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Summary
Models of dynamic networks — networks that evolve over time — have manifold applications.
We develop a discrete-time generative model for social network evolution that inherits the
richness and flexibility of the class of exponential-family random graph models. The model — a
Separable Temporal ERGM (STERGM) — facilitates separable modeling of the tie duration
distributions and the structural dynamics of tie formation. We develop likelihood-based inference
for the model, and provide computational algorithms for maximum likelihood estimation. We
illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties
within a school.
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1. Introduction
Relational phenomena occur in many fields and are increasingly being represented by
networks. There is a need for realistic and tractable statistical models for these networks,
especially when the phenomena evolves over time. For example, in epidemiology there is a
need for data-driven modeling of human sexual relationship networks for the purpose of
modeling and simulation of the spread of sexually transmitted disease. As Morris and
Kretzschmar (1997) show, spread of such disease is affected not just by the momentary
number of partnerships, but their timing. To that end, the models used must have realistic
temporal structure as well as cross-sectional structure.

Holland and Leinhardt (1977), Frank (1991), and others describe continuous-time Markov
models for evolution of social networks. (See Doreian and Stokman (1997) for a review.)
The most popular parametrisation is the actor-oriented model described by Snijders (2005)
and Snijders et al. (2010), which can be viewed in terms of actors making decisions to make
and withdraw ties to other actors. This model was then extended by Snijders et al. (2007) to
jointly model actors’ network-related choices (“selection”) and the effects of neighboring
actors on each other’s attributes (“inuence”).

Exponential-family random graph models (ERGMs) for social networks are a natural way to
represent dependencies in cross-sectional graphs and dependencies between graphs over
time, particularly in a discrete context. Robins and Pattison (2001) first described this
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approach. Hanneke and Xing (2007) and Hanneke et al. (2010) also define and describe a
Temporal ERGM (TERGM) (“Discrete Temporal ERGM” in the 2007 publication),
postulating an exponential family model for the transition probability from a network at time
t to a network at time t + 1.

Most of the attention in modeling of dynamic networks has focused on fitting the model to a
network series (Snijders, 2001; Hanneke and Xing, 2007; Hanneke et al., 2010) or an
enumeration of instantaneous events between actors in the network (Butts, 2008). In the
former case, the dyad census of the network of interest is observed at multiple time points.
In the latter case, each event of interest and its exact time of occurrence is observed.

A primary issue in modeling dynamic networks that has received limited attention is that of
attribution of prevalence. A snapshot of a network at a single time point provides
information about prevalence of the network properties of interest — such as the total
number of ties — as opposed to properties of a dynamic network process that has produced
it: incidence — the rate at which new ties are formed — and duration — how long they tend
to last once they do. Multiple snapshots over the same set of actors (panel data) contain
information about incidence and duration, but, as we show below, the model
parametrisations presently in use do not allow convenient control over this attribution of
prevalence.

In Section 2, we review discrete-time ERGM-based network models, and in Section 3, we
extend these network models to provide a more interpretable and convenient parametrisation
that separates incidence from duration. In Section 4, we develop conditional maximum
likelihood estimators (CMLE) based on regularly-spaced network series data by extending
the approach of Hunter and Handcock (2006). In Section 5, we illustrate the methodology
with application to a longitudinal network of friendship ties within a school. In Section 6, we
consider some extensions that the model framework suggests and allows.

2. Discrete-Time ERGM-Based Models for Network Evolution
We first consider a discrete-time dynamic network model in which the network at time t is a
single draw from an ERGM conditional on the network at time t − 1 (and possibly time t −
2, etc.), extending the Temporal ERGM (TERGM) of Hanneke and Xing (2007) and
Hanneke et al. (2010). In this section we specify the model and discuss its fundamental
properties.

2.1. Model Definition
Suppose that N is the set of n = |N| actors of interest, labeled 1, …, n, and let ⊆ N × N be
the set of potential ties among them — with pairs (i, j) ∈ ordered for directed and
unordered for undirected networks — and let ⊆ 2  be the set of possible networks of
interest formed among these actors. For a network realization y ∈  define yi,j to be an
indicator of a tie from actor i to actor j, and further let yi, ․ be the set of actors to whom i has
a tie, y․,j the set of actors who have ties to j, and yi the set of actors with undirected ties with
i. Let Yt ∈ be a random variable representing the state of the network at the discrete time
point t and yt ∈ be its realization.

Following Hunter and Handcock (2006), let θ ∈ ℝq be a vector of q model parameters, and
let η(θ) : ℝq → ℝp be a mapping from θ to natural parameters η ∈ ℝp, with q ≤ p. Let g : 2

→ ℝp be the sufficient statistic for the transition from network yt − 1 at time t − 1 to network
yt at time t. The one-step transition probability from yt − 1 to yt is then defined to be
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(1)

or, with a k-order Markov assumption, and letting g : k+1 → ℝp,

(2)

and

the normalizing constant.

TERGMs are a natural elaboration of the traditional ERGM framework. They are essentially
stepwise ERGM in time. Note that the definitions of Robins and Pattison (2001) and
Hanneke and Xing (2007) used linear ERGMs only, where η(θ) ≡ θ and p ≡ q. To simplify
notation, from this point on we suppress reference to η and g.

2.2. Model Specification and Interpretation
The class of models specified by (1) is very broad and a key component of model
specification is the selection of g. Natural candidates are those developed for cross-sectional
networks, such as those enumerated by Morris et al. (2008). However, the choices in this
dynamic situation are richer and can be any valid network statistics evaluated on yt

especially those that depend on yt − 1. Hanneke and Xing (2007) focused on a choice of g
that had the property of conditional dyadic independence — that

(3)

the distribution of Yt in which tie states are independent, but only conditional on the whole
of Yt − 1.

However, caution must be used in interpreting their parameters. Consider the simplest such
statistic, the edge count:

A higher coefficient on g will, for any yt − 1, produce a Yt distribution in which networks
with more ties have higher probability. But, note that this term would accomplish it in two
ways simultaneously: it would both increase the weight of those networks in which more
ties were formed on previously empty dyads and increase the weight of those networks in
which more extant ties were preserved (fewer dissolved). That is, it would both increase the
incidence and increase the duration.

Hanneke and Xing (2007) gave an example of a statistic that controls the rate of evolution of
the network: a measure of stability. This statistic counts the number of tie variables whose
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states did not change between time steps, which is then divided by the maximum number of
ties an actor could have (a constant):

A higher coefficient on it will slow the evolution of the network down and a lower
coefficient will speed it up. From the point of view of incidence and duration, however, it
will do so in two ways: a higher coefficient will result in networks that have fewer new ties
formed and fewer extant ties dissolved — incidence will be decreased and duration will be
increased.

The two-sided nature of these effects tends to muddle parameter interpretation, but a more
substantial issue arises if selective mixing statistics, like those described by Koehly et al.
(2004), are used. Consider a concrete example, with actors partitioned into K known groups,
with ⊆ {1, …, K}2 being the set of pairs of groups between whose actors there may be
ties. (For example, in a directed network, = {1, …, K}2.) Let Pk be the set of actors who
belong to group k and P(i) be the partition to which actor i belongs. The model with
transition probability

(4)

models stability, controlled by θ0, and mixing among the groups, controlled by θk1,k2. (Here,
|yPk1,Pk2

| is defined as the number of ties from actors in group k1 to actors in group k2 for
directed networks, and ties between actors in those groups for undirected networks.)

Given yt − 1, the probability that a given non-tied directed pair (i, j) will gain a tie in a given
time step is

and the probability that an extant tie (i, j) will be removed is

the latter leading to a duration distribution which is geometric with support ℕ and expected
value (Casella and Berger, 2002, pp. 621–622)

Thus, a higher value of coefficient θk1,k2 simultaneously increases the incidence of ties
between actors in group k1 and actors in group k2 and their duration.

This coupling between the incidence of ties and their duration not only makes such terms
problematic to interpret, but has a direct impact on modeling. Consider a sexual partnership
network, possessing strong ethnic homophily, with ties within each ethnic category being
more prevalent (relative to the potential number of ties) than ties between ethnic categories.
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(A real-world illustration of this effect was given by Krivitsky et al. (2011).) This structure
could be a consequence of the within-ethnic ties being formed more frequently than
between-ethnic ties, of the within-ethnic ties lasting, on average, longer than between-ethnic
ties, or some combination of the two. With cross-sectional data alone, it is impossible to tell
these apart and a model like (4) implies a dynamic process in which cross-ethnic ties toggle
unnaturally frequently, or “churn”. We refer to a model with this dynamic pathology as a
“churning model” as this stochastic property is unlikely to be seen in real phenomena.
Churning is related to the degeneracy properties of ERGM (Handcock, 2003).

3. Separable Parametrisation
We now motivate and describe the concept of separability of formation and dissolution in a
dynamic network model, and describe the Separable Temporal ERGM (STERGM).

3.1. Motivation
Intuitively, those social processes and factors that result in ties being formed are not the
same as those that result in ties being dissolved. For example, in the above-mentioned sexual
partnership network, the relative lack of cross-ethnic ties may be a result of racial
segregation, language and cultural barriers, racism, and population-level differences in
socioeconomic status, all of which have a strong effect on the chances of a relationship
forming. Once an interracial relationship has been formed, however, either because these
factors either did not apply in that case or were overcome, the duration of such a relationship
would likely not be substantially lower. Even if it were lower, the differences in the
probability of such a relationship ending during a particular time interval would not, in
general, be a perfect reflection the differences in the probability of it forming during such a
time interval.

Furthermore, it is often the case in practice that information about cross-sectional properties
of a network (i.e. prevalence) has a different source from that of the information about its
longitudinal properties (i.e. duration), and it may be useful to be able to consider them
separately (Krivitsky and Handcock, 2008; Krivitsky, 2009).

Thus, it is useful for the parametrisation of a model to allow separate control over incidence
and duration of ties and separate interpretation, at least over the short run. (For any
nontrivial process, formation and dissolution would likely interact with each other in the
long run.)

3.2. Model Specification
In this section, we introduce a class of discrete-time models for network evolution, which
assumes that these processes are separable from each other within a time-step. We consider
a sub-class of models based on the ERGM family, which inherits the interpretability and
flexibility of those processes.

3.2.1. General Separable Models—We represent networks as sets of ties, so given y, y′
∈  the network y ⋃ y′ has the tie (i, j) if, and only if, (i, j) exists in y or y′ or both; the
network y ⋂ y′ has (i, j) if, and only if, (i, j) exists in both y and y′; and the network y\y′ has
tie (i, j) if, and only if, (i, j) exists in y but not in y′. The relation y ⊇ y′ holds, if, and only if,
y has all of the ties that y′ does (and, possibly, other ties as well), and conversely for y ⊆ y′.

Consider the evolution of a random network at time t − 1 to time t, and define two
intermediate networks, the formation network Y+, consisting of the initial network Yt − 1

with ties formed during the time step added and the dissolution network Y−, consisting of the
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initial network Yt − 1 with ties dissolved during the time step removed (with y+ and y− being
their respective realized counterparts). Then, given yt − 1, y+, and y−, the network yt may be
evaluated via a set operation, as

(5)

Since it is the networks yt − 1 and yt that are actually observed, y+ and y− may be regarded as
latent variables, but it is possible to recover them given yt − 1 and yt, because a tie variable
can only be in one of four states given in Table 1. Each possibility has a unique combination
of tie variable states in yt − 1 and yt, so observing the network at the beginning and the end
allows the two intermediate states to be determined as y+ = yt − 1 ⋃ yt and y− = yt − 1 ⋂ yt.

If Y+ is conditionally independent of Y− given Yt − 1 then

(6)

We refer to the two factors on the RHS as the formation model and the dissolution model,
respectively. Suppose that we can express θ = (θ+, θ−) where the formation model is
parametrised by θ+ and the dissolution model by θ−.

Definition 1. We say that a dynamic model is separable if Y+ is conditionally independent of
Y− given Yt − 1 and the parameter space of θ is the product of the individual parameter
spaces of θ+ and θ−.

We refer to such a model as separable because it represents an assumption that during a
given discrete time step, the process by which the ties form does not interact with the
process by which they dissolve: both are separated (in the conditional independence sense)
from each other conditional on the state of the network at the beginning of the time step.

3.2.2. Generative Mechanism—Let some +(yt − 1) ⊆ {y ∈ 2  : y ⊇ yt − 1} be the
sample space, under the model, of formation networks, starting from yt − 1; and let some

−(yt − 1) ⊆ {y ∈ 2  : y ⊆ yt − 1} be the sample space of dissolution networks. The model
postulates the following process for evolution of a random network at time t − 1 to a random
network at time t:

a. Draw an intermediate network y+ from the distribution

b. Draw an intermediate network y− from the distribution

c. Apply formations and dissolutions to yt − 1 to produce yt by evaluating (5).

Note that, as specified, this model is first order Markov, but Yt can be further conditioned on
Yt − 2, Yt − 3, etc, to produce higher order versions. We do not develop these models here.

3.2.3. Separable Temporal ERGM (STERGM)—A natural family of models for the
components of the separable model is the ERGMs considered in Section 2.1. We focus on
this rich class of models in the remainder of the paper. Specifically, we model:
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and

with their normalizing constants cη+,g+(θ+, yt − 1) and cη−,g−(θ−, yt − 1) summing over
+(yt − 1) and −(yt − 1), respectively.

We now derive the probability of transitioning from a given network at time t − 1, yt − 1 to a
given network at time t, yt. Based on (6), we have

where η = (η+, η−) and g(yt, yt − 1) = (g+(yt − 1 ∪ yt, yt − 1), g−(yt − 1 ∩ yt, yt − 1)). As Pr(Yt =
yt|Yt − 1 = yt − 1;θ) is, by construction, a valid probability mass function,

where

This is the same form as (1). Thus, the STERGM class is a subclass of a first-order Markov
TERGM of Hanneke and Xing (2007), described in Section 2.1: any transition process that
can be expressed with g+, g−, η+ and η− can be reproduced by a model in the TERGM class.
However, the essential issue is the specification of models within these classes, and the
value of the STERGM class is that it focuses specification on a viable and fecund region in
the very broad class. In the parametrisation in terms of formation and dissolution, some
flexibility is lost — the ability to have the formation and dissolution processes interact
within a given time step. What is gained is ease of specification, tractability of the model,
and substantial improvement in interpretability.

3.3. Interpretation
In contrast to statistics like stability in Section 2.2, the STERGM’s sufficient statistics and
parameters have an implicit direction: they affect directly either incidence or duration, but
not both, and even statistics that do not explicitly incorporate the previous time step’s
network yt − 1, incorporate it via the constraint of the phase in which they are used. This
allows familiar cross-sectional ERGM sufficient statistics to be used, with their parameters
acquiring intuitive interpretations in terms of the network evolution process. We call these

inherited terms, for which , with
no further dependence on yt − 1, implicitly dynamic.
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Such terms (and their corresponding coefficients) often have straightforward general
interpretations for formation and dissolution phases. In particular, consider an implicitly
dynamic statistic that counts the number of instances of a particular feature found in the
network y+ or y−. Examples of features that might be counted include a tie, an actor with
exactly d neighbors, or a tie between an actor in a set Pk1 and an actor in the set Pk2.

3.3.1. Formation—A positive  corresponding to a particular  increases the

probability of those y+ which have more instances of the feature counted by  — greater

values of . This affects the network process in two ways: the probability of forming

those ties that create new instances of the feature counted by  is increased and the
probability of forming those ties that “disrupt” those instances would be reduced.

Conversely, negative  would result in higher probabilities for those networks with fewer

instances of the feature counted by , reducing the probability of forming ties to create
more instances of the feature counted and increasing the probability of forming ties to
“disrupt” the feature.

Notably,  counts features in the network y+ = yt∪yt − 1, rather than in the ultimately
observed network yt. This means that for some features, particularly those with dyadic
dependence, the dissolution process may influence the feature so that it is present in y+ but
not in yt − 1 or yt. How frequently this occurs depends on the specific model and the rate of
evolution of the network process: if a network process is such that the network changes little
(in both formation and dissolution) during each time step, such interference is unlikely.

3.3.2. Dissolution—As in the formation phase, a positive  corresponding to a particular
 increases the probability of those y− which have more instances of the feature counted by
, thus tending to preserve more instances of that feature (or dissolving ties to create more

instances, as may be the case with dyadic-dependent terms), while a negative  will
increase the probability of networks with fewer instances of the feature in question,
effectively causing the dissolution process to target those features, and also refrain from
dissolving ties whose dissolution would create those features. It is important to note that the
dissolution phase ERGM determines which ties are preserved during the time step, and the
parameters should be interpreted accordingly.

Again, it is y− = yt ∩ yt − 1 on which statistics are evaluated, so the formation process can
interact with the dissolution process as well.

These principles mean that many of the vast array of network statistics developed for
ERGMs (Morris et al., 2008, for example) can be readily adapted to STERGM modeling,
retaining much of their interpretation. In the Appendix, we develop and give interpretations
to the fundamental edge count, selective mixing by actor attribute, and degree distribution
terms.

3.3.3. Explicitly Dynamic Terms—At the same time, some effects on formation and
dissolution may depend on specific features of yt − 1. For instance, consider a social process
in which an actor having multiple partners (e.g., “two-timing”) is actively punished, so
having more than one partner in yt − 1 increases the hazard of losing all of one’s partners in
yt. (Such an effect may be salient in a sexual partnership network.) This dissolution effect
cannot be modeled by implicitly dynamic terms, because it cannot be reduced to merely
increasing or reducing the tendency of Y− to have particular features. For example, a
positive coefficient on a statistic counting the number of actors with no partners (isolates)
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would increase the weight of those y− that have more isolates, affecting the dissolution of
the sole tie of an actor with only one partner just as much as it would affect the dissolution
of ties of an actor with more than one partner.

On the other hand, an explicitly dynamic model term that counts the number of actors with
no partners in y− only among those actors who had two or more partners in yt − 1 would,
with a positive coefficient, increase the probability of a transition directly from having two
partners to having none. Beyond that, its interpretation would be no different than that of an
implicitly dynamic dissolution term.

3.4. Continuous-Time Markov Models
Although the focus of this paper is on discrete-time models for network evolution, the
separability paradigm can be applied to continuous-time network evolution models such as
those of Holland and Leinhardt (1977). There, network evolution is modeled as a
continuous-time Markov process such that the intensity of transition between two networks
that differ by more than one dyad is 0, while the evolution of the network is controlled by

, with each λi,j(yt; θ) being the intensity associated with toggling each dyad
(i, j).

In that scenario, separation of formation and dissolution is realized by formulating θ = (θ+,
θ−) and

with  being formation- and dissolution-specific intensities.
Indeed, Holland and Leinhardt (1977) use a formulation of this general sort. Notably, unlike
the discrete-time process, this separation requires only separation of parameters and no
additional independence assumptions. This is because under the Markov assumption and
with no chance of more than one dyad toggling coincidentally at a specific time, dyads
effectively evolve independently in a sufficiently small interval (i.e., [t, t + h], h → 0), and
dyadic independence in network evolution a fortiori implies separability between which ties
form and which ties dissolve.

An exponential-family form for λi,j,

may be viewed as the limiting case of the discrete-time STERGM, in which the amount of
time represented by each time step shrinks to zero.

4. Likelihood-Based Inference for TERGMs
In this section, we consider inference based on observing a series of T + 1 networks, y0, …,
yT. Hanneke and Xing (2007) proposed to fit TERGMs by finding the conditional MLE
under an order k Markov assumption,
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(7)

computing a Method-of-Moments estimator (equivalent in their case to the MLE) with a
simulated Newton-Raphson zero-finding algorithm. We extend the work of Hunter and
Handcock (2006) and Geyer and Thompson (1992) to compute the conditional MLE for
curved exponential-family transition models (that is, cases where η(θ) ≠ θ).

For simplicity, we consider models with first-order Markov dependence. There is no loss of
generality, since as long as the order of Markov dependence k is finite, we can define the
depended-upon network yt − 1 to implicitly “store” whatever information about yt − 1, …,
yt − k+1 is needed to compute the transition probability.

The conditional MLE (7) can then be obtained by maximizing the log-likelihood

For any two values of the model parameter θ0 andθ, the log-likelihood-ratio is

The main difficulty is in evaluating the ratio of the normalizing constants. These conditional
normalizing constants depend on networks at times 0, …, T − 1. However, these ratios can
still be expressed as

(8)
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The expression (8) is a product of expectations over the conditional distribution under the
model of Yt given Yt − 1 at θ0, each of which can be estimated by simulation, allowing the
algorithm of Hunter and Handcock (2006) to be applied to fit a TERGM to network series
data.

These results also make it possible to assess the goodness-of-fit of a model via an analyses
of deviance. Specifically, we can compute the change in log-likelihood from the null model
(η(θ) = 0) to the conditional MLE. To do this, we extended the bridge sampler of Hunter and
Handcock (2006) to this setting.

5. Application to the Dynamics of Friendship
As an application of this model, we consider the friendship relations among 26 students
during their first year at a Dutch secondary school (Knecht, 2008). The friendship
nominations were assessed at four time points at intervals of three months starting at the
beginning of their secondary schooling. The friendship data are directed and were assessed
by asking students to indicate classmates whom they considered good friends. There were
17 girls and 9 boys in the class. The data included covariates collected on each student.
Here, we consider the sex of the student, as it is a primary determinant of the friendship ties.
We also consider a dyadic covariate indicating if each pair of students had gone to the same
primary school. These data were used to illustrate the actor-oriented approach to modeling
by Snijders et al. (2010) (whom we follow). That paper should be consulted for details of the
data set and an alternative analysis.

Some of the data at time points two through four were missing due to student absence when
the survey was taken. These were accommodated using the approach of Handcock and Gile
(2010) under the assumption that the unobserved data pattern was amenable to the model;
this assumption is reasonable as long as student absence is conditionally independent of the
unobserved ties given the observed ties. One student left the class after time point 1. This
could have been accommodated in a number of ways, depending on the assumptions one is
willing to make. Here we considered the networks with this student omitted both as a
nominator and nominee of friendships. As Snijders et al. (2010) note, each student was
allowed to nominate at most 12 classmates at each time point. In general, inference needs to
incorporate features of sampling design such as this one. We discuss how in Section 6.
However, its effect here is negligible: in the (4 × 25 =) 100 student reports, only 3
nominated the maximum number.

Our objective is to explain the observed structural patterns of change in the network over the
course of the year. We build a model including both exogenous and endogenous structural
effects, following the same approach and motivations as Snijders et al. (2010). For the
formation component we include terms for the propensity of students to choose friends of
the same or opposite sex (i.e., overall propensities to nominate friends that are homophilous
on sex or not). We include a term to measure the propensity of friendships to be reciprocal.
We include information on the primary school co-attendance via a count of the number of
times students nominate other students with whom they went to primary school. To capture
any overall propensity of students to nominate other students who are popular we include an
overall outdegree popularity effect (Snijders et al., 2010, equation (12)). To model
transitivity effects we include two terms. The first is aggregate transitive ties that aims to
capture a tendency toward transitive closure consistent with local hierarchy. The second is
an aggregate cyclical ties term to capture anti-hierarchical closure. The terms in the model
are structurally largely consistent with the terms chosen in Snijders et al. (2010). A similar
model was considered for the dissolution process. Specifics of these terms are given in the
Appendix.
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We fit the model using the conditional MLE procedure of Section 4. Computationally this is
implemented using a variant of the MCMC approach of Hunter and Handcock (2006). To
monitor the statistical properties of the MCMC algorithm we use the procedures by Hunter
et al. (2008a).

Table 2 reports the estimates for the model assuming homogeneity of parameters over time.
The outdegree popularity effect had a correlation of 0.995 with the edges effect and was
omitted from the model.

As for the standard ERGM, the individual θ coefficients can be interpreted as conditional
log-odds ratios. There is also a relative risk interpretation that is often simpler. For example,
the exponential of the primary school coefficient is the relative risk of formation or
preservation (depending on the phase) of friendship between two students from the same
primary school compared to two students from different primary schools with the same
values of the other covariates and structural effects. The probabilities involved are
conditional on these other covariates and structural effects. The interpretation for non-binary
and multiple covariates is similar: exp(θΔ) is the relative risk of friendship between two
students compared to two students with vector of covariates differing by Δ (and with the
same values of the other structural effects).

The standard errors of Table 2 are obtained from the information matrix in the likelihood
evaluated at the MLE to which we have added the (small) MCMC standard error obtained
using the procedure given by Hunter et al. (2008b).

The networks at the earlier time points are strongly sexually segregated, and we see strong
homophily by sex in the formation of ties. This effect is mildly stronger for boys than for
girls. We do not see an overall disinclination for girls to nominate boys (relative to other
combinations). In other words, the boys are about as likely to form friendships as the girls.
As expected, we see a high degree of reciprocity in the formation of ties. There is a strong
transitive closure effect, with a positive coefficient on transitive tie formation and a negative
coefficient on cyclical tie formation. This suggests a strong hierarchical tendency in the
formation of ties. We see that students who attended the same primary school are much
more likely to form ties.

These structural terms have less influence on the dissolution of ties. There is some modest
evidence that boy to boy ties are less likely to dissolve than other mixtures of sexes. (Recall
that parameters represent a measure of persistence, so that negative parameters are
associated with shorter durations). As expected, we see the dissolution of ties is strongly
retarded by the presence of a reciprocal tie. As in the formation process, there is a strong
transitive closure effect suggesting a strong hierarchical tendency in the dissolution of ties.
Once a hierarchical triad is formed it will tend to endure longer. Students who attended the
same primary school are not significantly more likely to have persistent ties.

As the data measure a social process that is developing in time, we do not need to assume
that the process is in temporal equilibrium; thus we could estimate separate parameters for
the change between each pair of successive time points. One such model specifies different
overall rates of tie formation or dissolution at each time point but retains homogeneous
parameters for the other terms. Another allows all the parameters to vary at each time point.

Table 3 gives the analysis of deviance for formation and dissolution models nested above
and below those in Table 2. For the formation process we see the full time-homogeneous
model in Table 2 significantly improves on the null and Erdős-Rényi model (Edges (hom.)).
Specifying different overall rates of tie formation at each time point does not significantly
improve the fit, nor does a full time-heterogeneous model with different structural
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parameters at each time point. For the dissolution process, we again see the full time-
homogeneous model significantly improves on the null and Erdős-Rényi model. However,
there is some evidence that specifying time-heterogeneous versions improve the fit. An
inspection of the time-heterogeneous models indicates that most of the improvement is due
to the increase in hierarchical tendency over time. Initially this transitive closure does not
retard tie dissolution, but it does over time.

6. Discussion
This paper introduces a statistical model for networks that evolve over time. It builds on the
foundations of exponential-family random graph models for cross-sectional networks and
inherits the flexibility and interpretability of these models. In addition, it leverages the
inferential and computational tools that have been developed for ERGMs over the last two
decades.

As we showed in Section 2, parameters used in models currently in use directly affect both
the incidence of ties (at a given time point) and the duration of ties (over time). STERGMs
have one set of parameters control formation of new ties and another control dissolution (or
non-dissolution) of extant ties. Such a separable parametrisation controls the attribution of
incidence and duration and greatly improves the interpretability of the model parameters, all
without sacrificing the ability to explicitly incorporate effects of specific features of past
networks, if needed.

It is important to emphasize that STERGMs jointly model the formation and dissolution of
ties. While the two processes are modeled as conditionally independent within a time step,
they are modeled as dependent over time. More importantly, they allow the structure of the
incidence to be identified in the presence of the durational structure.

In addition, the model has computational advantages. The likelihood function can be
decomposed and the components computed relatively easily. All computations in this paper
were completed using the ergm (Hunter et al., 2008b; Handcock et al., 2012) package from
the statnet (Handcock et al., 2008) suite of libraries for social network analysis in R (R
Development Core Team, 2009).

The model is directly applicable to both directed and undirected networks. It can be easily
tuned to applications by appropriate choices of terms for both the formation and dissolution
processes, as we show in Section 5. Because it is based on ERGMs, it will share in advances
made on those models as well. The model is very useful for simulating realistic dynamic
networks. This is because of the sequential specification, the tractable parameters and the
relatively light computation burden.

As illustrated in Section 5, missing data on the relational information can be dealt with in
likelihood-based inference using the approach of Handcock and Gile (2010). If the
longitudinal data are partially observed due to either a sample design or a missing data
process and is amenable to the model then their method is directly applicable.

The assumption of within-step independence of formation and dissolution is an important
one, and its appropriateness depends on the substantive setting and the basic nature of the
process. Some settings do not allow a separable formulation at all. For example an affiliation
network of players to teams in some sports, with a realization observed during every game,
imposes a hard constraint that a player must belong to exactly one team at a time, and no
team can have more or fewer than a particular number of players, so the basic unit of
network change is teams trading players, rather than a player joining or quitting a team. In
settings that do allow simpler atomic changes, separability may be a plausible approximation
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if the amount of change between the discrete time steps is relatively small — that each time
step represents a fairly small amount of time. As the length of the time step increases, the
separability approximation may become less and less plausible. For example, a marriage
network, even though it has a hard constraint of each actor having at most one spouse at a
time, could be plausibly approximated in a separable framework (using, e.g., +(yt − 1) ≡ {y
∈ 2  : y ⊇ yt − 1 Λ ∀i∈N |yi| ≥ 1}) if each discrete time step represented one month (since
relatively few people divorce and remarry in the same month) but not if it represented ten
years. More generally, the simpler the formation and dissolution processes are within a time-
step and the weaker the dependence between them, the more plausible the assumption. (Of
course, continuous-time Markov models, to which these models asymptote, do not require
an independence assumption at all.)

As with the data used in Section 5, restriction on the number of alters reportable is a
common feature of network surveys. Other examples of this censoring include the Add
Health friendship networks (Harris et al., 2003) and Sampson’s monastery data (Sampson,
1968). To the extent that these are features of the sampling design, they should be reflected
in the likelihood. Per Section 3.2.3, a STERGM can be represented as a TERGM (1), which
allows the sample space of Yt to be constrained to reflect this design. Changing only
affects cη,g(θ) in l(θ) — the kernel of the model remains separable. This situation is similar
to that with censored data in survival analysis where the likelihood is altered to reflect the
censoring while the model, and its interpretation, is unchanged.

Since assuming separability between formation and dissolution grants significant benefits to
interpretability, it would be useful to be able to test if separability may be assumed in a
given network process. Some avenues for such tests include comparing goodness-of-fit of a
given model in modeling a transition y0 → y2 to its modeling a transition y0 → y1 → y2

(with homogeneous parameters). Or, if only one transition is available, a transition y0 → y1

to a transition , with a latent intermediate network . Development of such
tests is beyond the scope of this work and is subject for future research.

The STERGM framework allows a number of extensions to the model. Over time, networks
do not merely change ties: actors enter and leave the network, and actors’ own attributes
change. It is possible to incorporate the network size adjustment developed by Krivitsky et
al. (2011) into these dynamic models. We have focused on longitudinal data. It is possible to
fit the model based on egocentrically sampled data when the data includes durational
information on the relational ties (Krivitsky and Handcock, 2008; Krivitsky, 2009).
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Appendix

Separable TERGM Terms
In this appendix we derive and discuss some fundamental model terms that can be used in a
STERGM.
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A.1. Edge Counts
A.1.1. Formation—Let g+(y+, yt − 1) = |y+|. This is equivalent to g(yt, yt − 1) = |yt ∪ yt − 1|.

If , so the state of  has no effect on g(yt, yt − 1), but if

, and the change in g(yt, yt − 1) is 1. This means that, in the absence
of other formation terms, θ+ represents the log-odds of a given tie variable, that does not
already have a tie, gaining a tie. Then logit−1(θ+) is the expected fraction of tie variables
empty at time t − 1 gaining a tie at time t. In the presence of other terms, these log-odds
become conditional log-odds-ratios.

A.1.2. Dissolution—Let g−(y−, yt − 1) = |y−|, or, equivalently, g(yt, yt − 1) = |yt ∩ yt − 1|. If

, so the state of  has no effect on g(yt, yt − 1), but if

, and the change in g(yt, yt − 1) is 1. Then, in the absence of other
dissolution terms, θ− represents the log-odds of a given tie that exists at t − 1 surviving to t,
and logit−1(θ−) is the expected fraction of ties extant at time t − 1 surviving to time t.
Depending on the problem, the interpretation of −θ− might be more useful: logit−1(−θ−) is
the expected fraction of extant ties being dissolved — the hazard.

The formation phase can only affect non-tied pairs of actors, so if the dissolution phase
statistics have dyadic independence, the formation process has no effect on duration
distribution: in the absence of other dissolution terms, the duration distribution of a tie is
geometric (with support ℕ) with expected value (Casella and Berger, 2002, pp. 621–622)

A.2. Selective Mixing
Selective mixing in the formation model can be represented by a vector of statistics

, with notation described for (4). However, in the context of a
STERGM, they have a direction.

A.2.1. Formation—Let

. The

change in its value due to adding a tie (i, j) (absent in yt − 1) is 1i∈Pk1 Λj∈Pk2
, so  is the

conditional log-odds-ratio due to the effect of i belonging to group k1 and j belonging to
group k2 of a dyad (i, j), that does not already have a tie, gaining a tie. If the formation phase

has no other terms, then the odds that  given that  are

A.2.2. Dissolution—Similar to the formation case, selective mixing can be represented by

a vector of statistics . Then,

 is the conditional log-odds-ratio due to
the effect of i belonging to group k1 and j belonging to group k2 of an extant tie (i, j) being
preserved until the next time step.

Krivitsky and Handcock Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A.3. Degree Distribution
Unlike the first two examples, degree distribution statistics — counts of actors with a
particular degree or range of degrees — introduce dyadic dependence into the model. As
with many other such terms, closed forms for many quantities of interest are not available,
and conditional log-odds are not as instructive, but the general results for implicitly dynamic
terms from Section 3.3 provide a useful heuristic, with the caveats discussed in that section.

In practice, these terms are often used in conjunction with other terms, so we only discuss
their effect on the formation and dissolution probabilities conditional on other terms — their
effect over and above other terms, with those terms’ coefficients held fixed.

A.3.1. Formation—Let yi be the set of neighbors to whom i has ties in y. A formation

degree count term has the form : the number of actors i in y+

whose degree is d. The corresponding TERGM statistic .
We discuss the cases of d = 0 and d = 1, with the cases for d > 1 being similar to the d = 1
case.

d = 0 By increasing the weight of those formation networks that have fewer isolates, a
negative coefficient on this term increases the chances of a given actor gaining its first
tie within a given time step. Conversely, a positive coefficient reduces the chances of an
actor gaining its first tie. Because the term does not distinguish between different
nonzero degrees, it mainly affects transitions from isolation to degree 1, not affecting
further tie formation on that actor positively or negatively.

d = 1 Unlike the statistic for d = 0, which can only be decreased by adding ties, the
statistic for d = 1 can be both increased and decreased (by making isolates into actors
with degree 1 and by making actors with degree 1 into actors with degree 2 and higher,
respectively). Thus, the effect of this term is two-sided: with a positive coefficient, it
both increases the chances of an actor gaining its first tie and reduces the chances of an
actor gaining its second tie, while having relatively little effect on an actor with two ties
gaining a third tie. A negative coefficient reduces the chances of an actor gaining its
first tie, but if an actor already has one tie, it increases the chances that the actor gains a
second tie.

A.3.2. Dissolution—The analogous term in the dissolution model is

: same as formation, but applied to y−, and

.

d = 0 A negative coefficient on this term in the dissolution phase increases the weight of
dissolution networks that have fewer isolates, and thus reduces the chances of a given
actor losing its only tie, while a positive coefficient increases the chances of an actor
losing its only tie. It may also have a modest effect on actors with more than one tie,
since there is a positive probability of an actor losing more than one tie in the same time
step.

d = 1 As in the case of formation, the effect of this term is two-sided: with a positive
coefficient — to preserve or create networks with more “monogamous” ties — the
chances of an actor losing its only tie decrease while the chances of an actor losing its
second tie increase. (If an actor has 3 or more ties, the effect is weaker.)
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A negative coefficient on this term both increases the chances that an actor’s last tie will
be dissolved and reduces the chances that an actor with more than one tie has any ties
dissolve.

A.4. Other Standard Statistics
Most statistics used in standard ERGM can be used in STERGM as implicitly dynamic
statistics. For example, standard formation statistics are

Reciprocity: 

Transitive ties: 

Cyclical ties: 

Outdegree popularity (sqrt): 

Edge covariate: For a covariate x ∈ ℝn × n, 

The corresponding dissolution statistics have the same form, with y+ replaced by y−.
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Table 1

Possible transitions of a single tie variable

→ →

0 → (0, 0) → 0

0 → (1, 0) → 1

1 → (1, 0) → 0

1 → (1, 1) → 1
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Table 2

MLE parameter estimates for the longitudinal friendship network

Parameter
Formation
est. (s.e.)

Dissolution
est. (s.e.)

Edges −3.336 (0.320)*** −1.132 (0.448)*

Homophily (girls)   0.480 (0.269)   0.122 (0.394)

Homophily (boys)   0.973 (0.355)**   1.168 (0.523)*

F→M heterophily −0.358 (0.330) −0.577 (0.609)

Primary school   0.650 (0.248)**   0.451 (0.291)

Reciprocity   1.384 (0.280)***   2.682 (0.523)***

Transitive ties   0.886 (0.247)***   1.121 (0.264)***

Cyclical ties −0.389 (0.133)** −1.016 (0.231)***

Significance levels:

*
0.05 ≥

**
> 0.01 ≥

***
> 0.001 ≥
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