A SEPARATION THEOREM FOR Σ_{1}^{1} SETS

BY

ALAIN LOUVEAU

Abstract

In this paper, we show that the notion of Borel class is, roughly speaking, an effective notion. We prove that if a set A is both Π_{t}^{0} and Δ_{1}^{1}, it possesses a Π_{ε}^{0}-code which is also Δ_{1}^{1}. As a by-product of the induction used to prove this result, we also obtain a separation result for $\Sigma \mid$ sets: If two Σ_{1}^{1} sets can be separated by a Π_{ξ}^{0} set, they can also be separated by a set which is both Δ_{1}^{1} and Π_{ξ}^{0}.

Applications of these results include a study of the effective theory of Borel classes, containing separation and reduction principles, and an effective analog of the Lebesgue-Hausdorff theorem on analytically representable functions. We also give applications to the study of Borel sets and functions with sections of fixed Borel class in product spaces, including a result on the conservation of the Borel class under integration.

In this paper, we shall be mainly interested in the properties of Borel subsets of product spaces. If X and Y are Polish spaces, and if B is a Borel subset of $X \times Y$, define for each x in X the section B_{x} of B at x by $B_{x}=\{y \in Y:(x, y) \in B\}$. Our aim is to relate properties of the sections of B with global properties of B. A typical problem (and one to which we shall give a positive solution) is the following, which we call the section problem. Let ξ be a countable ordinal, and suppose all sections of B are of additive Borel class ξ in Y (i.e. for all x in $X, B_{x} \in \boldsymbol{\Sigma}_{\xi}^{0}$). Is B the countable union of a sequence of Borel sets, whose sections are all of Borel class less than ξ ?

Let us discuss briefly the history of this problem. Working on uniformization questions, Dellacherie proved in [De] that each Borel set with open sections is the countable union of rectangles of the form $B \times U$, where B is a Borel subset of X and U ranges over a basis of the topology of Y, and conjectured that there was a positive answer to the section problem. The case $\xi=2$ has been solved by Saint-Raymond [StR].

In [Bol], Bourgain states the section problem in a more general context, the Polish space X being replaced by an abstract measurable space, i.e. a set X with a σ-algebra \mathscr{B} of subsets of X, and obtains the result for $\xi=3$ in case X is a complete probability space (i.e. \mathscr{B} is the complete σ-algebra of all subsets of X which are measurable with respect to a probability on X). Furthermore, he obtains in [Bo2] a partial result concerning the case $\xi=3$ in the Polish case: If B is a Borel subset of $X \times Y$, where X and Y are Polish spaces, the set $C=\left\{x \in X: B_{x}\right.$ is $\left.F_{o \delta}\right\}$ is coanalytic (Π_{1}^{1}) in X. Some of the ideas of his proof then led to the solution of the case $\xi=3$ of the section problem; independently by Bourgain [Bo3] and the
author [Lo1] and [LO2]. The solution of the section problem for all countable ordinals is announced, for Polish spaces, in two notes of the author [L03] and [Lo4]. In this paper, we shall present the solution in full generality (see Theorem 3.1).

We also solve a related problem concerning Borel functions: If f is a Borel function from $X \times Y$ into [0, 1], call f partially of class ξ if all partial functions f_{x} : $Y \rightarrow[0,1]$, for all x in X, are of Borel class ξ. With this definition we have

Theorem. If ξ is a nonlimit countable ordinal, then each Borel function f : $X \times Y \rightarrow[0,1]$ which is partially of class ξ is the pointwise limit of a sequence $\left(f_{n}\right)_{n \in \omega}$ of Borel functions which are partially of class less than ξ.

This theorem is an extension of the classical Lebesgue-Hausdorff theorem on analytically representable functions. We shall also derive from it a result on the conservation of the Borel class under integration (Theorem 3.8).

The proofs of Dellacherie for case $\xi=1$, Saint-Raymond for case $\xi=2$ and Bourgain for case $\xi=3$ have in common to be of classical type, that is to use only tools and methods from classical descriptive set theory. Apart from that, they are unfortunately very different from one another-and of course more and more difficult-and it does not seem possible to extract from them a general method for solving the section problem.

The method we present here is of a very different spirit. We shall deduce a solution to the section problem from a result in effective descriptive set theory. The fact that effective descriptive set theory is not only a refinement of classical descriptive set theory, but also a powerful method able to solve problems of classical type is a feeling common to many set-theorists. We think that this paper provides a new concrete example that this feeling is right.

Let X be a recursively presented Polish space, with its canonical basis of open sets. (One may think of X as being ω^{ω} with the usual notion of recursivity. For the background material, see §0.) One generally uses the notion of "Borel code" to encode the family of Borel subsets of X. (For a precise definition, see [Ke] or [Mo].) Roughly speaking, a real α codes the Borel set B_{α} if it encodes some particular way of obtaining B_{α}, using countable unions and complementation, from the sets of the canonical basis. Then one can associate with each Borel code α a countable ordinal $\xi(\alpha)$, the particular Borel class, additive or multiplicative, of B_{α} witnessed by α. This leads to the notion of ξ-code (see [Ke]).

Now suppose B is a Δ_{1}^{1} subset of X. An easy consequence of the Suslin-Kleene Theorem (see [Mo]) insures that B admits a recursive code, i.e. there is a recursive real α such that $B=B_{\alpha}$. Hence we can associate with B an ordinal $\xi_{\text {rec }}(B)$, its recursive Borel class, defined by $\xi_{\text {rec }}(B)=\inf \left\{\xi(\alpha): \alpha\right.$ is recursive and $\left.B=B_{\alpha}\right\}$. We obtain the usual recursive hierarchy $\left(\Sigma_{\xi}^{0}, \Pi_{\xi}^{0}\right)_{\xi<\omega_{1}}$ among Δ_{1}^{1} sets. The obvious inequality $\xi_{\text {rec }}(B) \geqslant \xi(B)$, where $\xi(B)$ denotes the Borel class of B, is in general not an equality: one can construct open Δ_{1}^{1} sets of arbitrary recursive Borel class below ω_{1}.

Suppose now α is a Borel code which is Δ_{l}^{1}. Then clearly the Borel set B_{α} is also
Δ_{1}^{1}. This naturally leads to a new hierarchy among Δ_{1}^{1} sets, which we call the Δ_{1}^{1}-recursive hierarchy, and denote by $\left(\Sigma_{\xi}^{*}, \Pi_{\xi}^{*}\right)_{\xi<\omega_{1}}$: We define, for each Δ_{1}^{1} subset B of X, the Δ_{1}^{1}-recursive Borel class of $B, \xi_{\Delta_{1}}(B)$ by $\xi_{\Delta_{i}}(B)=\inf \left\{\xi(\alpha): \alpha\right.$ is Δ_{1}^{1} and $\left.B=B_{\alpha}\right\}$, and $\Sigma_{\xi}^{*}=\left\{B \in \Delta_{1}^{1}: B\right.$ admits a Δ_{1}^{1} additive ξ-code $\}=\cup_{\alpha \in \Delta_{1}} \Sigma_{\xi}^{0}(\alpha)$, $\Pi_{\xi}^{*}=\left\{B \in \Delta_{1}^{1}: B\right.$ admits a Δ_{1}^{1} multiplicative ξ-code $\}=\cup_{\alpha \in \Delta_{1}} \Pi_{\xi}^{0}(\alpha)$.

The main and somewhat surprising result of this paper is that for all $B \in \Delta_{1}^{1}$, $\xi_{\Delta_{i}}(B)=\xi(B)$, i.e. that for each Δ_{1}^{1} set B, its Borel class is witnessed by a Δ_{1}^{1} code. This is a consequence of the following result (Theorem A of $\S 1$).

Theorem A. Let ξ be some recursive ordinal. If B is some Δ_{1}^{1} and $\boldsymbol{\Pi}_{\xi}^{0}$ subset of X, then B belongs to the class Π_{ξ}^{*}.

In the case $\xi=1$, the result can be found in Moschovakis' forthcoming book [Mo]. Cases $\xi=2$ and $\xi=3$ are proved in [Lo1], with proofs which are very similar to the proofs of classical type for the section problem given by Saint-Raymond and Bourgain. In particular, we made use of the special properties of compact sets, and derived case 3 from an ingenious lemma of general set theory due to Bourgain. The proof we present in $\S 1$ avoids all these difficulties by the systematic use of another tool we introduced in the two notes [L03] and [L04], the possibility of changing the topology on the space X, the new topologies being more adequate to the problem. In any case, we want to say how indebted we are to the work of J. Bourgain on case $\xi=3$, which contains some of the tools allowing to attack the general case, and which also convinced us that Dellacherie's conjecture should be true.

As usual in this type of problems, the structural result about Δ_{1}^{1} sets is obtained via a separation result about Σ_{1}^{1} sets. If Γ is a family of subsets of X, and A and B are two subsets of X, we say that A is Γ-separable from B if there is some set $C \in \Gamma$ such that $A \subset C$ and $C \cap B=\varnothing$. (Note that this relation is not symmetric in general.) We shall prove in $\S 1$ the following separation result.

Theorem B. If A, B are two Σ_{1}^{1} subsets of X and for some recursive ordinal ξ, A is Π_{ξ}^{0}-separable from B, then A is Π_{ξ}^{*}-separable from B.

This separation result is not only a refinement of Theorem A, but as we shall see, it is the right induction hypothesis which allows us to prove Theorem A by induction on ξ.

Theorems A and B are proved in §1. Before that, we recall in §0 some results in effective descriptive set theory which are needed in the sequel. The reference papers are circulated but unpublished works of Moschovakis [Mo] and Kechris [Ke]. So we briefly state some of the results we shall need, especially a "uniformization lemma" which appeared first in [Lo1], and which is a slight generalization of well-known uniformization results quoted in [Mo].

In §2, we apply the structural result on Δ_{1}^{1} sets to the theory of Borel hierarchies of sets and functions. We give some effective analogs of well-known results of classical set theory, as separation or reduction of Borel sets, or Lebesgue's theorem on analytically representable functions.

In $\S 3$, we discuss how the effective results of $\S \S 1$ and 2 can be used to solve the
section problem, and the related problems discussed at the beginning of the introduction. We present the results in the most general situation, and give applications to more concrete cases.
0. Notations and prerequisites. In the sequel, we have chosen to follow the notations and terminology of Moschovakis' book [Mo], not only for the descriptive theory, but also for the classical one. For example, the Borel classes are denoted by $\boldsymbol{\Sigma}_{\xi}^{0}$ and $\boldsymbol{\Pi}_{\xi}^{0}$. This corresponds in the classical terminology to sets of Borel class $\boldsymbol{\xi}$, except for finite $\xi: \Sigma_{n+1}^{0}$ sets are given class n in the classical terminology (see [Ku]).

Accordingly, we denote by $\boldsymbol{\Sigma}_{1}^{1}, \boldsymbol{\Pi}_{1}^{1}, \ldots$, the levels of the projective hierarchy. ω is the set of integers, ω^{ω} the set of functions from ω into ω, called as usual reals, and denoted by letters $\alpha, \beta, \gamma, \ldots$ The class of ordinals is denoted by On , and ordinals by letters $\lambda, \eta, \xi . \kappa_{1}$ is the first uncountable ordinal, and ω_{1} the first nonrecursive one.

In $\S \S 1$ and 2 , our work is developed within the frame given by Moschovakis' notion of recursively presented Polish space. Such a space is a structure $\langle X, d, r\rangle$, where X is a Polish space, d is a distance on X which generates the topology, and for which $\langle X, d\rangle$ is a complete metric space, and $r=\left(r_{n}\right)_{n \in \omega}$ is a sequence of points of X which is dense in X and satisfies the following condition of recursivity. The relations (on ω^{4}), $d\left(r_{m}, r_{n}\right) \leqslant p /(q+1)$ and $d\left(r_{m}, r_{n}\right)<p /(q+1)$, are recursive.

We shall not enter the general study of these structures. This is done in [Mo]. We generally abbreviate by X the recursively presented (r.p.) space, the corresponding recursive presentation $\left\langle d_{X}, r_{X}\right\rangle$ being understood. This is a bit incorrect, as two different recursive presentations on the same space may give two different theories of recursivity. It is particularly dangerous when working on classical Polish spaces, as $\omega, 2^{\omega}, \omega^{\omega},[0,1],[0,1]^{\omega}, \ldots$, but for these spaces we make the following convention. Except otherwise stated, they are supposed to be equipped with their usual recursive presentation. The same convention is made for product spaces $X \times Y$. (A precise definition of these presentations can be found in [Mo].)

To each r.p. space X is canonically associated, via a fixed recursive enumeration of ω^{4}, a countable family of basic open balls $(N(n, X))_{n \in \omega}$. This allows to extend to these structures the classical notions of the effective theory on ω and ω^{ω}, as the arithmetical and analytical hierarchies of sets. Here we shall restrict our attention to the first two levels of the analytical hierarchy, i.e. $\Sigma_{1}^{0}, \Pi_{1}^{0}, \Sigma_{1}^{1}, \Pi_{1}^{1}$ and Δ_{1}^{1} sets, and the corresponding relativized classes.

We shall be interested mainly in partial functions $f: X \rightarrow Y$, where X and Y are two r.p. spaces. For such a function, $f(x) \downarrow$ abbreviates the statement " f is defined at $x "$, and the diagram D^{f} of f is defined by $D^{f}(x, n) \leftrightarrow f(x) \downarrow \wedge f(x) \in N(n, Y)\left(D^{f}\right.$ is a subset of $X \times \omega$).

If Γ is a class of subsets of r.p. spaces, we say that f is a partial Γ-recursive function from X into Y if D^{f} is in Γ. For our purpose, this definition is relevant in two cases, when $\Gamma=\Delta_{1}^{1}$ and when $\Gamma=\Pi_{1}^{1}$. It is not hard to prove that a partial function from X into Y is Δ_{1}^{1}-recursive if and only if it is the restriction of a total
Δ_{1}^{1}-recursive function from X into Y to some Δ_{1}^{1} subset of X, and if and only if its graph is $\Delta_{1}^{!}$in $X \times Y$ [Mo].

If f is a partial Π_{1}^{1}-recursive function from X into Y, f is not, in general, the restriction of a total Δ_{1}^{1}-recursive function to some Π_{1}^{1} subset of X. But it can be seen that the restriction of f to any Δ_{1}^{l} subset of its domain is Δ_{1}^{l}. So if the domain of f is Δ_{1}^{1}, hence in particular if f is total, f is Δ_{1}^{1}-recursive (see [Mo]). For readers familiar with the classical theory, the difference between Δ_{1}^{1} - and Π_{1}^{1}-recursive functions can be seen as the effective analog of the difference between Borel and bianalytic functions defined on an arbitrary metrizable separable space (not necessarily Polish). This is more than an analogy (see §3).

Similarly, if x is some point of the r.p. space X, we define the diagram D^{x} of x by $D^{x}(n) \leftrightarrow x \in N(n, X) . D^{x}$ codes the set of basic neighbourhoods of x in X. If Γ is some class of subsets of r.p. spaces, we say x is Γ-recursive, or simply $x \in \Gamma$, if D^{x} is in Γ. The relevant classes here are Δ_{1}^{1} and $\Delta_{1}^{1}(x)$. We remark that for the classical spaces as ω^{ω}, the usual recursive presentations are coherent, in the sense that $\alpha \in \omega^{\omega}$ is a Δ_{1}^{1}-recursive function from ω into ω if and only if it is a Δ_{1}^{1}-recursive element of ω^{ω}.

If f is a Π_{1}^{1}-recursive partial function from X into Y, and x is in the domain of f, then $f(x)$ is $\Delta_{1}^{1}(x)$ in Y. This gives a necessary condition in order to obtain uniformization results. It turns out to be also a sufficient condition, as it can be seen by the following theorem, which will be used repeatedly in the sequel.

Uniformization lemma [Lo1]. Let X and Y be two r.p. spaces, and let A be a Π_{1}^{1} subset of $X \times Y$. The set $A^{+}=\left\{x \in X: \exists y \in \Delta_{1}^{1}(x) A(x, y)\right\}$ is Π_{1}^{1}, and there is a partial Π_{1}^{1}-recursive function f from X into Y which uniformizes A on A^{+}, i.e. such that f is defined on A^{+}and for each $x \in A^{+},(x, f(x)) \in A$. Moreover, if B is a Σ_{1}^{1} subset of A^{+}, there is a total Δ_{1}^{1}-recursive function which uniformizes A on B.

This lemma will be frequently used in case $A^{+}=\pi_{X}(A)$, and even more when A^{+}is all of X. But we shall need the full strength of it in $\S 3$.

1. The separation theorem for Σ_{1}^{\dagger} sets. In this section, X is a fixed recursively presented space, and we consider the family of all Δ_{1}^{1} subsets of X. In order to code this family, it is possible to work along the lines described in the introduction. But this leads to coding by reals, and we prefer, for technical reasons, using a coding by integers. So we fix once and for all a coding pair (W, C) where W, the set of codes, is a Π_{1}^{1} subset of ω, C is a Π_{1}^{1} subset of $\omega \times X$ which is universal for Δ_{1}^{1} subsets of X, with $\pi_{\omega}(C)=W$, and such that the relation $n \in W \wedge x \notin C_{n}$ is also Π_{1}^{1}. Such a coding pair exists [$\mathbf{M o}$].

We now define an operation on subsets of X, which we call the Δ_{1}^{1}-union.
Definition 1. A set $A \subset X$ is the Δ_{1}^{1}-union of a sequence $\left(B_{n}\right)_{n \in \omega}$, written $A=\cup_{1}^{1} B_{n}$, if $A=\cup_{n} B_{n}$, and the subset B of $X \times \omega$, defined by $B(x, n) \leftrightarrow x \in$ B_{n}, is in Δ_{1}^{1}. The notion of Δ_{1}^{1}-intersection is defined similarly.

As usual, if Γ is a family of sets, we denote by $\cup_{1}^{l} \Gamma$ the family of all sets obtained by Δ_{1}^{1}-union performed on sequences of sets from Γ. Clearly, \cup_{1}^{1} acts on Δ_{1}^{l} sets and constructs Δ_{1}^{1} sets.

Definition 2. The Δ_{1}^{1}-recursive hierarchy $\left(\Sigma_{\xi}^{*}, \Pi_{\xi}^{*}\right)_{\xi \in O_{n}}$ is defined by induction as follows:

$$
\begin{gathered}
\Sigma_{0}^{*}=\Pi_{0}^{*}=\{N(n, X): n \in \omega\}, \\
\Sigma_{\xi}^{*}=\bigcup_{1}^{1}\left(\bigcup_{\eta<\xi} \Pi_{\eta}^{*}\right)
\end{gathered}
$$

and

$$
\Pi_{\xi}^{*}=\neg \Sigma_{\xi}^{*}=\left\{A \subset X: X-A \in \Sigma_{\xi}^{*}\right\} .
$$

From this definition, it is clear that $\Sigma_{\xi}^{0} \subset \Sigma_{\xi}^{*} \subset \Sigma_{\xi}^{0} \cap \Delta_{1}^{1}$ and that $\Pi_{\xi}^{0} \subset \Pi_{\xi}^{*} \subset \Pi_{\xi}^{0}$ $\cap \Delta_{1}^{1}$, from which it follows that the induction stops at ω_{1}, and $\Delta_{1}^{1}=\cup_{\xi<\omega_{1}}$ $\Sigma_{\xi}^{*}=\cup_{\xi<\omega_{1}} \Pi_{\xi}^{*}$.

Definition 3. For each recursive ordinal ξ, we define the set W_{ξ} of ξ-codes by $n \in W_{\xi} \leftrightarrow n \in W \wedge C_{n} \in \Pi_{\xi}^{*}$. (We could also have defined codes for the additive classes, but we do not need them in the sequel.)

Proposition 4. The relation $P(n, \alpha) \leftrightarrow \alpha \in W O \wedge n \in W_{|\alpha|}$ is Π_{1}^{1} (in n and α). Hence, in particular, for each $\xi<\omega_{1}$ the sets W_{ξ} and $\cup_{\eta<\xi} W_{\eta}$ are Π_{1}^{1}.

Proof. The second statement is an immediate consequence of the first one. If ξ is recursive, choose some recursive $\alpha \in W O$ with $|\alpha|=\xi$. Then $n \in W_{\xi} \leftrightarrow P(n, \alpha)$ and $n \in \cup_{\eta<\xi} W_{\eta} \leftrightarrow \exists m P\left(n, \alpha_{m}\right)$ where α_{m} is the restriction of the ordering α to those integers which are smaller than m (with respect to α).

To prove the first statement, let ψ be the following Π_{1}^{1} relation:

$$
\begin{aligned}
& \psi(n, S) \leftrightarrow n \in W \wedge\left[\exists m C_{n}=N(m, X)\right. \\
&\left.\vee\left(\exists \alpha \in \Delta_{1}^{1} \forall p \alpha(p) \in S \wedge X-C_{n}=\bigcup_{p} C_{\alpha(p)}\right)\right]
\end{aligned}
$$

ψ is positive in S, hence it defines a Π_{1}^{1} monotone operator P_{ψ}. By a result of Cenzer [Ce], the relation $Q_{\psi}(n, \alpha) \leftrightarrow \alpha \in W O \wedge P_{\psi}^{|\alpha|}(n)$ is also Π_{1}^{1}, where P_{ψ}^{ξ} is defined inductively by $P_{\psi}^{0}(n) \leftrightarrow \psi(n, \varnothing)$ and $P_{\psi}^{\xi}(n) \leftrightarrow \psi\left(n, \cup_{\eta<\xi} P_{\psi}^{\eta}\right)$. So in order to prove the proposition, we just have to prove that for all $\xi, P_{\psi}^{\xi}=W_{\xi}$. We can restrict our attention to recursive ordinals.

The equality is true for $\xi=0$, because of the equivalences

$$
P_{\psi}^{0}(n) \leftrightarrow \psi(n, \varnothing) \leftrightarrow n \in W \wedge \exists m C_{n}=N(m, X) \leftrightarrow n \in W_{0} .
$$

Suppose that we have proved the equality $P_{\psi}^{\eta}=W_{\eta}$ for all $\eta<\xi$. If $n \in P_{\psi}^{\xi}$, then $n \in W_{0}$ or there is some Δ_{1}^{1} real α such that for all $p, \alpha(p) \in \cup_{\eta<\xi} P_{\psi}^{\eta}=$ $\cup_{\eta<\xi} W_{\eta}$, and $X-C_{n}=\cup_{p} C_{\alpha(p)}$. As the relation $x \in C_{\alpha(p)}$ is $\Delta_{1}^{1}($ in x and p), it clearly implies that $C_{n} \in \Pi_{\xi}^{*}$, hence $n \in W_{\xi}$.

If $n \in W_{\xi}$, then by definition the set $X-C_{n}$ is the Δ_{1}^{1}-union of a sequence $\left(A_{p}\right)_{p \in \omega}$ of sets in $\cup_{\eta<\xi} \Pi_{\eta}^{*}$. Let $R(p, k) \leftrightarrow k \in \cup_{\eta<\xi} W_{\eta} \wedge A_{p}=C_{k}$. By the induction hypothesis $\cup_{\eta<\xi} W_{\eta}=\cup_{\eta<\xi} P_{\psi}^{\eta}$ is Π_{1}^{1}, and hence R is Π_{1}^{1}. Now $\forall p \exists k$ $R(p, k)$, hence by the Uniformization Lemma, there is some Δ_{1}^{1} real α such that for all $p, R(p, \alpha(p))$. Clearly this α witnesses that n belongs to P_{ψ}^{ξ}.

Remark. Working along the same lines and using the Uniformization Lemma, it is not hard to see that the definition of the Δ_{1}^{1}-recursive hierarchy sketched in the introduction and the precise one given above lead to the same sets, i.e. that $\Sigma_{\xi}^{*}=\cup_{\alpha \in \Delta_{i}} \Sigma_{\xi}^{0}(\alpha)$ and $\Pi_{\xi}^{*}=\cup_{\alpha \in \Delta_{i}} \Pi_{\xi}^{0}(\alpha)$. The verification is left to the reader.

Theorem A. For all recursive ordinals $\xi, \Sigma_{\xi}^{*}=\Sigma_{\xi}^{0} \cap \Delta_{1}^{1}$ and $\Pi_{\xi}^{*}=\Pi_{\xi}^{0} \cap \Delta_{1}^{1}$.
This theorem is an easy corollary of the following separation result.
Theorem B. Let ξ be a recursive ordinal, and let A and B be two Σ_{1}^{1} subsets of X. If A is Σ_{ξ}^{0}-separable from B, then A is Σ_{ξ}^{*}-separable from B.

Theorem A easily follows from Theorem B. The inclusion $\Sigma_{\xi}^{*} \subset \Sigma_{\xi}^{0} \cap \Delta_{1}^{1}$ is obvious. Now if A is both Δ_{1}^{1} and Σ_{ξ}^{0}, A is Σ_{1}^{1} and Σ_{ξ}^{0}-separable from the Σ_{1}^{1} set $X-A$. Theorem B then implies A is Σ_{ξ}^{*}.

Theorem B is proved by induction on ξ. Before we give the proof, we introduce a family of topologies on X, which will be our main tool.

Definition 5. We define, for all $\xi, 1 \leqslant \xi<\omega_{1}$, the topology T_{ξ} on X to be the topology generated by all sets which are both Σ_{1}^{1} and in $\cup_{\eta<\xi} \Pi_{\eta}^{0}$. Similarly, T_{∞} is the topology on X generated by all Σ_{1}^{1} subsets of X. The topology T_{∞} is implicitly used in Harrington's paper [Ha], via a notion of forcing previously considered by Gandy. (See our paper in [GMS].) From the definition, T_{1} is the usual topology on X, the topologies $\left(T_{\xi}\right)_{\xi<\omega_{1}}$ are increasing with ξ and coarser than T_{∞}. In the sequel, we always mention ξ when denoting the topological notions associated with T_{ξ}. We use the words ξ-open, ξ-closed, \bar{A}^{ξ}, int ${ }_{\xi}$, and so on. We shall need the following proposition, which is implicit in Harrington's paper [Ha].

Proposition 6. The space $\left(X, T_{\infty}\right)$ is a Baire space.
Proof. Let $\left(G_{n}\right)_{n \in \omega}$ be a sequence of ∞-dense ∞-open sets, and A a nonempty Σ_{1}^{1} subset of X. We must prove that $A \cap \cap_{n} G_{n} \neq \varnothing$. To do that, we construct by recurrence a family $\left(F_{n}^{m}\right)_{n<m}$ of Π_{1}^{0} subsets of $X \times \omega^{\omega}$ satisfying:
(i) For fixed $n,\left(F_{n}^{m}\right)_{m>n}$ is a decreasing family of Π_{1}^{0} sets of diameter tending to 0.
(ii) $\pi_{X}\left(F_{0}^{0}\right) \subset A$ and for each $n, \pi_{X}\left(F_{n}^{n}\right) \subset G_{n}$.
(iii) For all $m, \cap_{n<m} \pi_{X}\left(F_{n}^{m}\right) \neq \varnothing$.

Suppose $\left(F_{n}^{m}\right)_{n<m<k}$ have been constructed. Let $A_{k}=\cap_{n<k} \pi_{X}\left(F_{n}^{k}\right) . A_{k}$ is a nonempty Σ_{1}^{1} subset of X, and by the ∞-density of G_{k+1}, there is a nonempty Σ_{1}^{1} set $B_{k} \subset A_{k} \cap G_{k+1}$. Let F_{k+1}^{k+1} be a Π_{1}^{0} subset of $X \times \omega^{\omega}$ such that $B_{k}=\pi_{X}\left(F_{k+1}^{k+1}\right)$. Now, choose for each $n \leqslant k$ a basic open set $N\left(p_{n}, X \times \omega^{\omega}\right)$ of diameter less than $1 / 2^{k+1}$ such that $F_{n}^{k+1}=F_{n}^{k} \cap N\left(p_{n}, X \times \omega^{\omega}\right)$ satisfies $\cap_{n<k+1} F_{n}^{k+1} \neq \varnothing$. This is clearly possible. This defines the sequence $\left(F_{n}^{m}\right)_{n<m<k+1}$. The resulting sequence (F_{n}^{m}) clearly satisfies (i), (ii), and (iii).

As $X \times \omega^{\omega}$ is complete, by (i), for each $n, \cap_{n<m} F_{n}^{m}$ reduces to a singleton $\left\{\left(x_{n}\right.\right.$, α_{n}) , and by (iii), $x_{n}=x$ does not depend on n. Now, by (ii), $x \in A$ and for each n, $x \in G_{n}$. So $A \cap\left(\cap_{n} G_{n}\right) \neq \varnothing$.

We now suppose Theorem B is known for all $\eta<\xi<\omega_{1}$.

Lemma 7. Let A be a Σ_{1}^{1} subset of X. Then \bar{A}^{ξ} is Π_{ξ}^{0} and Σ_{1}^{1}, and hence $\xi+1$-open.
Proof. \bar{A}^{ξ} is clearly Π_{ξ}^{0} (this is true for all sets A), as its complement is a countable union of ξ-open, hence Σ_{ξ}^{0} sets.

Now we have $x \notin \bar{A}^{\xi} \leftrightarrow \exists \eta<\xi \exists A^{\prime} \in \Sigma_{1}^{1} \cap \Pi_{\eta}^{0}\left(x \in A^{\prime} \wedge A^{\prime} \cap A=\varnothing\right)$. Now if A^{\prime} is Σ_{1}^{1} and Π_{η}^{0} and disjoint from the Σ_{1}^{1} set A, then by the induction hypothesis, A^{\prime} is Π_{η}^{*}-separable from A. Hence we obtain

$$
x \notin \bar{A}^{\xi} \leftrightarrow \exists n \in \bigcup_{\eta<\xi} W_{\eta}\left(x \in C_{n} \wedge C_{n} \cap A=\varnothing\right) .
$$

But this last relation is Π_{1}^{1}, hence \bar{A}^{ξ} is Σ_{1}^{1}.
For each set H, there is a largest ξ-open set G_{H} such that $H \cap G_{H}$ is ∞-meager. We set $\tilde{H}^{\xi}=X-G_{H}$. Clearly \tilde{H}^{ξ} is ξ-closed and $H-\tilde{H}^{\xi}$ is ∞-meager. Actually we have

Lemma 8. If H is $\Pi_{\xi}^{0}, \tilde{H}^{\xi}$ is equal to H modulo an ∞-meager set.
Proof. We have to prove that $\tilde{H}^{\xi}-H$ is ∞-meager. This is done by induction. If H is $\Pi_{1}^{0}, \tilde{H}^{1}$ is contained in H. So suppose the lemma is known for all $\eta<\xi$. There is a sequence $\left(H_{n}\right)$, with $H_{n} \in \Pi_{\eta_{n}}^{0}, \eta_{n}<\xi$, such that $X-H=\cup_{n} H_{n}$. So

$$
\tilde{H}^{\xi}-H \subset \tilde{H}^{\xi} \cap \bigcup_{n} H_{n} \subset \bigcup_{n}\left[\left(\tilde{H}^{\xi} \cap \tilde{H}_{n}^{\eta_{2}}\right) \cup\left(H_{n}-\tilde{H}_{n}^{\eta_{1}}\right)\right]
$$

Each set $H_{n}-\tilde{H}_{n}^{\eta_{n}}$ is ∞-meager, so we just have to show that each set $\tilde{H}^{\xi} \cap \tilde{H}_{n}^{\eta_{n}}$ is ∞-meager. Now \tilde{H}^{ξ} is ξ-closed, and $\tilde{H}_{n}^{\eta_{n}}$ is η_{n}-closed, hence they are ∞-closed. So we have to check that $\tilde{H}^{\xi} \cap \tilde{H}_{n}^{n_{n}}$ is ∞-rare. Let A be a Σ_{1}^{1} set contained in it. Then $\bar{A}^{\eta_{n}} \subset \tilde{H}_{n}^{\eta_{n}}$ and, by Lemma 7, $\bar{A}^{\eta_{n}}$ is $\eta_{n}+1$-open, hence ξ-open. Moreover $\bar{A}^{\eta_{n}} \cap H$ $\subset \tilde{H}_{n}^{\eta_{n}} \cap H \subset \tilde{H}_{n}^{\eta_{n}}-H_{n}$ is ∞-meager, and by the definition of $\tilde{H}^{\xi}, \bar{A}^{\eta_{n}} \cap \tilde{H}^{\xi}$ is empty. This clearly implies A is empty.

Lemma 9. Let A and B be two Σ_{1}^{1} subsets of X with A separable from B by a Σ_{ξ}^{0} set. Then $A \cap \bar{B}^{\xi}=\varnothing$.
(This lemma is an intermediate separation result. In case $\xi=1$, it is obvious. This explains why case $\xi=1$ is easy to prove.)
Proof. Let $H \in \Pi_{\xi}^{0}$ separate B from A. We claim first that $\tilde{H}^{\xi} \supset B . B-\tilde{H}^{\xi}$ is an ∞-open set, and is included in $H-\tilde{H}^{\xi}$, which is ∞-meager by Lemma 8. By the Baire category theorem for $T_{\infty}, B-\tilde{H}^{\xi}$ is empty. Next we claim $A \cap \bar{B}^{\xi}=\varnothing$. This set is, by Lemma 7, a Σ_{1}^{1} subset of X. Now $B \subset \tilde{H}^{\xi}$, so $\bar{B}^{\xi} \subset \tilde{H}^{\xi} ; A \cap H=$ \varnothing, so by Lemma 8, $A \cap \tilde{H}^{\xi}$ is ∞-meager. Hence $A \cap \bar{B}^{\xi}$ is ∞-meager, and again by the Baire category theorem for T_{∞}, is empty.

End of proof of Theorem B. Let A and B be two Σ_{1}^{1} subsets of X, with A Σ_{ξ}^{0}-separable from B. By the induction hypothesis and Lemma $9, A \cap \bar{B}^{\xi}=\varnothing$. Consider the relation

$$
R(x, n) \leftrightarrow x \notin A \vee\left(n \in \bigcup_{\eta<\xi} W_{\eta} \wedge x \in C_{n} \wedge C_{n} \cap B=\varnothing\right)
$$

From Proposition 4, R is a Π_{1}^{1} relation. Now for each x in $A, x \notin \bar{B}^{\xi}$. Then there is some $\eta<\xi$ and some $A^{\prime} \in \Sigma_{1}^{1} \cap \Pi_{\eta}^{0}$ such that $x \in A^{\prime}$ and $A^{\prime} \cap B=\varnothing$. By the
induction hypothesis, we infer that there is some $A^{\prime \prime} \in \Pi_{\eta}^{*}$ such that $A^{\prime \prime} \supset A^{\prime}$ and $A^{\prime \prime} \cap B=\varnothing$. So we have proved that $\forall x \in A \exists n R(x, n)$. By the Uniformization Lemma, there is some Δ_{1}^{1}-recursive total function $f: X \rightarrow \omega$ such that $\forall x \in A$ $R(x, f(x))$. The set $f(A)$ is Σ_{1}^{1} in ω, and contained in the Π_{1}^{1} set $D=\{n \in$ $\left.\cup_{\eta<\xi} W_{\eta}: C_{n} \cap B=\varnothing\right\}$. By the ordinary separation theorem for Σ_{1}^{1} sets, there is some Δ_{1}^{1} set E such that $f(A) \subset E \subset D$. Let $G(x, n) \leftrightarrow n \in E \wedge x \in C_{n} . G$ is Δ_{1}^{1} in $X \times \omega$ and the set $H=\cup_{n} G_{n}=\cup_{n \in E} C_{n}$ is clearly a Σ_{ξ}^{*} set separating A from B.
2. Effective properties of the Borel hierarchies. This section is devoted to the effectivization of some well-known results on the Borel hierarchies of sets and functions, with the help of the results of $\S 1$. We shall particularly be interested in separation and reduction results for Borel sets, and in the Lebesgue-Hausdorff theorem about analytically representable functions. Classical proofs of these results, particularly convenient to our purpose, can be found in [Ku]. When looking at these proofs, one can see at once that they are constructive, so they can easily be transformed in proofs for effective versions. We discuss that possibility in one example, the reduction property of Σ_{ξ}^{0} sets. If A and B are two Σ_{ξ}^{0} sets, $\xi>1$, in some Polish space X, there exist two disjoint Σ_{ξ}^{0} sets A^{\prime} and B^{\prime} such that $A^{\prime} \subset A$, $B^{\prime} \subset B$ and $A^{\prime} \cup B^{\prime}=A \cup B$. From the proof in $[\mathrm{Ku}]$ it is clear that Borel ξ-codes for A^{\prime} and B^{\prime} are given effectively from Borel ξ-codes for A and B. Now by our Theorem A, if A and B are Δ_{1}^{1}, they admit $\Delta_{1}^{1} \xi$-codes. It is then easy to verify that the ξ-codes for A^{\prime} and B^{\prime} are also Δ_{1}^{1}.

This phenomenon is quite general. Almost all results of the classical theory of Borel hierarchies may be effectivized that way, using Theorem A (or sometimes Theorem B). Putting down all proofs in the effective context would be quite long and uninteresting, so we just write down the effective versions, with reference to a classical proof, and sometimes give indications for modifications which may be necessary.

It is worth noticing that this " Δ_{1}^{1}-recursive theory" we sketch here is not only a refinement of the classical theory. As it will be clear in §3, it leads to nontrivial results, even of classical type.
A. Reduction and separation results for Borel sets. We fix a r.p. space X. It is well known that many of the properties of the Borel classes are false in general for the first classes of the Borel hierarchy, depending on the properties of disconnectedness of the space X. We shall say that X is of type 0 if each basic open set $N(n, X)$ is also closed in X.

Theorem 1 (ω-reduction of Σ_{ξ}^{0} Sets). Let A be a Δ_{1}^{1} subset of $X \times \omega$, with all its sections $A_{n}, n \in \omega$, in Σ_{ξ}^{0}, for $\xi>1$. There is a Δ_{1}^{1} set B included in A, with all its sections B_{n} in Σ_{ξ}^{0}, such that the sets B_{n} are disjoint and $\cup_{n} A_{n}=\cup_{n} B_{n}$. Moreover if X is of type 0 , the result is also true for $\xi=1$.

Proof. See [Ku, II, §30, VII, Theorem 1].

Corollary 2 (ω-Separation for Π_{ξ}^{0} Sets). If A is a Δ_{1}^{1} subset of $X \times \omega$, with each section A_{n} in Π_{ξ}^{0}, for $\xi>1$ (or $\xi \geqslant 1$ if X is of type 0), and $\cap_{n} A_{n}=\varnothing$, then there is some Δ_{1}^{1} set B containing A, with all its sections in Δ_{ξ}^{0}, such that $\cap_{n} B_{n}=\varnothing$.

Corollary 2 easily implies the effective separation of Π_{ξ}^{0} sets. Now using the Uniformization Lemma, we may infer a uniformized version of it.

Corollary 3 (uniform separation of Π_{ξ}^{0} Sets). If A and B are two disjoint Δ_{1}^{1} subsets of $X \times \omega$, with their sections in Π_{ξ}^{0}, for $\xi>1(\xi \geqslant 1$ if X is of type 0$)$, there is $a \Delta_{1}^{1}$ set C with sections in Δ_{ξ}^{0} which separates A from B.

It is also possible, along the same lines, to obtain structural results for ambiguous sets (i.e. sets in $\Delta_{\xi}^{\mathbf{0}}$).

Theorem 4. Let A be a Δ_{1}^{1} and Δ_{ξ}^{0} subset of X, for $\xi>2(\xi \geqslant 2$ if X is of type 0$)$. There is a Δ_{1}^{1} subset B of $X \times \omega$ such that for each n the section B_{n} is $\Delta_{\eta_{n}}^{0}$ for some $\eta_{n}<\xi$, with $A=\cap_{n} \cup_{m} B_{n+m}=\cup_{n} \cap_{m} B_{n+m}$. Moreover if $\xi=\lambda+1$, with limit λ, one can find B such that for each $n, \eta_{n}<\lambda$.

Proof. See [Ku, II, §30; IX, Theorems 1 and 2].
This structure result is the key step in the proof of the effective version of the Lebesgue-Hausdorff theorem.

Another important result in the theory of Borel sets concerns the "resolution in alternated series". An effective version of it for sets which are both Δ_{2}^{0} and Δ_{1}^{1} is due to Burgess [Bu]. For $\xi \geqslant 3$, the problem can be reduced to the case studied by Burgess using the method of [Ku, III, §37; II and III], with the aid of the notion of generalized homeomorphisms.

Theorem 5. For each A in $\Delta_{\xi+1}^{0} \cap \Delta_{1}^{1}, \xi \geqslant 2$, there is a Δ_{1}^{1} and closed subset F of ω^{ω}, and a Δ_{1}^{1}-recursive function f from F onto X which is injective and continuous, such that for each open subset G of $\omega^{\omega}, f(G) \in \Sigma_{\xi}^{0}$ and such that $f^{-1}(A)$ is both Δ_{2}^{0} and Δ_{1}^{1} in ω^{ω}.

Proof. See [Ku, III, §37; II, Theorem 1].
From Theorem 5 and Burgess' result, it is not hard to infer the following result.
Theorem 6 (resolution in alternated series). Let ξ be a recursive ordinal, $\xi \geqslant 1$, and let A be a Δ_{1}^{1} and $\Delta_{\xi+1}^{0}$ subset of X. There is a recursive real $\alpha \in W O$, of length $|\alpha|=\lambda$, and Δ_{1}^{1} sets C and C^{\prime} in $X \times \omega$, such that if $C_{\eta}=\{x \in X$: $(x, n) \in C\}$, and $C_{\eta}^{\prime}=\left\{x \in X:(x, n) \in C^{\prime}\right\}$, for $\eta<\lambda, \eta=\left|\alpha_{n}\right|$, then
(i) C_{η} and C_{η}^{\prime} are in Π_{ξ}^{0}.
(ii) If $\eta<\eta^{\prime}, C_{\eta} \supset C_{\eta}^{\prime} \supset C_{\eta^{\prime}} \supset C_{\eta^{\prime}}^{\prime}$.
(iii) $\cap_{\eta<\lambda} C_{\eta}=\varnothing$.
(iv) $A=\cup_{\eta<\lambda}\left(C_{\eta}-C_{\eta}^{\prime}\right)$.
B. The hierarchy of Δ_{1}^{1}-recursive functions. The hierarchy of Borel functions from some Polish space X into some Polish space Y is usually defined via the inverse images of open sets. The family B_{ξ} of functions of class ξ is defined by: $f \in B_{\xi}$ if
for each open subset G of $Y, f^{-1}(G)$ is in Σ_{ξ}^{0}. (We remark that this definition does not agree with the classical one for finite ξ. Here continuous functions are given the class 1.)

There is another classification related to the operation of taking pointwise limits of sequences of functions. Starting from B_{1} in case X is totally disconnected or $Y=[0,1]$, and from B_{2} in the general case, it leads to the hierarchy of analytically representable functions and the Lebesgue-Hausdorff theorem. (See [Ku, II, §31; VIII; IX].) If we restrict our attention to Δ_{1}^{1}-recursive functions, this classification must be adapted. We introduce the notion of Δ_{1}^{1}-limit. We say that a function f is the Δ_{1}^{1}-limit of a sequence $\left(f_{n}\right)_{n \in \omega}$ of functions from X into Y (where X and Y are r.p. spaces), if f is the limit of the sequence $\left(f_{n}\right)$ and if the function $g: X \times \omega \rightarrow Y$, defined by $g(x, n)=f_{n}(x)$, is Δ_{1}^{1}-recursive.

Theorem 1. Suppose Y is compact. Let f be a Δ_{1}^{1}-recursive function, from X into Y, of Borel class $\xi+1$, for $1<\xi<\omega_{1}$. Then f is the Δ_{1}^{1}-limit of a sequence $\left(f_{n}\right)$ of functions of Borel class ξ. Moreover if ξ is a limit ordinal, each function f_{n} can be chosen of class less than ξ.

If X is of type 0 , the conclusion is also true for $\xi=1$.
For proving this theorem, the general case is first reduced to the case of finite Y; this only uses the fact that Y is compact, and the uniform separation corollary of $\S 2 \mathrm{~A}$ (see [Ku, II, §31; VIII, Theorem 3]). The case of finite Y is then proved by an easy application of Theorem 4 (§2A). (See [Ku, II, §31; VIII, Theorem 4].)

Theorem 1, as the Lebesgue-Hausdorff theorem, is false in general for functions in B_{2}. Take for example $X=[0,1], Y=\{0,1\}$, and for f the characteristic function of $\{0\}$. Clearly f is Δ_{1}^{1} and of class 2 , but is not the limit of a sequence of continuous functions from X into Y, as such functions are constant.

A particular case when Theorem 1 is true for case $\xi=1$ is when X is of type 0 , as quoted in the statement of Theorem 1. But there is also another important case when $Y=[0,1]$. This is related to the effective normality of r.p. spaces.

Proposition 2. Let X be a r.p. space. Then X is Δ_{1}^{1}-normal, i.e. for each pair of disjoint Δ_{1}^{1} and closed subsets F_{1} and F_{2} of X, there exist disjoint Δ_{1}^{1} and open sets G_{1} and G_{2} such that $F_{1} \subset G_{1}$ and $F_{2} \subset G_{2}$.

Proof. By a result in [Mo], there exist two Δ_{1}^{1} reals α and β such that $X-F_{2}=\cup_{n} N(\alpha(n), X)=\cup_{n} \overline{N(\alpha(n), X)}$ and $X-F_{1}=\cup_{n} N(\beta(n), X)=$ $\cup_{n} \overline{N(\beta(n), X)}$. Set

$$
G_{1}(x, n) \leftrightarrow x \in N(\alpha(n), X) \wedge \forall k<n x \notin \overline{N(\beta(k), X)},
$$

and

$$
G_{2}(x, n) \leftrightarrow x \in N(\beta(n), X) \wedge \forall k \leqslant n x \notin \overline{N(\alpha(k), X)} .
$$

Then $G_{1}=\cup_{n} G_{1}(n)$ and $G_{2}=\cup_{n} G_{2}(n)$ are Δ_{1}^{1} and open sets, $G_{1} \cap G_{2}=\varnothing$, and $F_{1} \subset G_{1}$ and $F_{2} \subset G_{2}$.

Using this result and the methods of proof of Urisohn's lemma and Tietze theorem, we can infer the following results.

Proposition 3. Let A and B be two disjoint Δ_{1}^{1} closed sets in X. There is a Δ_{1}^{1}-recursive and continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ for $x \in A$ and $f(x)=1$ for $x \in B$.

Proposition 4. Let f be a Δ_{1}^{1}-recursive and continuous function from a closed and Δ_{1}^{1} subset A of X into $[0,1]$. There is a total Δ_{1}^{1}-recursive and continuous function \bar{f} : $X \rightarrow[0,1]$ which extends the function f.

Theorem 5. A Δ_{1}^{1}-recursive function from X into $[0,1]$ belongs to B_{2} (i.e. is of the first class, in the classical terminology) if and only if it is the Δ_{1}^{1}-limit of a sequence of continuous functions from X into $[0,1]$.

Proof. See [Ku, II, §31; VIII, Theorem 7].
C. The relativized classes. Until now, in $\S \S 1$ and 2 , we restricted our attention to the class Δ_{1}^{1}, mainly for simplicity of notations. But clearly all our proofs work as well for the relativized classes $\Delta_{1}^{1}(x)$.

Define, for x in some r.p. space X, the $\Delta_{1}^{1}(x)$-recursive hierarchy on some r.p. space Y by closing successively the canonical basis of Y under complementation and $\Delta_{1}^{1}(x)$-union (with an obvious definition). The closure ordinal of this hierarchy is ω_{1}^{x}, the first ordinal nonrecursive in x, and the hierarchy $\left(\Pi_{\xi}^{*}(x), \Sigma_{\xi}^{*}(x)\right)_{\xi<\omega_{1}^{x}}$ obtained that way satisfies the analogs of Theorems A and B.

Theorem A^{\prime}. For all $\xi, 1 \leqslant \xi<\omega_{1}^{x}, \Sigma_{\xi}^{*}(x)=\Sigma_{\xi}^{0} \cap \Delta_{1}^{1}(x)$ and $\Pi_{\xi}^{*}(x)=\Pi_{\xi}^{0} \cap$ $\Delta_{1}^{1}(x)$.

Theorem B^{\prime}. If A and B are two $\Sigma_{1}^{1}(x)$ subsets of Y, and A is Σ_{ξ}^{0}-separable from B, then A is $\Sigma_{\xi}^{*}(x)$-separable from B.

From these two theorems, one can derive the relativized versions of all the results stated in $\S \S 2 \mathrm{~A}$ and 2B. The precise statements are left to the reader. They will be used in $\S 3$ in order to derive noneffective results in product spaces. It will be done by using the Uniformization Lemma, and a particular uniform coding of the classes $\Pi_{\xi}^{*}(x)$. We fix from now on a pair $\langle\mathbf{W}, \mathbf{C}\rangle$ of Π_{1}^{1} relations, $\mathbf{W} \subset X \times \omega, \mathbf{C} \subset X \times$ $\omega \times Y$, such that for all x in $X, \pi_{\omega}(\mathbf{C}(x))=\mathbf{W}(x), \mathbf{C}(x)$ is universal for $\Delta_{1}^{1}(x)$ subsets of Y, and the relation $\mathbf{W}(x, n) \wedge \neg \mathbf{C}(x, n, y)$ is Π_{1}^{1}. If we then define the set W_{ξ}^{x} of codes for $\Pi_{\xi}^{*}(x)$ sets by the relation $n \in W_{\xi}^{x} \leftrightarrow \mathbf{W}(x, n) \wedge \mathbf{C}_{x, n} \in$ $\Pi_{\xi}^{*}(x)$, then by the same argument as in the proof of Proposition 4 of $\S 1$, we obtain that the relation (in x, n, and α), $\alpha \in W O \wedge n \in W_{|\alpha|}^{x}$ is Π_{1}^{1}.
3. Borel hierarchies in product spaces. Let (X, M) be a measurable space, that is a set X equipped with a σ-algebra M of subsets of X. We denote by $A(M)$ the result of the Suslin operation performed on elements of M, and by bi $A(M)$ the family of sets B in $A(M)$ such that $X-B$ also belongs to $A(M)$. bi $A(M)$ is a σ-algebra containing M, and bi $A($ bi $A(M)$) $=$ bi $A(M)$. When X is metrizable separable, and M is the family of Borel subsets of X, sets in $A(M)$, resp. bi $A(M)$, are just called analytic, resp. bianalytic.

Let Y be a Polish space, with open basis U. We denote by $M \otimes U$ the σ-algebra
on $X \times Y$ generated by $M \times U=\{B \times G: B \in M, G \in U\}$, and we let $N=$ bi $A(M \otimes U)$. It is easy to check that $M \otimes U \subset$ bi $A(M) \otimes U \subset N=$ bi $A($ bi $A(M) \otimes U)$. In general bi $A(M) \otimes U \neq N$, for it is easy to prove that if B is in bi $A(M) \otimes U$, the sections $B_{x}, x \in X$, are of bounded Borel class below κ_{1}, a property which in general is not satisfied by all sets in N.

We define two hierarchies among N. The first one is related to global properties of sets in N, and the second one to properties of sections.

We define first $N_{0}=$ bi $A(M) \times U, N_{\xi}^{\Sigma}=\left(\cup_{\eta<\xi} N_{\eta}^{\Pi I}\right)_{\sigma}$ and $N_{\xi}^{\Pi}=\neg N_{\xi}^{\Sigma}$, where σ denotes the closure under countable unions. Next we define $S_{0}=N_{0}$ and $S_{\xi}^{\Sigma}=\left\{B \in N: \quad \forall x \in X \quad B_{x} \in \Sigma_{\xi}^{0}\right\}$ and $S_{\xi}^{\Pi}=\neg S_{\xi}^{\Sigma}$. Then $S=\cup_{\xi<\kappa_{1}} S_{\xi}^{\Sigma}=$ $\cup_{\xi<\kappa_{1}} S_{\xi}^{\Pi}$ is the family of elements of N with sections of bounded Borel class below \boldsymbol{N}_{1}.

The abstract version of the section problem stated in the introduction is answered positively by the following theorem.

Theorem 1. For all $\xi<\kappa_{1}, S_{\xi}^{\Sigma}=N_{\xi}^{\Sigma}$ and $S_{\xi}^{\Pi}=N_{\xi}^{\Pi}$. Hence $S=$ bi $A(M) \otimes U$.
Similarly, we can prove a separation result.
Theorem 2. Let ξ be a countable ordinal, A and B two elements of $A(M \otimes U)$. If for each x in X the section A_{x} is Σ_{ξ}^{0}-separable from the section B_{x}, then A is separable from B by a set in N_{ξ}^{Σ}.

Clearly for all $\xi, N_{\xi}^{\mathcal{\Sigma}}$ is contained in $S_{\xi}^{\mathcal{E}}$. Hence Theorem 1 is an easy corollary of Theorem 2. The proof of this theorem is made by successive reductions of the problem to simpler cases. The first step consists in replacing the abstract space X by a metrizable separable space \bar{X}.

Lemma 3. Let A and B be two sets in $A(M \otimes U)$. There is a measurable mapping ψ from (X, M) into $\left(2^{\omega}, \Delta_{1}^{1}\right)$, such that, denoting by $\bar{\psi}$ the application $\bar{\psi}(x, y)=$ $(\psi(x), y)$, and $\bar{X}=\psi(X)$, then $\bar{\psi}(A)$ and $\bar{\psi}(B)$ are analytic in $\bar{X} \times Y$.

Proof. This is a well-known result due to Marczewski. If A and B are in $A(M \otimes U)$, they are in $A\left(M^{\prime} \otimes U\right)$ for some countably generated sub- σ-algebra M^{\prime} of M. Let $B_{n}, n \in \omega$, generate M^{\prime}, and define ψ by $\psi(x)=\left\{n: x \in B_{n}\right\}$. Then clearly ψ satisfies the requirements of the lemma.

The function ψ of the lemma is clearly bi $A(M)-\operatorname{bi} A\left(\Delta_{1}^{1}(\bar{X})\right.$) measurable, hence by inverse images $\bar{\psi}$ maps all classes $N_{\xi}^{\Sigma}, N_{\xi}^{\Pi}, S_{\xi}^{\Sigma}, S_{\xi}^{\Pi}$, defined from (\bar{X}, Δ_{1}^{1}) into the corresponding classes defined from (X, M). Thus, the section problem is reduced to the case when X is a subset of 2^{ω}, equipped with the σ-algebra of its Borel subsets, and A and B are two analytic subsets of $X \times Y$, that is the traces on $X \times Y$ of two Σ_{1}^{1} subsets A^{\prime} and B^{\prime} of $2^{\omega} \times Y$.

We may suppose without loss of generality that Y is an r.p. space (by considering it if necessary as a G_{δ} subset of $[0,1]^{\omega}$), that ξ is a recursive ordinal, and that A^{\prime} and B^{\prime} are Σ_{1}^{1} in $2^{\omega} \times Y$ (the relativized result being proved similarly).

The next step consists in replacing X by a Π_{1}^{1} subset of 2^{ω}.

Lemma 4. Let ξ be a recursive ordinal, and A and B two Σ_{1}^{1} subsets of $2^{\omega} \times Y$. Then $\bar{X}=\left\{x \in 2^{\omega}: A_{x}\right.$ is Σ_{ξ}^{0}-separable from $\left.B_{x}\right\}$ is Π_{1}^{1} in 2^{ω}.

Proof. By the relativized version of Theorem B (see §2C),

$$
x \in \bar{X} \leftrightarrow \exists n \in W_{\xi}^{x}\left(A_{x} \subset \mathbf{C}_{x, n} \wedge \mathbf{C}_{x, n} \cap B_{x}=\varnothing\right)
$$

By the properties of the coding $\langle\mathbf{W}, \mathbf{C}\rangle, \bar{X}$ is Π_{1}.
Proof of Theorem 2. Suppose Theorem 2 is proved for all $\eta<\xi$. By Lemmas 3 and 4, we may assume that X is a Π_{1}^{1} subset of 2^{ω} and A and B are two Σ_{1}^{1} subsets of $2^{\omega} \times Y$, such that for all x in X, A_{x} is $\boldsymbol{\Sigma}_{\xi}^{0}$-separable from B_{x}.

Let β be a recursive real such that for each $n, \beta_{n} \in W O$ and the sequence $\left(\beta_{n}\right)_{n \in \omega}$ is nondecreasing with $\sup _{n}\left(\beta_{n}+1\right)=\xi$. We define R by

$$
\begin{gathered}
R(x, \alpha) \leftrightarrow x \in X \wedge \forall n \alpha(n) \in W_{\left|\beta_{n}\right|}^{x} \wedge A_{x} \subset \bigcup_{n} \mathbf{C}_{x, \alpha(n)} \\
\wedge \bigcup_{n} \mathbf{C}_{x, \alpha(n)} \cap B_{x}=\varnothing
\end{gathered}
$$

R is a Π_{1}^{1} relation, and by Theorem $B^{\prime}, \forall x \in X \exists \alpha \in \Delta_{1}^{1}(x) R(x, \alpha)$. By the Uniformization Lemma, there is a partial Π_{1}^{1}-recursive function $f: 2^{\omega} \rightarrow \omega^{\omega}$ such that f is defined on X and $\forall x \in X R(x, f(x))$.

Let $C_{n}=\left\{(x, y): x \in X \wedge y \in \mathbf{C}_{x, f(x)(n)}\right\}$, and $C=\cup_{n} C_{n}$. By the definition of R, C separates $A \cap X \times Y$ from $B \cap X \times Y$. Now, as f is Π_{1}^{1}-recursive, each C_{n} is Π_{1}^{1} and the relation $x \in X \wedge y \notin \mathbf{C}_{x, f(x)(n)}$ is also Π_{1}^{1}, hence

$$
C_{n} \in \operatorname{bi} A\left(\Delta_{\mathbf{i}}^{1}(X \times Y)\right) .
$$

Finally each $C_{n, x}=C_{x, f(x)(n)}$ is in $\Pi_{\left|\beta_{n}\right|}^{0}$, so $C_{n} \in S_{\left|\beta_{n}\right|}^{\Pi}$. But by the induction hypothesis $S_{\left|\beta_{n}\right|}^{\Pi}=N_{\left|\beta_{n}\right|}^{\Pi}$, so C is in N_{ξ}^{\sum}, and $A \cap X \times Y$ is N_{ξ}^{Σ}-separable from $B \cap X \times Y$.

Remark. The preceding proof shows that Theorems 1 and 2 may be improved into effective results in case X is a Π_{1}^{1} subset of an r.p. space E. In this case, say that a subset A of X is bi Σ_{1}^{1} in X if A and $X-A$ are Π_{1}^{1} in E. This is clearly the effective analog of the notion of bianalytic set. If f is a partial Π_{1}^{1}-recursive function from E into Y, and $X=\operatorname{dom}(f)$, then $\operatorname{Graph}(f)$ is bi Σ_{1}^{1} in $X \times Y$. Conversely, if f is defined on some Π_{1}^{1} subset X of E, and $\operatorname{Graph}(f)$ is bi Σ_{1}^{1} in $X \times Y$, then f is a partial Π_{1}^{1}-recursive function from E into Y, for it implies that for each x in $X, f(x)$ is $\Delta_{1}^{1}(x)$ and then

$$
D^{f}(x, n) \leftrightarrow x \in X \wedge \exists y \in \Delta_{1}^{\prime}(x)((x, y) \in \operatorname{Graph}(f) \wedge y \in N(n, Y))
$$

is Π_{1}^{1}. So the notion of partial Π_{1}^{1}-recursive function is the effective analog of the notion of function which is bianalytic on its domain.

The effective version of Theorems 1 and 2 is the following.

Theorem 5. Let ξ be a recursive ordinal, $X a \Pi_{1}^{1}$ subset of some r.p. space E and Y an r.p. space.
(i) Let A and B be two Σ_{1}^{1} subsets of $E \times Y$, and suppose that for each x in X, A_{x} is Σ_{ξ}^{0}-separable from B_{x}. Then there is a bi Σ_{1}^{1} subset C of $\omega \times X \times Y$ such that for each n, the sections $C_{n, x}$, for x in X, are in $\Pi_{\eta_{n}}^{0}$, for some $\eta_{n}<\xi$, and the set $D=\cup_{n} C_{n}$ separates $A \cap(X \times Y)$ from $B \cap(X \times Y)$.
(ii) In particular, if B is a bi Σ_{1}^{1} subset of $X \times Y$ with all its sections in Σ_{ξ}^{0}, then there is a set C as above such that $B=\cup_{n} C_{n}$.

The case when X is Polish (resp. when X is an r.p. space for the effective results) is a bit simpler, as the family N of bi $A\left(\Delta_{1}^{1}\right)$ subsets of $X \times Y$ reduces to the family of its Borel subsets (resp. the family of bi Σ_{1}^{1} subsets of $X \times Y$ reduces to that of Δ_{1}^{1} sets). Then in this case S_{ξ}^{Σ} is the family of Borel sets with sections in Σ_{ξ}^{0}, and N_{ξ}^{Σ} is the family of Borel sets obtained at the ξ th stage when closing the family of rectangles $B \times G$, where B is Borel in X and G is a basic open set in Y, by countable union and complementation.

We suppose for the rest of this section that X is Polish. Then it is not difficult to extend all classical results on Borel hierarchies to the hierarchy ($S_{\xi}^{\Sigma}, S_{\xi}^{\Pi}$) we have introduced.

One way to do this is to mimic the classical proofs, and use Theorem 1 of $\S 3$, in the same manner we did in §2. Another possible way is to use directly the results of $\S 2$ together with the Uniformization Lemma, as in the proof of Theorems 1 and 2. We sketch here a third method, which seems to be of some interest in many problems of functional analysis. We first restate Theorem 1 in case of a Polish space X in a somewhat different manner.

Let $X_{0}=\left(X, T_{0}\right)$ be a Polish space, and suppose T_{1} is a finer topology on X such that $X_{1}=\left(X, T_{1}\right)$ is also Polish. Then an easy application of the Suslin-Lusin theorem on continuous injective images of Borel sets shows that T_{1} is generated by a family $\left(B_{n}\right)_{n \in \omega}$ of Borel sets of X_{0}, and X_{0} and X_{1} have the same Borel sets. This statement has a sort of converse. Suppose $\left(B_{n}\right)_{n \in \omega}$ is a sequence of Borel subsets of $X_{0}=\left(X, T_{0}\right)$. Then there is a finer Polish topology T_{1} on X such that each B_{n} is open in $X_{1}=\left(X, T_{1}\right)$. Using these remarks, Theorem 1 in case X is Polish may be restated as follows.

Theorem 6. Let $X_{0}=\left(X, T_{0}\right)$ and Y be two Polish spaces. Then a set A included in $X_{0} \times Y$ is a Borel set with sections in Σ_{ξ}^{0} if and only if there is a finer topology T_{1} on X such that $X_{1}=\left(X, T_{1}\right)$ is Polish, and A is Σ_{ξ}^{0} in $X_{1} \times Y$.

Proof. If A is Σ_{ξ}^{0} in $X_{1} \times Y$, then all sections of A are Σ_{ξ}^{0} in Y, and A is Borel in $X_{0} \times Y$ by the preceding remarks. Conversely if A is in S_{ξ}^{Σ}, then by Theorem 1, A is, for some family (B_{n}) of Borel subsets of X_{0}, in the additive ξ th class obtained from the rectangles $B_{n} \times G, G$ open in Y, by using countable union and complementation. So, if T_{1} is a finer Polish topology on X such that all sets B_{n} are open for T_{1}, then A is Σ_{ξ}^{0} in $X_{1} \times Y$.

As an example of use of Theorem 6, we state the analog for product spaces of the Lebesgue-Hausdorff theorem on analytically representable functions. Let X, Y
and Z be Polish spaces, and let f be a Borel function from $X \times Y$ into Z. We say that f is partially of class ξ if for each x in X, the partial function $f_{x}: Y \rightarrow Z$ is of class ξ.

Theorem 7. Let $f: X \times Y \rightarrow Z$ be partially of class $\xi+1$, for $\xi>1$ (or $\xi \geqslant 1$ if Y is totally disconnected or $Z=[0,1]$). Then f is the pointwise limit of a sequence of Borel functions which are partially of class at most ξ (less than ξ if ξ is limit).

Proof. Let $\left(A_{n}\right)_{n \in \omega}$ be a basis of open sets of Z, and $B_{n}=f^{-1}\left(A_{n}\right)$. By the hypothesis, each B_{n} is Borel with sections in $\Sigma_{\xi+1}^{0}$. So by Theorem 6, we can refine the topology T_{0} of X into T_{1} such that each B_{n} becomes $\Sigma_{\xi+1}^{0}$ in $X_{1} \times Y$, hence f becomes of class $\xi+1$ from $X \times Y$ into Z. (In the case $\xi=1$ and Y is totally disconnected, we can also choose T_{1} totally disconnected.) We can then apply the Lebesgue-Hausdorff theorem. f is the pointwise limit of a sequence of Borel functions from $X_{1} \times Y$ into Z which are of class at most ξ (less than ξ if ξ is limit). But such a sequence clearly satisfies the conclusions of the theorem.

As an immediate corollary, we obtain the following result of conservation of the Borel class under integration. (The particular case $\xi=2$ is due to Bourgain [Bo1].)

Corollary 8. Let μ be a probability measure on X, and let f be a Borel function from $X \times Y$ into $[0,1]$ which is partially of class $\xi+1$. Then the function F : $Y \rightarrow[0,1]$ defined by $F(y)=\int f(x, y) d \mu(x)$ is of class $\xi+1$.

Bibliography

[Bo1] J. Bourgain, Decompositions in the product of a measure space and a Polish space, Fund. Math. (to appear).
[Bo2] _, $F_{a \delta}$-sections of Borel sets, Fund. Math. (to appear).
[B03] \qquad , Borel sets with $F_{a \delta}$-sections (unpublished).
[Bu] J. Burgess, Effective Hausdorff resolution (unpublished).
[Ce] D. Cenzer, Monotone inductive definitions over the continuum, J. Symbolic Logic 41 (1976), 188-198.
[De] C. Dellacherie, Ensembles analytiques: Théorèmes de séparation et applications, Lecture Notes in Math., vol. 465, Springer-Verlag, Berlin and New York, 1976, pp. 336-372.
[Ha] L. Harrington, A powerless proof of a theorem of Silver (circulated manuscript).
[Ke] A. S. Kechris, Course on descriptive set theory (circulated manuscript).
[Ku] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, 1966.
[Lo1] A. Louveau, Recursivity and compactness, Higher Set Theory, Lecture Notes in Math., vol. 669, Springer-Verlag, Berlin and New York, 1978, pp. 303-337.
[Lo2] __ Boréliens à coupes $K_{o \delta}$, C. R. Acad. Sci. Paris 285 (1977), 309-312.
[L03] _, La hiérarchie borélienne des ensembles Δ_{1}^{\prime}, C. R. Acad. Sci. Paris Sér A-B 285 (1977), 601-604.
[L04] ___, Sur les fonctions boréliennes de plusieurs variables, C. R. Acad. Sci. Paris 285 (1977), 1037-1039.
[Mo] Y. N. Moschovakis, Descriptive set theory (forthcoming).
[StR] J. Saint-Raymond, Boréliens à coupes K_{0}, Bull. Soc. Math. France 104 (1976), 389-400.
[GMS] S. Grigorief, K. Mc Aloon and J. Stern, Séminaire de théorie des ensembles, 1976-1977, Publ. de Paris VII.

Equipe d'Analyse, ERA 294, Université de Paris Vi, 4 Place Jussieu, Paris 75230, Cedex 05, France

