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Abstract—Existing sensor network data aggregation 

techniques assume that the nodes are preprogrammed and send 

data to a central sink for offline querying and analysis. This 

approach faces two major drawbacks. First, the system 

behavior is preprogrammed and cannot be modified on the fly. 

Second, the increased energy wastage due to the communication 

overhead will result in decreasing the overall system lifetime. 

Thus, energy conservation is of prime consideration in sensor 

network protocols in order to maximize the network’s 

operational lifetime. In this paper, we give an energy efficient 

approach to query processing by implementing new 

optimization techniques applied to in-network aggregation. We 

first discuss earlier approaches in sensors data management 

and highlight their disadvantages. We then present our 

approach and evaluate it through several simulations to prove 

its efficiency, competence and effectiveness. 

 

Index Terms— Sensor Networks, Data Base, Data Fusion, 

Aggregation, Indexing, Energy Efficiency 

I. INTRODUCTION 

One example of monitoring applications includes organizing 

vehicle traffic in a large city [1]. Unfortunately, sensor data is 

subject to several sources of errors resulting from power 

limitations, wireless communication, latency, throughput, 

and various environmental effects. Such errors may seriously 

impact the answer to any query posed in the network. Current 

production of motes are roughly 2cm x 4cm x 1cm and are 

equipped with a radio, a processor, memory, a small package 

of AA batteries, and a collection of sensors. Additionally, 

new nodes are not passive devices [2], they are capable of 

sharing, computing and combining sensor readings; therefore, 

they are becoming tiny computers with different 

functionalities. Smart-sensor devices have been developed to 

an extent that it is now feasible to deploy large, distributed 

networks of such nodes [3, 4, 5, and 6] and extracting the data 

from the network is an essential step for the applications to 

work.  

In-network aggregation is a well known technique to 

achieve energy efficiency when propagating data from 

information sources (sensor nodes) to multiple sinks. The 

main idea behind in-network aggregation is that, rather than 

sending individual data items from sensors to sinks, multiple 

data items are aggregated as they are forwarded by the sensor 

network. Data aggregation is application dependent, i.e., 

depending on the target application, the appropriate data 
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aggregation operator (or aggregator) will be employed. From 

the information sink’s point of view, the benefits of 

in-network aggregation are that in general it yields more 

manageable data streams avoiding overwhelming sources 

with massive amounts of information, and performs some 

filtering and preprocessing on the data, making the task of 

further processing the data less time and resource consuming. 

Because of its well-known power efficiency properties, 

in-network aggregation has been the focus of several recent 

research efforts on sensor networks. As a result, a number of 

data aggregation algorithms and data base systems targeting 

different sensor network scenarios have been proposed [2, 8, 

9, 10, 11, 12, 13, and 14]. All the current and future 

researches and innovations are taking into consideration 

these drawbacks because they are very crucial limitations on 

the sensor network’s overall operational lifetime. Although 

all researches and approaches [2, 7, 8, 9, 10, 11, 15, and 16] 

that were done earlier in this field provide some advantages 

over traditional centralized approaches, they still face some 

pitfalls and disadvantages. Studying the disadvantages of 

previous work, we concluded that we need to work on several 

major areas such as: power consumption, reliability, less 

aggregation overhead, less contention, fault-tolerance, and 

concurrency. In addition to that, the queries should also 

consider data integrity, security and efficiency. Our new 

distributed algorithms should take into consideration that 

nodes might have unequal battery levels opposed to 

unrealistic assumptions made in previous work. Taking into 

consideration these facts, our algorithm should evaluate the 

remaining power on each node and the varying power 

consumption that might differ from node to node to be able to 

maintain longer network lifetime to transmit useful data. We 

propose a new combinational improvement of all the 

available solutions taking into consideration the above 

constraints to develop the sensor node’s ability to handle data 

locally in a very efficient way.  

The rest of the paper is organized as follows: Section II 

will present a survey on previous approaches focusing on 

their disadvantages. Section III will present our data 

aggregation approach. In Section IV, we present our 

simulation model. We will evaluate and simulate and analyze 

our proposed algorithms using our own simulator in Section 

V. We conclude this paper in Section VI with possible 

improvements. 

II.  RELATED WORK 

Many researchers such as Yao et al., Bonnet et al., Gray et 

al., and Madden et al. [ 2, 7, 8, 9, 10, 11, 15, 16, and 17] 

tackled the data management topic in wireless sensor 

networks including query processing and data handling but 

none generic useful results and findings were originated for 

implementation. There has been a lot of work and approaches 

on query processing in distributed database systems [8 and 9], 
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but most related work on distributed aggregation did not 

consider the physical limitations of sensor networks [18 and 

19]. In addition, the TinyDB Project at Berkeley [15] 

conducted by Madden et al. also investigates query 

processing techniques for sensor networks including an 

implementation of the system on the Berkeley motes and 

aggregation queries. The basic approach used in both 

TinyDB [15] and TAG [16] is to compute a partial state 

record (partial aggregation value) at each intermediate node 

in the routing topology. During the epoch after query 

propagation, each mote listens for messages from its children 

during the interval it specified when forwarding the query. 

Previous studies [12-15] have shown that aggregation 

dramatically reduces the amount of data routed through the 

network, increasing throughput and extending the lifetime of 

battery powered sensor networks as less load is placed on 

power-hungry radios. Previous simulation studies have 

shown that aggregation can reduce energy consumption by a 

factor of 5 in a large network (150-250 nodes) with five 

active sources and five sinks. Previous networking research 

[12, 13, 14, 21] approached aggregation as an application 

specific technique that can be used to reduce the amount of 

data that must be sent over a network. In a previously 

proposed data dissemination scheme (directed diffusion with 

opportunistic aggregation), data is opportunistically 

aggregated at intermediate nodes on a low latency tree. In 

[13], the authors explore and evaluate greedy aggregation, an 

approach that adjusts aggregation points to increase the 

amount of path sharing. The greedy aggregation approach 

was implemented. Greedy aggregation differs from 

opportunistic aggregation in path establishment and 

maintenance. To construct a greedy incremental tree, a 

shortest path is established for only the first source to the sink 

whereas each of the other sources is incrementally connected 

at the closest point on the existing tree. In [2], they didn’t 

explore all their techniques relative to mobility, and multiple 

queries. Thus, we can’t be sure if their techniques are more 

efficient and reliable than the old techniques. In addition, 

they mentioned that in some cases that in-network 

aggregation performs worst than even the simplest approach 

“the naïve approach” [2, 8].  

In [16], the authors presented TAG as a generic 

aggregation service for ad hoc networks of TinyOS motes. 

Thus, it provides a simple, declarative interface for data 

collection and aggregation. In addition, it intelligently 

distributes and executes aggregation queries in the sensor 

network in a time and power-efficient way, and is sensitive to 

the resource constraints and lossy communication properties 

of wireless sensor networks. TAG processes aggregates in 

the network by computing partial aggregation values over the 

flow of data from the nodes, discarding irrelevant data and 

combining relevant readings into more compact records 

when possible. Thus, the TAG paper contributes to the data 

management field in ad-hoc sensor networks in four aspects: 

simplicity, reduction in communication overhead, data 

messages overhead and finally reducing loss in the sensor 

network.  

Most of the conclusions that the above researchers are 

credited for can be described as: “We described a vision of 

processing queries over sensor networks” [11]. Some 

presented a prototype or some techniques they used without 

any actual implementation and simulation results. For 

example, the Cornell COUGAR system prototype [7, 8, 9, 10, 

and 11] is a first effort towards sensor database system. Thus, 

a lot of improvements are still needed in this field to achieve 

better generic approaches for implementation in wireless 

sensor networks plus taking into consideration all the 

drawbacks and pitfalls of earlier techniques. Unlike other 

networks, wireless sensor network still need an international 

standard ISO to be build upon and all these future researches 

are directed towards this goal. One part is related to finding a 

general applicable approach for data management in sensor 

networks which will become a self-aware, self-configuring 

and reliable system with respect to all nodes’ resource 

constraints.  

As various groups around the country have begun to 

deploy large networks of sensors, a need has arisen for tools 

to collect and query data from these networks. Of particular 

interest are aggregates – operations which summarize current 

sensor values in some or all of a sensor network. For example, 

given a dense network of thousands of sensors querying 

temperature, users want to know temperature patterns in 

relatively large regions encompassing tens of sensors – 

individual sensor readings are of little value. Sensor networks 

are limited in external bandwidth, i.e. how much data they 

can deliver to an outside system. In many cases the externally 

available bandwidth is a small fraction of the aggregate 

internal bandwidth. Thus computing aggregates in-network is 

also attractive from a network performance and longevity 

standpoint: extracting all data over all time from all sensors 

will consume large amounts of time and power as each 

individual sensor’s data is independently routed through the 

network. As noted before, aggregation dramatically reduces 

the amount of data routed through the network, increasing 

throughput and extending the life of battery powered sensor 

networks as less load is placed on power-hungry radios. Also, 

The fact that every message is effectively broadcast to all 

other sensors within range enables a number of optimizations 

that can significantly reduce the number of messages 

transmitted and increase the accuracy of aggregates in the 

face of transmission failures. In the next section, we provide 

an outline of our approach and all the necessary steps to 

implement our distributed in-network aggregation approach. 

III. THE EEIA APPROACH 

Our approach consists of providing a new distributed 

algorithm for query processing in wireless sensor networks 

which is an optimized energy efficient distributed algorithm 

with respect to all the sensor’s resource constraints. Some 

similarities to recent approaches are also used such as 

upgrading the tinyDB [10, 15] approach, an ACQP engine 

that is a distributed query processor which runs on each of the 

nodes in a sensor network, and the TAG approach [16]. 

Our goal is to provide significant reductions in power 

consumption through reducing the number of query related 

messages in the whole network. Low energy consumption, 

and limited storage and memory usage are the three main 

constraints which we focus on in our approach. This section 

will provide a detailed explanation of our approach by 

presenting the problem and the corresponding solution. We 

evaluate the approach in the next section through simulation. 

Sensor networks have very limited power, small memory 

computational power and limited bandwidth so some 

possible unanswered questions related to in network data 

aggregation schemes in sensor networks are: 
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• How can we decrease power consumption in a data 

management algorithm? 

• How can we decrease the number of collisions and 

thus reduce the overall end-end latency? 

• How can we decrease the number of computations at 

each node? 

• How could we let our algorithm be self-adaptive to 

the changing network conditions? 

 

Our distributed algorithm offers three new ideas in order 

to answer the previous questions. Our first aim is to decrease 

the packet size and the second is to decrease the number of 

packets sent. To decrease the packet size each sensor should 

have values in its buffer of all its children nodes to perform 

partial aggregation before sending this value to its parent. In 

large sensor networks, aggregation of data having small 

packets and small values decreases the power consumption 

and the computation overhead. Our second approach is to 

index the network so to be able to query data with minimum 

number of exchanged packets. We will start by building an 

index tree (IST) that is similar to the SRT of TinyDB [10] but 

for not only fixed attributes but also variable ones. The 

problem with building such a tree is the maintenance 

overhead, but we will prove that our algorithm maintains the 

tree with little or no maintenance overhead.  

Our algorithm is to first build an index routing tree 

(Section A). Secondly, each child in the tree sends its index to 

its parent. Since the parent knows the number of children it 

has, it compares the indexes received from each child, if they 

are equal, the parent indexes itself with their index and sends 

the index to its parent otherwise it does nothing. Upon a 

change in the index of one node, this node sends the new 

index to its parent, the parent checks again to see if the 

indexes are equal; if not and this parent is indexed, it removes 

its index and informs its parent, but if this parent is not 

indexed, it doesn’t have to inform its parent. With our 

network, indexing a query could take less time and 

computation power to return the result. For example if we 

have a query that asks for the average temperature where the 

temperature is above 36. When this query reaches a node 

with index 1, the node doesn’t forward the query to its 

children. Our third idea is to conserve energy as much as 

possible using indexing with the power evaluation criteria 

available in TinyDB at each node. We can use an index of 0 

to note that a certain node is low in power try eliminate it in 

the execution flow of the query. In the next sections, we 

present our algorithm in details. 

A. Building the Routing Tree 

After the nodes are randomly deployed, an index routing 

tree is built. The routing tree is built as follows. The closest 

node to the base station is chosen to be the root of the tree 

(level = 0). Once chosen, the root broadcasts requests 

containing its level to all its one hop neighbors (within its 

transmission range). When receiving the request, a neighbor 

node assigns itself a level = level + 1 and chooses its parent 

to be the level up node from which it received the request, 

then re-broadcasts new requests containing its new level to 

all its neighbors and so on until no neighbors are found; thus 

the last nodes become leaf nodes. Whenever a node receives 

two requests from two different nodes, if it has a level, it 

discards the second request; and if not, it selects the first 

arrived request. Thus it chooses one parent and one new level 

(level = level + 1). In our tree algorithm, we intend to let 

every node have only a single parent. Figure 1 displays the 

flowchart of building the tree. After building the tree each 

node sends its reading value to its parent starting from the 

leaf and up. Every node stores its last sent value. Every parent 

node receiving values from multiple children calculates the 

average of the values received and sends it to its parent and so 

on until the value reaches the base station. 

As an example, we are going to implement an application 

that calculates the average temperature of all the nodes which 

are part of the tree.  
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within a fixed time
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neighbors

Root Node is chosen

(Closest to Base

Station)
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Set Sender as

Parent

Node has Level

YES

NO

 
Fig. 1 Flowchart of building the tree 

B.  Building the Index Table in the Routing Tree 

When the base station receives the values, it sends a 

packet containing the index table to all the nodes. The first 

time the index table is sent, the value ranges of each index 

will be large; the reason behind this approach is not to send 

large packets in the network. If the index table is large, it may 

lead to collisions. When a node receives the index table, it 

compares its readings to the index table and indexes itself 

accordingly. In the second round the index table changes as 

value for index ranges becomes smaller. After couple of 

rounds the index values will be more accurate. The number of 

rounds depends on the size of the index table decided once 

the network is deployed. The final index table will be derived 

on each node. Deciding on the index ranges of the system 

depends on the type of sensor node; sensor nodes with 

readings that vary in large ranges should have index ranges 
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with large values. The child sends its index to its parent. 

When a parent receives an index from its children, the parent 

compares all its indexes with its own, if they are all similar, 

the parent indexes itself as such. However, if all indexes are 

not the same, the node examines the percentage of the 

similarity, if the similarity is larger or equal to 75% (based on 

the simulation results in Section V), it indexes itself with the 

dominant index and ignores the others. If the index 

similarities are lower than 75% then the parent indexes itself 

as between the smallest and largest index. After all the nodes 

are indexed in the network, the parents and children agree on 

a common value. 

C. Common Value Agreement (CV) 

After a parent receives values from its children, it first 

calculates the average of the values; it stores the calculated 

average and sends it back to its children. We call this value 

“common value” and we denoted it by cv. Each node stores 

two values: the cv of its parent and the cv of its children 

(except leaf nodes). When a node needs to send a new reading 

to its parent, it subtracts the cv from its reading and forwards 

the value to its parent. The cv will be updated in case there is 

a major change in the average of the children. When a parent 

notices a large change between its children and the cv, the 

parent resends the new average to its children as the new cv. 

With our cv approach, sent packets are smaller and therefore 

leading to less collisions, more energy efficiency and less 

calculation overhead. 

D.  Aggregate Functions Evaluation 

The calculation approach defers between different 

aggregate functions. In our algorithm, we evaluate the 5 basic 

aggregate functions Sum, Average, Count, Min, Max. 

 

Average Function 

We start with the Average function. Since this query asks 

for the average temperature of the whole network, the query 

should reach all the nodes where values will be extracted. In 

our algorithm this is not the case; our algorithm offers the 

user two approaches to calculate the average. In the first 

approach, when the query reaches the root node, the root 

node doesn’t forward the query to its children but returns his 

cv since the cv is the common average between it and its 

children. In the second approach the query reaches all the 

nodes but not all the nodes return a value. When a query 

reaches a node, the node examines its current reading and 

index. If his current reading still lies within the same index 

the node doesn’t forward any value since his value will not 

have a noticeable change to the final result. If the current 

reading doesn’t lie in the same index the node changes its 

index, and sends the cv subtracted from his reading to the 

parent node. After receiving the new reading the parent 

notices a large value from his child thus updates his index 

status and cv if needed according to the previously discussed 

approaches. Then the parent node calculates the new average. 

Assume Avg is the old average value, Avg_new the new 

average, nv the new value received from the child and p the 

children count involved in the query. The parent calculates 

the new average using the following formula: 

                    (1) 

In the second approach, sending the value depending on 

the index change decreases the overhead of sending packets 

where the change in reading will not cause a notable change 

to the overall value; thus, using this approach results in 

sending a small number of packets. Deciding on what 

approach to use depends on how accurate the data needs to 

be.  

 

Count, Sum, Min and Max Functions 

The Count function is evaluated in a normal approach 

where the node, if meeting the criteria, sends 1 to his parent 

where the parent adds the count of his children and forwards 

them to his parent and so on. The Sum function can also be 

evaluated using two approaches. The first approach is the 

usual one where values are sent to the parent node that in his 

turn sums them and sends them to his parent and so on. The 

second approach of evaluating sum is to break the Sum query 

into two queries, an average query and a count query. In this 

approach the advantages of average evaluation discussed 

previously can be used. After a node receives a sum function 

it sends it’s reading as if it is calculating the average and then 

sends the count. The base station calculates the Sum as 

Average  Count. Deciding on the approach to use depends 

on the query and the exactness of the result. Our engine on 

the base station decides what approach to use. The Min and 

Max function are evaluated in similar approach to the 

average where the node sends the cv subtracted from his 

value. The parent node in its turn chooses the largest or 

smallest (Min or Max) value received, adds to it the children 

cv then subtracts from it its parent cv and sends it to its parent. 

E.  Queries with conditions 

For other types of queries that have a condition, our 

approach should increase the throughput of the query since 

indexing will help in the injection of the query. Our engine on 

the base station will parse this query and translate the 

condition into index. For example, the condition “Where 

temp>35” will be translated into “Where tempIndex > 5” 

assuming index 5 and its preceding indexes are between 0 

and 30. After this translation the query is injected into the 

network. From the root and on, every parent node checks if it 

has an index smaller or equal to 5, if yes, it will not forward 

the query to its children. Thus the query is filtered through 

the injection state. The root broadcasts the query to its 

children. Once arrived to each child, they check if they have 

an index smaller or equal to 5. Thus, for node having the 

index 5, it ignores the query request, but in the case of the 

other node, it re-broadcasts the request to all of its children 

(index > 5) which in their turn, each of them forwards the 

request if its index is greater than 5. This approach removes 

the overhead of sending the query to unneeded nodes. This 

approach increases the energy efficiency of the network 

where nodes that do not satisfy the condition will not need to 

spend energy since filtering is happening in the injection of 

the query rather than the base station. 

F.  Power Management 

Power consumption and network life time are major issues 

in the wireless sensor network design. In our algorithm, we 

try to increase the lifetime of the network through two 

different approaches. In the first approach, the node keeps 

track of the number of messages sent and number of 

messages received. From these numbers the node can 

approximate the energy consumed and therefore the amount 

of energy left. We can also incorporate a battery model in our 
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algorithm. When the node reaches a state where its energy is 

close to a predefined threshold, it informs its parent. The 

parent will therefore decrease the number of packets sent to 

this child thus will send packets to this child every two 

rounds rather than every round hence decreasing the transfer 

data rate to this child. If the child reaches a very low state of 

energy, it informs its parent where the parent stops sending 

any packets to this child. 

The second approach is achieved by changing the root 

parent every two rounds. If a child can have multiple parents, 

the child, after couple of rounds, changes to another parent if 

the other parent has more energy than his current parent. 

When a parent is low on energy it informs its children, the 

children in their turn will ask another parent node if they 

could join it. If another parent with more energy is found, the 

child switches to this new parent. A child could know if the 

new parent has more energy than his old one by knowing the 

amount of energy consumed by both parents derived from the 

formula discussed before. We will just incorporate the first 

approach in our simulator leaving the second approach for 

future work. The first approach should reduce the energy 

consumption of every single node in the network thus 

increasing the network lifetime. 

G.  Query Optimization 

In this section, we will discuss our approach in optimizing 

a query. The base station keeps record of the last queries with 

a time stamp. Upon issuing a new query, the query optimizer 

checks for similar queries issued before and their results. If 

the results are close, it concludes that the network readings 

are not changing so instead of sending the query to the whole 

network, the query is sent to different parts of the network. 

To send the query to different parts of the network, the query 

optimizer sends the query to the level 1 parent nodes which in 

turn will choose some of their children and forward them the 

query. The number of children nodes chosen depends on the 

query optimizer decision. With this approach a smaller 

amount of nodes participate in the query. This approach 

increases energy efficiency and throughput of the network 

but gives an approximation of the result. This optimization 

technique doesn’t apply on all kinds of queries. 

IV. SIMULATION MODEL 

To test the efficiency of our algorithm, we decided to 

model our own simulator to achieve our goals because of the 

lack of database simulators. We will present the detailed 

information on how our simulation was built. 

A.  Our Simulator Model 

Our simulator is written in VB and it incorporates our 

algorithm to be tested with the naive and the simple TinyDB 

approaches. We will evaluate our algorithm by comparing it 

to these approaches in terms of energy consumption, network 

lifetime and time delays. We randomly deploy a large 

number of nodes, then a routing tree is build in which the 

query is sent from the root to the leaf nodes to be evaluated, 

processed. The leaf nodes will send the results back to their 

parents where they are aggregated and sent over to the 

parent’s parents until an aggregated value reaches the root 

which in its turn, sends the aggregated value back to the base 

station.  

In the tree, each node is randomly colored to present its 

level (number of hops away from the base station). An edge 

connects two neighbor nodes if there are in the 

communication range of each other i.e. they can 

communicate by sending and receiving messages. Every 

node contains a cache in which it saves its level number, its 

index, its parent id and its children’s ids. Figure 2 portrays 

the building of the routing tree. Figure 3 shows our simulator 

at work (building indexes in the tree). Every parent node is 

colored by the color of its children if the percentage of itself 

and its children’s color is greater than 75%. Each node is 

colored by its index value. 

 

 

Fig. 2 Building the routing tree simulation 

 

Fig. 3 Building indexes in the routing tree 

B.  Evaluation Metrics 

Our Algorithm will be evaluated based on two basic 

metrics: power consumption and network lifetime. We are 

going to compare the power consumed in retrieving queries 

using our algorithm with other known algorithm (the naive 

and the simple TinyDB approaches). The performance of the 

algorithm over time will also be studied to determine the 

benefits of using in-network aggregation. This is done by 

assuming that each sensor node has a limited energy supply 

of and is deactivated when the available energy is used up. 

The performance is evaluated in terms of network lifetime. 

The network lifetime is the continuous operational time of the 

system before the coverage drops below a specified threshold 
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(for example 0.8). In addition to that, we will incorporate the 

energy wastage resulting from building the IRT (index 

routing tree). 

In our simulation, we are going to randomly spread about 

500 sensor nodes in a 10000 x 10000 region in VB to 

investigate the change in temperature and humidity. We are 

going to query these nodes to get Max, Min, and Average 

values. Further investigation about some sensor nodes 

measurements (return numbers) are left for future work. The 

node we are going to use are the Berkley Mica motes [28, 3, 5] 

with TinyOS [10, 25]. S-MAC is used as the default MAC 

layer protocol. The sensor nodes will be used to measure 

temperature, humidity and other metrics as provided by the 

sensor itself (The Mica motes already support temperature 

sensors, light sensors, magnetometers, accelerometers, and 

microphones). These nodes will be connected to a base 

station that will issue the query and the results are returned to 

this station by in-network aggregation in the intermediate 

motes, thus, providing a reduction in message overhead and 

in energy consumption. In addition, several optimization 

techniques should be applied to prevent other problems such 

as nodes mobility, node failures, network changes and others, 

from affecting the network. 

We have to investigate the efficiency of our approach in 

several areas through some excepted results from the 

simulation such as: 

1. Energy efficiency in terms of low power consumption 

while transferring the query related data through the 

network (reduce the number of messages required to 

compute the aggregations). 

2. Overhead calculation in the network (decrease the 

overhead) 

3. Result accuracy from the data aggregated (is the data 

used for aggregation satisfactory and reliable?). 

4. Other factors should be taken to consideration such as 

time delays, communication failures and sensor 

mobility. 

V. SIMULATION RESULTS AND ANALYSIS 

In this section, we are going to evaluate our algorithm in 

terms of power consumption, network lifetime and finally 

time delay. Then, we are going to compare our results to well 

known data management approaches such as the naive and 

the simple TinyDB approaches. We are going to prove the 

efficiency of our distributed approach and its adaptive 

manner in maintenance and re-construction of the index 

routing tree due to unexpected failures. We compare our 

EEIA approach with the: 

1. Naïve algorithm: all the query results from each node 

are sent to its parent until the results reach the root 

where they are aggregated and sent to the base 

station. 

2. Simple TinyDB: the results are aggregated at each 

intermediate node until reaching the root. 

In our simulation, we assumed the energy wasted is 1µJ 

for sending a single bit and 0.5µJ for receiving a single bit. 

Initially, each node has 1 J of available energy. In our 

simulation, we also incorporated the energy consumption of 

building an index tree. As you can see in Figure 4, as the 

number of nodes increases, the energy consumption increases 

linearly since all nodes participate in building the query with 

same amount of energy. We concluded that the energy 

consumption of building the index tree is equivalent to 

initiating one query in the network.  

As for the maintenance of the index tree, we see from 

Figure 5 that the average energy consumed in the 

maintenance depends on the readings of the nodes in the 

network. If the network readings change significantly in a 

small amount of time, the energy consumed in maintaining 

the tree increases. On the other hand, if the network readings 

change slowly then the energy consumption of the index 

maintenance decreases. The energy consumption in the first 

15 seconds is high since the index tree was being built. We 

issued a number of different queries on 500 nodes and 

compared the energy consumption, delay and number of 

instructions using our approach compared to the normal 

approach of broadcasting the query to the network. To 

simulate the same queries, we implemented in our simulator 

two approaches, the first approach queries the network by 

broadcasting the query to all the nodes and aggregating the 

results back to the base station. As for the second approach, 

we added our index querying approach. To make our 

simulation more realistic, we maintained the same condition 

on the network while using the different querying 

approaches.  

In Figure 6, we compared the energy consumed for the 

same queries using the 2 approaches. We issued 12 different 

queries and calculated the energy consumed by these queries 

to return the result. As can be seen from the graph, all queries 

using the indexed approach consume less energy than using 

the other approach. You can also note from the graph that 

some queries have energy consumption that is close to the 

normal approach while others have larger energy 

consumption. This difference depends on the conditions of 

the issued query since more selective queries tend to have a 

larger advantage using our approach (indexing with more 

selectiveness decreases the number of messages sent and 

received in the network).  

In Figure 7, we compare the number of packets sent for 

the same query using the 2 approaches. As the figure shows, 

the number of packets sent decreases with the indexing 

approach since some nodes will not forward the packets to 

their children if their children don’t satisfy the query 

conditions. As can be seen in Figure 8, the delay is decreased 

using our approach since as discussed before the number of 

packets sent decrease hence collisions decrease. In the delay 

simulation, we assumed a packets needs 0.01 sec to be resent. 

In the last simulation, we added the cv (common value) 

approach to our simulator and compared the lifetime of the 

network using indexing and cv querying to the normal 

approach. As can be seen from Figure 9, the first node dies 

after 83 queries in the normal approach while using our 

approach; the first node dies after 130 queries. This increase 

in the lifetime of the network is due to two factors. The first 

factor is that nodes are sending fewer packets using the 

indexed approach thus less energy consumption per node. 

The second factor is the decrease in packet size with cv 

approach where less energy is consumed in sending the 

packet.  



International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009 

1793-8201 

 

 

- 25 -                                                  

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200

En
e
rg

y 
C
o
n
su

m
e
d

Nb of Nodes

Building Indexes in the Rounting Tree

Energy consumed (mJ) VS 

Density of the Network

 
Fig. 4 Building the routing tree 
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Fig. 5 Maintaining the routing tree 
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Fig. 6 Energy consumption per query 
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Fig. 7 Nb of instructions per query 
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Fig. 8 Time delay per query 
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Fig. 9 Network lifetime 

VI. CONCLUSIONS 

In summary, we have showed how aggregate queries are 

efficiently executed over wireless sensor networks in a 

distributed manner. We have proved that our in-network 

distributed approach performed better in terms of energy 

reduction and network lifetime than the naïve and simple 

TinyDB approaches. Furthermore as for future work, our 

approach should confront with the difficulties of topology 

construction, data routing, loss tolerance by including several 

optimization techniques that further decrease message costs 

and improve tolerance to failure and loss. In addition to 

implementing these techniques, we need to rethink some of 

these techniques to present more efficiency to network 

changes and external factors which could affect our approach 

such as node mobility, obstacles and other issues. In addition 

as future work, we could also extend our simulator to 

incorporate a 3D tree construction technique plus other 

methodologies mentioned above. 
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