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Suppose that the variability in our movements1–9 is caused not by
noise in the motor system itself, nor by fluctuations in our
intentions or plans, but rather by errors in our sensory estimates
of the external parameters that define the appropriate action. For
tasks in which precision is at a premium, performance would be
optimal if no noise were added in movement planning and
execution: motor output would be as accurate as possible given
the quality of sensory inputs. Here we use visually guided smooth-
pursuit eye movements in primates10 as a testing ground for this
notion of optimality. In response to repeated presentations of
identical target motions, nearly 92% of the variance in eye
trajectory can be accounted for as a consequence of errors in
sensory estimates of the speed, direction and timing of target
motion, plus a small background noise that is observed both
during eye movements and during fixations. The magnitudes of
the inferred sensory errors agree with the observed thresholds for
sensory discrimination by perceptual systems, suggesting that the
very different neural processes of perception and action are
limited by the same sources of noise.

Smooth-pursuit eye movement is the familiar ‘tracking’ behaviour
elicited by the motion of small targets across the visual field (Fig. 1).
It is convenient to describe pursuit eye movements as depending on
the speed and direction of target motion. However, the brain has no
independent knowledge of these parameters, and must estimate them
visually if experiments are designed to remove opportunities for
prediction. Furthermore, although tracking over long timescales
involves feedback and is driven by a combination of retinal and
extra-retinal signals, the eye trajectory in the ,125-ms time interval
before feedback can arrive is generated purely from estimates of the
target’s motion, using visual inputs present before the onset of the
response11. At least for perception, these estimates are not perfect:
humans and non-human primates can make reliable visual discrimi-
nations only among trajectories that differ by ,10% in speed and
,2–38 in direction12–17. Perceptual discrimination thresholds are
limited by noise in neural activity in sensory areas: estimates of
speed and direction will fluctuate from trial to trial as the brain tries
to decode this noisy representation18,19.

If the brain’s estimate of speed on one trial is larger than the mean
(as the result of noise), then the goal of the movement on this trial
will be indistinguishable from that for a genuinely faster target speed,
and the corresponding commands to the eyes will drive proportion-
ately larger eye accelerations and velocities. Similar considerations
apply to errors in direction. Figure 1a shows an ensemble of eye-
velocity trajectories generated by random scalings and rotations of
the mean trajectory of eye velocity for target motion that steps from 0
to 208 s21 in a rightward direction rotated 98 above the horizontal;
the standard deviations of these scalings and rotations were chosen to
match the sensory noise levels of 10% and 2.38. For comparison, in
Fig. 1b we show an ensemble of actual pursuit trajectories in response
to repeated presentations of the same direction of target motion;
these trials are interspersed with target motions in other directions to

eliminate the possibility of prediction and to force pursuit to be
guided by estimates of visual motion. Comparison of the synthetic
and actual trajectories reveals that noise on the scale that limits
perceptual discrimination is sufficient to generate variation in motor
output that is close to what we see experimentally.

To generate appropriate motor outputs, the brain must represent
when the target starts moving, in addition to estimating the speed
and direction of target motion. In our experiments, target motion
begins at a random time relative to the onset of a fixation spot. On
average, the trajectory of smooth pursuit seems to be locked to the
trajectory of the target. On a given single trial, however, the brain
lacks a perfect marker of the time of target motion onset, and so it
must be estimated. In contrast to direction and speed, little is known
about the limits of perceptual discrimination of motion timing. In
Fig. 1c we illustrate the consequences of errors in timing estimation.
A standard deviation of just 15 ms produces a variation in eye
movement trajectories that is larger than we see in experiments
(Fig. 1b), suggesting that the timing of target motion must be
represented with a precision of better than 15 ms.

The results of Fig 1a–c motivate the hypothesis that variability in
smooth-pursuit trajectories is dominated by errors in sensory esti-
mation. More formally: imagine that there is an ideal (vector) eye-
velocity trajectory videal(t; t0, v, v) in response to a target that starts to
move at time t0 at speed v and in direction v. On any single trial, the
brain has access only to noisy estimates of these parameters so that it
makes errors dt0, dv and dv. Then, the actual eye movements will be
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Figure 1 | Example of the variability in pursuit for a given target motion.
a, Model data created from the mean pursuit-velocity time course, averaged
over 184 repetitions of the same target motion. For each trace, the mean
trajectory was rotated and scaled by a gaussian distributed ‘noise’ value, the
standard deviation of which matches perceptual discrimination threshold
values for direction and speed in human subjects (2.38 and 10%). b, Actual
data showing 18 individual pursuit trials. c, Model data created by taking the
same mean pursuit trajectory and jittering its start time by a gaussian
distributed shift value with a standard deviation of 15 ms. Black and grey
lines in a and b distinguish the horizontal (H) and vertical (V) components
of eye velocity; only horizontal eye velocity is shown in c. Time is measured
relative to target motion onset.
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videal(t; t0 þ dt, v þ dv, v þ dv). We assume that errors are small, so
that we can approximate the consequences of changing parameters
just by the first term in a Taylor series. Also, closer inspection of
Fig. 1b reveals that the trial-to-trial fluctuations in trajectory include
a more rapidly fluctuating component that is ‘background noise’,
visible even before the initiation of pursuit: dvback(t). Putting the
terms together, we formalize the predicted trajectory in a natural,
sensory space for a single trial as:

vðtÞ ¼ v idealðt; t0;v;vÞ þ dt0�
›v idealðt; t0;v;vÞ

›t0

þ dv�
›v idealðt; t0;v;vÞ

›v
þ dv�

›v idealðt; t0;v;vÞ

›v

þ dvbackðtÞ ð1Þ

In equation (1), videal can be recovered by averaging the actual
trajectories over many trials, and the various derivatives can be
extracted from the data without any further assumptions (see
Methods for details).

The predictions of equation (1) can be tested by examining
the covariance matrix of trial-to-trial fluctuations in eye velocity,
shown in Fig. 2d. At times before the initiation of pursuit (yellow
square), the covariance matrix should describe the background noise
dvback(t). After the initiation of pursuit (green square), there should
be exactly three additional components that reflect the variances in
dt 0, dv and dv. Experimentally (see Methods), we sampled the
horizontal and vertical components of the vector velocity v(t) with
1-ms resolution throughout a 125-ms window after the initiation of
pursuit, so that a single trajectory is described by 250 numbers. The
covariance matrix of the background noise has the symmetric
structure expected for stationary fluctuations, with ,80 eigenvalues
that are significantly different from zero. In the time domain, the
noise has significant components with a correlation time of less than
10 ms (Fig. 2a) and the distribution of noise velocities is nearly
gaussian (Fig. 2b). In contrast, the matrix DC formed by subtracting
the background covariance matrix (Fig. 2d, yellow box) from that for
the first 125 ms of pursuit (Fig. 2d, green box) has just three
eigenvalues that are significantly different from zero (Fig. 2c). The
eigenvectors corresponding to these eigenvalues span the same three-
dimensional space defined by the three derivatives of videal(t) in
equation (1). As summarized in Table 1, 93 ^ 1.4% of the variance in
trajectories is captured by these three eigenvectors, which in turn
have 96–99% overlap with axes corresponding to errors in estimating
target speed, direction and timing.

The observation of just three significantly non-zero eigenvalues for
DC means that the variability of smooth-pursuit trajectories is
effectively limited to three dimensions. As explained in the Methods,
this collapse of dimensionality is enormously unlikely to have
occurred by chance. Even though a number of motor behaviours
have been shown to have similar low-dimensional structures5–7,
several aspects of our results seem novel. First, the low dimensionality
cannot be interpreted as a limitation of the motor system itself, as
the eye movement motor system is observed to generate trajectories
that fill ,80 dimensions under the different conditions of fixation
before the onset of pursuit. Second, the particular three dimensions
in which the system operates are not arbitrary, but in fact are
those predicted in advance. Finally, the magnitudes of the fluctu-
ations in the three relevant directions have a clear physical and
biological meaning in relation to the parameters used to specify
visual motion.

In Fig. 3, we show how the three dimensions corresponding to
speed, direction and timing errors can be used to synthesize the eye-
movement trajectory on a single trial. Starting with the mean
trajectory (Fig. 3a, dashed traces), we add components for each of
the three natural modes (Fig. 3b), scaled by particular values of dv, dv
and dt0 (arrowheads in Fig. 3c) to create accurate predictions (Fig. 3a,
red and blue traces) of eye-velocity responses from individual trials
(Fig. 3a, solid black and grey traces). We derived distributions of the
values of dv, dv and dt0 by performing the same projection for each

Figure 2 | Analysis of variation in pursuit trajectory for a single day’s
experiment. a, Temporal structure of correlation in eye-velocity variations
before the onset of pursuit. Colours in key and traces labelled hh, vv and hv
compare horizontal or vertical eye velocity to themselves or to each other
(hv). b, Logarithm of probability density (red) and the best-fitting Gaussian
curve (black) for the variations in eye velocity (in units of standard
deviation, j) before the onset of target motion. Error bars are s.d. divided by
the mean. c, Rank order of the 250 normalized eigenvalues for DC. Standard
deviations are smaller than the size of the symbols. d, Covariance matrix
showing how the variation in horizontal eye velocity at any given time was
related to that at all other times.

Table 1 | Relationship between the eigenvectors of the covariance matrix DC and the axes of target direction, speed and motion-onset time

Fraction of total variance Fractional overlap with rotation vdir(t)
(direction noise)

Fractional overlap with scaling vspeed(t)
(speed noise)

Fractional overlap with time shifts vtime(t)
(timing noise)

Mode 1 0.7409 ^ 0.0064 0.0001 ^ 0.0002 0.9343 ^ 0.005 0.8684 ^ 0.0068
Mode 2 0.1150 ^ 0.004 0.0062 ^ 0.0057 0.0604 ^ 0.005 0.1141 ^ 0.0064
Mode 3 0.0586 ^ 0.0026 0.9594 ^ 0.0093 0.0013 ^ 0.0008 0.0000 ^ 0.0006
Total (3 modes) 0.9145 ^ 0.0523 0.9657 ^ 0.0062 0.9960 ^ 0.0071 0.9825 ^ 0.0093
Average (n ¼ 9) 0.9326 ^ 0.0143 0.9557 ^ 0.0255 0.9961 ^ 0.0097 0.9725 ^ 0.0152

The top four rows show the analysis of the thee eigenvectors or ‘modes’ that accounted for the largest percentage of the variance of pursuit, and the totals across the three largest modes for a
single experiment. The bottom row shows the average of the totals across the three largest modes for nine experiments. From left to right, columns give the percentage of the total variance,
and the projections from the natural axes describing errors in the estimates of direction, speed and time onto the eigenvectors of the covariance matrix DC. Errors indicate standard deviations.
Data set pk032404.
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individual pursuit response in the data set onto the natural modes
(Fig. 3c); the distributions are approximated well by gaussians.
Furthermore, the residual differences between actual and predicted
responses have a distribution that agrees substantially with the
distribution of background noise (grey versus black distributions
in Fig. 3d). The agreement between the distributions of the back-
ground noise and the residuals of trial-by-trial reconstructions from
the three natural modes is a restatement of our results on the
eigenvalues and eigenvectors of DC, but presents the results in a
different, and perhaps more intuitive, form.

In a total of nine experiments with three monkeys (pk, yo and wt)
direction and speed errors had standard deviations of 2.1–3.58 and
11–18%, respectively. Each daily experiment involved a total of more
than 1,000 trials, so statistical errors within a single experiment are
much smaller than variations among experiments. The precision of
pursuit behaviour correlates well with the results from perceptual
experiments15,20. For brief stimulus presentations like the ones used
here (,125 ms), human subjects12–13 have thresholds of Dv < 2.38 in
direction and Dv/v < 10% in speed. Longer stimulus presentations
have been used for perceptual experiments in monkeys, yielding
thresholds nearly identical to those in humans16–17. Within the
bounds of measurement error and differences in stimulus presen-
tation, we conclude that the limits in precision for pursuit and
perception are very similar.

For 200-ms stimulus presentations, human discrimination
thresholds12,14–15 and the limits to precision inferred from the
variability of pursuit trajectories improve, and are even more similar.
However, on timescales longer than the,125 ms we have considered,

the sensory–motor feedback loop for pursuit has been closed,
complicating the comparison. For example, studies of perceptual
and closed-loop motor variability in smooth pursuit reach opposite
conclusions: both find that perception and pursuit have similar
degrees of variability, but one addressing motion direction finds
evidence for a common noise source20, whereas another experiment
addressing motion speed errors does not15. Because steady-state
tracking is driven largely by extra-retinal signals, the absence (or
presence) of covariation between perceptual and pursuit errors
during steady-state tracking does not speak to the question of
whether the errors in perceptual and motor readouts of visual
motion arise from the same noise source.

The analysis of timing errors deserves special consideration. As
hinted at by the results in Fig. 1c, the standard deviation of these
timing errors is quite small, 7–10 ms across our set of nine experi-
ments (Table 2). This is much smaller than the range of reaction
times for discrete movements such as saccades21. Thus, even though
the time of onset of target motion is not known to the brain a priori,
the pursuit system is able to estimate that time with remarkable
precision. Given the small number of spikes that are emitted by
neurons in the MT region of the visual cortex in response to the first
100 ms of target motion22, the neural mechanisms that decide when
to initiate a movement23,24 must be able to do so on the basis of the
timing of just a few spikes.

We can think of the timing error dt0 as a measure of latency relative
to the mean that looks for the best fit of a template to the whole 125-
ms open-loop segment of the eye-velocity trajectory rather than (for
example) the traditional measure of latency as the moment at which

Figure 3 | Reconstruction of individual pursuit trials from the model
described by equation (1). a, Eye velocity as a function of time for the mean
trajectory, and for the actual and reconstructed trajectory for a single trial.
b, Time courses of the sensory noise modes (vdir, vspeed, vtime) in units of eye
velocity per equivalent sensory error. c, Distributions of dv, dv and dt0 for

184 responses to the same target trajectory. Arrowheads indicate the values
of the errors used to reconstruct the single trial in a. d, Distributions of
difference between actual and predicted eye velocity during pursuit (black)
and the total noise present during fixation (grey), along with best-fitting
gaussian functions (red, green).

Table 2 | Limits to precision in the sensory estimates driving smooth pursuit

Experiment Target speed (8 s21) Fraction of variance dv rms (8) dv rms/v dt rms (ms) C(dv; dt)

pk121603 20 0.915 ^ 0.002 2.48 ^ 0.04 0.129 ^ 0.002 8.3 ^ 0.1 0.09 ^ 0.02
pk032404 20 0.904 ^ 0.005 2.34 ^ 0.05 0.123 ^ 0.002 7.9 ^ 0.1 0.23 ^ 0.01*
pk041004 20 0.924 ^ 0.002 2.99 ^ 0.05 0.158 ^ 0.002 10.8 ^ 0.2 0.25 ^ 0.02*
wt112102 20 0.894 ^ 0.004 2.86 ^ 0.1 0.173 ^ 0.005 10.2 ^ 0.3 0.29 ^ 0.03*
yo082603 15 0.932 ^ 0.005 2.40 ^ 0.07 0.177 ^ 0.004 9.4 ^ 0.3 0.10 ^ 0.03
yo082203 10 0.936 ^ 0.005 3.5 ^ 0.1 0.181 ^ 0.003 9.5 ^ 0.3 0.07 ^ 0.03
yo082703 25 0.929 ^ 0.003 2.33 ^ 0.06 0.172 ^ 0.002 10.8 ^ 0.2 0.22 ^ 0.02*
pk021504 30 0.915 ^ 0.002 2.14 ^ 0.03 0.112 ^ 0.002 8.3 ^ 0.1 0.29 ^ 0.02*
pk032504 10 0.913 ^ 0.01 3.45 ^ 0.08 0.162 ^ 0.003 8.4 ^ 0.2 2 0.08 ^ 0.03

Each row shows data for one experiment analysing 125 ms of pursuit initiation. Columns show the target speed for the experiment; the fraction of the total variance accounted for by the noise
attributed to sensory estimates of target direction, speed and the time of motion onset; the limits to precision in direction, speed and time defined by the root mean squared (rms) variation
along the axis defined by each parameter; and the correlation between speed and timing noise (statistical significance indicated by asterisk). Target directions ranged within ^98 for all
experiments except wt112102, which had a range of ^68. Correlations were zero between direction and speed noise, and between direction and timing noise. Errors indicate standard
deviations.

LETTERS NATURE|Vol 437|15 September 2005

414
© 2005 Nature Publishing Group 

 



the eye velocity rises significantly above background noise. Although
correlations between variations in direction and speed would imply
a ‘handedness’ to the pursuit system that seems implausible, there
is no symmetry that forbids correlations between variations in
timing and speed. Indeed, we observe significant speed–timing
correlations in many experiments (Table 2). The sign of the
correlations corresponds to ‘start later–go faster’, but because we
are analysing the open-loop response of pursuit, there is no
feedback signal to ensure that late starts are compensated for by
larger eye accelerations. Thus, it seems likely that the correlation
between variations in speed and timing is intrinsic to the esti-
mation or representation of motion in the visual system. In
decomposing errors into direction, speed and timing components,
it is important to account (as we do) for the fact that although
direction and speed errors make orthogonal contributions to the
pursuit trajectory, speed and timing errors do not. Instead, they point
oppositely along similar axes in the three-dimensional space. This
explains why speed and time have similar magnitude projections
onto modes 1 and 2 of DC, but with a sign difference that
disambiguates ‘moving faster’ from ‘starting earlier’.

Other studies have shown that eye movements and perception
share neural pathways and have access to the same sensory estimates
of visual motion13,14,16–18,20,25. Demonstrations of the limits to per-
ceptual discrimination of target direction and speed have revealed
that there is noise in the sensory inputs. We have shown that
essentially the entire motor variation that is specific to pursuit lies
along the axes of the sensory parameters of target direction, speed
and timing, and that the limits to precision of pursuit are nearly the
same as those for perception. An appealing and simple conclusion is
that the initial response of the pursuit system adds little additional
noise beyond the variations in sensory estimates, and thus its
precision is defined by the noise in the sensory representations.
Our findings do not indicate whether the precision of sensory
representations of visual motion is limited by noise arising in the
retina, or whether it accumulates along motion-sensitive neural
pathways. Whatever its origin, we imagine that the variability we
observe in pursuit initiation is reflected in the responses of cortical
neurons (for example, in MT/V5).

We have predicted the structure of variations in the initiation of
pursuit from first principles, and have provided data that are
consistent with, but do not prove, the hypothesis that variation in
initiation of pursuit arises largely from the sensory representation of
visual motion. Further testing is needed to rule out alternatives in
which a precise representation of target motion is degraded by noise
that accumulates independently along perceptual and motor path-
ways. These alternatives require that noise added in the motor system
preserve the sensory form and have a magnitude similar to that
measured for perception. In the simplest concrete alternative, motor
output variation is dominated by trial-by-trial fluctuation in the
strength of commands sent to the eye muscles. But this model does
not provide an explanation of the low-dimensionality of the noise,
except by assuming a similar low dimensionality in the gain noise—
that is, that the fluctuating components of the commands affect the
entire 125-ms trajectory uniformly. More detailed computations
show that the magnitude of the gain fluctuations must be tuned
differently for each direction of motion to account quantitatively for
the data. Finally, any model that ascribes the observed behavioural
variability largely to the motor side of the nervous system must
explain why the inferred gain variations are so large when the
variability of motor neuron discharge is so small26.

The overlap of the significant dimensions of pursuit variation with
those expected from the parameters of the motion trajectory may
have important implications for the operating principles of the
brain’s motor circuits. The agreement between the limits to precision
in pursuit and perceptual behaviour biases us to think that sensory
processing is the main contributor to variability in pursuit trajectory,
and that other sources of noise in the system are effectively smaller,

perhaps because motor strategies are selected to minimize other
noise sources4,8. That variation in pursuit behaviour can be assigned
largely to noise in representation of the sensory stimulus may fit with
other examples in which the nervous system achieves optimal or
near-optimal performance27–29.

METHODS
Eye movements were recorded11 from three male rhesus monkeys (Macaca
mulata) that had been trained to fixate and track visual targets. Experiments
lasted 2–3 h, during which the monkey sat in a specialized primate chair with its
head immobilized, and received a juice or water reward for accurately tracking
visual targets presented on a screen in front of it. All procedures had been
approved by the Institutional Animal Care and Use Committee of the University
of California, San Francisco and were in compliance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals.

The visual target was typically a 0.88 square spot presented in a dimly lit room
on a high-resolution analogue display oscilloscope that subtended a 488 by 388
visual angle. Experiments were presented as a series of trials, each representing a
single target motion. Each trial began with the monkey fixating a stationary
target at centre-screen for a random interval of 700–1,200 ms. The target then
underwent a step-ramp motion11 with steps of 2.5–3.78 and ramped back
towards the extinguished fixation point at a constant speed, typically 208 s21.
Directions were chosen randomly from up to 14 directions (that is, 298 to þ98
relative to horizontal, in 38 increments). Parameters of target motion were varied
so that they were presented in random order.

Vertical and horizontal eye-velocity signals were passed though an analogue
double-pole, low-pass filter that differentiated frequencies below 25 Hz and
rejected higher frequencies with a roll-off of 20 dB per decade. Eye-position and
velocity signals were sampled and stored at 1 kHz. Before analysis, each trial
record was inspected and rejected if a saccade occurred within the time-window
chosen for analysis. Data sets consisted of eye velocity responses to 112–223
repetitions of target motion in each direction. The time-window for analyses of
‘background’ data began 125 ms before target motion and ended with the
onset of target motion. The 125-ms time-window for pursuit analyses
began at eye-movement onset, determined by the intersection of two lines
each fitted to pre- and post-pursuit intervals of average responses. Standard
deviations were computed from analyses based on 40–50 random draws of half
of the data set.

To recover the ideal trajectory videal(t; t0, v, v) (equation (1)), we averaged eye
velocity over many responses to the same target motion. To compute the
derivatives in equation (1), we took advantage of symmetries. First, changing
the onset time t0 should be equivalent to translating the response along the time
axis of the ideal trajectory, so that vtime ¼ ›videal/›t0 ¼ 2›videal/›t. Second,
changes in target speed should produce ideal trajectories that are uniformly
scaled to be proportionately faster or slower, at least over a narrow dynamic
range11, so that vspeed ¼ ›/›v[(v/v0)videal]. Finally, changes in target motion
direction should produce rotations of the ideal trajectory. We checked this last
symmetry using principal component analysis of mean trajectories in response
to (typically) 14 different directions. As expected if the changing target direction
simply rotates the ideal response trajectory, there were just two principal
components, corresponding roughly to horizontal and vertical pieces of the
ideal trajectory. Furthermore, the reconstruction of the mean trajectories for
different directions combined these components with coefficients that corre-
sponded to the sines and cosines of the relevant directions. Therefore, we were
able to identify vdir ¼ ›videal/›v with ð›R̂ðvÞ=›vÞv¼0�v ideal, where R̂ðvÞ is the
matrix representing rotation through an angle v.

To analyse deviations from ideal behaviour on individual trials, we subtracted
the mean response for a given target direction from each individual pursuit trial
to form a noise vector. We computed the temporal covariance of pursuit noise
across all trials (a 250 £ 250 matrix), and then subtracted the covariance of the
background to form DC. We tested alternative noise models to confirm that the
low-dimensional structure we observed in DC did not arise from our choice of
‘background’ noise. First, we used a ‘white’ noise model in which errors were
independent in 1-ms bins, and eye-velocity variance grew as a function of the
mean eye velocity4: DC had 80 to 90 significant eigenvalues. Second, we
preserved the form of temporal correlations in eye velocity during fixation
(Fig. 2a), again with variances that scaled with the mean response: the three
dominant eigenvalues captured only 67.5% of the variance and the axes defined
by speed, direction and time accounted for less than half of the total variance.
Statistical analysis of these models confirmed that the observed low-dimensional
structure of trial-by-trial variations in the pursuit trajectory had a very low
probability of occurring by chance (,1025).
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