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Sensorimotor control is thought to rely on predictive internal models in order to cope

efficiently with uncertain environments. Recently, it has been shown that humans not

only learn different internal models for different tasks, but that they also extract common
structure between tasks. This raises the question of how the motor system selects

between different structures or models, when each model can be associated with a range

of different task-specific parameters. Here we design a sensorimotor task that requires
subjects to compensate visuomotor shifts in a three-dimensional virtual reality setup,

where one of the dimensions can be mapped to a model variable and the other dimension
to the parameter variable. By introducing probe trials that are neutral in the parameter

dimension, we can directly test for model selection. We found that model selection

procedures based on Bayesian statistics provided a better explanation for subjects’ choice
behavior than simple non-probabilistic heuristics. Our experimental design lends itself to

the general study of model selection in a sensorimotor context as it allows to separately

query model and parameter variables from subjects.

Keywords: Bayesian model selection, sensorimotor control, structural learning, hierarchical learning, sensorimotor

integration

INTRODUCTION

For biological organisms in uncertain environments, at least three

important problems arise: one, the estimation of the state from

noisy sensory feedback (e.g., the state of body parts). Two, the

prediction of sensory consequences of actions and three, the

selection of desirable actions, which builds upon the state esti-

mate as well as the capability to predict consequences (Wolpert

and Ghahramani, 2000; Todorov, 2004; Shadmehr et al., 2010;

Franklin and Wolpert, 2011). Internal models are thought to play

a central role in solving these problems (Shadmehr and Mussa-

Ivaldi, 1994; Wolpert et al., 1995; Kawato, 1999; Tin and Poon,

2005). For estimation, internal models make use of sensory feed-

back to update prior beliefs about unobserved variables. Forward

models predict sensory consequences of one’s own actions, which

allows not only to bridge delays in the sensorimotor loop, but

also to distinguish between self- and externally generated motion

(Poulet and Hedwig, 2006; Imamizu, 2010). To solve the prob-

lem of action selection, the theory of optimal feedback control has

been used as one of a number of frameworks that study how inter-

nal models are harnessed in control (Todorov and Jordan, 2002;

Diedrichsen, 2007; Chen-Harris et al., 2008; Izawa et al., 2008;

Braun et al., 2009a; Diedrichsen and Dowling, 2009; Nagengast

et al., 2009).

Besides the question of how biological organisms adapt inter-

nal models when the environment changes over time, another

important question is how they learn new internal models and

select between existing models (Shadmehr et al., 2010). There

is a large body of evidence that shows that learning of predic-

tive models happens on many different time scales and levels

of abstraction (Newell et al., 2001; Smith et al., 2006; Wolpert

and Flanagan, 2010). In a number of recent studies (Braun

et al., 2009a,b) it was shown, for example, that the motor sys-

tem can learn structural invariants when faced with randomly

changing environments that share a structural similarity. In

particular, in these tasks subjects had to both adapt parame-

ters of internal models to environments with known structure

and to learn new structures and their parameters from expo-

sure to environments with different variability pattern. Here

we are interested in the mechanism by which the motor sys-

tem selects between different structures, that is the selection

between different models that can take on different parameter

settings.

In cognitive science, a number of studies has shown that

human model selection in categorization or language learning

tasks can be well described as Bayesian model selection (Holyoak,

2008; Kemp and Tenenbaum, 2008; Tenenbaum et al., 2011).

Bayesian models have also been very successful in explaining

human perceptual and sensorimotor learning of parameters in

environments with known structure (van Beers et al., 1999; Ernst

and Banks, 2002; Knill and Pouget, 2004; Körding and Wolpert,

2004; Körding and Wolpert, 2006; Braun et al., 2009a; Girshick

and Banks, 2009). However, if there are several structures, and

each structure has a range of parameter values, then the full

problem of model and parameter selection arises. For perceptual

learning this has been studied, for example, in case of the ven-

triloquist problem, where subjects have to discriminate whether

a visual and an auditory signal stem from one source or from

two different sources (Körding et al., 2007; Sato et al., 2007). Here

we study Bayesian model selection in the context of a sensorimo-

tor integration task that allows for ambiguous stimuli which are

compatible with different model classes. The goal of our study is

to develop an experimental paradigm for model selection and to
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test whether human sensorimotor choices in such a setting are

quantitatively consistent with Bayesian model selection.

RESULTS

Subjects controlled a cursor from a start position to one of two

targets in a 3D virtual reality setup—see Figure 1A. At the start

position the cursor was always displayed and represented subjects’

veridical hand position. However, during the movement a ran-

dom lateral shift s was applied to the cursor with respect to the

hand position. Importantly, throughout most of the movement,

the cursor was hidden and there was only a brief time interval of

sensory feedback of the shifted cursor position. In each trial, the

shift s was randomly sampled from one of two possible distribu-

tions with 50:50 probability. In the first part of the experiment

(first 500 trials), the two distributions were given by a Gaussian

P(s|Mσ1
1 ) and a mixture of Gaussians P(s|M2)—see Figure 2A.

In the second part of the experiment (last 500 trials), the stan-

dard deviation of the first distribution was increased, so that

the two distributions were given by P(s|Mσ2
1 ) and P(s|M2)—see

Figure 2B.

From the point of view of model selection, the two distribu-

tions over the shift correspond to two different models M1 and

M2. Subjects could indicate their choice of model by selecting

one of the two targets. Subjects could exploit the observed shift to

infer the correct target. Their belief about the shift s was reported

by a compensatory horizontal movement. In all trials, the upper

target represented the selection of model M1 and the lower target

represented the selection of model M2. After completing a reach-

ing movement, participants were informed about the correctness

of their beliefs by showing the shifted cursor and hiding the

incorrect target. Subjects were instructed about the relationship

between shift and target selection. For example, in the first part

of the study they were told that small shifts are mostly associated

with the upper target and larger shifts with the lower target—see

“Materials and Methods” for details. They could use the first 100

trials of each part of the experiment to acquaint themselves with

the decision criterion.

FIGURE 1 | Sensorimotor task setup. (A) Shows the schematic of a

standard trial. One of two targets (yellow) has to be hit after observing a

shifted cursor (red) for a short feedback duration. The white sphere depicts

the start position. (B) Illustrates a probe trial where the visual feedback is

ambiguous and consists of a densely sampled array of cursors, centered

horizontally and vertically. The target width covers the whole lateral

workspace, in order to make horizontal compensations obsolete. A

photograph of the experimental apparatus is provided in Figure 15.

To test for model selection with different degrees of feedback

uncertainty, we used probe trials where participants were shown

ambiguous feedback. The feedback presented in these trials was

an array consisting of uniformly and densely sampled rectangles

that represented all the possible cursor locations—see Figure 1B.

The array width d could take on one of three different values

with equal probability: small (d = 3 cm), medium (d = 5 cm),

and large (d = 8 cm). The larger the array the higher the uncer-

tainty about the cursor position, and therefore the higher the

uncertainty about the underlying shift s. In these probe trials

subjects only reported their belief about the model without indi-

cating the presumed shift. This was achieved by increasing the

target width to the full size of the lateral workspace, which made

horizontal compensations unnecessary. As in the standard trials,

participants reported their belief about the correct model M by

choosing either the upper or the lower target, however, in probe

trials they did not receive any feedback on whether their choice

was correct or not. Probe trials occurred intermixed with standard

trials after the first 100 trials of each part of the experiment.

In the probe trials of the first part of the experiment we

found that the probability of choosing model M
σ1
1 decreases

with increasing width of the ambiguous feedback array: for small

array widths subjects preferred model M1, whereas for large

ambiguous feedback arrays they preferred model M2. This can

be seen in Figure 3B. The correlation between the array width

and the choice probability was statistically significant for all

subjects (p < 0.01, Fisher’s exact test). For the second part of the

experiment, subjects’ model selection probabilities are depicted

in Figure 3C. The correlation between array width and choice

probability was no longer significant (p > 0.1 for all subjects,

Fisher’s exact test). This is because, for ambiguous feedback arrays

with medium and large uncertainty (d = 5, 8 cm) subjects were

now indifferent between model M1 and M2. Importantly, when

comparing the model selection probabilities of the first part of

the experiment and the second part of the experiment shown

in Figure 3A, the model selection probabilities changed signifi-

cantly (p < 0.05, ranksum test) for ambiguous stimuli with large

uncertainty (d = 8 cm). For an array width of d = 3 or 5 cm

there was no significant change in the choice probabilities for the

two variance conditions of model M1 (p > 0.05 ranksum test).

Importantly, this implies that the choice probabilities of select-

ing model M2 are very different for the same stimulus (d = 8 cm)

depending on the complexity of model M1.

We tested five different explanatory schemes to describe sub-

jects’ choice behaviors: model selection with Bayes factors, model

selection with Bayesian policy inference of the discrimination

functions learned in the standard trials, and three heuristic expla-

nations that are non-probabilistic.

EXPLANATION 1: BAYES FACTORS

Given prior probability P(Mi) over the two models M1 and

M2, Bayes’ rule describes how to assign posterior probability

P(Mi|d) after observing array width d in a probe trial, such that

P(Mi|d) ∝ P(d|Mi)P(Mi)—where P(d|Mi) measures how well

the array width d can be explained on average by the shifts

that are compatible with model class Mi. This average is also

called the marginal likelihood or evidence and can be computed as
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FIGURE 2 | Prior distributions for the horizontal shift s. (A) Shows the

two prior distributions induced by model M
σ1
1 (Gaussian distribution with

σ1 = 1, solid line) and M2 (mixture of two Gaussians, dashed line) in the first

part of the study. (B) Shows the two prior distributions induced by model

M
σ2
1 (Gaussian distribution with σ1 = 4, dash-dot line) and M2 (same mixture

of two Gaussians, dashed line) in the second part of the study.

FIGURE 3 | Subjects’ choice behavior in probe trials. (A) Shows the

average of the experimentally observed choice probabilities for choosing M1

for three different observed array widths d of the ambiguous feedback array.

The mean is taken over all subjects. The solid line corresponds to the choice

probabilities observed in the first part of the study, the dash-dot line shows

the choice probabilities observed in the second part of the study, where the

variance of M1 was increased. (B) Shows the experimentally observed

probability of choosing M
σ1
1 . Circles represent individual subjects’ choice

probabilities, the solid line shows the average over participants with standard

deviation error bars. With increasing array size, the probability of choosing

M
σ1
1 decreases. (C) Shows the experimentally observed choice probabilities

P (M
σ2
1 |d) for the second part of the experiment, where σ2 > σ1. Compared to

the first part, the probability of choosing M
σ2
1 for the large array size d = 8 is

significantly increased.

P(d|Mi) =
∫

dsP(d|s, Mi)P(s|Mi), where each shift s contributes

the likelihood P(d|s, Mi) weighted by the prior P(s|Mi) shown

in Figure 2. P(d|s, M) is an observation model that explains how

likely it is to observe an array of width d if the true shift is s. In

our experiment both models have the same observation model,

that is P(d|s, M) = P(d|s), which assigns equal probability to all

array widths d greater or equal than a given shift s up to a max-

imum width dmax. This uniform distribution over d can be seen

in Figure 4A for different given shifts s. When P(d|s) is used as a

likelihood model, however, it is considered as a function of s with

a particular fixed observation d. The likelihood model then indi-

cates how likely all the different shifts s would be as an explanation

of the observed array width d. The likelihood model as a function

of s can be seen in Figure 4B.

Based on the likelihood model in Figure 4B and the priors

shown in Figure 2, Figure 5 explains how the model evidence

can be computed for different observations d. Figure 6 shows the

model evidence for the different widths d of the ambiguous feed-

back array for all three models M
σ1
1 , M

σ2
1 , and M2. As can be

seen in the bottom row of Figure 6, for small width (d = 3 cm)

of the ambiguous stimulus array, the evidence for M1 (for both

σ1 and σ2) is higher than for M2. This is because model M1

places a high probability mass on small shifts centered around

zero, whereas model M2 does not—see Figure 2. For ambiguous

feedback arrays of medium uncertainty (array width d = 5 cm),

the evidence of all models is very similar, that means they all can

explain a medium-size range of possible shifts equally well. For

ambiguous feedback arrays with large uncertainty (array width
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d = 8 cm), the evidence of M
σ1
1 is lower than the evidence for

M2, because model M2 places more probability mass on larger

feedback array widths, which ultimately results from the higher

probability placed on large shifts—see Figure 6. However, when

the standard deviation of model M1 is increased to σ2 in the

second part of the study, both models can explain ambiguous

feedback with large uncertainty equally well.

Once we have computed the model evidence for all possi-

ble observations and models, we can use it to make predictions

about subjects’ choice probabilities between the models. As we

have equal prior probabilities P(Mi) for the models in our experi-

ment, the model class Mi that assigns a higher marginal likelihood

P(d|Mi) to the observation d is predicted to be preferred. Model

selection is then determined by the Bayes factor (Kass and Raftery,

1993) between the two models, that is P(d|M1)/P(d|M2). Based

on a softmax decision rule, we can then predict subjects’ choice

probabilities as

P(a = M1) =
1

1 + e
−α log

P(d|M1)

P(d|M2)

,

where a = M1 implies moving up to choose model M1 and a =
M2 implies moving down to choose model M2. We assumed

α = 1 throughout. Thus, if the Bayes factor is larger than one,

subjects should be more likely to choose Model 1. Conversely,

if the Bayes factor is smaller than one, subjects should be more

likely to choose Model 2. The choice probabilities resulting from

the softmax rule are shown in Figure 7A. In the case of small

variance σ1, this predicts that the probability of choosing model

M1 should decrease with the increase of the uncertainty of the

ambiguous feedback. In the case of large variance σ2, this predicts

that the probability of choosing model M1 is very similar to the

probability of choosing model M2 for medium and large feedback

arrays. Especially for the large ambiguous feedback array of width

FIGURE 5 | Computation of the model evidence P(d|M) when

observing an ambiguous cursor array of width d—shown for model

M
σ1
1 and d = 5, so the possible shifts of the hand position range from

−2.5 to 2.5 cm. (A) Shows the likelihood P (d = 5|s) of observing the

ambiguous cursor array of width d = 5 for different shifts s. (B) Shows the

prior P (s|M
σ1
1 ) over the shift s according to model M

σ1
1 . (C) Depicts the

product of the distributions in panels (A,B) and illustrates the integration

over the shifts s. This computation leads to a single value for the model

evidence P (d|M
σ1
1 ). The model evidence can be similarly computed for all

models as shown in the inlet panel.

FIGURE 4 | Observation model. (A) Shows the probability P (d|s) of

observing an array of width d given the shift s. All array widths up

to a maximum dmax have equal probabilities but arrays that are too

small to contain the shift s have zero probability. The figure shows

three different cases for three different shifts s with a solid line

and two dashed lines, respectively. It is important to notice that in

case of small shifts probability mass is spread quite evenly, whereas

in the case of large shifts most of the probability mass is placed

close to the maximum array width dmax . (B) Shows the likelihood

P (d|s) as a function of s. For an array width d it is more likely

that the shift s that caused the observation is close to half the

array width d/2.
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FIGURE 6 | The 3 × 3 panel shows the product of parameter prior

P(s|M) and observation likelihood P(d|s) for the three possible

array widths d∈ {3, 5 ,8} cm and the three different models M
σ 1
1

(black), M
σ2
1 (dark gray) and M2 (light gray). The bottom row

shows the model evidence P (d|M) of observing a feedback array of

width d for the different models, which is obtained by integrating out

the shift s for each of the three models within the same column. For

feedback arrays of large width (d = 8 cm), model M2 is a better

explanation than model M
σ1
1 . However, when increasing the standard

deviation of M1 to σ2 both models have similar marginal likelihood for

large width. For a detailed illustration on the computation of the model

evidence P (d|M) see Figure 5.

d = 8 cm—the prediction implies that for the same stimulus the

choice probabilities for selecting model M2 are very different

depending on the complexity of model M1.

The comparison to the actual probabilities of model selec-

tion observed in the experiment are presented in Figures 7B,C.

In line with the predictions shown in Figure 7A the probability

of choosing model M
σ1
1 decreases with increasing width of the

ambiguous feedback array for the first part of the experiment: for

small array widths subjects preferred model M1, whereas for large

ambiguous feedback arrays they preferred model M2. Similarly,

the predictions explain the choice probabilities of the probe trials

in the second part of the experiment, where for small array widths

model M1 is preferred, and for larger array widths subjects are

indifferent between the two models. The predictions achieved a

negative log-likelihood of L = 1170 with respect to the data.

EXPLANATION 2: BAYESIAN POLICY INFERENCE

Instead of learning different prior distributions P(s|Mi) over the

shifts for the two models M1 and M2, subjects could directly

learn optimal responses P(a = M1|s) to the shifts in the stan-

dard trials and a single prior P(s) over the possible shifts. They

could learn, for example, that for small shifts they should mostly
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FIGURE 7 | Predictions and data: Bayes factors. (A) Shows the

predicted choice probabilities for choosing M1 as a function of the

observed array width d under the assumption of a softmax choice rule.

The solid line corresponds to the predicted choice probabilities for the

first part of the study, the dash-dot line shows the predicted choice

probabilities for the second part of the study, where the variance of

M1 was increased. (B) Shows the predictions for the first part of the

study (solid line) and the experimental results for three different widths

d of the ambiguous feedback array. The dotted line shows the mean

and standard deviation across subjects of the experimentally observed

probabilities of choosing M
σ1
1 . (C) Shows the predictions (dash-dot line)

as well as the experimentally observed choice probabilities (dotted line

represents mean with standard deviation error bars across subjects) for

choosing M
σ2
1 in the second part of the study.

move to the upper target, that is a = M1, and for large shifts they

should mostly move to the lower target, that is a = M2. When

faced with an ambiguous stimulus in a probe trial, they could

then integrate over the responses P(a|s) by considering all possible

shifts weighted by the plausibility of each shift. This plausibility is

given by the posterior distribution P(s|d) that results from infer-

ring the underlying shift after observing an array of width d. The

choice probability in the probe trial can then be computed by

the integral

P(a = M1|d) =

∫

ds P(s|d)P(a = M1|s).

This choice rule has been previously proposed as a stochastic

Bayesian rule for control in (Ortega and Braun, 2010) to solve

adaptive control problems. In this framework it is assumed that

a number of primitive strategies are known that are suitable for

different environments. When knowledge of the environment is

not available a probabilistic superposition of the primitive strate-

gies results in a stochastic strategy that conforms with Bayesian

statistics. In our experiment the different environments corre-

spond to trials with different shifts. The basic strategies coping

with these shifts could be learned in the standard trials together

with a prior P(s) over all possible shifts. The unconditional prior

P(s) is given by the superposition of the two conditional pri-

ors shown in Figure 2, that is P(s) = 1
2 P(s|M1) + 1

2 P(s|M2). In

the probe trials ambiguity is induced about the underlying shift.

The possible underlying shifts can be inferred through the pos-

terior P(s|d) that is given by P(s|d) ∝ P(d|s)P(s), with the same

likelihood model P(d|s) as described in the previous section and

displayed in Figure 4B.

To test this model, we first investigated subjects’ choice

behavior in standard trials. In particular, we examined sub-

jects’ probability P(a = M1|s) of choosing model M1 or M2 for

different shifts s. The response curves P(a = M1|s) for a typi-

cal subject can be seen in Figures 8A,B. Panel (A) shows the

response curve for the first part of the experiment, and Panel

(B) shows the response curve for the second part of the exper-

iment. In both cases subjects showed a high probability for

choosing model M1 for small shifts. In the first part of the

experiment this probability decreases for large shifts, implying

the selection of model M2. In the second part of the experi-

ment the probability of selecting model M1 decreases for larger

shifts, but then increases again with very large shifts. These

response curves are in agreement with the prior distributions

shown in Figure 3, as in the first part of the experiment model

M1 was only associated with small shifts, whereas in the sec-

ond part of the experiment model M1 could also be associated

with very large shifts. Learning the response functions P(a =

M1|s) is therefore equivalent to learning the conditional priors

P(s|Mi). The fitted response curves for all subjects can be seen

in Figure 9.

In the probe trials the underlying shift is unknown and there-

fore the policy P(a = M1|s) cannot be applied directly, as it

requires knowledge of the shift s. Using Bayesian policy inference,

the action is then determined by a probabilistic superposition that

is weighted by the posterior probabilities of the shifts. This super-

position allows predicting directly the choice probabilities for the

probe trials. The predicted choice probabilities are shown for a

typical subject in Figures 8C,D. Panel (C) shows the subject’s pre-

dicted probability of choosing model M1 for three different array

widths d in the first part of the experiment. It can be seen that

the choice probability decreases for large observed array widths.

Similarly, Panel (D) shows the subject’s predicted probability of

choosing model M1 in the second part of the experiment. In this

case the choice probability for model M1 is elevated for the small

array width, but is close to one half for the two larger array sizes.

The comparison to the actual choice probabilities of all subjects
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FIGURE 8 | Construction of predicted choice probabilities following

Bayesian policy inference. (A) Shows the fitted choice probabilities of

selecting model M1 in standard trials when the shift s is known for a

typical subject in the first part of the experiment. Model M1 is mostly

selected for small shifts. (B) Shows same as panel (A) but for the

second part of the experiment. (C,D) Show the predicted choice

probability of selecting model M1 for this subject in a probe trial with

observed array width d. The probe trial choice probabilities are obtained

by a probabilistic superposition of the standard trial choice probabilities

shown in panels (A,B).

observed in the experiment are presented in Figure 10. The pre-

dictions achieved a total negative log-likelihood of L = 1097 with

respect to the data.

EXPLANATION 3: THE “AVERAGE SHIFT”-HEURISTIC

The response curves P(a|s), that describe behavior in the stan-

dard trials in dependence of the observed shift s, could also

be used for non-probabilistic heuristic strategies in probe tri-

als. One such strategy could be to simply assume the average

shift when faced with an ambiguous stimulus, which corresponds

to the location in the middle of the cursor array in the probe

trial—see Figures 11A,B. In this case the choice probabilities are

determined by

P(a = M1|d) = P(a = M1|s = 0).

However, this strategy predicts constant choice probabilities that

do not vary with the observed array size. Moreover, this predicts

that subjects should choose model M1 most of the time, as it

explains shifts in the middle best—see the prediction for a typical

subject in Figures 11C,D. This prediction is in clear contradiction

to the observed choice probabilities that change depending on

the feedback array width. Figure 12 shows the predictions of the

“average shift”-heuristic compared to the actual choice probabili-

ties of all subjects. The predictions of the “average shift”-heuristic

achieved a total negative log-likelihood of L = 2689 with respect

to the data.

EXPLANATION 4: THE “BIGGEST SHIFT”-HEURISTIC

Another non-probabilistic heuristic that could be employed based

on the response curves of the standard trials, is to assume always

the largest possible shift for any given cursor array in the probe

trial. Accordingly, the location of the assumed shift would cor-

respond to the edge of the array with total width d, such that

the edge corresponds to the half-width d/2. The corresponding

choice probabilities are determined by

P(a = M1|d) = P(a = M1|s = d/2).

The predictions of the “biggest shift”-heuristic can be seen in

Figures 11E,F for a typical subject. As in the two Bayesian mod-

els, the predicted choice probability of model M1 decreases with

increasing array width for the first part of the experiment. For the

second part of the experiment the “biggest shift”-heuristic pre-

dicts a slightly increased probability of choosing model M1 for

the small array width and almost indifferent choice probabilities

for the two larger array widths. Figure 13 shows the actual choice

probabilities of all subjects compared to the predictions. While

the “biggest shift”-heuristic predicts the right trend in the first

part of the experiments, it considerably underestimates the actual
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FIGURE 9 | (A–G) Show the fitted standard trial choice probabilities of

selecting model M1 for all seven subjects. The left panel shows performance

during the first part of the experiment and the right panel shows performance

during the second part of the experiment. In each panel, the filled circles show

the subject’s mean choice probability P (Mσ
1 ), given a particular shift s along

with standard deviation error bars. The choice probabilities for negative shifts

have been mapped to the corresponding positive shift. The dotted line shows

the fitted response curve that lies closest to the observed choice probabilities.
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FIGURE 10 | Predictions and data: Bayesian policy inference. (A) Shows

the predicted choice probabilities for choosing M1 as a function of the

observed array width d using response functions that have been fitted to

the standard trial data. The solid line corresponds to the predicted choice

probabilities for the first part of the study, the dash-dot line shows the

predicted choice probabilities for the second part of the study, where the

variance of M1 was increased. Since the response functions have been

fitted individually per subject, the predictions show the mean across all

subjects. The corresponding standard deviation error bars are shown in

panels (B,C). (B) Shows the predictions for the first part of the study (solid

line) and the experimental results for three different widths d of the

ambiguous feedback array. The dotted line shows the mean and standard

deviation across subjects of the experimentally observed probabilities of

choosing M
σ1
1 . (C) Shows the predictions (dash-dot line) as well as the

experimentally observed choice probabilities (dotted line) for choosing M
σ2
1

in the second part of the study.

choice probabilities. The predictions for the second part of the

experiment lie within the standard deviation of the experimental

data. The predictions of the “biggest shift”-heuristic achieved a

total negative log-likelihood of L = 1321 with respect to the data.

EXPLANATION 5: THE “HALFWAY SHIFT”-HEURISTIC

The probe trial shifts are grossly underestimated by the “average

shift”-heuristic and overestimated by the “biggest shift”-heuristic.

Accordingly the choice probabilities for model M1 are either too

high or too low, especially in the first part of the experiment.

We therefore considered a “halfway shift”-heuristic that would

always assume a shift halfway between the middle and the edge

of the cursor array. Accordingly, the choice probabilities of the

“halfway shift”-heuristic lie inbetween the extremes of the other

two heuristics

P(a = M1|d) = P(a = M1|s = d/4).

Figure 14 shows the actual choice probabilities of all subjects

compared to the predictions of the “halfway shift”-heuristic.

While the error bars of the experimental data and the theoretical

curves overlap, it can be seen that the heuristic generally overes-

timates the choice probability of choosing model M1. The pre-

dictions of the “halfway shift”-heuristic achieved a total negative

log-likelihood of L = 1203 with respect to the data.

DISCUSSION

We designed a three-dimensional visuomotor integration exper-

iment where we could distinguish between parameter variables

and model variables, such that the parameter variable was rep-

resented by lateral visuomotor shifts in one dimension and the

model variable was represented by two targets in the other

dimension that were associated with different distributions over

the shifts. In particular, we designed probe trials that did not

require subjects to compensate these shifts, such that the shift

variable could be “integrated out” when they reported their belief

about the underlying model class. This allowed us to directly com-

pare subjects’ choice probabilities to the selection probabilities

predicted by five different schemes of model selection: Bayesian

model selection based on Bayes factors, Bayesian policy infer-

ence over response curves that were fitted to the standard trials,

and three non-probabilistic heuristics that were also based on the

standard trial response curves. We found that the Bayesian model

selection procedures explained our data best, whereas the three

heuristics were worse in explaining choice behavior in the probe

trials. By testing two sets of distributions over the shifts, for which

the observed model selection probabilities agreed with the pre-

dictions of two different Bayesian model selection procedures, we

achieved a proof of concept for this experimental paradigm.

The experimental paradigm differs from previous sensorimo-

tor paradigms on Bayesian integration (Körding and Wolpert,

2004) in two important ways. First, by introducing a third dimen-

sion to the task we can simultaneously induce uncertainty over

two random variables, one of which can represent a parameter

variable and the other one a model variable. Previous studies

(Körding and Wolpert, 2004) have shown Bayesian integration

in visuomotor tasks where only uncertainty over parameters

was investigated, meaning that subjects had to infer visuomo-

tor shifts which were drawn from a particular distribution. It

was shown that subjects combined information about the prior

distribution of these shifts together with noisy sensory feedback

in order to obtain an optimal estimate of the shift. By vary-

ing the reliability of the sensory feedback, the authors could

show that subjects weighted prior and feedback in a Bayesian

way—giving less weight to the feedback if reliability of the

feedback was low. As there was only one distribution over
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FIGURE 11 | Construction of predicted choice probabilities following

heuristics. (A,B) Show the fitted choice probabilities of selecting model

M1 in standard trials of the same subject shown in Figure 8. For the

“average shift”-heuristic the shift s0 is always assumed in the probe

trials. For the “biggest shift”-heuristic the shift is always assumed to

be the largest possible shift that depends on the width of the feedback

array and ranges from s3 to s8. (C,D) Show the predicted choice

probability of selecting model M1 for this subject in a probe trial with

observed array width d under the “average shift”-heuristic. (E,F) Show

the predicted choice probability of selecting model M1 for this subject

in a probe trial with observed array width d under the “biggest

shift”-heuristic.

shifts, the authors could not test for Bayesian model selection

in their experiment. By introducing the third dimension for

the model variable, we could therefore naturally extend their

paradigm.

Second, we developed a paradigm where we can separately

query the model and parameter variables from subjects. We

achieved this by enlarging the horizontal size of the targets in

probe trials, such that lateral corrections, that are used to report

the shift parameter, become obsolete. Moreover, we clamped

horizontal movements in probe trials with a force channel to

ensure that only the model variable is reported. These pre-

cautions are necessary, in particular if we assume that sub-

jects report maximum a posteriori estimates, because the max-

imum of a joint distribution maxs,M P(s, M|d) is not neces-

sarily the same as the maximum of the marginal distribution

maxM
∑

s P(s, M|d). This asymmetry is one of the most impor-

tant problems when designing a sensorimotor paradigm for

model selection, in which the model variable has to be queried

non-verbally.

As subjects were instructed verbally at the beginning of the

experiment about the relationship between the cursor shifts and

the two targets, the question arises in how far cognitive processes

might have played a role during the experiment. We instructed

subjects about the cursor-target relationship to speed up and sim-

plify the learning process, as we were not primarily interested in

standard trial performance, but in probe trial behavior. Subjects

could use these instructions as a good first guess to discriminate

between the two targets. Importantly, the verbal instructions rel-

evant for standard trials did not eliminate any of the ambiguity

faced in probe trials that needed to be resolved during the move-

ment. In this sense, our task can be conceived as a generalization

of previous sensorimotor tasks (Körding and Wolpert, 2004).

Nevertheless we cannot rule out that cognitive processes played a

role in the perception of the ambiguous stimuli during the probe

trials and the subsequent discrimination between the two mod-

els, as cognitive and sensorimotor processes are often intertwined.

However, even cognitive processes have been previously shown to

be consistent with Bayesian inference.
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FIGURE 12 | Predictions and data: “average shift”-heuristic. (A) Shows

the predicted choice probabilities for choosing M1, assuming that subjects

base their decision on the average shift when observing an array of width d.

The predictions are based on response functions that have been fitted to the

standard trial data. The solid line corresponds to the predicted choice

probabilities for the first part of the study, the dash-dot line shows the

predicted choice probabilities for the second part of the study, where the

variance of M1 was increased. Since the response functions have been fitted

individually per subject, the predictions show the mean across all subjects.

The corresponding standard deviation error bars are shown in panels (B,C).

(B) Shows the predictions for the first part of the study (solid line) and the

experimental results for three different widths d of the ambiguous feedback

array. The dotted line shows the mean and standard deviation across subjects

of the experimentally observed probabilities of choosing M
σ1
1 . (C) Shows the

predictions (dash-dot line) as well as the experimentally observed choice

probabilities (dotted line) for choosing M
σ2
1 in the second part of the study.

FIGURE 13 | Predictions and data: “biggest shift”-heuristic. (A)

Shows the predicted choice probabilities for choosing M1, assuming

that subjects base their decision on a shift equal to the largest value

that lies within the array of width d. The predictions are based on

response functions that have been fitted to the standard trial data. The

solid line corresponds to the predicted choice probabilities for the first

part of the study, the dash-dot line shows the predicted choice

probabilities for the second part of the study, where the variance of

M1 was increased. Since the response functions have been fitted

individually per subject, the predictions show the mean across all

subjects. The corresponding standard deviation error bars are shown in

panels (B,C). (B) Shows the predictions for the first part of the study

(solid line) and the experimental results for three different widths d of

the ambiguous feedback array. The dotted line shows the mean and

standard deviation across subjects of the experimentally observed

probabilities of choosing M
σ1
1 . (C) Shows the predictions (dash-dot line)

as well as the experimentally observed choice probabilities (dotted line)

for choosing M
σ2
1 in the second part of the study.

In cognitive science and perceptual learning hierarchical

Bayesian inference over model classes and model parameters has

been previously investigated in a number of studies (Tenenbaum

et al., 2006; Körding et al., 2007; Sato et al., 2007; Holyoak, 2008;

Kemp and Tenenbaum, 2008, 2009; Tenenbaum et al., 2011) In

particular, (Körding et al., 2007) have studied integration vs.

segregation of audio-visual stimuli in human subjects—which

included inference over the two models M1 and M2: (M1) there

is only one source for both stimuli with a location parameter

s and (M2) there are two different sources for the two stimuli

with location parameters svisual and saudio. To specifically look

into the probabilities of model selection they modeled data from

a similar previous experiment (Wallace et al., 2004), where sub-

jects were asked to report their perception of unity. In contrast,

our experimental paradigm allows for reporting model selection

without the need of explicitly asking subjects verbally and with-

out them being aware that one of the task dimensions represents

a parameter variable and the other a model variable.
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FIGURE 14 | Predictions and data: “halfway shift”-heuristic. (A)

Shows the predicted choice probabilities for choosing M1, assuming

that subjects base their decision on a shift equal to half of the largest

value that lies within the array of width d. The predictions are based

on response functions that have been fitted to the standard trial data.

The solid line corresponds to the predicted choice probabilities for the

first part of the study, the dash-dot line shows the predicted choice

probabilities for the second part of the study, where the variance of

M1 was increased. Since the response functions have been fitted

individually per subject, the predictions show the mean across all

subjects. The corresponding standard deviation error bars are shown in

panels (B,C). (B) Shows the predictions for the first part of the study

(solid line) and the experimental results for three different widths d of

the ambiguous feedback array. The dotted line shows the mean and

standard deviation across subjects of the experimentally observed

probabilities of choosing M
σ1
1 . (C) Shows the predictions (dash-dot line)

as well as the experimentally observed choice probabilities (dotted line)

for choosing M
σ2
1 in the second part of the study.

We compared five different strategies that could explain sub-

jects’ model selection probabilities in probe trials. The two

Bayesian explanations had the lowest negative likelihood and

therefore explained the choice probabilities in the probe tri-

als best. However, there are important differences between the

two Bayesian explanations. The first explanation explicitly com-

putes the marginal likelihoods and uses these likelihoods as

a discriminative variable. This requires the probabilistic rep-

resentation of the conditional priors P(s|M), the prior over

the models P(M), and the likelihood model P(d|s). The opti-

mal strategy is then determined over the marginal likelihood

that results from an integration of these distributions. In con-

trast, Bayesian policy inference results from a stochastic super-

position of given policies, which in our case correspond to

the model selection probabilities in standard trials when the

visuomotor shift is known. In probe trials, the model selec-

tion probabilities can then be determined by an integral over

these standard trial policies. If subjects’ choice behavior was

non-stochastic we could easily distinguish between these two pos-

sibilities, as decisions based on the marginal likelihood bear no

intrinsic stochasticity—we imposed it here through the softmax-

function—and decisions resulting from the probabilistic super-

position of standard trial policies would always be stochastic.

Given the error bars on our data and the fact that real decision-

making processes are always somewhat noisy, it is hard to distin-

guish between the two processes, even though the Bayesian pol-

icy inference achieved the lowest negative likelihood—compare

Figures 7, 10.

We also examined three simple heuristics and tested in how

far they might be able to explain the observed choice proba-

bilities in probe trials. We investigated heuristics that did not

consider any probabilistic representation of the task. In partic-

ular, we were investigating in how far standard trial policies could

be harnessed to construct heuristics for the probe trials. A first

heuristic assumed that subjects would always use the standard

trial policy associated with a zero shift right in the middle of the

ambiguous cursor array in the probe trial (the “average shift”-

heuristic). A second heuristic assumed that subjects would always

use the standard trial policy associated with the largest possible

shift at the edge of the ambiguous cursor array in the probe trial

(the “biggest shift”-heuristic). A third heuristic was a mixture

between the two, always using the standard trial policy associated

with a shift halfway between the middle and the edge of the cur-

sor array. Especially, the first two heuristics provided very poor

explanations of the choice behavior, because they either systemat-

ically under- or overestimated the probability of choosing one of

the models. The “halfway shift”-heuristic achieved a negative log-

likelihood value that was only slightly higher than model selection

with Bayes factors, but the mismatch in the fits still seemed to

be systematically biased—see Figure 14. More importantly, the

question remains why any of these heuristics would be formed

and applied. As subjects did not receive any performance feed-

back in the probe trials, they could not have learned the heuristics

from trial and error.

Bayesian methods are typically used in two different ways in

psychophysical studies. They can simply be used as techniques

to analyze the data or they can be interpreted as processes that

might take place in a “Bayesian brain” that tries to make sense of

the world around it. Here we used different Bayesian and non-

Bayesian explanations to describe subjects’ choice behavior in a

model selection task. This does not necessarily have any impli-

cations as to which precise algorithm the brain might use to
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achieve this behavior. In fact, there are a number of methods

that have been suggested for the problem of model selection: the

Akaike Information Criterion (AIC) (Akaike, 1974), the Schwarz

or Bayesian Information Criterion (BIC) (Schwarz, 1978), mini-

mum description length (MDL) (Rissanen, 1978), Bayes factors

(Kass and Raftery, 1993; MacKay, 2003), structural risk mini-

mization (Vapnik, 1995), and regularization methods (Bishop,

2006). Model selection criteria like AIC and BIC can be con-

sidered as approximations to Bayesian model selection, but also

MDL, regularization and complexity measures in statistical learn-

ing theory can be related to the consideration of prior proba-

bilities in Baysian model selection (MacKay, 2003). Finally, how

model selection is achieved by neurons in the brain is subject to

neurophysiological investigation.

A key capability of biological organisms is to cope with an

uncertain environment. Uncertainty has many sources. It can

originate from noise in the nervous system (Faisal et al., 2008),

but also from uncertainty that arises in the face of ambigu-

ous stimuli. In dealing with uncertainty, Bayesian statistics have

proven to be a powerful and unifying framework not only in

cognitive sciences, but also in sensorimotor tasks (Körding and

Wolpert, 2006) and neural computation (Knill and Pouget, 2004;

Doya, 2007; Orban and Wolpert, 2011). In particular, hierarchical

Bayesian models for inference and control might allow modeling

a variety of learning processes on multiple levels of abstrac-

tion (Haruno et al., 2003). Our task design provides a means to

study such hierarchical integration in the context of sensorimotor

control.

MATERIALS AND METHODS

PARTICIPANTS

Three female and four male participants were recruited from the

student population of the University of Tübingen. The study was

approved by the local ethics committee and all participants were

naive and gave informed consent. The local standard rate of eight

Euros per hour was paid for participation in the study.

MATERIALS

We used a virtual reality setup consisting of a Sensable�

Phantom� Premium 1.5 High Force manipulandum for track-

ing participants’ hand movements in three dimensions and an

NVIS� nVisor ST50 head-mounted display (HMD) for creat-

ing stereoscopic 3D virtual reality—see Figure 15. Movement

position and velocity were recorded with a rate of 1 kHz. To

prevent very fast movements, the manipulandum was operated

with a weak isotropic viscous force field of �f = αI3×3�̇x, where

α = 0.04 Ns
cm , I3×3 is the identity and �̇x is the three-dimensional

velocity vector.

EXPERIMENTAL DESIGN

A model selection problem can be characterized by a bivariate

distribution P(s, M) over a continuous random variable s and a

binary random variable M, where s plays the role of the model

parameter and M plays the role of the model. To study model

selection in a sensorimotor context, we designed a 3D visuomo-

tor task where participants had to move a cursor from a start

position to one of two targets, referred to as upper and lower

FIGURE 15 | Photograph of the experimental apparatus. The subject

operates a Sensable� Phantom� Premium 1.5 High Force manipulandum

and receives stereoscopic 3D visual feedback through an NVIS� nVisor

ST50 head-mounted display.

target in the following—see Figure 1. During the movement, the

horizontal position of the cursor was shifted, and the shift was

generated by one of two possible statistical models M ∈ {M1, M2}
with 50:50 probability. Importantly, subjects were not informed

about the 50:50 probability. Each target corresponded to a model

M—the upper target corresponded to M1 and the lower target

corresponded to M2. The correct target was the one whose cor-

responding model M actually generated the observed shift in

any particular trial. The shifts were generated by first sampling

a model M and then sampling a shift from the shift-distribution

P(s|M). Since shifts were generated probabilistically, any shift

could in principle be generated by either model, however, with

different probabilities. There was only brief sensory feedback of

the shifted cursor during the movement. Participants had to use

this feedback together with their knowledge of the previously

learned statistical models P(s|M) to not only infer the shift s, but

also the model M. In these standard trials, participants reported

their belief P(s, M), where the shift s was indicated by a com-

pensatory horizontal movement when hitting a target, and the

belief about the model M was reported by choosing one of the

two targets.

In order to test for model selection in case of feedback uncer-

tainty, participants also experienced probe trials, in which they

only reported their belief P(M) =
∫

dsP(s, M) about the model

M. This was achieved by increasing the width of the targets

to cover the whole horizontal workspace, such that no hori-

zontal compensatory movements were necessary in these trials.

During the movement in probe trials, sensory feedback was

briefly shown in shape of arrays consisting of uniformly and

densely sampled rectangles that represented all the possible cursor

locations—see Figure 1B. Each probe trial had one of three possi-

ble feedback array sizes (small, medium and large) that occurred

equi-probably. Since the size of the feedback array constrained the

uncertainty about the possible shifts s, Bayesian model selection

required participants to “integrate out” different intervals of the
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parameter s when deciding on the model M by choosing either

the upper or lower target.

TRIAL SETUP

Each participant performed two parts of the experiment consist-

ing of 500 trials each. Before starting the experiment, participants

were informed about the relation between observing the horizon-

tal cursor shift and selecting one of the two targets. To start them

off in the first part of the experiment, they were told that small

shifts would be often associated with the upper target and larger

shifts mostly with the lower target—but they were also instructed

that they should use the first 100 training trials for learning this

relationship precisely. Similarly, they were told for the second part

of the experiment that small and very large shifts would be often

associated with the upper target and medium large shifts mostly

with the lower target. The initial 100 trials of each of the two ses-

sions were standard trials only. To keep participants motivated,

the hit ratio (in percent of the standard trials presented so far)

was displayed. In the following 400 trials standard and probe tri-

als were intermixed. For the probe trials, subjects were instructed

that there would be a whole array of little cursors any of which

could be the true cursor and that again they would have to decide

which one was the correct target just like in the standard trials,

but this time without knowing for sure which cursor was the cor-

rect one. The probability of presenting a probe trial was 0.45 if the

previous trial was a standard trial and 0 if the previous trial was a

probe trial. The second block of 500 trials was identical, only the

probability distribution over shifts of model M1 was broadened

to investigate the effect on the model selection process.

EXPERIMENTAL PRIOR DISTRIBUTIONS

Each model induced a different prior probability density P(s|M)

over the horizontal shifts s. In part one of the study, the two

models were a Gaussian and a bimodal mixture of Gaussians:

M1 : P(s|Mσ1
1 ) = N (0, 1 cm2)

M2 : P(s|M2) =
1

2
N (−2.5 cm, 0.25 cm2)

+
1

2
N (2.5 cm, 0.25 cm2).

In part two of the study, the same distributions were used, only

the standard deviation of P(s|M1) was increased such that

M1 : P(s|Mσ2
1 ) = N (0, 16 cm2)

M2 : P(s|M2) =
1

2
N (−2.5 cm, 0.25 cm2)

+
1

2
N (2.5 cm, 0.25 cm2).

The prior probability of both models was always P(M1) =

P(M2) = 1
2 . A plot of the prior distributions is shown in Figure 3.

EXPERIMENTAL PROCEDURE: STANDARD TRIALS

After hearing a beep, participants initiated a reaching movement

by controlling a cursor (red sphere, radius 0.4 cm) from a start

position (gray sphere, semi-transparent, radius 0.9 cm) to one of

two target blocks (yellow cuboids, height 5 cm, width 2 cm)—see

Figure 1A. One of the target blocks was in the upper half of the

workspace, the other target block was in the lower half—with a

distance of 2 cm in-between. Both target blocks were presented

at a depth of 18.5 cm with respect to the start position. Once the

cursor had left the start position, it was invisible and an additive

random shift was applied to the cursor position. The shift was

drawn from a distribution P(s|M) once M had been sampled from

P(M). The correct target was determined by the sampled M, that

is the upper target was correct if M = M1 and the lower target

was correct if M = M2. While the cursor was invisible during the

movement, after a movement depth of 5.5 cm visual feedback (red

rectangle, width 0.8 cm, height 0.3 cm) of the shifted cursor posi-

tion was displayed for 100 ms. When the movement exceeded a

depth of 18.5 cm the trial ended. If the cursor was in-between the

two targets without touching either of them, the trial continued

until one of the targets was chosen. For hitting a target, the cursor

had to at least touch the target block. When participants hit the

correct target, a high-pitch beep was played. When participants

hit the wrong target or missed the correct target, a low-pitch beep

was played. In either case the incorrect target disappeared. At the

end of the reach, the shifted cursor position was shown. If move-

ment was still in progress after 2 s, the trial was aborted and had

to be repeated.

EXPERIMENTAL PROCEDURE: PROBE TRIALS

In contrast to standard trials, the target width of the two tar-

gets was increased to 20 cm in probe trials, thereby covering

the entire horizontal workspace. Crucially, this made any com-

pensatory movements in the horizontal direction obsolete and

reduced the task to a binary model selection problem that only

required choosing either the upper or lower target. To further dis-

courage horizontal compensatory movements in probe trials, we

generated a “force tunnel” that did not allow left/right deviations

from the middle of the workspace, but only up/down and for-

ward/backward movements. Since sideward movements were not

necessary in probe trials, the impact of the tunnel force was barely

noticeable and most participants reported that they did not notice

it at all when interviewed after the experiment.

Probe trials also started with a beep, after which participants

initiated a reaching movement to one of the two targets (yellow

cuboids, height 5 cm, width 20 cm)—see Figure 1B. At a move-

ment depth of 5.5 cm visual feedback was displayed for 100 ms.

However, in contrast to the standard trials, feedback was not

shown as a little rectangle representing the shifted hand position,

but as an array of multiple same-sized rectangles that were sam-

pled simultaneously and uniformly from one of three possible

horizontal intervals: [−1.5, 1.5], [−2.5, 2.5], and [−4.0, 4.0] cm.

The little rectangles had 0.8 cm width and there were 4, 7, and

10 little rectangles, respectively shown for small, medium and

large bar size at any one time frame. The probability of showing

one of the array sizes was one third. Participants were informed

that this array indicated all possible cursor positions and that the

true cursor was at one of the many possible positions seen in

the array. Since sideward deviations were impossible due to the

tunnel force and vertical deviations carried no information with
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respect to possible shifts, the arrays were always centered in the

workspace both horizontally and vertically. In order to make par-

ticipants understand that the shift was sampled uniformly from

the cursor array, at the end of the movement, after participants

had chosen one of the two targets, a cursor position was drawn

from the uniform distribution over the shown interval and dis-

played. However, no visual or auditive feedback was given to

indicate whether the correct target was hit or not. The three possi-

ble widths for the interval (small: 3 cm, medium: 5 cm, and large:

8 cm) induced an increasing amount of uncertainty about possi-

ble shifts. In the probe trials we could therefore investigate how

these different amounts of uncertainty with respect to the param-

eter s affected the selection of the model M, when the parameter s

was not reported and therefore could be “integrated out.”

MODELING

For the two Bayesian explanations of choice behavior in probe tri-

als, we used the following observation model. Crucially, in our

experiment observing an array of width d ≥ 0 is the same for

both models M1 and M2 and therefore the likelihood model only

depends on the shift variable s, such that

P(d|s) =

{

1
dmax

2 −|s|
if d ≥ 2|s| and d ≤ dmax

0 otherwise,

where dmax represents the maximum possible array width. In our

experiment dmax = 8 cm. This observation model implies that for

any given shift s, the array size cannot be smaller than s, since it

must contain s, and the array size cannot exceed the maximum

size dmax. All array sizes in-between have equal probability. After

observing array size d, Bayes’ rule allows us to infer the posterior

over both the shift and the model

P(s, M|d) =
P(d|s)P(s|M)P(M)

∑

M

∫

ds P(d|s)P(s|M)P(M)
.

The Bayes factor can be derived from this posterior by real-

izing that P(d|M) = P(M|d) and P(M|d) =
∫

dsP(s, M|d). In

case of the Bayesian policy inference the posterior P(s|d)

can be derived from the joint posterior by realizing that

P(s|d) =
∑

M P(s, M|d).

In line with Bayesian policy inference the posterior P(s|d) is

used for the probabilistic superposition of the standard trial poli-

cies P(a = M1|s) such that the choice probability in probe trials

is given by P(a = M1|d) =
∫

ds P(s|d)P(a = M1|s). The standard

trial policies P(a|s) were fitted to the data as follows. First, all

standard trials were sorted into five equidistant bins depending

on the magnitude of the shift in each trial. For the first part of

the experiment the five bins were [0, 1], [1, 2], [2, 3], [3, 4], and

[4, 5] cm. For the second part of the experiment the five bins were

[0, 2], [2, 4], [4, 6], [6, 8], and [8, 10] cm. The relative frequen-

cies of choosing model M1 in these bins was fitted by a sigmoid

psychometric function

P(a = M1|s) = 1 −
1

1 + e
−s+ζ

θ

for the first part of the experiment and a two-partite sigmoid

function

P(a = M1|s) = 1 −
1

1 + e
−s+γ

δ

+
1

1 + e
−s+κ

τ

for the second part of the experiment. The free parameters

ζ, θ, γ, δ, κ, τ were fitted by minimizing square error. The fits can

be seen in Figure 9.
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