
International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 19 -

Abstract—Existing sensor network data aggregation

techniques assume that the nodes are preprogrammed and send

data to a central sink for offline querying and analysis. This

approach faces two major drawbacks. First, the system

behavior is preprogrammed and cannot be modified on the fly.

Second, the increased energy wastage due to the communication

overhead will result in decreasing the overall system lifetime.

Thus, energy conservation is of prime consideration in sensor

network protocols in order to maximize the network’s

operational lifetime. In this paper, we give an energy efficient

approach to query processing by implementing new

optimization techniques applied to in-network aggregation. We

first discuss earlier approaches in sensors data management

and highlight their disadvantages. We then present our

approach and evaluate it through several simulations to prove

its efficiency, competence and effectiveness.

Index Terms— Sensor Networks, Data Base, Data Fusion,

Aggregation, Indexing, Energy Efficiency

I. INTRODUCTION

One example of monitoring applications includes organizing

vehicle traffic in a large city [1]. Unfortunately, sensor data is

subject to several sources of errors resulting from power

limitations, wireless communication, latency, throughput,

and various environmental effects. Such errors may seriously

impact the answer to any query posed in the network. Current

production of motes are roughly 2cm x 4cm x 1cm and are

equipped with a radio, a processor, memory, a small package

of AA batteries, and a collection of sensors. Additionally,

new nodes are not passive devices [2], they are capable of

sharing, computing and combining sensor readings; therefore,

they are becoming tiny computers with different

functionalities. Smart-sensor devices have been developed to

an extent that it is now feasible to deploy large, distributed

networks of such nodes [3, 4, 5, and 6] and extracting the data

from the network is an essential step for the applications to

work.

In-network aggregation is a well known technique to

achieve energy efficiency when propagating data from

information sources (sensor nodes) to multiple sinks. The

main idea behind in-network aggregation is that, rather than

sending individual data items from sensors to sinks, multiple

data items are aggregated as they are forwarded by the sensor

network. Data aggregation is application dependent, i.e.,

depending on the target application, the appropriate data

Manuscript received October 9, 2008.

 M. K. Watfa is with the Department of Computer Science at the

University of Wollongong. Phone,

W. Daher is with the Department of Computer Science at the American

University of Beirut, Beirut Lebanon.;

 H. Al Azar is with the Department of Computer Science at the American

University of Beirut, Beirut Lebanon.;

aggregation operator (or aggregator) will be employed. From

the information sink’s point of view, the benefits of

in-network aggregation are that in general it yields more

manageable data streams avoiding overwhelming sources

with massive amounts of information, and performs some

filtering and preprocessing on the data, making the task of

further processing the data less time and resource consuming.

Because of its well-known power efficiency properties,

in-network aggregation has been the focus of several recent

research efforts on sensor networks. As a result, a number of

data aggregation algorithms and data base systems targeting

different sensor network scenarios have been proposed [2, 8,

9, 10, 11, 12, 13, and 14]. All the current and future

researches and innovations are taking into consideration

these drawbacks because they are very crucial limitations on

the sensor network’s overall operational lifetime. Although

all researches and approaches [2, 7, 8, 9, 10, 11, 15, and 16]

that were done earlier in this field provide some advantages

over traditional centralized approaches, they still face some

pitfalls and disadvantages. Studying the disadvantages of

previous work, we concluded that we need to work on several

major areas such as: power consumption, reliability, less

aggregation overhead, less contention, fault-tolerance, and

concurrency. In addition to that, the queries should also

consider data integrity, security and efficiency. Our new

distributed algorithms should take into consideration that

nodes might have unequal battery levels opposed to

unrealistic assumptions made in previous work. Taking into

consideration these facts, our algorithm should evaluate the

remaining power on each node and the varying power

consumption that might differ from node to node to be able to

maintain longer network lifetime to transmit useful data. We

propose a new combinational improvement of all the

available solutions taking into consideration the above

constraints to develop the sensor node’s ability to handle data

locally in a very efficient way.

The rest of the paper is organized as follows: Section II

will present a survey on previous approaches focusing on

their disadvantages. Section III will present our data

aggregation approach. In Section IV, we present our

simulation model. We will evaluate and simulate and analyze

our proposed algorithms using our own simulator in Section

V. We conclude this paper in Section VI with possible

improvements.

II. RELATED WORK

Many researchers such as Yao et al., Bonnet et al., Gray et

al., and Madden et al. [2, 7, 8, 9, 10, 11, 15, 16, and 17]

tackled the data management topic in wireless sensor

networks including query processing and data handling but

none generic useful results and findings were originated for

implementation. There has been a lot of work and approaches

on query processing in distributed database systems [8 and 9],

A Sensor Network Data Aggregation Technique

Mohamed Watfa , William Daher and Hisham Al Azar

DOI: 10.7763/IJCTE.2009.V1.4

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 20 -

but most related work on distributed aggregation did not

consider the physical limitations of sensor networks [18 and

19]. In addition, the TinyDB Project at Berkeley [15]

conducted by Madden et al. also investigates query

processing techniques for sensor networks including an

implementation of the system on the Berkeley motes and

aggregation queries. The basic approach used in both

TinyDB [15] and TAG [16] is to compute a partial state

record (partial aggregation value) at each intermediate node

in the routing topology. During the epoch after query

propagation, each mote listens for messages from its children

during the interval it specified when forwarding the query.

Previous studies [12-15] have shown that aggregation

dramatically reduces the amount of data routed through the

network, increasing throughput and extending the lifetime of

battery powered sensor networks as less load is placed on

power-hungry radios. Previous simulation studies have

shown that aggregation can reduce energy consumption by a

factor of 5 in a large network (150-250 nodes) with five

active sources and five sinks. Previous networking research

[12, 13, 14, 21] approached aggregation as an application

specific technique that can be used to reduce the amount of

data that must be sent over a network. In a previously

proposed data dissemination scheme (directed diffusion with

opportunistic aggregation), data is opportunistically

aggregated at intermediate nodes on a low latency tree. In

[13], the authors explore and evaluate greedy aggregation, an

approach that adjusts aggregation points to increase the

amount of path sharing. The greedy aggregation approach

was implemented. Greedy aggregation differs from

opportunistic aggregation in path establishment and

maintenance. To construct a greedy incremental tree, a

shortest path is established for only the first source to the sink

whereas each of the other sources is incrementally connected

at the closest point on the existing tree. In [2], they didn’t

explore all their techniques relative to mobility, and multiple

queries. Thus, we can’t be sure if their techniques are more

efficient and reliable than the old techniques. In addition,

they mentioned that in some cases that in-network

aggregation performs worst than even the simplest approach

“the naïve approach” [2, 8].

In [16], the authors presented TAG as a generic

aggregation service for ad hoc networks of TinyOS motes.

Thus, it provides a simple, declarative interface for data

collection and aggregation. In addition, it intelligently

distributes and executes aggregation queries in the sensor

network in a time and power-efficient way, and is sensitive to

the resource constraints and lossy communication properties

of wireless sensor networks. TAG processes aggregates in

the network by computing partial aggregation values over the

flow of data from the nodes, discarding irrelevant data and

combining relevant readings into more compact records

when possible. Thus, the TAG paper contributes to the data

management field in ad-hoc sensor networks in four aspects:

simplicity, reduction in communication overhead, data

messages overhead and finally reducing loss in the sensor

network.

Most of the conclusions that the above researchers are

credited for can be described as: “We described a vision of

processing queries over sensor networks” [11]. Some

presented a prototype or some techniques they used without

any actual implementation and simulation results. For

example, the Cornell COUGAR system prototype [7, 8, 9, 10,

and 11] is a first effort towards sensor database system. Thus,

a lot of improvements are still needed in this field to achieve

better generic approaches for implementation in wireless

sensor networks plus taking into consideration all the

drawbacks and pitfalls of earlier techniques. Unlike other

networks, wireless sensor network still need an international

standard ISO to be build upon and all these future researches

are directed towards this goal. One part is related to finding a

general applicable approach for data management in sensor

networks which will become a self-aware, self-configuring

and reliable system with respect to all nodes’ resource

constraints.

As various groups around the country have begun to

deploy large networks of sensors, a need has arisen for tools

to collect and query data from these networks. Of particular

interest are aggregates – operations which summarize current

sensor values in some or all of a sensor network. For example,

given a dense network of thousands of sensors querying

temperature, users want to know temperature patterns in

relatively large regions encompassing tens of sensors –

individual sensor readings are of little value. Sensor networks

are limited in external bandwidth, i.e. how much data they

can deliver to an outside system. In many cases the externally

available bandwidth is a small fraction of the aggregate

internal bandwidth. Thus computing aggregates in-network is

also attractive from a network performance and longevity

standpoint: extracting all data over all time from all sensors

will consume large amounts of time and power as each

individual sensor’s data is independently routed through the

network. As noted before, aggregation dramatically reduces

the amount of data routed through the network, increasing

throughput and extending the life of battery powered sensor

networks as less load is placed on power-hungry radios. Also,

The fact that every message is effectively broadcast to all

other sensors within range enables a number of optimizations

that can significantly reduce the number of messages

transmitted and increase the accuracy of aggregates in the

face of transmission failures. In the next section, we provide

an outline of our approach and all the necessary steps to

implement our distributed in-network aggregation approach.

III. THE EEIA APPROACH

Our approach consists of providing a new distributed

algorithm for query processing in wireless sensor networks

which is an optimized energy efficient distributed algorithm

with respect to all the sensor’s resource constraints. Some

similarities to recent approaches are also used such as

upgrading the tinyDB [10, 15] approach, an ACQP engine

that is a distributed query processor which runs on each of the

nodes in a sensor network, and the TAG approach [16].

Our goal is to provide significant reductions in power

consumption through reducing the number of query related

messages in the whole network. Low energy consumption,

and limited storage and memory usage are the three main

constraints which we focus on in our approach. This section

will provide a detailed explanation of our approach by

presenting the problem and the corresponding solution. We

evaluate the approach in the next section through simulation.

Sensor networks have very limited power, small memory

computational power and limited bandwidth so some

possible unanswered questions related to in network data

aggregation schemes in sensor networks are:

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 21 -

• How can we decrease power consumption in a data

management algorithm?

• How can we decrease the number of collisions and

thus reduce the overall end-end latency?

• How can we decrease the number of computations at

each node?

• How could we let our algorithm be self-adaptive to

the changing network conditions?

Our distributed algorithm offers three new ideas in order

to answer the previous questions. Our first aim is to decrease

the packet size and the second is to decrease the number of

packets sent. To decrease the packet size each sensor should

have values in its buffer of all its children nodes to perform

partial aggregation before sending this value to its parent. In

large sensor networks, aggregation of data having small

packets and small values decreases the power consumption

and the computation overhead. Our second approach is to

index the network so to be able to query data with minimum

number of exchanged packets. We will start by building an

index tree (IST) that is similar to the SRT of TinyDB [10] but

for not only fixed attributes but also variable ones. The

problem with building such a tree is the maintenance

overhead, but we will prove that our algorithm maintains the

tree with little or no maintenance overhead.

Our algorithm is to first build an index routing tree

(Section A). Secondly, each child in the tree sends its index to

its parent. Since the parent knows the number of children it

has, it compares the indexes received from each child, if they

are equal, the parent indexes itself with their index and sends

the index to its parent otherwise it does nothing. Upon a

change in the index of one node, this node sends the new

index to its parent, the parent checks again to see if the

indexes are equal; if not and this parent is indexed, it removes

its index and informs its parent, but if this parent is not

indexed, it doesn’t have to inform its parent. With our

network, indexing a query could take less time and

computation power to return the result. For example if we

have a query that asks for the average temperature where the

temperature is above 36. When this query reaches a node

with index 1, the node doesn’t forward the query to its

children. Our third idea is to conserve energy as much as

possible using indexing with the power evaluation criteria

available in TinyDB at each node. We can use an index of 0

to note that a certain node is low in power try eliminate it in

the execution flow of the query. In the next sections, we

present our algorithm in details.

A. Building the Routing Tree

After the nodes are randomly deployed, an index routing

tree is built. The routing tree is built as follows. The closest

node to the base station is chosen to be the root of the tree

(level = 0). Once chosen, the root broadcasts requests

containing its level to all its one hop neighbors (within its

transmission range). When receiving the request, a neighbor

node assigns itself a level = level + 1 and chooses its parent

to be the level up node from which it received the request,

then re-broadcasts new requests containing its new level to

all its neighbors and so on until no neighbors are found; thus

the last nodes become leaf nodes. Whenever a node receives

two requests from two different nodes, if it has a level, it

discards the second request; and if not, it selects the first

arrived request. Thus it chooses one parent and one new level

(level = level + 1). In our tree algorithm, we intend to let

every node have only a single parent. Figure 1 displays the

flowchart of building the tree. After building the tree each

node sends its reading value to its parent starting from the

leaf and up. Every node stores its last sent value. Every parent

node receiving values from multiple children calculates the

average of the values received and sends it to its parent and so

on until the value reaches the base station.

As an example, we are going to implement an application

that calculates the average temperature of all the nodes which

are part of the tree.

NO

YES

Receive

 JOIN RESPONSE

within a fixed time

Send JOIN REQUEST

message containing its

level to all one hop

neighbors

Root Node is chosen

(Closest to Base

Station)

Level = Level + 1

Set Sender as

Parent

Node has Level

YES

NO

Fig. 1 Flowchart of building the tree

B. Building the Index Table in the Routing Tree

When the base station receives the values, it sends a

packet containing the index table to all the nodes. The first

time the index table is sent, the value ranges of each index

will be large; the reason behind this approach is not to send

large packets in the network. If the index table is large, it may

lead to collisions. When a node receives the index table, it

compares its readings to the index table and indexes itself

accordingly. In the second round the index table changes as

value for index ranges becomes smaller. After couple of

rounds the index values will be more accurate. The number of

rounds depends on the size of the index table decided once

the network is deployed. The final index table will be derived

on each node. Deciding on the index ranges of the system

depends on the type of sensor node; sensor nodes with

readings that vary in large ranges should have index ranges

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 22 -

with large values. The child sends its index to its parent.

When a parent receives an index from its children, the parent

compares all its indexes with its own, if they are all similar,

the parent indexes itself as such. However, if all indexes are

not the same, the node examines the percentage of the

similarity, if the similarity is larger or equal to 75% (based on

the simulation results in Section V), it indexes itself with the

dominant index and ignores the others. If the index

similarities are lower than 75% then the parent indexes itself

as between the smallest and largest index. After all the nodes

are indexed in the network, the parents and children agree on

a common value.

C. Common Value Agreement (CV)

After a parent receives values from its children, it first

calculates the average of the values; it stores the calculated

average and sends it back to its children. We call this value

“common value” and we denoted it by cv. Each node stores

two values: the cv of its parent and the cv of its children

(except leaf nodes). When a node needs to send a new reading

to its parent, it subtracts the cv from its reading and forwards

the value to its parent. The cv will be updated in case there is

a major change in the average of the children. When a parent

notices a large change between its children and the cv, the

parent resends the new average to its children as the new cv.

With our cv approach, sent packets are smaller and therefore

leading to less collisions, more energy efficiency and less

calculation overhead.

D. Aggregate Functions Evaluation

The calculation approach defers between different

aggregate functions. In our algorithm, we evaluate the 5 basic

aggregate functions Sum, Average, Count, Min, Max.

Average Function

We start with the Average function. Since this query asks

for the average temperature of the whole network, the query

should reach all the nodes where values will be extracted. In

our algorithm this is not the case; our algorithm offers the

user two approaches to calculate the average. In the first

approach, when the query reaches the root node, the root

node doesn’t forward the query to its children but returns his

cv since the cv is the common average between it and its

children. In the second approach the query reaches all the

nodes but not all the nodes return a value. When a query

reaches a node, the node examines its current reading and

index. If his current reading still lies within the same index

the node doesn’t forward any value since his value will not

have a noticeable change to the final result. If the current

reading doesn’t lie in the same index the node changes its

index, and sends the cv subtracted from his reading to the

parent node. After receiving the new reading the parent

notices a large value from his child thus updates his index

status and cv if needed according to the previously discussed

approaches. Then the parent node calculates the new average.

Assume Avg is the old average value, Avg_new the new

average, nv the new value received from the child and p the

children count involved in the query. The parent calculates

the new average using the following formula:

 (1)

In the second approach, sending the value depending on

the index change decreases the overhead of sending packets

where the change in reading will not cause a notable change

to the overall value; thus, using this approach results in

sending a small number of packets. Deciding on what

approach to use depends on how accurate the data needs to

be.

Count, Sum, Min and Max Functions

The Count function is evaluated in a normal approach

where the node, if meeting the criteria, sends 1 to his parent

where the parent adds the count of his children and forwards

them to his parent and so on. The Sum function can also be

evaluated using two approaches. The first approach is the

usual one where values are sent to the parent node that in his

turn sums them and sends them to his parent and so on. The

second approach of evaluating sum is to break the Sum query

into two queries, an average query and a count query. In this

approach the advantages of average evaluation discussed

previously can be used. After a node receives a sum function

it sends it’s reading as if it is calculating the average and then

sends the count. The base station calculates the Sum as

Average Count. Deciding on the approach to use depends

on the query and the exactness of the result. Our engine on

the base station decides what approach to use. The Min and

Max function are evaluated in similar approach to the

average where the node sends the cv subtracted from his

value. The parent node in its turn chooses the largest or

smallest (Min or Max) value received, adds to it the children

cv then subtracts from it its parent cv and sends it to its parent.

E. Queries with conditions

For other types of queries that have a condition, our

approach should increase the throughput of the query since

indexing will help in the injection of the query. Our engine on

the base station will parse this query and translate the

condition into index. For example, the condition “Where

temp>35” will be translated into “Where tempIndex > 5”

assuming index 5 and its preceding indexes are between 0

and 30. After this translation the query is injected into the

network. From the root and on, every parent node checks if it

has an index smaller or equal to 5, if yes, it will not forward

the query to its children. Thus the query is filtered through

the injection state. The root broadcasts the query to its

children. Once arrived to each child, they check if they have

an index smaller or equal to 5. Thus, for node having the

index 5, it ignores the query request, but in the case of the

other node, it re-broadcasts the request to all of its children

(index > 5) which in their turn, each of them forwards the

request if its index is greater than 5. This approach removes

the overhead of sending the query to unneeded nodes. This

approach increases the energy efficiency of the network

where nodes that do not satisfy the condition will not need to

spend energy since filtering is happening in the injection of

the query rather than the base station.

F. Power Management

Power consumption and network life time are major issues

in the wireless sensor network design. In our algorithm, we

try to increase the lifetime of the network through two

different approaches. In the first approach, the node keeps

track of the number of messages sent and number of

messages received. From these numbers the node can

approximate the energy consumed and therefore the amount

of energy left. We can also incorporate a battery model in our

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 23 -

algorithm. When the node reaches a state where its energy is

close to a predefined threshold, it informs its parent. The

parent will therefore decrease the number of packets sent to

this child thus will send packets to this child every two

rounds rather than every round hence decreasing the transfer

data rate to this child. If the child reaches a very low state of

energy, it informs its parent where the parent stops sending

any packets to this child.

The second approach is achieved by changing the root

parent every two rounds. If a child can have multiple parents,

the child, after couple of rounds, changes to another parent if

the other parent has more energy than his current parent.

When a parent is low on energy it informs its children, the

children in their turn will ask another parent node if they

could join it. If another parent with more energy is found, the

child switches to this new parent. A child could know if the

new parent has more energy than his old one by knowing the

amount of energy consumed by both parents derived from the

formula discussed before. We will just incorporate the first

approach in our simulator leaving the second approach for

future work. The first approach should reduce the energy

consumption of every single node in the network thus

increasing the network lifetime.

G. Query Optimization

In this section, we will discuss our approach in optimizing

a query. The base station keeps record of the last queries with

a time stamp. Upon issuing a new query, the query optimizer

checks for similar queries issued before and their results. If

the results are close, it concludes that the network readings

are not changing so instead of sending the query to the whole

network, the query is sent to different parts of the network.

To send the query to different parts of the network, the query

optimizer sends the query to the level 1 parent nodes which in

turn will choose some of their children and forward them the

query. The number of children nodes chosen depends on the

query optimizer decision. With this approach a smaller

amount of nodes participate in the query. This approach

increases energy efficiency and throughput of the network

but gives an approximation of the result. This optimization

technique doesn’t apply on all kinds of queries.

IV. SIMULATION MODEL

To test the efficiency of our algorithm, we decided to

model our own simulator to achieve our goals because of the

lack of database simulators. We will present the detailed

information on how our simulation was built.

A. Our Simulator Model

Our simulator is written in VB and it incorporates our

algorithm to be tested with the naive and the simple TinyDB

approaches. We will evaluate our algorithm by comparing it

to these approaches in terms of energy consumption, network

lifetime and time delays. We randomly deploy a large

number of nodes, then a routing tree is build in which the

query is sent from the root to the leaf nodes to be evaluated,

processed. The leaf nodes will send the results back to their

parents where they are aggregated and sent over to the

parent’s parents until an aggregated value reaches the root

which in its turn, sends the aggregated value back to the base

station.

In the tree, each node is randomly colored to present its

level (number of hops away from the base station). An edge

connects two neighbor nodes if there are in the

communication range of each other i.e. they can

communicate by sending and receiving messages. Every

node contains a cache in which it saves its level number, its

index, its parent id and its children’s ids. Figure 2 portrays

the building of the routing tree. Figure 3 shows our simulator

at work (building indexes in the tree). Every parent node is

colored by the color of its children if the percentage of itself

and its children’s color is greater than 75%. Each node is

colored by its index value.

Fig. 2 Building the routing tree simulation

Fig. 3 Building indexes in the routing tree

B. Evaluation Metrics

Our Algorithm will be evaluated based on two basic

metrics: power consumption and network lifetime. We are

going to compare the power consumed in retrieving queries

using our algorithm with other known algorithm (the naive

and the simple TinyDB approaches). The performance of the

algorithm over time will also be studied to determine the

benefits of using in-network aggregation. This is done by

assuming that each sensor node has a limited energy supply

of and is deactivated when the available energy is used up.

The performance is evaluated in terms of network lifetime.

The network lifetime is the continuous operational time of the

system before the coverage drops below a specified threshold

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 24 -

(for example 0.8). In addition to that, we will incorporate the

energy wastage resulting from building the IRT (index

routing tree).

In our simulation, we are going to randomly spread about

500 sensor nodes in a 10000 x 10000 region in VB to

investigate the change in temperature and humidity. We are

going to query these nodes to get Max, Min, and Average

values. Further investigation about some sensor nodes

measurements (return numbers) are left for future work. The

node we are going to use are the Berkley Mica motes [28, 3, 5]

with TinyOS [10, 25]. S-MAC is used as the default MAC

layer protocol. The sensor nodes will be used to measure

temperature, humidity and other metrics as provided by the

sensor itself (The Mica motes already support temperature

sensors, light sensors, magnetometers, accelerometers, and

microphones). These nodes will be connected to a base

station that will issue the query and the results are returned to

this station by in-network aggregation in the intermediate

motes, thus, providing a reduction in message overhead and

in energy consumption. In addition, several optimization

techniques should be applied to prevent other problems such

as nodes mobility, node failures, network changes and others,

from affecting the network.

We have to investigate the efficiency of our approach in

several areas through some excepted results from the

simulation such as:

1. Energy efficiency in terms of low power consumption

while transferring the query related data through the

network (reduce the number of messages required to

compute the aggregations).

2. Overhead calculation in the network (decrease the

overhead)

3. Result accuracy from the data aggregated (is the data

used for aggregation satisfactory and reliable?).

4. Other factors should be taken to consideration such as

time delays, communication failures and sensor

mobility.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we are going to evaluate our algorithm in

terms of power consumption, network lifetime and finally

time delay. Then, we are going to compare our results to well

known data management approaches such as the naive and

the simple TinyDB approaches. We are going to prove the

efficiency of our distributed approach and its adaptive

manner in maintenance and re-construction of the index

routing tree due to unexpected failures. We compare our

EEIA approach with the:

1. Naïve algorithm: all the query results from each node

are sent to its parent until the results reach the root

where they are aggregated and sent to the base

station.

2. Simple TinyDB: the results are aggregated at each

intermediate node until reaching the root.

In our simulation, we assumed the energy wasted is 1µJ

for sending a single bit and 0.5µJ for receiving a single bit.

Initially, each node has 1 J of available energy. In our

simulation, we also incorporated the energy consumption of

building an index tree. As you can see in Figure 4, as the

number of nodes increases, the energy consumption increases

linearly since all nodes participate in building the query with

same amount of energy. We concluded that the energy

consumption of building the index tree is equivalent to

initiating one query in the network.

As for the maintenance of the index tree, we see from

Figure 5 that the average energy consumed in the

maintenance depends on the readings of the nodes in the

network. If the network readings change significantly in a

small amount of time, the energy consumed in maintaining

the tree increases. On the other hand, if the network readings

change slowly then the energy consumption of the index

maintenance decreases. The energy consumption in the first

15 seconds is high since the index tree was being built. We

issued a number of different queries on 500 nodes and

compared the energy consumption, delay and number of

instructions using our approach compared to the normal

approach of broadcasting the query to the network. To

simulate the same queries, we implemented in our simulator

two approaches, the first approach queries the network by

broadcasting the query to all the nodes and aggregating the

results back to the base station. As for the second approach,

we added our index querying approach. To make our

simulation more realistic, we maintained the same condition

on the network while using the different querying

approaches.

In Figure 6, we compared the energy consumed for the

same queries using the 2 approaches. We issued 12 different

queries and calculated the energy consumed by these queries

to return the result. As can be seen from the graph, all queries

using the indexed approach consume less energy than using

the other approach. You can also note from the graph that

some queries have energy consumption that is close to the

normal approach while others have larger energy

consumption. This difference depends on the conditions of

the issued query since more selective queries tend to have a

larger advantage using our approach (indexing with more

selectiveness decreases the number of messages sent and

received in the network).

In Figure 7, we compare the number of packets sent for

the same query using the 2 approaches. As the figure shows,

the number of packets sent decreases with the indexing

approach since some nodes will not forward the packets to

their children if their children don’t satisfy the query

conditions. As can be seen in Figure 8, the delay is decreased

using our approach since as discussed before the number of

packets sent decrease hence collisions decrease. In the delay

simulation, we assumed a packets needs 0.01 sec to be resent.

In the last simulation, we added the cv (common value)

approach to our simulator and compared the lifetime of the

network using indexing and cv querying to the normal

approach. As can be seen from Figure 9, the first node dies

after 83 queries in the normal approach while using our

approach; the first node dies after 130 queries. This increase

in the lifetime of the network is due to two factors. The first

factor is that nodes are sending fewer packets using the

indexed approach thus less energy consumption per node.

The second factor is the decrease in packet size with cv

approach where less energy is consumed in sending the

packet.

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 25 -

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200

En
e
rg

y
C
o
n
su

m
e
d

Nb of Nodes

Building Indexes in the Rounting Tree

Energy consumed (mJ) VS

Density of the Network

Fig. 4 Building the routing tree

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 15 30 45 60 75 90 105 120

En
e
rg

y
co

n
su

m
e
d
 (

J)

Time in seconds (Readings Change)

Energy Consumed VS Change in Readings

Maintaining Routing Tree (100

nodes initially deployed)

Fig. 5 Maintaining the routing tree

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 1 2 3 4 5 6 7 8 9 10

En
e
rg

y
C
o
n
su

m
e
d
 (

µJ
)

Query: Select AVG(temp)

From sensors

where temp > 25

and temp < 33

Energy Consumed Per Query

Simple TinyDB

EEIA

Naive

Fig. 6 Energy consumption per query

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 1 2 3 4 5 6 7 8 9 10

N
b
 o

f
In

st
ru

ct
io

n
s

Query: Select AVG(temp)

From sensors

where temp > 25

and temp < 33

Nb of Instruction Per Query

Simple TinyDB

EEIA

Naive

Fig. 7 Nb of instructions per query

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10

D
e
la

y
in

 S
e
co

n
d
s

Query: Select AVG(temp)

From Sensors

Where temp > 25

And temp < 33

Delay Per Query

Simple TinyDB

EEIA

Naive

Fig. 8 Time delay per query

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

En
e
rg

y
C
o
n
su

m
e
d
 (

µJ
)

Nb of Queries

Network Lifetime

Simple TinyDB

EEIA

Naive

Fig. 9 Network lifetime

VI. CONCLUSIONS

In summary, we have showed how aggregate queries are

efficiently executed over wireless sensor networks in a

distributed manner. We have proved that our in-network

distributed approach performed better in terms of energy

reduction and network lifetime than the naïve and simple

TinyDB approaches. Furthermore as for future work, our

approach should confront with the difficulties of topology

construction, data routing, loss tolerance by including several

optimization techniques that further decrease message costs

and improve tolerance to failure and loss. In addition to

implementing these techniques, we need to rethink some of

these techniques to present more efficiency to network

changes and external factors which could affect our approach

such as node mobility, obstacles and other issues. In addition

as future work, we could also extend our simulator to

incorporate a 3D tree construction technique plus other

methodologies mentioned above.

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann (Editors), “Embedding the

Internet”, In CACM Volume 43, Issue 5, May 2000, Pages: 38 - 41.

[2] S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting

aggregate queries over ad-hoc sensor networks”, In Workshop on

Mobile Computing and Systems Applications (WMCSA), Callicoon,

NY, June 2002, Pages: 49 – 58.

[3] G. Pottie and W. Kaiser, “Wireless integrated network sensors”,

Communications of the ACM, Volume 43, Issue 5, May 2000, Pages:

51- 58.

[4] Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless sensor

networks for habitat monitoring”, In Proceedings of the 1st ACM

international workshop on Wireless sensor networks and applications,

Atlanta, Georgia, USA, 2002, Pages: 88 - 97.

[5] J. Hill, R. Szewczyk, A.Woo, S. Hollar, and D. Pister, “System

architecture directions for networked sensors”, In Proceedings of the

1st international conference on Embedded networked sensor systems

Los Angeles, California, USA, November 2000, Pages: 193 - 204.

[6] Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao,

“Habitat monitoring: Application driver for wireless communications

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009

1793-8201

- 26 -

technology”, In ACM SIGCOMM Workshop on Data

Communications in Latin America and the Caribbean, April 2001,

Pages: 20- 41.

[7] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database

systems”, In 2nd International Conference on Mobile Data

Management, Hong Kong, January 2001, Pages: 3 - 14.

[8] Y. Yao and J. Gehrke, “Query Processing in Sensor Networks”, In

Proceedings of the First Biennial Conference on Innovative Data

Systems Research (CIDR 2003), Asilomar, California, January 2003.

[9] Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao,

“Energy-Efficient Data Management for Sensor Networks: A

Work-In-Progress Report”, 2nd IEEE Upstate New York Workshop

on Sensor Networks. Syracuse, NY, October 2003.

[10] S. Madden, M. Franklin, J. Hellerstein, W. Hong, “The Design of an

Acquisitional Query Processor for Sensor Networks”, ACM

SIGMOD Conference, San Diego, CA, June 2003, Pages: 491 - 502.

[11] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query

Processing in Sensor Networks”, Sigmod Record, Volume 31,

Number 3, September 2002, Pages: 9 – 18.

[12] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,

and D. Ganesan, “Building efficient wireless sensor networks with

low-level naming”, In Proceedings of the eighteenth ACM

symposium on Operating systems principles, Banff, Alberta, Canada,

October 2001, Pages: 146-159.

[13] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,

“Impact of network density on data aggregation in wireless sensor

networks”, In ICDCS-22, November 2001.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:

A scalable and robust communication paradigm for sensor networks”,

In Proceedings of the Sixth Annual International Conference on

Mobile Computing and Networks (MobiCOM 2000), Boston, MA,

August 2000, Pages: 56-67.

[15] S. Madden, M. Franklin, J. Hellerstein and W. Hong, “TinyDB: An

Acquisitional Query Processing System for Sensor Networks”, In

ACM Transactions on Database Systems (TODS), Volume 30, Issue

1, March 2005, Pages: 122 - 173

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a Tiny

AGgregation service for ad-hoc sensor networks, ” In 5th Annual

Symposium on Operating Systems Design and Implementation

(OSDI), December 2002, Pages: 131-146.

[17] J. Hellerstein, P. Hass, and H.Wang, “Online aggregation”, In

Proceedings of the ACM SIGMOD, Tucson, AZ, May 1997, Pages:

171–182.

[18] Shatdal and J. Naughton, “Adaptive parallel aggregation algorithms”,

In Proceedings of the 1995 ACM SIGMOD international conference

on Management of data, San Jose, California, United States, Pages:

104 – 114.

[19] W. Yan and P. Larson, “Eager aggregation and lazy aggregation”, In

Proceedings of the 21th International Conference on Very Large Data

Bases (VLDB), September 1995, Pages: 345 – 357.

[20] ANSI. SQL Standard, 1992. X3.135-1992.

[21] P. Larson, “Data reduction by partial preaggregation”, In ICDE, 2002.

[22] S. Madden and M. Franklin, “Fjording the stream: An architecture for

queries over streaming sensor data”, In ICDE, 2002.

[23] M. Garofalakis and P. Gibbons, “Approximate query processing:

Taming the terabytes!” (Tutorial), In VLDB, 2001.

[24] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Generation

Database Management System”, Communications of the ACM,

Volume 34, Issue 10, 1991, Pages: 78–92.

[25] UC Berkeley, “Smart buildings admit their faults”, Web Page,

November 2001. Lab Notes: Research from the College of

Engineering, UC Berkeley.

http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[26] O. Wolfson, A. Sistla, B. Xu, J. Zhou, and S. Chamberlain, “DOMINO:

Databases fOr MovINg Objects tracking”, In Proceedings of the 1999

ACM SIGMOD international conference on Management of data,

Philadelphia, Pennsylvania, United States, June 1999, Pages: 547 –

549.

[27] D. Kossman, “The state of the art in distributed query processing”, In

ACM Computing Surveys (CSUR), Volume 32, Issue 4, December

2000, Pages: 422 – 469.

[28] Crossbow, “Wireless sensor networks (mica motes)”,

http://www.xbow.com/Products/WirelessSensorNetworks.htm.

[29] Hill. A software architecture to support network sensors. Master’s

thesis, UC Berkeley, 2000.

[30] Mica motes: Crossbow technology, inc. Tech. rep.

http://www.xbow.com.

http://coe.berkeley.edu/labnotes/1101.smartbuildings.html
http://www.xbow.com/Products/WirelessSensorNetworks.htm
http://www.xbow.com

