-dimensional CSP fea-
ture for each time segment. We concatenate the CSP features
of f time segments to construct the p · f -dimensional dy-
namic CSP feature of each trial, which is denoted as CF =

[CF1, CF2, . . . , CF f ].
The normalized CSP feature [12] is almost the same as

the above CSP feature, except that: (1) the correlation matrix
is normalized by dividing the trace of the correlation ma-
trix; (2) the first p and the last p main diagonal elements
of the transformed covariance matrix are taken, then nor-
malized by dividing the sum of the 2p elements followed by
a log-transformation. The log transformation serves to ap-
proximate normal distribution of the data [12]. Thus the



Jianzhao Qin et al. 3

dynamic normalized CSP feature for f time segments is 2p ·
f -dimensional.

2.2. Dynamic power feature extraction and the
two-stage feature extraction method

According to the above definition of CSP feature, it is obvi-
ous that the CSP feature extraction is dependent on the labels
of the trials in the training set. If the number of labeled sam-
ples is too small, the transformation matrix of Wi cannot be
estimated accurately, sometimes, even poorly. This will result
in an ineffective CSP feature. In this subsection, we solve this
problem by combining the power feature with the CSP fea-
ture to form a two-stage feature extraction method.

Our method is based on the following two facts: (1) the
power feature extraction is not so dependent on sufficient
labeled data set as CSP feature extraction; (2) the power fea-
ture is less powerful than CSP feature when the training data
is sufficient. Thus, in the first several loops of our semisu-
pervised algorithm (the first stage), we use power feature to
obtain an initial classification on a part of the unlabeled data
set. Based on the initial classification result, we perform CSP
feature extraction and classification in the later loops of our
semisupervised algorithm (the second stage).

The power feature extraction is as follows: we first cal-
culate the power values of selected EEG channels in the µ
frequency band for each time segment. Then, we scale the
power values, that is, the power value of each selected chan-
nel is divided by the sum of the average power values of the
two different classes of this channel (the average power values
are calculated from the labeled data set).

For each time segment, we choose 2 channels which
are the most discriminant for the power feature extraction.
We denote the power feature for time segment i as PFi =

[PFi j , PFi j], i = 1, . . . , f , j = 1, 2 ( f is the number of time
segments); then concatenate the power values of all the time
segments of a trial to form the dynamic power feature of a
trial, which is denoted as PF = [PF1, PF2, . . . , PF f ].

For each time segment, the selection of channels is de-
pendent on the discriminant ability of the power feature of
the channels. The discriminant ability of the power feature
of each channel is calculated as follows:

FRi j =
(

mean
(

PFn
i j

)

−mean
(

PFm
i j

))2
i = 1, . . . , f ,

j = 1, . . . ,h,
(2)

where i denotes the ith time segment, and j denotes the jth
channel; f is the number of time segments; h is the number
of channels; n and m represent two different classes. The big-
ger the value of FRi j is, the stronger discriminant ability of
the power feature for channel j and time segment i is.

At the first stage (first several loops of semisupervised
learning), we only extract the above dynamic power feature
from the trials. After these loops of semisupervised learn-
ing, a part of the unlabeled data set is classified. Then, at
the second stage, using the most confidently classified data
with predicted labels to extend the given small training data
set, we extract somewhat reliable dynamical CSP feature and

perform the later loops of semisupervised learning. The de-
tailed procedure of our feature extraction method with the
batch-mode incremental training method is presented in
Section 2.4.

2.3. Semisupervised SVM

In this subsection, we review the semisupervised SVM intro-
duced by Bennett and Demiriz [10].

Given a training set of labeled data

{(

xi, yi
)

|
(

xi, yi
)

∈ Rn × {±1}, i = 1, . . . , ℓ
}

, (3)

where x1, . . . , xℓ are the n dimensional features that have been
labeled as y1, . . . , yℓ ; and a set of unlabeled data

{

xi | xi ∈ Rn, i = ℓ + 1, . . . , ℓ + k
}

, (4)

in [10], a semisupervised SVM was defined as
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)

]
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(
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)
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−
(
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)
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(5)

where C > 0 is a penalty parameter, and ηi, ξ j , δ j are the slack
variables that present the classification error of xi or x j .

The semisupervised SVM can be reformulated as follows:
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w,b,η,ξ,δ,d

C
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∑

i=1

ηi+
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(
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)

]
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(
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)
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w · x j−b+ξ j+M
(

1− d j
)

≥ 1, ξ j ≥ 0, j=ℓ + 1, . . . , ℓ + k,

−
(

w · x j − b
)

+ δ j + Md j ≥ 1, δ j ≥ 0, d j = {0, 1},

(6)

where d j is a decision variable. For each point x j in the un-
labeled data set, d j = 1 means that the point is in class 1,
otherwise the point is in class−1. M > 0 is a sufficiently large
constant. Mixed integer programming can be used to solve
this problem. But, mixed integer programming problems are
NP-hard to solve [17], even when restricted to 0-1 programs
[18]. If the number of the integer variables is large, the com-
putational burden will be very heavy. In practice, since we
often encounter large amounts of unlabeled data, we should
assign large amounts of integer variables for these unlabeled
data. Thus, if we solve this problem using the mixed integer
programming directly, the training time of semisupervised
SVM is unacceptable.

2.4. Batch-mode incremental training method

In this section, we extend the semisupervised SVM in [10].
We divide the original unlabeled data set into several sub-

sets, and mark them as B1,B2, . . . ,Bn. Each time, we do the
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mixed integer programming based on a subset. It is reason-
able to assume that the users’ EEGs change gradually during
the use of the BCI systems. Using the incremental training
method, the parameters of the SVM can be adjusted gradu-
ally with the entering of these several subsets (the new en-
tered subsets represent the changed status of the users’ EEG).
Additionally, in order to further reduce the number of integer
variables for each running of mixed integer programming,
when a new subset is added, we first temporarily label the
unlabeled elements in this subset using the SVM which has
been trained in the previous loop; then we choose the most
confidently classified elements and add them, together with
their predicted labels, to the training set; finally, we use the
remaining unlabeled elements for mixed integer program-
ming. The most confidently classified elements can be de-
termined according to the distance between the element and
the separating boundary. The criteria can be formulated as
follows:

∣

∣x ·w − b
∣

∣ ≥ L, (7)

where constant L > 0 is the distance threshold. If the distance
between the element and the separating boundary is larger
than L, we take it as a confident element.

The outline of the batch-mode incremental training
method is as follows.

Algorithm outline. Given two data sets: a labeled data set
Dl, and an unlabeled data set Du.

Step 1. Equally divide the unlabeled data set Du into n sub-
sets B1,B2, . . . ,Bn (for the online condition, these subsets can
be collected at several time intervals); then take Dl as the ini-
tial training set T and let i = 1 (i denotes the ith loop of the
algorithm); next extract dynamic power feature from data set
T and B1 (see Section 2.2).

Step 2. Train an initial SVM classifier using the dynamic
power features in T .

Step 3. Estimate the labels of Bi using the current classifier,
then choose the most confidently classified elements using
(7) and add them together with their predicted labels (we
mark the most confidently classified elements with their pre-
dicted labels as set R), to the training set T , that is, T = T∪R;
next we denote the remaining elements of Bi as Qi.

Step 4. Run the mixed integer programming based on T and
Qi to get the labels of Qi and adjust the parameters of the
SVM classifier; then add Qi with predicted labels to T , that
is, T = T ∪Qi.

Step 5. i = i + 1, if i is smaller than or equals to M which
denotes the number of steps for dynamic power feature ex-
traction, extract dynamic power features from Bi; otherwise,
extract dynamic CSP features from Bi. Note that, for each
loop, the transformation matrix of the dynamic CSP feature
should be estimated again from the most confidently labeled
elements of T ; then use the new transformation matrix to ex-
tract the dynamic CSP features from T again. Finally train a

new SVM classifier based on the updated CSP features and
their labels of T .

Step 6. If i equals n, terminate; otherwise, go back to Step 3.

Additionally, since the size of the training set is enlarged
during the training procedure, the penalty parameter C of
the semisupervised SVM should adapt to this change. Thus,
we extend the empirical formula for C introduced in [10] as:

Ci =
(1− λ)

λ
(

ℓi + ki
) , (8)

where i denotes the ith loop. ℓi is the size of training set of the
ith loop. ki is the size of unlabeled data set. We set λ = 0.01
in our following experimental data analysis.

Figure 1 shows a demo of the batch-mode incremental
training method. The circles and the triangles denote the
labeled training samples of two classes. The crosses denote
the unlabeled samples. The solid line denotes the separating
boundary of the SVM classifier. From Figures 1(a)–(d), the
unlabeled samples were added gradually. The figure shows
that the separating boundary of the SVM classifier was ad-
justed gradually according to the entering of the unlabeled
samples.

3. EXPERIMENTAL DATA ANALYSIS

In this section, we evaluated the semisupervised SVM-based
algorithm using the data set from an EEG-based cursor con-
trol experiment and an ECoG-based movement imagination
experiment. The hardware and software environments of our
data analysis are as follows.

Hardware: personal computer (CPU: Intel P4 1.7 Ghz;
RAM: SDRAM 512 MB).

Software: operating system: Windows 2000 professional.
The main program was coded by MATLAB 6.5. The
mixed integer programming problem and 1-norm
SVM were solved by a free software LP-solve 2.0 C
library by Michel Berkelaar and Jeroen Dirks. We
repacked this software and compiled it as the mex file
which can be called by MATLAB. We used the com-
mands “cputime” to calculate the CPU time needed for
training the semisupervised SVM.

3.1. Data analysis of an EEG-based cursor
control experiment

The EEG-based cursor control experiment was carried out
in Wadsworth Center. In this experiment, the subjects sat
in a reclining chair facing a video screen and was asked
to remain motionless during performance. The subjects
used µ or β rhythm amplitude to control vertical position
of a target located at the right edge of the video screen.
The data set was recorded from three subjects (AA, BB,
CC). Each subject’s data included 10 sessions. The data
set and the details of this experiment are available at
http://www.ida.first.fraunhofer.de/projects/bci/competition.
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Figure 1: The demo of the batch-mode incremental training method (the circles and the triangles denote the labeled training samples of
two classes. The crosses denote the unlabeled samples. The lines denote the separating boundary of the SVM classifier).

For convenience, only the trials with the targets who are
at the highest and lowest position of the right edge of the
screen were used in our offline analysis (96 ∗ 10 trials for
each subject).

To evaluate our proposed algorithm, we separated all the
trials into three sets, that is, labeled data set, unlabeled data
set, and independent test set. Labeled data set consists of 48
trials (about 10% of all labeled and unlabeled data) (24 trials
for each target) from session 1. Unlabeled data set consists of
528 trials from the remaining trials of session 1 and all the
trials of sessions 2–6; and the independent test set is com-
posed of 384 trials of sessions 7–10. When implementing the
batch-mode training method, we divided the unlabeled set
into 9 subsets (each of the first 8 subset has 60 elements, and
the 9th subset has 48 elements).1

In the data analysis, for the first two loops of our al-
gorithm, we extracted five-time-segment dynamic power
feature; then for the following loops, we extracted five-

1 The number of elements in a subset can be set according to the perfor-
mance of the user’s computer. If the number of elements in a subset is
too small, the classifier will be updated too frequently. In contrast, if the
number of elements is too large, the computer cannot solve the problem
within an acceptable time period.

time-segments nonnormalized dynamic CSP feature from
the 64-channel band pass filtered (11–14 Hz) raw EEG sig-
nal.2 Based on the cross-validation results obtained from the
training set, we find that the first 2 main diagonal elements
were more significant for discriminating for subjects AA, CC
and the last 2 main diagonal elements were more significant
for subject BB. Therefore, in each time segment, the first 2
main diagonal elements for subject AA, CC and the last 2
main diagonal elements for subject BB were taken as the CSP
feature. The dynamic CSP feature is of 10 dimensions.

We present our data analysis results as follows. We ap-
plied our algorithm to the independent test set. By compar-
ing the predicted target position for each trial with the true
target position, the accuracy rate is obtained. The accuracy
rates for the three subjects are shown in the second row of
Table 1.

To further demonstrate the validity of our algorithm
(Case 1), we do the following comparison.

2 Note that only the samples at the time when the user was controlling the
cursor were used, that is, 368 samples each trial for subject AA and BB,
304 samples each trial for subject CC; the samples before and after cursor
control were omitted.
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Table 1: Accuracy rates (%) for the three subjects AA, BB, and CC.

Case
AA BB CC Average

Accuracy rate Accuracy rate Accuracy rate Accuracy rate

1 94.52 91.84 91.51 92.62

2 89.82 75.53 69.50 78.28

3 97.39 94.47 95.76 95.87

4 — — — —

5 96.08 50.00 50.54 65.54

6 52.48 50.00 50.54 51.01

Table 2: CPU time (s) of the three subjects AA, BB, and CC for
training the semisupervised SVM.

Case
AA BB CC Average

Training time Training time Training time Training time

1 1186.40 375.72 568.51 710.21

3 >86400 >86400 >86400 >86400

Case 1. The proposed semisupervised SVM trained from la-
beled and unlabeled data is used to classify the independent
test set.

Case 2. A standard 1-norm SVM trained from the labeled
data is used to classify the independent test set. Note that all
the features extracted are the dynamic CSP features in this
case.

Case 3. The true labels of the unlabeled data are assigned;
then we use these data with the original labeled data to train
a standard 1-norm SVM to classify the independent test set.
Note that all the features extracted are the dynamic CSP fea-
tures in this case.

Case 4. The original training method of semisupervised
SVM introduced in [10] is used to replace the batch-mode
incremental training method. Note that in this case, due to
the heavy computational burden, we had run the mixed in-
teger programming for more than 24 hours, but failed to get
a result. So, the accuracy in Table 1 for Case 4 is empty.

Case 5. A full bayes classifier-based self-training algorithm
is used to replace the semisupervised SVM-based algorithm.
Note that in this case, all the features extracted are the dy-
namic CSP features.

Case 6. A full bayes classifier trained from the labeled data
is used to classify the independent test set. Note that in this
case, all the features extracted are the dynamic CSP features.

Table 1 shows the accuracy rates for the three subjects in
Cases 1, 2, 3, 5, 6. It shows that our algorithm improves the
accuracy rate significantly (by 14.34%), compared with the
accuracy rates obtained in Case 2. Furthermore, compared
with the accuracy rate of Case 3 in which all the data (includ-
ing labeled and unlabeled data) were labeled, the accuracy

rate (when only 10% data were labeled) obtained by using
our algorithm is only lower than it by 3.25%. From the re-
sults of Cases 5, 6, we find that except for subject AA the full
bayes classifier based self-training algorithm fails to improve
the accuracy rate by using the unlabeled data. In most cases,
when the number of labeled samples for training full bayes
classifier is small, the estimation of the parameters of the full
bayes classifier is often poor. Thus, when we use this classifier
trained from the labeled data to predict the classes of the un-
labeled data, only very small part of the unlabeled data can
be classified correctly. When only very small part of correct
classified unlabeled data is available, we cannot employ the
information provided by the unlabeled data. This results in
the poor performance in data sets BB and CC. In some rare
cases, however, the distribution of the labeled small samples
also can present partial distribution of the real data, that is,
the labeled samples distribute on several representative places
of the real data distribution. The bayes classifier trained from
the labeled data can correctly classify part of the unlabeled
data. The classification accuracy is better than the accuracy in
the normal case. Therefore, for data set AA, the information
embedded in the unlabeled data can be used to improve the
performance of the classifier by the self-training algorithm.

Table 2 lists the CPU times of training the semisupervised
SVM in Cases 1, 4 for 3 different subjects. Note that the val-
ues of the CPU time are the mean of five times running of
the corresponding algorithm. In Case 4, we had run our pro-
gram for more than 24 hours (86400 seconds) without get-
ting a result. It shows that the batch-mode incremental train-
ing method is much faster than the method used in Case 4.

Figure 2 shows the change of the accuracy rate of the in-
dependent test set with the batch-mode incremental train-
ing process for the three subjects. It illustrates that the main
trend of the accuracy rate of the independent test set in-
creases along with the entering of the unlabeled data.

3.2. Data analysis of an ECoG-based movement
imagination experiment

The data set of an ECoG-based movement imagination ex-
periment was provided by Department of Computer En-
gineering University of Tübingen, Germany, (Prof. Rosen-
stiel) and Institute of Medical Psychology and Behavioral
Neurobiology (Niels Birbaumer), and Max-Planck-Institute
for Biological Cybernetics, Tübingen, Germany (Bernhard
Schölkopf), Department of Epileptology and Universität
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Figure 2: The change of the accuracy rate of the independent test
set with the batch-mode incremental training process for the three
subjects in the data analysis of an EEG-based cursor control experi-
ment.

Bonn, Germany, (Prof. Elger) [15]; and is included by BCI
competition III as data set I. This data set and its de-
tailed description are available at http://www.ida.first.fraun
hofer.de/projects/bci/competition iii. During the BCI exper-
iment, a subject had to perform imagined movements of ei-
ther the remaining small finger or the tongue. The time series
of the electrical brain activity was picked up during these tri-
als using an 8 × 8 ECoG platinum electrode grid which was
placed on the contralateral (right) motor cortex. The grid
was assumed to cover the right motor cortex completely, but
due to its size (approx. 8 × 8 cm) it partly covered also sur-
rounding cortex areas. All recordings were performed with a
sampling rate of 1000 Hz. After amplification, the recorded
potentials were stored as microvolt values. Every trial con-
sisted of either an imagined tongue or an imagined finger
movement and was recorded for 3-second duration. To avoid
visually evoked potentials being reflected by the data, the
recording intervals started 0.5 seconds after the visual cue
had ended. 278 trials were recorded in the same day which
were taken as the training set in the competition. About 1
week later, 100 trials were recorded which were taken as the
test set in the competition.

We took 28 trials (about 10% of all labeled and unlabeled
data) from the 278 trials of training set as the labeled data
set; and we took the remaining 250 trials of training set as
the unlabeled data set; then took the 100 trials of test set as
the independent test set. We first downsampled the original
signals from 1000 Hz to 250 Hz for reducing the computa-
tional burden. In the first two loops of our algorithm, we
extract five-time-segments dynamic power feature from the
trials; in the remaining loops, we extract the 5-time-segments
normalized dynamic CSP feature from the common average
referenced (CAR) [19] and band-pass (8–12 Hz) filtered 32-
channel (we chose 1 out of 2 original channels, that is, with
channel numbers 2, 4, 8, . . . , 64) EEG data. In each time seg-
ment, the first 2 main diagonal elements and the last 2 main
diagonal elements were taken as the CSP feature. The dimen-
sion of the dynamic CSP feature is 20. Note that the transfor-

Table 3: Accuracy rates (%) for the independent test set of move-
ment imagination data analysis.

Case 1 2 3 4 5 6

Accuracy rate 89.00 72.00 90.00 — 69.00 69.00

Table 4: CPU time (s) for training the semisupervised SVM.

Case 1 4

Training time 233.66 >86400

mation matrix of the CSP feature of each time segment is
calculated from the labeled data. We divided the unlabeled
data into 4 batches. Each of the first 3 batches contains 63
elements. The fourth batch contains 61 elements.

We consider 6 cases as in EEG-based cursor control ex-
periment data analysis.

Table 3 shows the accuracy rates in Cases 1, 2, 3, 5, 6.
It shows that semisupervised learning improves the accuracy
rate significantly (by 17%), compared with the accuracy rates
obtained in Case 2. And, compared with the accuracy rate of
Case 3 in which all the data (including labeled and unlabeled
data) were labeled, the accuracy rate (when only 10% data
was labeled) is only lower by 1%. From the results of Cases
5, 6, we see that bayes classifier-based self-training algorithm
fails to improve the accuracy rate. In Case 4, we have run our
algorithm for more than 24 hours without getting a result.

Table 4 lists the CPU time for training the SVM. Note
that it is the average CPU time of five times running of the
algorithm. The result also shows that the batch-mode incre-
mental training method is much faster than the method used
in Case 4.

Figure 3 shows the change of the accuracy rate of the in-
dependent test set with the batch-mode incremental training
process. It illustrates that the main trend of the accuracy rate
of the independent set increases along with the entering of
the unlabeled data.

4. CONCLUDING REMARKS

In this paper, we present a semisupervised SVM algorithm
for BCI systems, aiming at reducing the tedious and time-
consuming training process.

The advantages of our algorithms are as follows.

(1) It achieves a satisfactory generalization performance
by using the unlabeled data, even when only a small
set of labeled data is available. The two experimental
data analyses show that the accuracy rates have been
improved significantly. Our algorithm can reduce the
time needed for the initial training process of BCI sys-
tems.

(2) By dividing the whole unlabeled data set into several
subsets and employing selective learning, the batch-
mode incremental learning method significantly re-
duces the computational burden for training the
semisupervised SVM. The data analysis shows that our
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Figure 3: The change of the accuracy rate of the independent test
set with the batch-mode incremental training process in the data
analysis of an ECoG-based movement imagination experiment.

algorithm is much faster than the one using mixed in-
teger programming directly.

(13) The incremental learning characteristic of our algo-
rithm provides us with an online learning algorithm,
which is useful for the real-world BCI systems since al-
most all the real-world BCI systems work online.

Our experimental data analysis shows that our semisu-
pervised algorithm outperforms another commonly used
semisupervised algorithm—the full bayes classifier-based
self-training algorithm. In fact, in most cases of the data
analysis, the full bayes classifier-based self-training algorithm
fails to improve the accuracy rate. The reason may be that
the dimensionality of the dynamic CSP feature is relatively
too high compared with the size of the labeled data set, the
generalization performance of the initial full bayes classifier
is too poor to predict the labels of the unlabeled data. Con-
sequently, it fails to utilize the information of the unlabeled
data to improve its generalization performance. Contrarily,
the initial classifier of the semisupervised SVM is SVM which
obtains a good generalization performance even in the case of
small-labeled data set. This enables the semisupervised SVM
to predict the labels of unlabeled data accurately to some ex-
tent even when the size of labeled data set is small. Thus,
it can successfully utilize the unlabeled data to adjust the
parameters of the classifier and further improve its perfor-
mance.

Although CSP feature is very powerful in discriminat-
ing two brain states, a sufficient training data set is needed
to determine the transformation matrix. Otherwise, the ob-
tained CSP features and subsequent classification result are
not reliable. In this case, our semisupervised learning algo-
rithm may not work. Thus, we suggest a two-stage feature
extraction method, that is, we use a dynamic power feature
to replace dynamic CSP feature in the first stage of our algo-
rithm, then use the dynamic CSP feature in the second stage
of our algorithm. Data analysis results also demonstrate the
effectiveness of this method.
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