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Abstract: This study provides a model for result consistency evaluation of
multi-criteria decision-making (MDM) methods and selection of the optimal
one. The study presents the results of an analysis of the sensitivity of decision-
making based on the rank methods: SAW, MOORA, VIKOR, COPRAS, CODAS,
TOPSIS, D'IDEAL, MABAC, PROMETHEE-1,1I, ORESTE-II with variations in the
elements in the decision matrix within a given error (imprecision). It is
suggested to use multiple simulation of the elements estimations of the
decision matrix within a given error for calculating the ranks of alternatives,
which allows obtaining statistical estimates of ranks. Based on the statistics
of simulations, decision-making can be carried out not only on the
alternatives statistics having rank I but also on the statistics of alternatives
having the largest total I and Il rank or 1, 1l and Il ranks. This is especially
true when the difference in rank values is not large and is distributed evenly
among the first three ranks. The calculations results for the task of selecting
the adequate location of 8 objects by 11 criteria are presented here. The
main result shows that the alternatives having I, Il and Il ranks for some
ranking methods are not distinguishable within the selected error value of
the elements in the decision matrix. A quantitative analysis can only narrow
the number of effective alternatives for a final decision. A statistical analysis
makes the number of options estimation possible in which an alternative has
a priority. Additional criteria that take into account both aggregate
priorities and the availability of possible priorities for other alternatives with
small variations in the decision matrix provide additional important
information for the decision-maker.
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1 Introduction

Decision-making processes are present in all activities of daily life. The decision
attempts aim at solving problems in a particular case in the best way but it is worth
remembering that this process is complex and takes place in an environment of
uncertainty.

The multi-criteria decision-making methods (MCDMM) are the tool for reducing
subjectivity in decision-making by creating a series of filters selection and helping to
make choice among the complex alternatives. They are characterized by a particular
mathematical apparatus which makes the application of different methods to the
same problem often result in different solutions. Consequentially, the alternative
choice does not depend solely on the criteria that one uses to evaluate those
alternatives but on the MCDMM that one uses as well (Pamucar et al, 2017).

There is no consensus on how to determine the sensitivity analysis, i.e. the
"quality” of a decision method and the reliability of the results. The sensitivity
analysis can be defined as stability or behavior of the solution to small changes in
preferences which occur during the resolution process or to small changes in the
values taken for parameters; it is what some authors consider as efficiency
multicriteria decision method (Pamucar & Cirovi¢, 2015).

Barron and Schmidt (1988) recommended two procedures to accomplish a
sensitivity analysis in multi-attribute value models (entropy based procedure and a
least squares procedure). These procedures calculate, for a given pair of alternatives,
the best alternative, the closest set of weights that equates their ranking. Watson and
Buede (1987) illustrate a sensitivity analysis in a decision modeling strategy. Von
Winterfeldt and Edwards (1986) cover the sensitivity analysis in the traditional way
for those problems which can be approached by using a multi-attribute utility theory
(MAUT) or a Bayesian model. They define the Flat Maxima Principle for MAUT
problems, which states that the existence of dominance makes the sensitivity
analysis almost unnecessary.

Evans (1984) investigates a linear programming-like sensitivity analysis in the
decision theory. His approach is based on the geometric characteristics of optimal
decision regions in the probability space. Also, in Triantaphyllou (1992) the
sensitivity analysis approach is described for a class of inventory models. The
methodology for the sensitivity analysis in multi-objective decision-making is
described in Rios (1990). That treatment introduced a general framework for the
sensitivity analysis which expanded results of the traditional Bayesian approach to
decision-making. Likewise, that work contains an analysis of why the flat maxima
principle is not valid. Samson (1988) presents a whole new approach to the
sensitivity analysis. He proposed that it should be part of the decision analysis
process thinking in real time.

Triantaphyllou and Mann (1989) emphasize two criteria for MDM methods
analysis. The first criterion refers to fulfillment of result consistency conditions in the
case when the method is applied to a multi-dimensional problem while the second
criterion refers to the stability conditions of the best ranked alternative. In their
study, Triantaphyllou and Mann (1989) compare four methods (WSM-weighted sum
model, WPM-weighted product model, AHP-analytic hierarchy process and Revised
AHP-revised hierarchy process). Those two authors conclude that none of the
considered methods is completely effective in terms of both evaluative criteria. In
1996, Triantaphyllou and Lin examined five fuzzy multi-attribute decision-making
methods (fuzzified WSM, WPM, AHP, revised AHP and TOPSIS) in terms of the same
two evaluative criteria, adapted to fuzzy environment. Just like the previous study,
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when four crisp methods were compared, they came to same conclusions: that none
of the examined fuzzy methods is perfectly effective in terms of both evaluative
criteria and that precision methods decrease with increasing complexity of the
decision-making problem.

In the last couple of years, there have been frequent comparative analyses by the
authors who conduct comparison of the results gained through use of several
different MDMM (Rodrigues et al., 2014; Anojkumar et al., 2014; Liu et al, 2013;
Wang & Tzeng, 2012; Peng et al,, 2011; Yang et al., 2008). However, the fact that there
are multiple methods that recommend the same choice is not a satisfactory warranty
of rationality and quality of the calculated solution (Pavlici¢, 1997).

Examples of analysis of ranking results accordance obtained through different
methods can be seen in Rodrigues et al. (2014), Liu et al. (2013), Peng et al. (2011),
Yang et al. (2008). It should be noted that the results of this kind of research depend
on the observed method choice and characteristics of problems that those methods
are being applied to. In accordance with that, there are different conclusions made by
different authors. In the works in which robustness and stability analysis of obtained
solution is conducted in MDM, besides comparison with the solutions gained
thorough other methods and techniques, the analysis is often based on an
appropriate sensitivity analysis of the results to changes of certain parameters in the
decision-making model (Yu et al. (2012); Stevens-Navarro et al. (2012); Li et al.
(2013a); Li et al. (2013b); Corrente et al. (2014); Kannan et al. (2014)).

As specified in the shown research studies, the selection of an optimal MCDMM is
a very complex problem which without any prior sensitivity analysis of the solution
can have a wrong selection. Therefore, it is necessary to define the model for the
sensitivity analysis of MCDMM. This article presents a study of estimating the
variation of alternatives according to the criteria for the results of ranking
alternatives, and in connection with this, the approach to improving the reliability of
decision-making (reduce the risk of making an unsound decision) is discussed in
detail. The model was tested on the example of logistical center location selection
and the results of are presented in section 4. It is necessary to emphasize that the
results presented in section 4 refer only to the observed example of the logistical
center location selection and cannot be generalized.

The remainder of this paper is structured as follows: Section 2 gives a brief idea
of the research methodology. Section 3 proposes preliminary methods for multi-
attribute decision-making and techniques. Sections 4 and 5 present an illustrative
example and discussion of the sensitivity model results. Finally, Section 6 presents
the conclusions, highlighting directions for further research.

2 Research Methodology

The MCDM problem is usually solved in a two phase process: (1) The rating, that
is, the aggregation of the values of criteria for each alternative, and (2) The ranking
or ordering between the alternatives, with respect to the global consensual degree of
satisfaction. The step-by-step sequence of the problem of multi-criteria decision-
making is defined as follows (Triantaphyllou, 2000; Tzeng & Huang, 2011):

(1) Choice of alternatives (A;;i=1,2,...,m);

(2) Choice of evaluating criteria (C;;j=12,...n);

(3) Acceptance of scales of an estimation of alternatives on each criterion;
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(4) Determination of priorities (weights) of criteria (w;; j=12,..,n);
(5) Determination evaluation matrix, i.e. decision matrix X = [alj ]mxn ;

(6) Choosing a method for ranking alternatives.

Careful consideration of each step is the key to the success of the final choice. The
first three and the last of the steps relate exclusively to a specific subject area and
imply involvement of qualified specialists in the field under consideration. The
remaining steps are formalized (partially or completely) and require involvement of
specialists in applied mathematics. Accordingly, there are 5 main factors affecting the
outcome for ranked decision-making methods for MCDMM for which variations in
the form of a formalized procedure or method are possible. These are: (1) the choice
of scales of criteria; (2) evaluation of the weights of the criteria; (3) evaluation of
alternatives according to the criteria; (4) the method of normalizing the decision
matrix and (5) method of ranking. Earlier, in Pamucar et al (2017), the sensitivity of
the choice of criteria scales and the evaluation of the weights of the criteria on the
results of the ranking of alternatives, convincingly confirming the above thesis, was
investigated.

It seems obvious that for real decision-making tasks none of the alternatives can
be accurately measured for each of the criteria. The reason for this is the
fundamental uncertainty of nature. The correct wording shows how accurately the

alternative is evaluated by the criterion. Therefore, al.j:aij~(1i5ly-) , where

é'ij € (0,1) is the relative error of the estimate. Taking this into account, if we use the

linear algebraic transformations of the elements of the decision-making matrix
(preliminary normalization of the elements ajj is necessary) to obtain the final ranks
of the alternatives, or the class of methods based on the quasi-arithmetic
transformations of the decision matrix elements, it is obvious that the degree of
reliability of the result depends on the degree of reliability of the elements of matrix
D. In the absence of errors of other values, the error of the final ranking will not be
less than max;(q;-J;). In the simplest case of the OWA (Ordered Weighted

Averaging) criteria aggregation method, the reliability of the result is estimated by
the order value max(é}j) . Thus, the final ranks 7 (i =1,2,...,m) are calculated with an

error and are stochastic values. Then the question of the priority of one alternative
over another should be solved in a statistical way.

Let alternatives A, and A; have r, and r, ranks, respectively, and 7 ~r,. The
question is whether they are significant. The answer can be obtained if we use the t-
Test about the equality of two average normal populations. The lack of reliable
information about &; will not allow such a test to be performed. We consider the

following method of partially solving the problem of estimating the error in
calculating the ranks of alternatives.

Step 1 An approximate estimate of the maximum total error in the choice
problem, for example, §; =0.1 (or 10%), which is similar to specifying the risk.

Step 2 Multiple simulation of 7 ranks (for example, 1000 simulations) for the
variation of the elements of the decision matrix X : a; =a; o(lié‘ij -rnd()) using the

random number generator Rnd [0, 1].

Step 3 Calculate the mean and variance for r, and test the performance of the

paired t-Test for alternatives having 1, 2, and 3 ranks.
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Calculations show that for different variants of calculations, the ranks of
alternatives change. For example, suppose that in the 1000 decision matrix
simulations the 1 rank of alternative A, took 780 points, alternative A; was 200,

and alternative A, was 20 points. The ratios are 3.9 and 39 times more in favor of

alternative A, . But this is only with a superficial (trivial) approach. After all, the first

20 ranks of alternative A, are obtained for specific 20 implementations of the

decision matrix. It is possible that the true values of the estimates of alternatives are
according to the criteria from the same set. Then there is the possibility of not
making the best decision although this chance (risk) is about 2%. Therefore, the
value of the approach assuming statistical variations of estimates of the alternatives
by the given criteria consists in additional information for the decision-maker
regarding the magnitude of the risks.

Having a statistical picture of the assessment of ranks, the decision-making can be
carried out not only on the statistics of alternatives having rank 1, but it can also use
statistics of the alternatives having the largest total 1 and 2 rank, or 1, 2 and 3 ranks.
This is especially true when the difference in rank values is not large and is
distributed on an average evenly between the first three ranks. For example, suppose
that for A, the number of first places is 40%, the second 10%, and the third 5%; for

A, the number of first places is 36%, the second 25%, and the third 7%; for Ap the

number of first places is 25%, the second 20%, and the third 20%. Then:
(1) A isbetter than A and A, in the number of 1 ranks (40> 36> 25);

(2) A, isworse than A, and better than A, by the amount of the sum of 1 and 2

ranks (50<51, 50>45);
(3) Ay is worse than A, and worse than A, in the amount of the sums of 1, 2

and 3 ranks (55<62<65).
The above example shows complexity (and subtlety) of the procedure for
selecting alternatives for the decision-maker in this scenario.

3 Preliminary methods for used multi-attribute decision-making
methods

Before any further explanation of the recommended model, we are going to
explain the basic setup of methods used in this work. Five methods were used: SAW,
MOORA, VIKOR, COPRAS, CODAS, TOPSIS, D’'IDEAL, MABAC, PROMETHEE-LI],
ORESTE-II. Before a statistical analysis of the above presented multi-criteria methods
we define some preliminary benchmarks important for this research:

(1) In this research alternatives Ai are unformalized linguistic variables and

criteria (Cj) are non-formalized linguistic variables. For each criterion it is
necessary to determine the direction of growth, i.e. max (beneficial ) = (+1)

or min (cost)= (- 1) as sg; =signC; ={x1}{; j=1...n
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(2) The methods for normalizing the decision matrix:

(1) Max (2) Sum (3) Max-Min (4) Vector
For benefit attributes

a.:: __ min ij

_ y_ . a; —a; P —
4y Q) xy =——; Gx,=—L I . (4) x; =

(1) XU max Y gmax _ ,min 2
aj aij J J Z aij

i=1 j=1

a;; i _ ij
Uy, =1, u=log= i IR A o
ij —tT 5 le = — 2
a;nax Zal] ;nax a;mn a[j
i=1 j=1
Variations
min 1/a;
(1") x,'j — J : (2!!) xij — m] :
a..
i U/ az) 1D (1 ay)
i=1
n _ aij .
(1 ) xij __arpax ’

J

(3) Selecting a metric to measure the remoteness of two m-dimensional objects C
and D

m llp
L, (C,D):|:Z(Ci _di)pj| s 1<p<owoL, (C’D) =m;‘;1x|ci _di| M

i=1

3.1 SAW (Simple Additive Weighting) method

Simple Additive Weighting (SAW) method is probably the best known and most
widely used MADM method (Anupama et al, 2015). The SAW method also known as a
scoring method is one of the best and simplest types of multiple attribute decision-
making method. The basic logic of the SAW method is to obtain a weighted sum of
performance ratings of each alternative over all attributes. An evaluation score is
calculated for each alternative by multiplying the scaled value given to the
alternative of that attribute with the weights of relative importance directly assigned
by the decision maker followed by summing up of the products for all criteria. The
advantage of this method is that it is proportional linear transformation of the raw
data which means that the relative order of magnitude of the standardized scores
remains equal. The step wise procedure is given below (Kaklauskas et al, 2006):

Step 1 Construct a decision matrix X = [aii] that includes m personnel and n

criteria. Calculate the normalized decision matrix for benefit/cost criteria:

aj; :norm(1-1'<orl"or1" >, 2-2'3-3", or 4—4") 2)

Step 2 Evaluate each alternative, A by the following formula:

56



Sensitivity analysis in MCDM problems: A statistical approach

n

A=Ywas Yw, =1 ®
j=1

J=1

where a; is the normalized value of the i-th alternative with respect to the j-th

criteria, w f is the weighted criteria (Kaklauskas et al, 2006).

3.2 MOORA (MultiObjective Optimization on the basis of Ratio Analysis)
method

The method starts with a matrix of responses of different alternatives on different
objectives x;;; where x;; represents the response of alternative i/ on objective .
MOORA goes for a ratio system in which each response of an alternative on an
objective is compared to a denominator, which is representative for all alternatives
concerning that objective. The step wise procedure is given below (Brauers &
Zavadskas, 2006; Kalibatas & Turskis, 2008; Brauers, 2008; Brauers et al., 2008):

Step 1 Construct a decision matrix X = [aii] that includes m personnel and n
v mxn

criteria. Calculate the normalized decision matrix for benefit/cost criteria:

a; : norm(1 or 2 or 3 or 4) 4

Step 2 Evaluate each alternative, A; by the following formula:

Qizzsgj'wj‘aij; ijzl (&)
Jj= Jj=l

where a; is the normalized value of the i-th alternative with respect to the j-th

criteria, w; is the weighted criteria. These normalized responses of the alternatives

on the objectives belong to the interval [0,1].
Step 3 For optimization these responses are added in case of maximization and
subtracted in case of minimization (Brauers, 2008):

i J

0 = max(v,j); a; :norm(4); rp = max(sgj -aij) , Vi =, ~|rj —aij|; max Q; (6)
J i i

where a;; is the normalized value of the i-th alternative with respect to the j-th

criteria, w f is the weighted criteria.

3.3 VIKOR (VIsekriterijumsko KOmpromisno Rangiranje) method

VIKOR method represents an often used method for multicriteria ranking and
suitable for solving different decision-making problems. It is especially suitable for
those situations where the criteria of quantitative nature are prevalent. The VIKOR
method was developed based on the elements of compromise programming. The
method starts from the “border” forms of L, metrics (Opricovi¢ & Tzeng, 2004). It

seeks the solution that is the closest to the ideal. In order to find the distance from

the ideal point it uses the following function:

1/p
n

L(FLF) =13 -]t a<p<e (7)

Jj=1
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This function represents the distance between ideal point F" and point F(x) in

space of criteria functions.
The essence of the VIKOR method is that for every action it finds the value of Q,,

and then it chooses the action which has the lowest listed value (the smallest
distance from the “ideal” point). The step wise procedure is given below:
Step 1 Determine "ideal” and "anti-ideal" object

—{maxa |zf]eC (max); mlna |zf]eC (min) };

®)

—{mma |zf]eC (max); maxa |zf]eC (min)}.

where a7 ; and a;, respectively, present ideal and anti-ideal object.

Step 2 Weighted Normalization: norm(3)

a _aj
Wi — 7fxﬁi€B’
T4

WX, = 9)

J7y +
/ zfxeC

i’ +
J aJ
Where B and C, respectively, present beneficial and cost group of criteria.

Step 3 The strategies of maximal R and group utility S

S; :le“; s =min$;; S =maxs;
7 ! ! (10)

R, = maxxU,R mmR R =maxR,

Step 4 Calculate the values of Qi
0 =v S 1)
N R -R

where v plays the role of the balancing factor between the overall benefit (S) and
the maximum individual deviation (R). Smaller values of v emphasize group gain,
while larger values increase the weight determined by individual deviations. "Voting
by majority rule" (v> 0.5); or "by consensus" (for v = 0.5); or "with a veto" (for v
<0.5).

Step 5 The result of the procedure comprises three rating lists: S, R and Q. The
alternatives are evaluated by sorting values of S, R and @ by the criterion of the
minimum value. The best alternatives:

mln{Ql,S,, R;} (12)

Step 6 As a compromise solution, an alternative A: is proposed which is best
estimated by Q (minimum) if the following two conditions are met:

Condition C1: "Allowable advantage": Q(42) - Q( A1) >=1/(m - 1), where 4z is an
alternative to the second position in the Q ranking list.

Condition C2: "Acceptable stability in decision-making": Alternative A1 should
also be best estimated by S or / and R.

Step 7 If one of the conditions - 1 or 2 - is not satisfied, then a set of compromise
solutions is proposed, which consists of:

- alternatives A1 and Az, if condition C2 is not met, or,

- alternatives A1, Az, .., Ak if condition C1 is not satisfied; Ak is determined by

relation Q(Ak—1)-Q(Al)<1/(m~1) & Q(Ak)-Q(Al)21/(m-1).
58
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3.4 COPRAS (COmplex PRoportional ASsessment) method

Ranking alternatives by the COPRAS method assumes direct and proportional
dependence of significance and priority of the investigated alternatives on a system
of criteria (Ustinovichius et al, 2007). The selection of significance and priorities of
alternatives, by using the COPRAS method, can be expressed concisely using four
stages (Viteikiene & Zavadskas, 2007). For normalization in the COPRAS method we
use x; :norm(1 or2or 3 or 4).

In the COPRAS method, each alternative is described with the sum of maximizing
attributes S.i. In order to simplify calculation of S,; and S_; in the decision-making

matrix columns, the maximizing criteria are placed first, followed by the minimizing
criteria. In such cases, S,; and S_; are calculated as follows (Viteikiene &

Zavadskas, 2007):

+i

n
S, = inj |f0rje C;(max);
j=1

: (13)
S = lej |f0rj € C;(min).
j=1
Relative weight @, ofthe i-th alternative is calculated as follows:
S
Q =8, +——— (14)
s 3 L
S .

The priority order of the compared alternatives is determined on the basis of
their relative weight (higher relative weight higher priority/rank).

3.5 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)
method

The basic principle of the TOPSIS method is that the best alternative should have
the shortest distance from the ideal solution and the farthest distance from the anti-
ideal solution. A relative distance of each alternative from ideal and anti-ideal
solutions is obtained as (Chang et al, 2010)

Si.
St+87

0 = i=1l..n (15)

where S and S; are separation measures of alternative i from the ideal and
anti-ideal solution, respectively; O, is the relative distance of alternative i to the
ideal solution, and Q, €[0,1].

The largest value of criterion Q, correlates with the best alternative. The best

ranked, or the most preferable, alternative A;pg can be determined as

Arps {Az = max Qi} .
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For normalization in the TOPSIS method we use r; tnorm(l or2or 3 or 4) . The
separation measures of each alternative, from the ideal and anti-ideal solutions, are
computed using the following formulae (Chang et al, 2010):

s =[St o

j=1
1/2
1t 2
<3 ()]
j=1
where element r; represents the performance of alternative 4, in relation to
criterion C;. For m criteria (C, C, ...,C,,) and n alternatives (A 4, ...,A,) matrix

R has shape R:[rij] . Values (w, w,,...,w,, ) represent weight values of the
nxm ’
n
criteria that satisfy condition Wi
i=

Ideal A" and anti-ideal A~ solution in the TOPSIS method can be determined
using formulas (8) and (9), respectively.

A :{(maxvlj |j€G).(minvy, jeG )i =1,..,n} :{vr,v;,...,v;} (18)
A” ={(minv; | j €G),(maxvy, j €G )i =1,.,n} =V, v, | (19)

It can be seen from equations (16) and (17) that the ordinary TOPSIS method is
based on the Euclidean distance (Chang et al., 2010; Shanian & Savadogo, 2006).

3.6 D’IDEAL (Displaced Ideal Method)

An "ideal" object is formed from the most preferable values of the criteria and so
are "anti-ideals" from the least preferred values. The distances of the objects from
the original set to the "anti-ideal" are determined, on the basis of which the "worst"
objects are allocated. After excluding the "worst" objects, we return to the stage of
formation of the "ideal", and it changes, approaching the real objects. The procedure
ends when there remain a small number of objects, which are considered to be the
most preferable. The step wise procedure is given below:

Step 1 Determine an "ideal" object and an "anti-ideal" one

aj ={maxa; [if j €C;(max); mina,|if jeC;min}; j=1,..n (20)
l 1
a; :{m_inaij|ifjeCj(max); maxaij|ifjeCj(min)}; j=1..,n 21
l 1
aN—a*f
w; Y J if x; € B;
. + - 7
a;—4aj
WX = . (22)
a; —a; c
w-——— if x; € C.
a; —a;

Step 2 Calculate the distance of the objects to the "anti-ideal" using metrics for
different values of p, for example, p ={1,2,}

1/p
L= {Zn: xij”} , L = max|x,-j| (23)
j=1 !
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Step 3 Exclude "hopeless” options. For this, for each p, all objects are ordered in
proximity to the "ideal" in magnitude L. The more L?, the further 4i is from the
anti-ideal, and the higher the rank of the alternative A4; (rank 1 is higher).

Q[ :Z(Llp /L&ax);l‘ﬁlax = maX Ltp 5
> i

(24)
R =Zri”; i’ =rank(LX (LY, L5,....L0)})
p

Exclude one (two or three, depending on the number of alternatives) of
"unpromising” variants that have the greatest total rank Ri. These are objects that, at
different metrics (different p), are at the end of the ordered series. The procedure
ends when there remain a small number of objects, which are considered to be the
most preferable. The best alternative is max Q,.

L

3.7 MABAC (Multi-Attributive Border Approximation area Comparison)

The MABAC method is developed by Pamucar & Cirovic (2015). The basic setting
of the MABAC method consists in defining the distance of the criteria function of
every observed alternative from the border approximate area. The step wise
procedure is given below:

Step 1 Normalization of the initial matrix elements.

+

a.. —a
i J - .
F— if x; € B;
a: —a.
J J
=1 (25)
aj-a;
——— ifxeC
4; =4

where, a;- and a; represent the elements of the initial decision matrix.

Step 2 Calculation of the weighted matrix elements. The elements of the weighted
matrix are calculated on the basis of the expression (26)
vj = (xij +1)- w; (26)

where v; represents the elements of the normalized matrix, w; represents the

weighted coefficients of the criterion.
Step 3 Determination of the approximate border area matrix. The border
approximate area for every criterion is determined by expression (27):

m 1/m

i=1
where v; represents the elements of the weighted matrix, m represents total

number of alternatives.
After calculating the value of g; by criteria, a matrix of border approximate areas

G is developed in the form n x 1.

Step 4 Ranking of alternatives. The calculation of the values of the criteria
functions by alternatives is obtained as the sum of the distance of alternatives from
the border approximate areas. The final values of the criteria function of alternatives
are obtained as follows
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o :Z(Vij _gj)
j=1

where n represents the number of criteria.
Step 5 The best alternative is max ;.
1

(28)

3.8 ORESTE (Organisazion, RangEment ot SynTEze de donnecs relationnelles)

method

The ORESTE method was developed by Roubens (1978). The aim of this method
is to find a global preference structure of a set of alternatives by evaluating them by
each criterion and the preference among the criteria. This method generally defines
criteria and alternatives, constructs a global complete and partial preorder of the
alternatives by performing indifference and conflict analyses. In this research
normalization matrix is performed by using 7; : norm(3) . The step wise procedure is

given below (Roubens (1978)):

Step 1 Transition from matrix DM to matrix of ranks (the columns of the matrix

are replaced by their ranks)
1y =rank(a; [{ay;,a, ;s 1), Vi, j (i =1...om; j=1,...,n)

Step 2 Determine ranks of criteria
rc; =rank(C; {C,,Cy,....,C, ), Vj=1,...,n ;01
re; = rank(w; [{wswyseesw, 1)
Step 3 Compute the projections of ranks
d;; =[(1—a)~r,-j” —a-rcj”]l/p , ae(0;1)
p =1, Average (Mean);
p =-1, Medium Harmonic;
p =2, Mean Square
p = inf, max(R, w);
p =—inf, min(R,w)

Step 4 Calculating ranks dj

n
Rdy; = rank(d; |{dy )iz, jor)> B = Y Rd
j=l
Step 5 Calculate ranks Ri
OutR; = rank(R; |{R,,R,,....R,,})
Step 6 Calculate preference factors Cik
1

T2 m-1) D (Rd; —Rdy;+| Rd; = Rdy; )

Jj=1

ik
ry = rajnk(al-j); Rl-j = sc;rt(al-j,zfsgj =+1,"descend, if 58; = —1,'ascend,);

Step 7 The best alternative is minQ; .
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3.9 PROMETHEE (Preference Ranking Organisation METHod for Enrichment
Evaluations)

The PROMETHEE method was developed at the beginning of the 1980s and has
been extensively studied and refined since then (Figueira et al, 2005). It has
particular application in decision-making, and is used around the world in a wide
variety of decision scenarios, in the fields such as business, governmental
institutions, transportation, healthcare and education.

The PROMETHEE method helps the decision makers find the alternative that best
suits their goal and their understanding of the problem. It provides a comprehensive
and rational framework for structuring a decision problem, identifying and
quantifying its conflicts and synergies, clusters of actions, and highlights the main
alternatives and the structured reasoning behind them. The step wise procedure is
given below:

Step 1 Set the preference function for two objects for each criterion
H; =H(d,p.q) - As arule, they have two parameters: p - indifference threshold, it

reflects the fact that if difference of dis values of two alternatives i and s is
unimportant, then objects by criterion j are equivalent. If the difference in threshold
value p is exceeded, a preference relation is established between the objects. If the
difference in threshold ¢ is exceeded, the preference function corresponds to the
"strong preference" of variant i with respect to variant s with respect to criterion j.
With the difference of dis in the interval from p to g, the preference function is less
than 1, which corresponds to a "weak preference".

The choice of the preference function is determined by the decision-makers.
Some types of functions are preferred H(d) are presented below (Table 1): 1)
regular- 0 if d< =0, 1 if d>0; 2) U-Shape ([p 0] p>0); 3) V-Shape ([p 0] p>0); (p is
indifference threshold); 4) Level criterion([p g]); p, q>0 (q is the preference
threshold); 5) Linear criterion( [p g]); p, ¢>0; 6) Gaus criterion([p p]) p=sigma (Table
1).

Table 1 Preference functions of PROMETHEE

Function Shape Threshold  Formula
No 3 1, x>0 '
Usual threshold 7 = {0, x<0’
U-sh ! | hreshold (=1 !
- X) = ;
shape q thresho 0.x<q
x/p, x<p
V-shape ! p threshold  f(x)= { ;
LLx>p
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Function Shape Threshold  Formula
0, x<p
1 pand q _ .
Level | threshold f(x)=40.5, p<x<gq;
|- ,x>2q
0, x<p
. 1 pandq _ _ _ .
Linear threshold f)=1(x=—p)/(g—p), p<x<gq;
. Lx2q
1 x’
Gaussian /_ sthreshold  f(x)=1- exp(—2—2j;
s

Step 2 Calculate the difference in the values of the criteria for the two objects and
calculate preference indexes V

dy=a;—ay; H; =H;(d;,p.q,); Vj =ij ‘H; —[mxm]—-Matrix (35)
j=1
Step 3 Determine the preference factors
O = Y Vidi= Y Vg Q=0 -0 (36)
s=1,s#i s=1,s#i

Step 4 The best alternative is max ;.

3.10 CODAS (COmbinative Distance-based ASsessment) method

The CODAS method is an efficient and updated decision-making methodology
introduced by Keshavarz Ghorabaee et al. (2016). The desirability of alternatives in
the CODAS is determined based on IZ-norm and 2-norm indifference spaces for
criteria. According to these spaces, in the procedure of this method, a combinative
form of the Euclidean and Taxicab distances is utilized for calculation of the
assessment score of alternatives. The step wise procedure is given below:

Step 1 Construct the Weighted Normalized Decision Matrix

a;
W, - U‘xljeB;

J max
J
X’:i = min (37)
J .
w; - o if x; € C.

y
Step 2 Determine the negative-ideal solution as given in equation. Construct min
vector for criteria

r; =miinx,-j; j=L.,n;i=1..m (38)

Step 3 Calculate the Euclidean and Taxicab distances of alternatives from the
negative-ideal solution
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1/2

E =| > (x;-r,) (39)
j=1
n
I 0
j=1
Step 5 Construct the relative assessment matrix
Hy,=(E -E)+y(E -E)(T,-T,), ik=1..m 41
where s denotes a threshold function
L i xR
w(x) —{0’ i |xl<r (42)

7 is the threshold parameter that can be set by the decision maker. It is
suggested to set this parameter as a value between 0.01 and 0.05. If the difference
between the Euclidean distances of two alternatives is less that 7, the two
alternatives are also compared by the Taxicab distance.

Step 6 Calculate the assessment score of each alternative

H; =" H, 43)
k=1

Step 7 Rank the alternatives according to the decreasing values assessment score
H. The alternative with the highest H is the best choice among the alternatives.

4 An illustrative example: the location selection of tri-modal LC and
logistical flows

The sensitivity analysis model is tested on an example of the logistical center (LC)
location selection (Pamucar et al, 2017). The goal is to find a location which
generates lowest expenses, offers highest efficiency and at the same time fulfills
operational and strategic needs.

3.1 Alternatives and criteria weighting

In our example the authors used 11 criteria which were identified in Pamucar et
al (2017) based on which the location selection of tri-modal LC is going to be
conducted (Table 2).

Table 2 Criteria for LC selection (Pamucar et al, 2017)

Criterion Criterion name wi Unit of Measurement
Ci Connectivity to Multimodal Transport 0.109 Linguistic Variable

. Infrastructure
C2 Infrastructure Development Evaluation 0.105

Development (%)
Cs Environment effect 0.101 Linguistic Variable

Conformity with Spatial Plans and Strategy Of

Cs Economic Development 0.097 Linguistic Variable
Number of

Cs Gravitating Intermodal Transport Unit - 