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Abstract—We present a novel system to achieve coordinated
task-based control on a dual-arm industrial robot for the gen-
eral tasks of visual servoing and bimanual hybrid motion/force
control. The industrial robot, consisting of a rotating torso and
two seven degree-of-freedom arms, performs autonomous vision-
based target alignment of both arms with the aid of fiducial
markers, two-handed grasping and force control, and robust
object manipulation in a tele-robotic framework. The operator
uses hand motions to command the desired position for the
object via Microsoft Kinect while the autonomous force controller
maintains a stable grasp. Gestures detected by the Kinect are also
used to dictate different operation modes. We demonstrate the
effectiveness of our approach using a variety of common objects
with different sizes, shapes, weights, and surface compliances.

Note to Practitioners—Industrial robots traditionally are pre-
programmed with teach pendants to perform simple repetitive
tasks without any sensor feedback. This work was motivated by
demonstrating that industrial robots can also perform advanced,
sensor-based tasks such as visual servoing, force-feedback control,
and tele-operation. Industrial robots are typically limited by the
long delay between command and action, but with careful tuning,
we show that these sensor-based methods are still feasible even
with off-the-shelf sensors.

The specific experimental testbed involves a 15 degree-of-
freedom dual-arm industrial robot with each wrist outfitted with
a camera, a rubber contact pad, and a force/torque sensor. A
Microsoft Kinect is used to communicate operator commands
through gesture. The integrated system involves seven processes
running on three computers (2 running Windows 7, 1 running
Windows XP) connected through a local hub using the TCP/IP
protocol. The communication between the components is based
on an object-oriented distributed control and communication
software architecture called Robot Raconteur.

Though the implementation is for our specific testbed, the
approach is sufficiently general to be extended to other robots,
end effectors, sensors, and operating systems.

Keywords—Primary: Dual-arm manipulation, tele-robotics, hu-
man interface, industrial robot
Secondary: Visual servoing, binary tag, force control, distributed
architecture

I. INTRODUCTION

The most prevalent use of robots today involves industrial
robots in manufacturing lines. These robots are programmed
through teach pendants to traverse through a pre-taught set of
points to execute repetitive tasks [1]. Industrial robots allow
limited feedback from sensors, such as vision or force/torque
sensors, through command trajectory modification (e.g., ex-
ternal alter in the VAL robot programming language [2]),

All three authors are with the Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA. J. Wen is also with the Department of Industrial and Systems
Engineering. e-mail: krused2@rpi.edu, rjradke@ecse.rpi.edu,

wenj@rpi.edu

but they are not designed for human interaction. Even when
external sensors are used, they are tailored for specific tasks,
e.g., welding [3], filament winding [4], grinding [5], or drilling
[6], and tied to specific platforms, e.g., VAL [7] or RAPID [8].
These systems typically involve a single robot arm equipped
with an end effector dedicated to a specific class of tasks.

Multi-arm industrial robots and tele-robots are not common
due to their mechanical and system level complexity. When
multiple arms jointly hold a load, in addition to the motion
of the load, the internal force within the load needs to be
regulated for stable grasping while avoiding damaging the part.
In the case of force-reflecting teleoperation, synchronization
and stability issues are even more severe, since the human
operator needs to regulate both the force of interaction between
the load and the environment and the internal squeeze force
in the load.

In this paper, we present a novel tele-robotic framework for
human-directed dual-arm manipulation. The human operator
provides gestural commands and motion directives while the
control system autonomously locates the object of interest and
maintains grasp force closure. Our approach is sensor-based,
allowing flexibility in task specification and execution. We
consider robots with multiple kinematically redundant arms.
Such robots can tackle a much broader range of tasks than a
single arm, but at the same time incur increased complexity in
terms of potential collision as well as force of interaction in
collaborative tasks. These dual-arm and humanoid-style robots
have become especially interesting in recent years due to the
ongoing DARPA Robotics Challenge [9], intended to develop
highly sophisticated robotic response systems for extreme
emergencies.

For the specific implementation and demonstration of our
approach, we use a 15-degree-of-freedom (dof) dual-arm in-
dustrial robot (Motoman SDA10) and a suite of peripheral
sensors (cameras, Kinect, and force/torque sensors) distributed
over multiple computers. We integrate these subsystems to-
gether in a distributed system using Robot Raconteur (RR)
[10], the object-oriented distributed control and communi-
cation software system developed in our laboratory, and
now available for download at robotraconteur.com. We
choose RR over other distributed robotic middleware systems
such as ROS Industrial [11] due to its multi-platform com-
patibility (including MATLAB for data analysis, visualization,
and user interface), true distributed implementation (no master
node), object-oriented philosophy (flexible data structures),
and ease of use (automatically generated client/service object
interface code).

We use an example scenario to guide the development. An
unknown object is placed arbitrarily in the robot workspace.
The robot must detect the location of the object, align both end
effectors for a grasp using visual servoing, actually grasp the
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object, and then allow a human operator to command the robot
using a Kinect. The objects included in this study, all handled
with the same controller, include a light cardboard box, a
plastic tub, a flexible rubber ball, a large plastic bucket, and
a highly rigid plastic cooler. These five objects differ in size,
weight, shape, surface, and compliance. Some experiments also
involve placing a sliding weight inside the plastic tub or plastic
bucket. We place the objects in arbitrary poses inside the robot
workspace, and the robot is to locate the object, determine the
grasp location, stably grasp the object, and then manipulate the
object either through a pre-programmed commanded signal or
the operator’s gestures.

The successful execution of this task scenario requires
the solution of multiple technical issues. A planning-based
approach would be general and guarantee finding a solution if
one exists, but the solution would be computationally intensive
and require detailed geometric and other model information of
the system and its environment. Instead, we choose a sensor-
driven reactive approach to allow simple but robust solutions.
Our goal is not to generate a complete autonomous solution
but to assist the human operator to find a feasible solution. Our
system consists of the following key components (described in
detail in Section V):

• Robot motion control. Typical industrial controllers have
closed proprietary torque-level control and only allow
modification of the joint trajectory at a slower rate. Since
we are interested in the task space motion, we use the
damped least-squares algorithm to modify the joint-level
motion based on task space motion requirements. We
exploit kinematic redundancy in our system to avoid
collision and enhance manipulability and grasp stability
through the use of potential fields [12].

• Object identification and location. The robot needs to
identify and locate the object, and determine good places
for grasping. We draw on planar tagging schemes de-
veloped in the artificial reality community, in particular
the VTT ALVAR tags [13], to locate the object and
determine suitable grasp locations.

• Force control. To securely hold the object with the robot
arms, the robot must apply a squeeze to result in enough
friction to prevent the object from slipping out of grasp.
We use the well-known integral force control, with a
force-dependent gain to enhance robustness [14] and
show closed loop stability for a compliant object.

• Load compensation. To allow large excursion in load
orientation, the weight and center of gravity of the load
are estimated and incorporated into the force control.
We show that the system remains stable even under
estimation errors and time-varying loads.

• Human Interface. We use the Microsoft Kinect sensor
to interpret the user’s gestures and convert them into
desired poses for the task at hand. This is versatile,
robust, and more natural for the user since it is not
limited by the motion range limitation or mechanical
impedance of a mechanical interface. The user only di-
rects the task sequencing and object motion; the control
system ensures a stable grasp autonomously.

We envision that the human-directed tele-robotic system de-
scribed in this paper, which facilitates integration, prototyping,
and human interaction, will serve as the foundation for more
complex human-robot collaborative sensing and manipulation
in the future. This paper is an extension of a conference paper
[15] that focused on the Kinect gestural interface.

II. PROBLEM STATEMENT

The goal of this work is to develop a robust and versatile
tele-robotic system for dual-arm manipulation of a held object.
The placement, dimensions, weight and mass distribution of
the object (which may be time-varying) are unknown prior to
manipulation, and all necessary parameters are estimated on-
line based on sensor measurements.

Consider the dual-arm grasping problem represented by
Fig. 1. The system is to locate a relatively large object within
the robot workspace, grasp it at two designated, near-parallel
contact points, and then manipulate the object according to a
reference signal provided either through tele-operation from a
human operator or a pre-defined sequence of poses.

We define the Euclidean coordinate frame of a rigid body
as a reference point, O, and a right-handed orthonormal
frame, E . The relative configuration between two frames,
say b relative to a, is given by the homogeneous transform

Hab =

[
Rab pab
0 1

]

where Rab is Eb represented in Ea, and

pab is the vector from Oa to Ob, represented in Ea. The world
and task (object) frames are denoted by the subscripts O and T ,
respectively. The camera and end effector frames are denoted
by the subscripts CL/R, EL/R, respectively, with L and R
specifying the left or right arm.

C
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Fig. 1: The different frames of reference for the inertial frame
O and task frame T along with the end effectors E and cameras
C on each arm.

Location of the target object combines the camera-based
measurement of the task frame, HCT , and camera location
in the world frame, HOC , to determine the object location,
HOT . Visual servoing uses HOT to generate target end effector
positions and orientations, and to control the robot joints to
drive each HOE to the desired goal. Since the arms are coupled
at the rotating torso, the kinematics of the two arms are not
independent – the entire robot must be considered for the
alignment of the two contacts.

We expect the target load to be relatively large and unable
to be held between the fingers of a traditional gripper. The



3

force control function commands the two end effectors to apply
a squeezing force for a sufficiently secure grasp, both at a
stationary pose and during manipulation. In our implementa-
tion, the operator provides input using the Kinect; such a non-
contact gesture-based interface is particularly attractive since
the user is unfettered by mechanical constraints.

III. RELATED WORK

This paper primarily addresses coordinated, task-based con-
trol methods for a dual-arm industrial robot. Since there is
a large body of work on single-arm robotics, we narrow our
scope of related work to only dual- or multi-arm robots. A
recent survey listing many of the current platforms with two
or more arms can be found in [16].

Our visual servoing algorithm is based on ALVAR tags [13]
used in the artificial reality community. Visual servoing in
itself has been heavily researched in detail and a thorough
introduction to the subject was presented in [17], [18]. When
applied to multi-arm systems, the arms are usually treated
independently; however this system has a movable waist that
couples the motion of the two arms. Therefore, the visual
servoing algorithm must consider the entire robotic system at
once. Burget et al. [19] and Dietrich et al. [20] both developed
methods for considering the entire body during manipulation;
however their algorithms deal with pre-planning motions.

Several papers have presented ways of combining motion
and force control for multi-arm platforms. The typical so-
lutions are through hybrid position/force control, where the
position and force control loops are decoupled and treated
independently, or through impedance control, which has the
general goal of obtaining a desired dynamic interaction be-
tween the robot and object or environment [21]. We apply the
hybrid position/force control method [22] to directly impart
a squeeze force. Many position/force control methods are
based on robot dynamic models and motor torque control [23],
[24]. Since direct low-level robot control is not possible for
most industrial robots, we use the kinematics-based position
accommodation scheme [25].

For autonomous operations, tasks for multi-arm robots are
often pre-solved using planning algorithms with known ge-
ometry information [26]–[30] in which the motion path is
computed off-line and then performed in open-loop. There
are also autonomous grasp planners such as GraspIt! and
OpenGRASP, but they only address rigid objects. Sensor-based
motion planning is possible, but due to the computational
complexity it is usually reserved for relatively simple systems
[31].

Other groups have looked into using the Microsoft Kinect
to control robots as well, as seen in [32]–[34]. These works
took advantage of the RGB-d sensor to control robotic hands,
while we address a full multi-armed robotic system.

IV. SYSTEM DESCRIPTION

Our platform centers around the Yaskawa Motoman SDA10
robot, a dual-arm 15-dof industrial robot with two 7-dof arms
and a 1-dof torso, shown in Fig. 2. The robot has a built-in joint
controller and allows external interface through Motoman’s

High Speed Controller (HSC). The HSC interface provides
joint angle read and incremental commanded joint angle write
at a 2ms rate, with a significant delay (more than 100ms) due
to internal trajectory generation. The low-level robot control
system takes a commanded correction to the current joint
angle and calculates a trapezoidal trajectory profile for the
joint motion. The resulting motion may be modeled sufficiently
closely (except at transitions between motion segments) as a
first-order-plus-dead-time system, as shown in Fig. 3. Each
joint can travel up to 170◦/s. We artificially restrict the joint
speed to 20◦/s for safer operations.

Fig. 2: The industrial robot and its peripherals.

Fig. 3: The simulated and actual response of the last wrist joint
of the left robot arm, commanded with a constant input (joint
increment) for 3 seconds. A simple first-order-plus-dead-time
plant approximation is used for the simulated response.

For visual feedback, a Sony XCD-X710CR camera is
mounted on the side of each wrist and angled in such a way
that the end effector is in the field of view. Directly at the end
of each arm is an ATI Mini45 force/torque transducer, with a
rubber disc mounted at the end for a higher-friction contact.

The components of the overall system are coordinated
using our home-grown distributed control system, called Robot
Raconteur [10]. The system architecture is illustrated in Fig. 4.
Separate Robot Raconteur services are written (in C#) for the
Motoman HSC interface, ATI force/torque sensor, cameras,
image processing, and Kinect interface, residing on three
separate computers linked together in a local area network via
Ethernet and TCP/IP. The overall coordination is conducted by
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Fig. 4: Overall distributed control system architecture using
the RobotRaconteur middleware.

a MATLAB script that connects to these services as a client.
This MATLAB environment does not run in real time and has
no explicit timing guarantee.

V. TASK-SPACE-BASED MOTION CONTROL

The input to the Motoman HSC is a vector of 15 joint correc-
tions that then passes through a trajectory generator. With tight
low-level motor servo loops, we can ignore the dynamics and
reasonably approximate the robot response with a first-order-
plus-dead-time plant (the dead-time is configuration dependent,
varying between 100-150ms). Because the sensor provides task
space information, we apply a task space kinematic control
law. Let J be the 12 × 15 Jacobian matrix that maps the 15
joint velocities to the 12 spatial velocities (angular and linear)
of both end effectors:

[
νEL

νER

]

= Jq̇ (1)

where each spatial velocity νEL/R
=

[
ωEL/R

, vEL/R

]⊤
con-

tains the angular and linear velocities of the left or right end
effectors, and q is the stacked vector of qT , qL, and qR, the
torso, left arm, and right arm joint angles. The coordinate-free
form for the ith column of J , Ji, is given by

Ji =







[

h⃗i h⃗i × p⃗iEL
h⃗i h⃗i × p⃗iER

]⊤

i = 1
[

h⃗i h⃗i × p⃗iEL
0 0

]⊤

i = 2, . . . , 8
[

0 0 h⃗i h⃗i × p⃗iER

]⊤

i = 9, . . . , 15

where the axes of revolution, h⃗i, are shown in Fig. 5. Joint 1
is the torso, joints 2-8 correspond to the left arm, and joints 9-
15 to the right arm. For computation, all vectors in Ji are
represented in the base frame. Since we use the industrial
controller in the inner loop, we consider q̇ as the command
input (to be sent to the HSC).

Fig. 5: The 15 axes of revolution for the Motoman robot.

Denote the desired position and pose of the end effector as
(pdOE , Rd

OE). There are numerous possible error functions on
the rotation group [35]. For simplicity, we choose a minimal
representation, but other choices may be used as well. Let the
position and orientation errors be

ep = pOE − pdOE , eR = σ
(
Rd

OER
⊤
OE

)
,

where σ is a 3-parameter representation of rotation. We choose
σ to be the vector quaternion, but any other representation may
be used. Let Jσ be the representation Jacobian, i.e., σ̇ = Jσω.
We define the mapping from spatial velocities ν to the new

representation of spatial velocities, νσ = [σ̇, v]
⊤

, as

V = diag(JσL
, I, JσR

, I). (2)

such that νσE = V νE and νE is the stacked vector of desired
end effector spatial velocities [νEL

, νER
]
⊤

. We can therefore
adjust our original Jacobian in (1) as Ja = V J .

The following damped least-squares task space controller
[36] will now map the error velocities of the end effectors to
joint velocities:

q̇ = − J⊤
a (JaJ

⊤
a + βI)−1

︸ ︷︷ ︸

:=J†
a

Ke (3)

where e is the stacked error vector (eRL , epL , eRR , epR), K is
the feedback gain matrix, and J†

a is the approximate pseudo-
inverse with βI added to avoid singularity. (The singularity
structure is completely characterized in Appendix A.) Note
that a choice of specific units for linear and angular velocities
implicitly means that gain terms for rotational error will likely
be higher than the gains used for position error.

By using the Lyapunov function V (e) = ∥e∥
2
, it is easy to

show that the position and orientation error will converge if we
ignore feedback delay. If the steady state configuration is not
singular (including both arm and representation singularities),
the error will converge to zero. In the presence of delay, the
gain will need to be sufficiently small with respect to the delay,
on average, to guarantee stability.

For collision and joint limit avoidance, we use the standard
artificial potential field approach [12]. For a task space con-
straint on pOE ∈ P , where P is the feasible region for the
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end effector position, we construct a smooth external penalty
function, ρp(pOE), that is zero in the feasible region and
positive in the infeasible region with no local minima. For
a joint space constraint on q ∈ Q, where Q is the feasible
region for the joint angles, we similarly construct an external
penalty function, ρq(q). The task space controller may now be
modified as:

Ψ(pOG, q) = J†
a

(

γpρp(∇ρp)
⊤ + γq

(
J⊤
a

)†
ρq(∇ρq)

⊤
)

q̇ = −J†
aKe−Ψ(pOG, q)

(4)

where γp and γq are weightings for the repelling potential
functions. This controller drives the end effectors to the desired
locations while avoiding undesired configurations outside of
the feasible regions P or Q.

It is well known that the potential field approach may
create local minima and that the robot could get stuck. In
human-directed motion, the operator could modify the motion
command to force the robot out of the local minimum. In
autonomous motion, replanning or modification of the potential
field may be necessary. Though we are aware of the possibility,
this has not been an issue in our experiments.

A. Visual Servoing

There is a long history and a large body of literature on
visual servoing [17], [18]. However, feature extraction under
different lighting conditions, surface geometries, and textures
is time-consuming and error prone. We choose a simple, yet
robust, shortcut to object detection and location, by marking
the grasping point with binary tags. Fiducial markers have long
been used to aid object identification and location in machine
vision [37]–[39]

Many such tags have been proposed [38], [40]; we choose
the 2D ALVAR tags [13] as shown in Fig. 6 since the detection
library is readily available. The ALVAR library determines the
pose of each tag by mapping the homography between the
known position of points in the tag frame to the measured
pixels in the image frame. It is straightforward to use the
estimated homography to recover the homogeneous transform
HCG given an image of a planar tag [41]. However, it is well
documented [42] that a reflection ambiguity about the plane
perpendicular to the optical axis creates two local minima
for the orientation. To resolve this ambiguity, we include
a set of “support tags” around the target tag and ascertain
the orientation by majority poll. This has proven much more
reliable than trying to resolve the pose ambiguity of a single
tag. Once we have an estimated position and orientation of the
target, we can use the task space controller in (4) to drive the
end effectors to the corresponding targets.

We define infeasible regions for the end effectors as being
too close to the object, too close to the body of the robot
(to prevent self-collision), and poses that do not include the
tag in the camera field of view. We construct virtual walls at
the boundary of each of these regions, defined by their center
point pOC and inward normal n. Each wall has a corresponding
potential function, for use in (11), determined by the projection

(a) Tags (b) Estimation

Fig. 6: ALVAR Tags used to identify the contact point on the
target. Multiple tags are employed on the same plane to get a
more reliable estimation of the contact plane. In Fig. 6b, the
estimation of the plane corresponding to the bottom-left and
bottom-right tags was incorrect. However, most of the tags
are correct and therefore we can determine the planar pose by
majority vote.

of pOG − pOC onto n. If the projection is negative, then ρp
is zero, otherwise, ρp is increasing. The controller (4) may
now be applied to drive the end effectors to their targets while
avoiding the set of task space obstacles and joint limits.

B. Hybrid Position-Force Control

The visual servoing algorithm guides each end effector to
align with its specified contact. To establish contact for grasp-
ing the object, we apply the task space motion controller (4)
with a constant velocity towards the object while maintaining
the specified orientation. The approach motion continues until
a pre-specified target contact force is met.

Once the grasp is complete, based on the known loca-
tions of the tags on the object, we approximately know the
contact transformations between each end effector and the
object: (pELT , pERT , RELT , RELT ), which are constant in
their respective end effector’s frame, EL/R. The weight of
the object, Fg, is estimated by projecting the sum of the two
force measurements in the direction of gravity.

Let the forces measured by the force/torque sensors be
(FL, FR). To maintain a stable grasp, we must control the
two robot arms to exert a “squeeze” force [22]. Consider only
the force components that directly oppose each other, i.e., the
contact forces projected along the line between the contacts
(given by the unit vector hLR):

ηL = h⊤
LRFL, ηR = −h⊤

LRFR. (5)

If the object is stationary and there is no external force applied
to the load, then ηL = ηR is the squeeze force imparted on
the object. When the object is moving, we have an additional
inertia force mam where m is the mass and am is the linear
acceleration of the load. We regulate the squeeze force by
adjusting the position of the two arms, using the standard
generalized damper approach [25], which is essentially the
integral force control:
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ṗ0EL = −ζKfg(ηL − ηd)hLR,

ṗ0ER
= −ζKfg(ηR − ηd)hRL

(6)

where ηd is the squeeze force setpoint, ζKf is the reciprocal
of the generalized damper, and g(·) is a dead zone to prevent
small errors from winding up the controller and generating
unwanted oscillations or instability. We use ζ to avoid breaking
off contact, and Kf to ensure closed-loop stability.

Since we do not have rigid grasp, force control is direction-
dependent. Since the dry contact friction is proportional to the
normal force, a higher squeeze force is usually more desirable
(tighter grip, or more centered in the friction cone) than a
lower squeeze force (which could cause a slipped grasp or
broken contact), though excessive force could cause unwanted
deformation or even damages. As recommended in [14] for
robust integral force control of a single arm, we use a direction-
dependent gain to push in hard but back off slowly (as shown
in Fig. 7):

ζ =







1 η < ηd

ηd
1
−ζfη

d+(1−ζf )η

ηd
1
−ηd ηd ≤ η < ηd1

ζf η ≥ ηd1

. (7)

where the constant ζf must be in the range [0, 1) and ηd1 > ηd.

Fig. 7: Integral force feedback gain scheduling to avoid break-
ing off contact.

To determine a suitable value for ζf , we conducted a number
of static force tests. Since ζf is inversely proportional to
the imposed damping, we expect a large ζf to have more
oscillatory behavior, and a small ζf to have larger steady
state error. Fig. 8 confirms our expectation. Based on this
experiment, we choose ζf = 0.15 to balance between transient
regulation and steady state response.

Since we project the contact forces along the line segment
hLR, the force control problem is essentially one-dimensional.
In this case, we use a simplified mass-spring-damper model as
shown in Fig. 9. The equation of motion for this system is
given by

ηL = k (xL − xM + w) + c(ẋL − ẋM )

ηR = −k (xR − xM − w)− c(ẋR − ẋM )

Mẍm = ηL − ηR
= k(xL + xR − 2xM ) + c(ẋL + ẋR − 2ẋM )

(8)
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Fig. 8: Comparison of different values for ζf .

where (xL, xR) are the position of the contacts and xM is the
position of the center of mass.

Ignoring the delay, and considering a constant ζ in (6), the
generalized damper controller results in a third-order linear
system, as shown in Appendix B. By using the Routh Stability
Criterion, we show that the continuous-time system is always
stable. Under sample data implementation with variable time
delay, significant tuning of the parameter Kf is required to
achieve stability and disturbance rejection.

It is also important to note that this model is only valid
during contact. For more precise analysis, the complementarity
formulation [43] should be used.

Fig. 9: Simplified 1D contact model for the target object held
by two arms. Each contact is controlled to achieve desired
squeeze force.

We combine the generalized damper force control law (6)
with the task-space motion law (4), resulting in the following
hybrid position/force control law:

q̇ = −J†
aKe− J†ζKfef −Ψ(pOE , q). (9)

Note that the regular Jacobian J is used in force feedback since
there is no additional orientation representation involved.

Experimentally we found that, for highly rigid objects and
the significant time delay in our robot platform, the feedback
control can be too sensitive with respect to the gains Kf and
ζf . In this extreme case, we instead use the open loop force
control (Kf = 0). Of course, since open loop control has no
disturbance rejection capability, the force setpoint needs to be
chosen sufficiently large in order to maintain contact during
motion where the inertial force could be significant.

We define the undesirable region as any configuration where∣
∣hT

LR(pOER − pOEL)
∣
∣ − pd∆ > ϵ, where ϵ > 0 to prevent

oscillations about the desired setpoint. Furthermore, since it
is more desirable for the end effectors to be too close together
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rather than too far apart, we multiply our potential function by
ζf from (7) to encourage a consistent grasp.

The error is now specified with respect to the position and
orientation of the object. We therefore need to map the desired
motion from the center of the object to the end effectors:

e = G⊤

[
σ
(
Rd

OTR
⊤
OT

)

pOT − pdOT

]

(10)

where G is the grasp matrix mapping the spatial forces from
each contact to the spatial force at the object frame.

Since we are working in the object frame, and treating our
end effectors as rigidly attached to their contacts, we need to
apply the task space potential fields with respect to the object’s
position. The joint space potential field function in (4) also
needs to be adjusted for each arm to compensate for corrections
applied to the other arm. If the robot is in an undesired region
of joint space, but only for one arm, the arms may settle into
an undesirable equilibrium since the closed chain constraint is
not taken into account. To impose the dual-arm constraint, we
relate the potential field from the affected arm to the arm that
is in a comfortable joint space with the following term in Ψ:

H =

[
I G⊤

L,R

G⊤
R,L I

]

Ψ(pOT , q) = J†
(

γpρp(∇ρp)
⊤

+ γqH
(
J⊤

)†
ρq(∇ρq)

⊤
)

,

(11)

where GL,R, and GR,L are the grasp matrices relating spatial
forces between the left and right end effectors.

As an additional stability measure, the task space error is
constrained by a saturation function to prevent excessive jerk
and possible instabilities. This is particularly important in cases
of large transient error such as switching between different
control modes or large accelerations in the commanded signal.

Since the object is rigidly held between the arms, its pose
may be estimated from the locations of the arm end effectors:

p̂OT =
1

2

(
pOEL

+ROEL
pELT+

pOER
+ROER

pERT

)
,

q̂OT =
1

2
(qOEL ⊗ qELT + qOER ⊗ qERT ) ,

(12)

where p̂OT is the estimate for the object position and q̂OT

is the unit quaternion representation of the object orientation.
The terms pELT , pERT , qELT , and qERT are constant transfor-
mation terms in their respective end effector frames that were
obtained during the initial grasp.

This estimation is based on the assumption that the contact-
to-object transformations (pEL/RT , qEL/RT ) are fixed, but the
actual transformation will likely vary, due to object slippage
at the contact, e.g., rolling about hLR and out of alignment.
To address this, we include an additional error term to ensure
that each arm is positioned correctly:

epL/R
= pOEL/R

+ROEL/R
pEL/RT − p̂OT

eRL/R
= σ

(

R̂OTR
⊤
EL/RTR

⊤
OEL/R

) (13)

where R̂OT is the rotation matrix representation of the unit
quaternion in (12). Since this term has a different orientation
error it requires a different representation Jacobian for V in (2).
Therefore, we need an additional Jacobian Jc = VcJ where the
Jσ terms in Vc are with respect to the error (13), while the Jσ
terms in Ja are with respect to the error in (10). We add this
term to our controller in (9) to obtain our fully compensated
controller:

q̇ = −J†
aKe− J†ζKfef − J†

cKcec −Ψ(pOT , q) (14)

where Kc is the diagonal matrix of gains, and ec is the stacked

error vector, defined in (13), ec = [eRL , epL , eRR , epR ]
⊤

.

C. External Load Compensation

The force feedback in (6) is based on the assumption of no
external force on the load. When an external force is present,
e.g., gravity load due to the weight of the object, and is coupled
to the squeeze direction, hLR, the force setpoints for the two
arms can no longer be chosen as the same (i.e. there will be
a net force on the body, resulting in motion).

Consider two-arm grasping under an external load as shown
in Fig. 10. The force balance along the squeeze direction is
given by

h⊤
LRFL

︸ ︷︷ ︸

ηL

+h⊤
LRFR

︸ ︷︷ ︸

ηR

= −h⊤
LRFg

︸ ︷︷ ︸

ηg

. (15)

Fig. 10: Generalized squeeze grasp using 2 contacts.

We select the force control setpoint based on a nominal
squeeze component ηs (chosen to achieve force closure for a
secure grasp) and a distribution of the external force. If the
external force is almost orthogonal to the squeeze axis, its
effect on the squeeze force control is small, and it may be
equally shared by the two arms. If the external force is almost
aligned with the squeeze axis, i.e., in the case of the gravity
load, the object is almost vertical, and the bottom arm should
bear most of the load. This logic is reflected in the squeeze
force setpoint rule below:

ηdL = ηs − α(h⊤
LRhg)ηg

ηdR = −ηs −
(
1− α(h⊤

LRhg)
)
ηg

(16)

where α(·) ∈ [0, 1] is a function dependent on the pose of
the object as shown in Fig. 13 (hg is the unit vector in the
direction of Fg):
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Fig. 11: Finite State Machine demonstrating modes of operation and the state changes causing one to shift to another. Loop
break commands include an inability to find the object or the measured forces detecting a slipped grasp or a crushing force.

(a) Pipeline for Gestural Interface (b) Still frames from running the Kinect Gestural Interface

Fig. 12: In (a), the operator’s “skeleton” is detected using a Microsoft Kinect, which we use to interpret the desired pose for the
test object. In (b), still frames are shown from running the gestural interface to command the robot.

α(x) =







0 x > δ
1
2 − 1

2δx |x| ≤ δ

1 x < −δ

. (17)

The force control setpoints for the two arms are then given by
F d
L = ηdLhLR and F d

R = ηdRhRL.

Fig. 13: Load partitioning function based on the pose of the
load.

The external force ηg may be time-varying and imprecisely

known. In implementation, we replace ηg in (16) with a
constant estimate, η̂g . To see the effect of this error in force
compensation, consider the motion of the load interacting with
the external force and the imprecise force estimate:

mẍM + dẋM + k(xM − xd
M ) = ηg − η̂g (18)

where m is the mass of the load, d and k are the damping and
spring terms due to the low-level controller, and xd

M is the
position setpoint for the load. Since the system is stable, the
effect of ηg− η̂g and possibly time-varying xd

M on the position
error is (in the Laplace domain):

xM − xd
M =

−(ms2 + ds)xd
M + ηg − η̂g

ms2 + ds+ k
. (19)

Under tight closed loop motion control (from the industrial
robot controller), k is large, implying that the effect of varying
load trajectories and imperfect force compensation would be
small.



9

D. Gestural Interface

We represent the tele-robotic system as a finite state ma-
chine shown in Fig. 11, with three major components: visual
servoing, stable grasping, and human-commanded motion.
The transition between the states is either through motion or
force control to specified locations or thresholds, or through
detecting user gestures. After locating the object, positioning
the end effectors, and securely grasping the object, the robot
moves the object to the specified home position. The start
gesture (left leg kick) initiates the human-directed motion
using the Kinect interface. The pause gesture (hands together)
stops the human interface and waits in place. The home gesture
(hands far apart) returns the system to the home configuration.
The exit gesture (left leg kick) terminates the operation. The
release gesture (hands far apart) releases the object. As the
Kinect SDK can detect and track 48 skeletal points on a human
body at 30Hz, a rich vocabulary could be easily constructed
to expand the finite state machine user interface. The interface
is illustrated in Fig. 12, where the pipeline for interpreting the
desired pose for the object is presented in Fig. 12a and some
stills from running the interface on our system are shown in
Fig. 12b.

An example usage of these gestures in our overall system
would be for a tele-operated pick and place task. The tagged
object is identified and picked up by the robot. An operator
steps in front of the Kinect and takes control using the start
gesture. The operator then demonstrates the desired trajectory
for the object using their relative hand positions, coordinated
in real time with the current pose of the object. Once the object
reaches the desired goal, such as a conveyor belt, the release
gesture is made to pass the object along to the next phase of
manufacturing.

VI. RESULTS

The overall system architecture is shown in Fig. 4, and
involves seven main processes running on three Intel Core
i7 computers with two running Windows 7 and the computer
communicating with the robot running Windows XP. For
the ease of development, prototyping, and data analysis, we
implement the overall system coordination and control in
MATLAB. The system is not real-time, since no real-time
operating system is used (except for the low-level robot control
to which we do not have access). However, the performance is
adequate with sampling times of ∼ 20 Hz in visual servoing
and ∼ 90 Hz in hybrid motion-force control (on average). The
measured computation times under different operating modes
are shown in Fig. 14.

As is typical in networked control systems [44], [45], the
sampling delay is non-uniform. It is known that as long as
the spurious long delays do not occur frequently, the closed
loop system designed based on the shorter average sampling
time will remain stable. The inherent delay in the industrial
robot control (∼100ms) is also present and needs to be taken
into account. Since we only control the outer loop, the system
is essentially a stable first-order system, and the effect of
dead time is simply that the gain must be sufficiently small.
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(a) Visual Servoing
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(b) Motion Control

Fig. 14: The loop rates for different operation modes within
our system.

(a) Cardboard Box (b) Plastic Tub

(c) Large Ball (d) Cooler (e) Plastic Bucket

Fig. 15: The test objects.
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Fig. 16: The stiffness curves for each test object.
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Object [abbr] Mass Surface Stiffness Distance Between Contacts Planar Contact Parallel Surfaces

Cardboard Box [CB] 0.506 kg Deformable 35.3 cm Yes Yes

Plastic Tub [PT] 0.622 kg Deformable 35.5 cm Yes No

Large Ball [LB] 0.167 kg Highly Deformable 33.4 cm No No

Cooler [C] 1.34 kg Highly Rigid 32.0 cm Yes Yes

Plastic Bucket [PB] 1.08 kg Deformable 36.0 cm No No

TABLE I: Physical properties of each test object.

Though stability may be assured, the low gain does affect the
disturbance rejection capability, especially in force control.

We tested our control schemes using several different objects
with varying characteristics such as rigidity, mass, and pla-
narity of contact surfaces. The test objects are shown in Fig. 15.
Their properties are listed in Table I and the functions for
the stiffness of each contact surface are presented in Fig. 16.
As an additional complication, we place weights inside the
objects to move their center of mass away from the middle
of their container. Please refer to the video accompanying this
manuscript for recordings of the experiments described in this
section.

A. Visual Servoing

For all test objects, the robot is able to locate the object,
and move to the grasp location via visual servoing. The Large
Ball and Plastic Tub objects have nonplanar surfaces, and
consequently tags, but they do not present any difficulties.

We consider the simplest case first: two nearly parallel
planar contact surfaces positioned in very accessible positions
within the robot workspace. The result for the Cardboard Box
is shown in Fig. 17. As expected, the position and orientation
errors converge to almost zero. However, there is some residual
error since the task-space potential fields, designed to keep the
center tag within view, prevent the end effector from reaching
the exact setpoint.

The most challenging case involves non-planar contact sur-
faces in a tilted orientation far from the initial robot pose. For
the non-planar contact, the ALVAR tags have slightly different
orientations depending on the curvature of the surface, but the
majority poll approach remains robust. Results with the Large
Ball are shown in Fig. 18. The position and orientation errors
converge near zero as before. However, at around t =12sec,
the error for θY suddenly jumps. This is due to the fact that
the arm is near its singularity (with the elbow fully extended).

B. Hybrid Motion-Force Control

For the first test of the hybrid motion-force controller, we
specify a series of desired setpoints for the robot to drive
the object towards, while maintaining its grasp. This sequence
involved a combination of translation and rotation during each
step, as demonstrated with the Cardboard Box in Fig. 19. The
results are shown in Fig. 20. The steady state motion tracking
works well for all objects. The ramp profile for the large
displacement command is due to the saturation of the error
magnitude in our controller, resulting in a constant velocity
command to the robot.

The force responses show noticeable differences between
different objects. Objects with higher mass and nonparallel
contact surfaces (Plastic Bucket and Plastic Tub) experience
substantial force overshoot during pose transition (spikes at
t≈26sec in Fig. 20c), due to the inertial force effect. The lighter
objects, Cardboard Box and Large Ball, have much tighter
force regulation since the disturbance force is smaller.

We next drive an object (in this case, the Plastic Tub) to a
pose with significant orientation displacement from the initial
pose, causing one force/torque sensor to be loaded with the
majority of the weight. In addition, we affixed a 2.3 kg metal
plate to the bottom of the Plastic Tub to bring the center of
mass significantly off center. The results from this experiment
are shown in Fig. 21. As the angle between gravity and the
squeeze axis reduced, the uncompensated control law became
more unstable until finally a failure condition was reached at
∼ 12 seconds. A noticeable drift in the position control, seen
in Fig. 21a, occurred as a result of gravity affecting the force
control.

As a more challenging scenario, we consider a moving load
case. We place a 0.9 kg medicine ball in the Plastic Bucket,
and then drive it to follow a sinusoid, causing the ball to shift
from one side of the container to the other. Spikes occur in
the force error, in Fig. 22b. Each of these spikes is due to the
ball colliding into a side of the container. The motion of the
arms is not significantly affected by this disturbance, due to
the rigidity of the arm and the tight low-level control loop.

Finally, we command the robot motion using the Microsoft
Kinect interface. The object under test is the Plastic Tub, again
outfitted with a 0.9 kg mass rigidly mounted on one of its sides.
As seen in the results shown in Fig. 23, the control law tries
to keep up with the reference signal (from the user), despite
its rapid variation, but we see the same linear convergence
as in Fig. 20 due to the error saturation in our controller.
For more compliant objects, the robot manages to maintain
grasp stability throughout the entire process, with minimal
force error as shown in Fig. 23c, even during periods with
large orientation and translation excursions along the squeezing
axis. For the more rigid Plastic Bucket, there is a much larger
force transient from the coupling of motion-induced force to
the squeeze axis. In this case, the force setpoint is increased to
60N, and the robot is able to maintain a stable grasp throughout
the motion sequence.

VII. DISCUSSION AND FUTURE WORK

We presented the development and results of a dual-arm tele-
robotic system involving the integration of several sensors and
actuators with an industrial robot. The main components of the
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(d) Right Arm Error

Fig. 17: Convergence of the visual servoing control system af-
ter placing the Cardboard Box in the middle of the workspace.
Position error is given in meters, while orientation error is
given in radians.
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(d) Right Arm Error

Fig. 18: Convergence of the visual servoing control system
after placing the Large Ball slightly away from center and
with a significant off-angle orientation.
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(a) (b)

(c) (d)

Fig. 19: Sequence of setpoints demonstrated on the Cardboard
Box. Each object started in the same pose (19a), translated
vertically and rotated by 36◦ (19b), rotated in the opposite
direction by −72◦ with a small leftward translation (19c), and
finally to a pose rotated about the vertical axis and down to
the right near the robot’s waist.

system include vision-guided motion control, redundancy res-
olution, collision avoidance, squeeze force control, load com-
pensation, and human gestural interface. We integrated these
interconnected components in a robust and versatile distributed
control and communication architecture, and demonstrated its
effectiveness in manipulating a variety of objects with different
shapes, surface textures, weights, and mass distributions.

While the implementation and demonstration is for a specific
platform, we mostly draw on off-the-shelf components and
software, so the approach is easily extensible to other robots
and platforms. We used an industrial robot controller, and
despite its significant time delay, we were able to achieve
robust performance for complex motion and force objectives.

A limitation to this implementation is that it is implicitly
only effective as a local planner; so in the future we will
incorporate global planning methods to handle local equilibria
and introduce more sophisticated redundancy resolution. In the
current system, we used high-friction contact pads designed for
non-rigid grasping to have high friction . We are also investi-
gating the use of modern, articulated grippers in the types of
manipulation tasks studied here in which an enveloping grasp
is impossible.

To demonstrate the generality of our approach, we are
currently extending our implementation to other industrial
dual-arm systems such as the Baxter by Rethink Robotics. We
are interested in different use cases for this dual-arm system,
such as human-directed assembly, bimanual pick and place
for large or heavy objects, and two-handed household tasks
for assistive robots. Motivated by fabric layups in composites
manufacturing, we are also investigating a variation on the
earlier discussed complementarity force control problem in
which, instead of applying a squeeze force on a rigid body, the
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(a) Position Tracking
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(b) Orientation Tracking
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(c) Squeeze Force
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(d) Squeeze Force for Cooler

Fig. 20: The motion and force results for all test objects.
Position and orientation have almost identical performance.
The Plastic Bucket showed a large spike in the force control
during a large transient due to its more rigid surface. The
Cooler was controlled using the potential field approach and
had much wilder fluctuations in its force control.
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(a) Position
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(b) Orientation
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(c) Squeeze Force

Fig. 21: Results from experiments with and without load
compensation for the Plastic Tub under a large angular set-
point. The uncompensated run is denoted PT-UC, and the
compensated run is denoted PT-C. The uncompensated run
failed at ∼ 12 seconds due to force overshoot.

robot must maintain a prescribed tension in a flexible object
during motion.

APPENDIX A
SINGULARITIES OF THE MOTOMAN DUAL-ARM ROBOT

The Motoman dual-arm robot has 15 rotational degrees
of freedom. Since the task space involves both arms, the
corresponding Jacobian is 12×15. To analyze the singularity,
we will consider two sub-cases: the 7-dof single arm and the
8-dof arm and torso. Then two cases are then combined for
the full dual-arm system. We use the shorthand notation si for
sin θi and ci for cos θi.
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(a) Orientation
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(b) Squeeze Force

Fig. 22: Results from running two trials with a sinusoidal tra-
jectory and a dynamic load. Both runs operated on the Plastic
Bucket, with one trial incorporating the gravity compensation
to its desired force setpoint (denoted by PB-C), while the other
did not (denoted by PB-UC). The large spikes in the force
error, located at ∼ 5, 27, and 48 seconds, show when the
moving load impacted a wall of the container.

A. Singularity of 7-DOF Single Arm

Consider the left arm (joints 2-8) and the corresponding
coordinate frame assignment shown in Fig. 5. As in [46],
choose the reference task frame, denoted A, to be at the
wrist spherical joint where axes 6, 7, and 8 intersect. The
corresponding Jacobian in coordinate-free form is

JA =
[

h⃗2 h⃗3 h⃗4 h⃗5

h⃗2 × p⃗46 h⃗3 × p⃗46 h⃗4 × p⃗46 h⃗5 × p⃗56

h⃗6 h⃗7 h⃗8

0 0 0

]

.

(20)

First consider
[

h⃗6 h⃗7 h⃗8

]
at full rank.

Then JA loses rank if and only if JA1
=

[

h⃗2 × p⃗46 h⃗3 × p⃗46 h⃗4 × p⃗46 h⃗5 × p⃗56
]

loses rank.
If the shoulder spherical joint is not singular, i.e., s3 ̸= 0,

then JA1
loses rank if and only if p⃗46 · h⃗5 × p⃗56 = 0 which

is equivalent to c5 = 0. When s3 = 0, the first and third
columns are linearly dependent, so we only need to consider
the last three columns. The singularity condition may be

obtained geometrically from p⃗56 collinear with h⃗4 (or c5 = 0)

or h⃗3, h⃗4, p⃗46 coplanar (or c4 = 0).
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(b) Orientation
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(c) Squeeze Forces

Fig. 23: Results of a user commanding the position setpoint
using a Microsoft Kinect. The object under manipulation was
the Plastic Tub with a 0.9 kg mass mounted to an interior wall.

Now consider the remaining case where
[

h⃗6 h⃗7 h⃗8

]
is

rank-deficient. For this case, choose the reference task frame
B to be at the shoulder spherical joint, i.e., the intersection of

h⃗2, h⃗3, h⃗4. The corresponding Jacobian is

JB =
[
h⃗2 h⃗3 h⃗4

0 0 0

h⃗5 h⃗6 h⃗7 h⃗8

h⃗5 × p⃗54 h⃗6 × p⃗64 h⃗7 × p⃗64 h⃗8 × p⃗64

]

.

(21)
We only need to consider s3 ̸= 0. By using the same reasoning
as before, we arrive at the singularity condition of c5 = 0 when
s7 ̸= 0, and, for the case s7 = 0, the singularity condition is

c5c6 = 0. When both the shoulder and wrist are singular,
s3 = 0 and s7 = 0, the arm is also singular.

To summarize, the singularity condition for the 7-dof arm
may be written compactly as

c5(s3 + c4)(s7 + c6)(s3 + s7) = 0. (22)

B. Singularity of 8-DOF Arm and Torso

When the 7-dof arm is singular, the torso degree of freedom
may remove the singularity. First consider c5 = 0. When

either s7 ̸= 0, the torso adds a term h⃗1 × p16 to possibly
make JA1

full rank. The singularity condition in this case
becomes ℓ0c3 + ℓ1s2s3 = 0. The same condition is obtained
when s3 ̸= 0. When s3 = 0, we need to consider the
full matrix, and the singular condition becomes s4 = 0.
Similarly, when s7 = 0, the singular condition becomes
s6 = 0. When both shoulder and wrist are at singularity,
s3 = s7 = 0, the Jacobian matrix may be made full rank
with torso motion, and the singularity condition becomes
c5(ℓ0(c4s6 + s4s5c6) − (ℓ1 + ℓ2)c2c5c6) = 0. Next consider

the shoulder singularity s3 = c4 = 0. The addition of h⃗1× p⃗16
due to torso rotation changes the singularity condition to the
rank deficiency of

[

h⃗1 × p⃗16 h⃗3 × p⃗46 h⃗5 × p⃗56
]
, which

simplifies to (ℓ1 + ℓ2)c2c5 − ℓ0s5 = 0. Similarly, for the
wrist singularity case, s7 = c6 = 0, the torso adds a column

h⃗1×p⃗12. The singularity condition becomes ℓ0c3+ℓ1s2s3 = 0.
Combining all cases above, the singularity condition for the 8-
dof arm may be written as

(c5 + (ℓ0c3 + ℓ1s2s3)(s3 + s4)(s6 + s7))

·(s3 + s7 + c5(ℓ0(c4s6 + s4s5c6)− (ℓ1 + ℓ2)c2c5c6))

·(s3 + c4 + ((ℓ1 + ℓ2)c2c5 − ℓ0s5))

·(s7 + c6 + (ℓ0c3 + ℓ1s2s3)) = 0.

(23)

C. Singularity of Full 15-DOF Dual-Arm System

For the 15-dof dual-arm system, the torso may remove the
singularity of either the right or the left arm. Therefore, the
combined arm is singular (with 12-dof task degree of freedom)
if both of the following conditions are satisfied

1. The 8-dof left arm or the 7-dof right arm is singular.

2. The 7-dof left arm or the 8-dof right arm is singular.

APPENDIX B
STABILITY OF FORCE CONTROL OF A COMPLIANT OBJECT

To simplify the stability analysis, we consider a constant
linear feedback in the position accommodation force control
law (6). Considering only along the squeeze direction, we have

ẋL = −ζKf (ηL − ηd) ẋR = ζKf (ηR − ηd). (24)

Substituting in the expression of the contact force in (8), we
have

ẋL = −ζKf (k(xL − xm + w) + c(ẋL − ẋm)− ηd)

ẋR = ζKf (−k(xR − xm − w)− c(ẋR − ẋm)− ηd).
(25)
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Summing the two we have

ẋL + ẋR

= −ζKf (k(xL + xR) + c(ẋL + ẋR)− 2kxm − 2cẋm)

= −ζKf (1 + ζKfc)
−1(k(xL + xR)− 2kxm − 2cẋm).

(26)
Represented in the Laplace domain, we have

xL + xR =
2ζKf (cs+ k)

s(1 + ζKfc) + ζKfk
xm. (27)

The equation of motion in (8) in the Laplace domain is

(Ms2 + 2cs+ 2k)xm = (cs+ k)(xL + xR). (28)

Combining the two equations, we have the third-order closed
loop characteristic polynomial (the right and left arm work in
unison, reducing the order by one) given by

π(s) = s(M(1 + ζKfc)s
2 + (2c+MkζKf )s+ 2k). (29)

The pole at zero corresponds to the position dynamics. Since
we are focusing only on the force control, the system may
be shifted anywhere on a line. A motion loop feedback will
stabilize this pole. The two stable poles correspond to the
force control loop, showing the mass-spring-damper system
will reach the equilibrium under the integral force control.
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