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A sensitivity-based commonality strategy for family products
of mild variation, with application to automotive body
structures

R. Fellini, M. Kokkolaras, N. Michelena, P. Papalambros, A. Perez-Duarte, K. Saitou, and P. Fenyes

Abstract Identification of the product platform is
a key step in designing a family of products. This article
presents a methodology for selecting the product plat-
form by using information obtained from the individual
optimization of the product variants. Under the assump-
tion that the product variety requires only mild design
changes, a performance deviation vector is derived by
taking into consideration individual optimal designs and
sensitivities of functional requirements. Commonality de-
cisions are based on values of the performance deviation
vector, and the product family is designed optimally with
respect to the chosen platform. The proposed method-
ology is applied to the design of a family of automotive
body structures. Variants are defined by changing the
functional requirements they need to satisfy and/or the
geometry of the associated finite element models.
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1

Introduction

Sharing components within a family of products can
be an effective method for corporations to increase cost
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savings (Meyer and Lehnerd 1997; Ericsson and Erixon
1999). A drawback to commonality is that a performance
deviation can be incurred with regard to optimized indi-
vidual product design. The challenge is to choose which
components to share (i.e., define the product platform),
and design the product family with minimal deviation
from individual optimal designs.
Simpson et al. (1999) proposed a method for prod-

uct platform synthesis and exploration based on a market
segmentation grid and leveraging and scaling concepts
(Meyer and Lehnerd 1997). They solved the family design
problem by using goal programming. This methodology
has been built upon in a number of subsequent publica-
tions (Messac et al. 2000; Conner et al. 1999; Nayak et al.
2000), where the last method uses robust design princi-
ples to aid in selecting the product platform.
Gonzalez-Zugasti et al. (1998) presented a method

that uses cost gain models as the driving force for design-
ing the product platform while satisfying performance
and budget constraints: a priori specified platforms are
optimized first; family variants are designed second. Sub-
sequently Gonzalez-Zugasti and Otto (2000) formulated
a design optimization problem for modular product archi-
tecture that can be solved to determine simultaneously
module designs and their combination for the variant in-
stantiations. Fujita et al. (2001) proposed a method for
simultaneous optimization of module attributes and com-
binations. The modular architecture of the product fam-
ily is fixed in both of the latter papers.
Siddique et al. (1998) examined the applicability of

product variety concepts to automotive design. In par-
ticular, they investigated whether product variety de-
sign concepts such as standardization, delayed differen-
tiation, modularity, module interfaces, robustness, and
mutability can be utilized. They limited their considera-
tion for platform to the underbody structure of a vehicle
and came to the conclusion that some of these concepts
cannot be applied, mainly because of the integral na-
ture of the product architecture. However, they did men-
tion the possibility of partitioning the underbody plat-
form into major manufacturable modules that can be
assembled.
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Nelson et al. (1999) formulated platform design as
a multicriteria optimal design problem. Given a fixed
platform, a set of optimal Pareto points is generated
based on the importance of the conflicting variant objec-
tives. The designer can identify trade-offs, evaluate mul-
tiple platforms, and then make related decisions. Fellini
et al. (2000) applied this concept to the design of an au-
tomotive product family based on a powertrain platform
and examined the hierarchical structure of the platform
design problem. Kokkolaras et al. (2002) extended the
target cascading formulation to the design of product
families with pre-specified platforms. Both common and
individual components, subsystems, and/or systems of
the family products were designed optimally with respect
to family and variant targets.
In the present work a methodology is proposed for

making commonality decisions based on individual op-
tima and sensitivity analysis of functional requirements.
Emphasis is put on families of vehicle body structures
using modeling approaches proposed by Fenyes (2000).
The method assumes only “mild variants”, so that design
changes can be guided by sensitivity information reason-
ably well.
The article is organized as follows: Platform-based de-

sign of body structures is introduced in the next section.
The mathematical derivation underlying the proposed
approach is presented. The methodology based on this
derivation is formulated and demonstrated by means of
an automobile body structure case study. Results are dis-
cussed and conclusions are drawn.

2

Platform-based design of body structures

A component is defined as a manufactured object that is
the smallest (indivisible) element of an assembly, and is
described by a set of design variables. A product is an ar-
tifact made up of components. A product platform is the
set of all components, manufacturing processes, and/or
assembly steps that are common to a set of products.
A product family is the set of products that are built upon
a product platform. A family product is also referred to
as a product variant . Two types of sharing are possible
when selecting a product platform that is not based on
manufacturing processes or assembly steps. In compon-
ent sharing, one or more components are common across
a family of products as shown in Fig. 1. In addition, it is
possible to share “scaled” versions of components. Math-
ematically this can be described as design variable shar-

Variant A Variant B

(shared )

Fig. 1 Platform-based products (component sharing)

b b

hh

t t

(shared b & h)

Fig. 2 Platform-based components (design variable sharing)

ing, where the components themselves are derived from
a platform. The example in Fig. 2 shows the cross-section
of two structural beam elements. While the height and
width of both parts are the same, the thickness is dif-
ferent. The product containing the “thicker” component
variant has higher rigidity requirements. By not sharing
the thickness, the other product with lesser rigidity re-
quirements does not have to take on an unnecessarily
large deviation from the optimal weight. Possible manu-
facturing advantages are illustrated by this example. By
keeping width and height invariant, the same stamping
equipment may be used with different gauge steel. In gen-
eral, manufacturing considerations should be taken into
account in the design of platforms. We do not address this
aspect explicitly but we attempt to recognize the associ-
ated design impact.

2.1

Problem formulation

The following definitions are necessary to formulate the
variant and family design problems:

• P = {p1, p2, . . . }: set ofm products
• xp: column vector of design variables for the product
p ∈ P
• S = {s1, s2, . . . }: set of all permissible platforms, where
each s ∈ S is a set of indices describing a platform
• s∗: set of indices describing the “optimal” platform
• xp,◦: null-platform optimal design of product p, corres-
ponding to the individual optimal design solutions of
Problem (1) below
• xp,∗: family-optimal design of product p, solution of
Problem (2) below; because of sharing variables whose
indices are in s, for p, q ∈ P and i ∈ s, we have xp,∗i ≡
xq,∗i = x

∗
i

• Gp: set of indices of the active constraints at the null-
platform optimum of product p

For convenience, equality constraints are assumed to
have been eliminated implicitly or explicitly. The individ-
ual optimal design problem for product variant p can be
formulated as

min
xp

fp(xp) (1)

subject to gp(xp)≤ 000 .
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The family design problem is then formulated as

min
x=[xp1 ,xp2 ,...]

{fp(xp)} ∀ p, q ∈ P , i ∈ S , p < q (2)

subject to gp(xp)≤ 000 ,

xpi = x
q
i .

The platform selection methodology can be summa-
rized as follows: Quantify performance deviations by con-
sidering individual optimal designs and sensitivities of
functional requirements; decide which components can be
shared (i.e., determine the platform) with minimal per-
formance deviation; optimally design the product family
around the chosen platform.

3

Commonality decisions

The proposed approach is based on the use of optimal-
ity and sensitivity information obtained from individual
product optimization to assess the potential deviation
from the optimal design incurred by sharing variables.
When the products in the family contain a large num-
ber of components that are candidates for sharing, plat-
form selection entails the solution of a large combinato-
rial problem. In the approach proposed, this problem is
reduced to a simpler one under the assumptions listed be-
low. The derivation presented in the following section is
based on a first order Taylor series approximation. There-
fore, in order for the approximation to remain reasonably
accurate, the general condition is that the individual op-
timal designs lie not “too far away” from each other so
that the linear approximation is valid in the region be-
tween them. The derivation will be presented for a family
of two products A and B for simplicity; it can be general-
ized readily for more products.
We make the following assumptions:

1. Self-sharing (i.e., component sharing within the same
variant) is not possible.

2. Components are either shared by all family members
or not at all.

3. Null-platform optimal designs lie “close enough” to
each other.

4. The platform design (denoted here by superscript ∗)
lies in the convex hull of the individual solutions (de-
noted by superscripts A,◦ and B,◦). That is, ∃ λi ∈
[0, 1] such that ∀ i ∈ s, x∗i = λi x

A,◦
i +(1−λi)x

B,◦
i .

5. Constraint inactivity remains unchanged between in-
dividual and family design problems.

We refer to the design solutions that satisfy these assump-
tions as “mild variants”.
Sharing may cause deviations from individually op-

timized products designs, which is measured by the re-
sponses representing the functional requirements. In the
context of the approach introduced in this article, the
commonality decision consists of deciding which variables

to share. The design variables are arranged in order of in-
creased performance deviation value, and the number n of
variables to share is determined by a limit on acceptable
design deviations. The optimal platform is determined
by minimizing the relative deviation, ∆p, of the designs
based on any platform with n shared variables with re-
spect to the null-platform optimal designs – while remain-
ing in the feasible space for the variants. Formally, this is
stated as

min
s∈S

∆ (3)

subject to |s|= n,

where∆=∆A+∆B and

∆p = |fp (xp,∗)−fp (xp,◦)|+
∑

j∈Gp

max
(

gpj (x
p,∗), 0

)

for p ∈ P = {A,B}. By the definition of Gp, gpj is active
at the null-platform optimum xp,◦; therefore gpj (x

p,◦) = 0.
Normalization is used to enable the meaningful summa-
tion of responses of different nature.
A first order Taylor series approximation of the vari-

ation in each response fp, gpj , for j ∈ G
p is introduced in

agreement with the assumptions described in Sect. 3:

fp(xp,∗)−fp(xp,◦)≈ (∇fp,◦)T (xp,∗−xp,◦) ;

gpj (x
p,∗)≈ (∇gj

p,◦)
T
(xp,∗−xp,◦) ,

where ∇fp,◦,∇gp,◦ is the gradient of fp, gp evaluated for
the null-platform optimal design of product p.
Furthermore, under Assumption 4, the relation be-

tween the shared variables, i ∈ s, and the null platform
can be rewritten as
(

x∗i −x
A,◦
i

)

= (1−λi)
(

xB,◦i −xA,◦i

)

.

Consequently, the deviation of the objective f in one vari-
ant A due to sharing of the variables xi, i ∈ s, is approxi-
mated by

fA(x∗)−fA
(

xA,◦
)

≈
∑

i∈s

∇if
A,◦
(

x∗i −x
A,◦
i

)

≈
∑

i∈s

(1−λi)∇if
A,◦
(

xB,◦i −xA,◦i

)

.

Letting δi = |x
B,◦
i −xA,◦i |, an upper bound and an ap-

proximation on the total variation in∆A is

∆A ≤
∑

i∈s

(1−λi)
( ∣

∣

∣
∇if

A,◦
∣

∣

∣
δi+

∑

j∈GA

max
(

∇igj
A,◦ δi, 0

)

)

. (4)

A similar upper bound can be obtained for ∆B . We
define the performance deviation vectorΠ, whose entries
correspond to performance deviations due to sharing:
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Πi = (1−λi)
( ∣

∣

∣
∇if

A,◦
∣

∣

∣
δi+

∑

j∈GA

max
(

∇igj
A,◦ δi, 0

)

)

+

λi
(
∣

∣

∣
∇if

B,◦
∣

∣

∣
δi+

∑

j∈GB

max
(

∇igj
B,◦ δi, 0

)

)

. (5)

The l1 norm of the vectorΠ provides an upper bound
on the actual performance deviation∆:

∆≤ ‖Π‖1 . (6)

The approach adopted in this article for approxi-
mating a solution to the original problem described in
Problem (3) is to minimize the upper bound on ∆ as
given in (6). In this regard, the choice of the parame-
ters λi has to be discussed. These parameters are de-
termined theoretically by the position of the family so-
lution for a given platform s relative to the position
of the null-platform solutions for the two variants (As-
sumption 4). In the framework described here, the ex-
act values of λi are not known a priori since the solu-
tion to the family problem is not available. In this re-
gard, we simply assume that λi = 1/2,∀ i. Hence, there
is no bias towards one variant or the other with regard
to the family design variable values. The choice of this
value does not affect the commonality decisions. How-
ever, the validity of the “convex-hull” assumption (As-
sumption 4) needs to be checked after solving the family
design problem to ensure that commonality considera-
tions are reasonable for the related component or design
variable.
The design variables are arranged in order of increas-

ingΠi. The variables to be shared are the first n variables
below some threshold. This minimizes the upper bound
on∆ according to (6) as an acceptable alternative to solv-
ing Problem (3).

4

Proposed methodology

The proposed generalmethodology for selecting the prod-
uct platform and designing the product family is as
follows:

1. Generate product variants based on:
a. design requirements,
b. geometry (no topological changes) of the model(s),
c. or both.

2. Develop appropriate analysis models and identify in-
puts and outputs.

3. Formulate and solve the optimal design problem (1)
for each variant, i.e., find the null-platform optimal
designs.

4. Use optimal design variables and sensitivity informa-
tion to compute the performance deviation vector Π
by means of (5).

5. Sort the variables in order of increasingΠi.

6. Using the performance deviation vector Π, decide
which components to share based on how much per-
formance deviation is acceptable.

7. Formulate and solve the family design problem (2) for
the chosen platform.

8. Compare family-optimal designs to individual variant
optimal designs and evaluate the actual performance
deviation,∆; iterate if necessary.

5

Application study

A family of automotive body structures is considered.
A variant is defined as a structure associated with specific
dimensional properties (lengths) and functional require-
ments.

5.1

Model description

The structures are modeled using finite elements in MSC
Nastran according to modeling approaches described in
Fenyes (2000). Modal and static load cases (torsion on the
front and rear shock towers, and bending) are considered,
as shown in Fig. 3. It is assumed that these load cases give
access to the properties that the designer wishes to tailor,
and therefore are valid as a basis of the design.
The finite element analysis outputs mass (m) and nat-

ural frequencies (ω), in addition to displacements and
stress responses for static load cases of front torsion, rear
torsion, and bending (denoted dft, drt, db, respectively)
along with corresponding sensitivity information for all
the design variables. These are the cross-sectional dimen-
sions of the beams (width b, height h, and thickness t) and
thicknesses t of the shells. There are 66 design variables.
We used the SCPIP algorithm (Zillober 2001) for solv-

ing the optimization problems, which is an implementa-
tion of the method of moving asymptotes (MMA), tai-
lored to solve large-scale structural optimization prob-
lems efficiently.
As mentioned, variants are generated either by im-

plementing dimensional changes or by imposing different
design requirements. We examine these two cases next.

Fig. 3 Automotive body structure model
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5.2

Dimensional variants

The individual optimal design problem is formulated as

min
b,h,t

m (7)

subject to ω1 ≥ 21 Hz ,

ω2 ≥ 24 Hz ,

dft ≤ 2.9mm ,

drt ≤ 2.9mm ,

db ≤ 0.2mm ,

σmax ≤ 25MPa .

Here we consider a family of two variants based on
dimensional changes (cf. Figure 4) having the same objec-
tive functions and constraints.
As shown in Fig. 4, a second variant is generated by

stretching the wheelbase and trunk of the baseline vehi-
cle. The engine compartment is shortened, and therefore
a smaller engine (and lumped mass representing the en-
gine) is assumed. The models will be correspondingly re-
ferred to as the short and long wheelbase body models.
The null-platform optima are summarized in Table 1.
The performance deviation vector Π is computed ac-

cording to (5), and the platform is determined as de-
scribed in Sect. 4. Using a threshold value of 0.01, 59
variables are selected for sharing and the family problem
(2) is solved. The family problem is solved also consider-
ing a “total” platform – in which all variables are shared
– to assess the usefulness of the approach. Family optima
obtained for both platforms are given in Table 2.

Fig. 4 Automotive body structure dimensional variants

Table 1 Null-platform optima (dimensional variants)

short long

mass (kg) 715.13 703.36
ω1 (Hz) 21.00 22.06
ω2 (Hz) 24.82 27.00
dft (mm) 2.158 2.170
drt (mm) 1.905 1.909
db (mm) 0.200 0.200

Table 2 Optima for 59-variable and total platforms (dimen-
sional variants)

59 var. platform total platform
variant short long short long

mass (kg) 715.17 703.54 725.65 703.37
ω1 (Hz) 21.00 22.06 21.00 22.24
ω2 (Hz) 24.82 27.00 25.83 27.00
dft (mm) 2.158 2.170 2.082 2.171
drt (mm) 1.905 1.909 1.837 1.911
db (mm) 0.200 0.200 0.191 0.200

Fig. 5 Dimensional variants: Non-shared components

Overall, the family based on the 59-variable platform
is close to the null platform: The optimal masses of both
the short and long wheelbase variants are almost identi-
cal to the corresponding null-platform designs. The long
wheelbase variant using the total platform is still close to
the corresponding null-platform variant, compared with
a 10.5-kg difference in mass in the short wheelbase vari-
ants. The components that are not completely shared
among the variants are shown in Fig. 5.
For each of these components the material thickness is

the variable that varies. Overall a large number of vari-
ables may be shared with negligible performance devia-
tion, considering that the performance deviation of each
variant is less than 1.5% compared to the correspond-
ing null-platform variants. This can be traced to the fact
that the variants do not have competing design objec-
tive functions, and that their geometric configurations
are very similar (cf. Fig. 4). The combination of these
two factors results in relatively close individual optima
and family optima. The next study was subsequently de-
vised to test the proposed methodology on a problem that
does not present these features, and it is discussed more
thoroughly.

5.3

Performance variants

We now look at variants based on the same geometric
model (the short wheelbase model) having different de-
sign objectives and constraints. Two variants with com-
peting objectives are designed, denoted “stiff” and “light
weight”, respectively. In the former the designer aims at
maximizing the stiffness of the structure to improve ride
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quality, while in the latter the goal is to minimize weight
to improve fuel economy.
The flexibility ϕ is defined as a weighted sum of the

displacements dft, drt, db in the three load cases con-
sidered, namely, front torsion, rear torsion, and bend-
ing, respectively. The weights approximate the ratios of
the expected displacements (cf. null-platform optima in
Table 1) in each load case; hence flexibility is computed as
follows:

ϕ= dft+drt+10db . (8)

The optimal design problem statement for the light
weight variant is

min
b,h,t

m (9)

subject to ω1 ≥ 15 Hz ,

ω2 ≥ 17 Hz ,

dft ≤ 2.9mm ,

drt ≤ 2.9mm ,

db ≤ 0.2mm ,

σmax ≤ 25MPa ,

while for the stiff variant the statement is as follows:

min
b,h,t

ϕ (10)

subject to ω1 ≥ 21 Hz ,

ω2 ≥ 24 Hz ,

m≤ 822 kg ,

σmax ≤ 25MPa .

Each variant is optimized individually to obtain a null-
platform design. The optimal objective function values
for the light weight and stiff variants are 691.87 kg and
4.4049mm, respectively. The null-platform optimal de-
signs and sensitivities are used to compute the perform-
ance deviation vectorΠ.
The design variables are arranged in order of increas-

ing performance deviation. Figure 6 depicts a plot of the
sorted performance deviation vector.

Table 3 Optima for null, 54-variable, and total platforms (performance variants)

null platform 54-variable platform total platform

variant stiff l. weight stiff l. weight stiff l. weight

mass (kg) 822.00 691.87 822.00 699.90 822.00 822.00

dft (mm) 1.581 2.429 1.595 2.270 1.607 1.607

drt (mm) 1.396 2.148 1.409 1.007 1.419 1.419

db (mm) 0.1427 0.2922 0.1429 0.2829 0.1443 0.1443

flexibility(mm) 4.405 7.499 4.433 7.107 4.468 4.468

25 30 35 40 45 50 55 60 65
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Sorted design variables i

i
Π

Fig. 6 Sorted performance deviation vectorΠ (performance
variants)

Fig. 7 Performance variants: Non-shared components

The graph shows that the performance deviation re-
mains low for the first 50 variables approximately, and
then begins to increase sharply. We chose a 54-variable
platform based on the fact that the curve exhibits
a sharp increase after 54 variables (cf. Fig. 6). The com-
ponents that are not shared among the variants are
shown in Fig. 7. As in the previous example the mate-
rial thickness is most often the dimension that varies.
One exception is that the rocker panels differ in width,
height, and thickness. We solved the family problem for
the 54-variable platform and the total platform by min-
imizing the distance to the null-platform optimum. The
results are shown in Table 3, where the variant objectives
have been underlined.
Figure 8 shows the Pareto sets for the 54-variable and

total platforms. The 54-variable platform shares all but
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Fig. 8 Pareto sets for the 54-variable and total platforms,
with normalized objectives (performance variants). The plot
on the top contains the null platform point (A) and the Pareto
set for the 54-variable platform (B). The plot on the bottom
includes also the Pareto set for the total platform (C).

18% of the variables, with a deviation of 0.6% for the
stiff variant and 1.16% for the light weight variant. In
contrast, the total platform has a 1.4% deviation for the
stiff variant and an 18.8% deviation for the light weight
variant.

5.4

Discussion

The validity of some of the assumptions described in
Sect. 3 can only be checked a posteriori, i.e., after solving
the individual optimization problems and the family de-
sign problem. We checked the assumptions for both case
studies.
Assumptions 1 and 2 are automatically satisfied by

the implementation of the methodology for this case
study.
The distance between the null-platform designs was

relatively small for both cases (Assumption 3).

Fig. 9 Normalized actual performance deviation vs. upper
deviation bound as computed by means of the performance
deviation vector for different platforms, i.e., number of shared
variables (performance variants)

Assumption 4 is satisfied; by inspecting the results ob-
tained from solving the family design problems, ∃λi such
that x∗i = λi x

stiff,◦
i +(1−λi) x

l.weight,◦
i ∀ i in all cases.

This assumption holds for this problem but may not hold
for other problems. It is rather strong and further re-
search is needed in order to relax it.
Assumption 5 is designed to avoid the case in which

a constraint that is inactive in the individual solution be-
comes active in the family solution, a case which is not
taken into account in the current derivation of Sect. 3.2.
Here this assumption is validated with no additional con-
straints becoming active. In fact, one of the active con-
straints became inactive in the performance variants case.
This is expected, since adding equality constraints in the
family design problem (the commonality constraints), it
is likely that some constraints may become inactive.
If the assumptions required by the approximation are

satisfied, the performance deviation vectorΠ provides an
upper bound on the potential performance deviation. To
illustrate the fact that the performance decision vector
is a conservative metric, the family problem was solved
for several platforms, with a number of variables ranging
from 30 to 65. In Fig. 9, the actual objective deviations for
each variant are compared with the upper bound given by
the l1 norm ofΠ for different platforms (number of shared
variables).

6

Conclusions

The proposed methodology uses first-order information,
obtained from individual design optimizations to com-
pute a metric for performance deviations attributed to
component sharing. Under the assumption of mild vari-
ations among family products, this analysis can be used
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to identify which components should or should not be
part of the product platform, and becomes essential when
the number of sharing combinations becomes too large to
search exhaustively. The methodology has been applied
to the design of a family of automotive body structures.
Results obtained for the two case studies demonstrate the
usefulness of the proposed approach. Future work focuses
on integrating this methodology with the commonality
decision formulation presented by Fellini et al. (2002).
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