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ALAIN LOUVEAU

Abstract. In this paper, we show that the notion of Borel class is, roughly
speaking, an effective notion. We prove that if a set A is both IT| and Aj, it
possesses a LTj-code which is also A¡. As a by-product of the induction used to
prove this result, we also obtain a separation result for 2¡ sets: If two 2¡ sets can
be separated by a 11° set, they can also be separated by a set which is both A¡ and
n°.

Applications of these results include a study of the effective theory of Borel
classes, containing separation and reduction principles, and an effective analog of
the Lebesgue-Hausdorff theorem on analytically representable functions. We also
give applications to the study of Borel sets and functions with sections of fixed
Borel class in product spaces, including a result on the conservation of the Borel
class under integration.

In this paper, we shall be mainly interested in the properties of Borel subsets of
product spaces. If X and Y are Polish spaces, and if B is a Borel subset of A' X Y,
define for each x in X the section Bx of B at x by Bx = {y G Y: {x,y) G B}. Our
aim is to relate properties of the sections of B with global properties of B. A typical
problem (and one to which we shall give a positive solution) is the following, which
we call the section problem. Let £ be a countable ordinal, and suppose all sections of
B are of additive Borel class £ in Y (i.e. for all x in X, Bx G S£). Is B the countable
union of a sequence of Borel sets, whose sections are all of Borel class less than £?

Let us discuss briefly the history of this problem. Working on uniformization
questions, Dellacherie proved in [De] that each Borel set with open sections is the
countable union of rectangles of the form B X U, where B is a Borel subset of X
and U ranges over a basis of the topology of Y, and conjectured that there was a
positive answer to the section problem. The case £ = 2 has been solved by
Saint-Raymond [StR].

In [Bol], Bourgain states the section problem in a more general context, the
Polish space X being replaced by an abstract measurable space, i.e. a set X with a
a-algebra % of subsets of X, and obtains the result for £ = 3 in case A" is a
complete probability space (i.e. © is the complete a-algebra of all subsets of X
which are measurable with respect to a probability on X). Furthermore, he obtains
in [Bo2] a partial result concerning the case £ = 3 in the Polish case: If B is a Borel
subset of A" X Y, where X and Y are Polish spaces, the set C = {x G X: Bx is FaS]
is coanalytic (IlJ) in X. Some of the ideas of his proof then led to the solution of
the case £ = 3 of the section problem; independently by Bourgain [Bo3] and the
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364 ALAIN LOUVEAU

author [Loi] and [Lo2]. The solution of the section problem for all countable
ordinals is announced, for Polish spaces, in two notes of the author [Lo3] and
[Lo4]. In this paper, we shall present the solution in full generality (see Theorem
3.1).

We also solve a related problem concerning Borel functions: If / is a Borel
function from X X Y into [0, 1], call/ partially of class £ if all partial functions fx:
Y —> [0, 1], for all x in X, are of Borel class £. With this definition we have

Theorem. If £ is a nonlimit countable ordinal, then each Borel function f:
X X T—»[0, 1] which is partially of class £ is the pointwise limit of a sequence
(fn)n<Eo> of Borel functions which are partially of class less than £.

This theorem is an extension of the classical Lebesgue-Hausdorff theorem on
analytically representable functions. We shall also derive from it a result on the
conservation of the Borel class under integration ( Theorem 3.8).

The proofs of Dellacherie for case £ = 1, Saint-Raymond for case £ = 2 and
Bourgain for case £ = 3 have in common to be of classical type, that is to use only
tools and methods from classical descriptive set theory. Apart from that, they are
unfortunately very different from one another-and of course more and more
difficult-and it does not seem possible to extract from them a general method for
solving the section problem.

The method we present here is of a very different spirit. We shall deduce a
solution to the section problem from a result in effective descriptive set theory. The
fact that effective descriptive set theory is not only a refinement of classical
descriptive set theory, but also a powerful method able to solve problems of
classical type is a feeling common to many set-theorists. We think that this paper
provides a new concrete example that this feeling is right.

Let A" be a recursively presented Polish space, with its canonical basis of open
sets. (One may think of A as being w" with the usual notion of recursivity. For the
background material, see §0.) One generally uses the notion of "Borel code" to
encode the family of Borel subsets of X. (For a precise definition, see [Ke] or [Mo].)
Roughly speaking, a real a codes the Borel set Ba if it encodes some particular way
of obtaining Ba, using countable unions and complementation, from the sets of the
canonical basis. Then one can associate with each Borel code a a countable ordinal
£(a), the particular Borel class, additive or multiplicative, of Ba witnessed by a.
This leads to the notion of £-code (see [Ke]).

Now suppose B is a Aj subset of X. An easy consequence of the Suslin-Kleene
Theorem (see [Mo]) insures that B admits a recursive code, i.e. there is a recursive
real a such that B = Ba. Hence we can associate with B an ordinal £rec(5), its
recursive Borel class, defined by £rec(5) = inf{£(a): a is recursive and B = Ba).
We obtain the usual recursive hierarchy (2°, n£){<u among Aj sets. The obvious
inequality £rec(5) > £(5), where £(5) denotes the Borel class of B, is in general not
an equality: one can construct open Aj sets of arbitrary recursive Borel class below

Suppose now a is a Borel code which is Aj. Then clearly the Borel set Ba is also
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Aj. This naturally leads to a new hierarchy among Aj sets, which we call the
Aj-recursive hierarchy, and denote by (2?, n*)i<u : We define, for each Aj subset
B of A, the Aj-recursive Borel class of B, £Ai(5) by £Ai(5) = hif{£(«): « is Aj and
B = Ba], and 2| = {B G Aj: 5 admits a Aj additive £-code) = UaSA¡ 2°(a),
n* = {5 G Aj: B admits a Aj multiplicative £-code) = Ua6A¡ n°(a).

The main and somewhat surprising result of this paper is that for all B G Aj,
£A|(5) = £(£), i.e. that for each Aj set B, its Borel class is witnessed by a Aj code.
This is a consequence of the following result (Theorem A of §1).

Theorem A. Let £ be some recursive ordinal. If B is some Aj and 11^ subset of X,
then B belongs to the class II*.

In the case £ = 1, the result can be found in Moschovakis' forthcoming book
[Mo]. Cases £ = 2 and £ = 3 are proved in [Loi], with proofs which are very similar
to the proofs of classical type for the section problem given by Saint-Raymond and
Bourgain. In particular, we made use of the special properties of compact sets, and
derived case 3 from an ingenious lemma of general set theory due to Bourgain. The
proof we present in § 1 avoids all these difficulties by the systematic use of another
tool we introduced in the two notes [Lo3] and [Lo4], the possibility of changing the
topology on the space A, the new topologies being more adequate to the problem.
In any case, we want to say how indebted we are to the work of J. Bourgain on
case £ = 3, which contains some of the tools allowing to attack the general case,
and which also convinced us that Dellacherie's conjecture should be true.

As usual in this type of problems, the structural result about Aj sets is obtained
via a separation result about 2j sets. If T is a family of subsets of X, and A and B
are two subsets of A, we say that A is T-separable from B if there is some set
C G T such that A c C and C n B = 0. (Note that this relation is not symmetric
in general.) We shall prove in § 1 the following separation result.

Theorem B. If A, B are two 2j subsets of X and for some recursive ordinal £, A is
Inseparable from B, then A is Tlf-separable from B.

This separation result is not only a refinement of Theorem A, but as we shall see,
it is the right induction hypothesis which allows us to prove Theorem A by
induction on £.

Theorems A and B are proved in § 1. Before that, we recall in §0 some results in
effective descriptive set theory which are needed in the sequel. The reference
papers are circulated but unpublished works of Moschovakis [Mo] and Kechris
[Ke]. So we briefly state some of the results we shall need, especially a "uniformiza-
tion lemma" which appeared first in [Loi], and which is a slight generalization of
well-known uniformization results quoted in [Mo].

In §2, we apply the structural result on Aj sets to the theory of Borel hierarchies
of sets and functions. We give some effective analogs of well-known results of
classical set theory, as separation or reduction of Borel sets, or Lebesgue's theorem
on analytically representable functions.

In §3, we discuss how the effective results of §§1 and 2 can be used to solve the
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366 ALAIN LOUVEAU

section problem, and the related problems discussed at the beginning of the
introduction. We present the results in the most general situation, and give
applications to more concrete cases.

0. Notations and prerequisites. In the sequel, we have chosen to follow the
notations and terminology of Moschovakis' book [Mo], not only for the descriptive
theory, but also for the classical one. For example, the Borel classes are denoted by
2° and n£. This corresponds in the classical terminology to sets of Borel class £,
except for finite £: 2°+1 sets are given class n in the classical terminology (see
[Ku]).

Accordingly, we denote by £}, nj, . . ., the levels of the projective hierarchy, w
is the set of integers, w" the set of functions from w into co, called as usual reals,
and denoted by letters a, ß, y, . . . . The class of ordinals is denoted by On, and
ordinals by letters A, i), £. N, is the first uncountable ordinal, and co, the first
nonrecursive one.

In §§1 and 2, our work is developed within the frame given by Moschovakis'
notion of recursively presented Polish space. Such a space is a structure <A", d, r>,
where A is a Polish space, d is a distance on X which generates the topology, and
for which <A", d} is a complete metric space, and r = (/•„)„ ew is a sequence of
points of A which is dense in X and satisfies the following condition of recursivity.
The relations (on to4), d(rm, rn) < p/(q + 1) and d(rm, rn) <p/(q + 1), are recur-
sive.

We shall not enter the general study of these structures. This is done in [Mo]. We
generally abbreviate by A the recursively presented (r.p.) space, the corresponding
recursive presentation (dx, rx} being understood. This is a bit incorrect, as two
different recursive presentations on the same space may give two different theories
of recursivity. It is particularly dangerous when working on classical Polish spaces,
as co, 2", <o", [0, 1], [0, 1]", . . . , but for these spaces we make the following
convention. Except otherwise stated, they are supposed to be equipped with their
usual recursive presentation. The same convention is made for product spaces
A" X Y. (A precise definition of these presentations can be found in [Mo].)

To each r.p. space A is canonically associated, via a fixed recursive enumeration
of co4, a countable family of basic open balls (N(n, X))n(Eu. This allows to extend to
these structures the classical notions of the effective theory on co and co", as the
arithmetical and analytical hierarchies of sets. Here we shall restrict our attention
to the first two levels of the analytical hierarchy, i.e. 2°, Tl°, Sj, LTj and Aj sets, and
the corresponding relativized classes.

We shall be interested mainly in partial functions /: A -» Y, where X and Y are
two r.p. spaces. For such a function, /(x)| abbreviates the statement "/ is defined at
x", and the diagram Df of / is defined by Df(x, n) <->/(•*)! A /(■*) G N(n, Y) (Df
is a subset of A X co).

If T is a class of subsets of r.p. spaces, we say that / is a partial T-recursive
function from X into Y if Df is in T. For our purpose, this definition is relevant in
two cases, when T = Aj and when r = Ilj. It is not hard to prove that a partial
function from X into Y is Aj-recursive if and only if it is the restriction of a total
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Aj-recursive function from A into Y to some Aj subset of X, and if and only if its
graph is Aj in A X Y [Mo].

If / is a partial nj-recursive function from X into Y, f is not, in general, the
restriction of a total Aj-recursive function to some nj subset of X. But it can be
seen that the restriction of / to any Aj subset of its domain is Aj. So if the domain
of /is Aj, hence in particular if/is total,/is Aj-recursive (see [Mo]). For readers
familiar with the classical theory, the difference between Aj- and nj-recursive
functions can be seen as the effective analog of the difference between Borel and
bianalytic functions defined on an arbitrary metrizable separable space (not
necessarily Polish). This is more than an analogy (see §3).

Similarly, if x is some point of the r.p. space A, we define the diagram Dx of x
by Dx(n) <-+ x G N(n, A). Dx codes the set of basic neighbourhoods of x in A. If T
is some class of subsets of r.p. spaces, we say x is T-recursive, or simply x G T, if
Dx is in T. The relevant classes here are Aj and Aj(x). We remark that for the
classical spaces as co", the usual recursive presentations are coherent, in the sense
that a G co" is a Aj-recursive function from co into co if and only if it is a
Aj-recursive element of co".

If/is a nj-recursive partial function from X into Y, and x is in the domain of/,
then f(x) is Aj(x) in Y. This gives a necessary condition in order to obtain
uniformization results. It turns out to be also a sufficient condition, as it can be
seen by the following theorem, which will be used repeatedly in the sequel.

Uniformization lemma [Loi]. Let X and Y be two r.p. spaces, and let A be a H\
subset ofXX Y. The set A+ = {x G A: 3y G A\(x) A(x,y)} is nj, and there is a
partial nj- recursive function f from X into Y which uniformizes A on A+, i.e. such
that f is defined on A+ and for each x G A + , (x,f(x)) G A. Moreover, if B is a 2j
subset of A+, there is a total Aj- recursive function which uniformizes A on B.

This lemma will be frequently used in case A + = ttx(A ), and even more when
A + is all of A. But we shall need the full strength of it in §3.

1. The separation theorem for Sj sets. In this section, A is a fixed recursively
presented space, and we consider the family of all Aj subsets of X. In order to code
this family, it is possible to work along the lines described in the introduction. But
this leads to coding by reals, and we prefer, for technical reasons, using a coding by
integers. So we fix once and for all a coding pair {W, C) where W, the set of codes,
is a nj subset of co, C is a nj subset of co X A which is universal for Aj subsets of
X, with iru(C) = W, and such that the relation « G W /\ x G C„ is also nj. Such a
coding pair exists [Mo].

We now define an operation on subsets of X, which we call the Aj-union.
Definition 1. A set A c X is the Aj-union of a sequence (Bn)nfEa, written

A = Uj B„, if A = U„Bn, and the subset B of A X co, defined by B(x, «)<->* G
Bn, is in Aj. The notion of Aj-intersection is defined similarly.

As usual, if T is a family of sets, we denote by U ¡r the family of all sets
obtained by Aj-union performed on sequences of sets from T. Clearly, U j acts on
Aj sets and constructs Aj sets.
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Definition 2. The Aj-recursive hierarchy (2?, n*)ie0n is defined by induction
as follows:

20* = n* = {N(n, X): n £ «},

2? = Û ( U n*)
1     \n<£ /

and

n£* = -i2| = {/4 c A: A - A G 2f}.
From this definition, it is clear that S£ c 2* cSjnAJ and that n£ c n* c IIj

n Aj, from which it follows that the induction stops at co,, and Aj = L)(<u
s? = ui<Ul n?.

Definition 3. For each recursive ordinal £, we define the set W( of £-codes by
« G W(*-> n G W /\ C„ e.Tl£. (We could also have defined codes for the additive
classes, but we do not need them in the sequel.)

Proposition 4. The relation P(n, a) «-» a G WO A n G Wj0i is nj (/« « a«¿ a).
Hence, in particular, for each £ < co, í/ie jetó W{ anc/ U^fW, are nj.

Proof. The second statement is an immediate consequence of the first one. If £
is recursive, choose some recursive a G WO with \a\ = £. Then n G We «-> P(n, a)
and « G U ,,<£ W <-> 3w P(n, am) where am is the restriction of the ordering a to
those integers which are smaller than m (with respect to a).

To prove the first statement, let \p be the following nj relation:

xP(n, S)±+n G WA 3m C„ = N(m, X)

V (a« G Aj V/> a(p) GSAA-C„=  U   Ca(pM.

\p is positive in 5, hence it defines a nj monotone operator P^. By a result of
Cenzer [Ce], the relation Q^(n, a) •*-> a G If O A ^|"'(«) is also nj, where jf>| is
defined inductively by P°(n) <-+ v//(«, 0) and Pi(«) <-» i|/(«, U «<(!*$)• So in order to
prove the proposition, we just have to prove that for all £, Pf = W(. We can restrict
our attention to recursive ordinals.

The equality is true for £ = 0, because of the equivalences

p°(n) <-» >K"> 0) ** n G H^A3AnC„ = N(m,X)++n G If0.

Suppose that we have proved the equality P$ = W^ for all r/ < £. If « G /^, then
« G W0 or there is some Aj real a such that for all p, a(p) G U^<í P$ =
U,<£ Wv, and A - C„ = U pCaipy As the relation x G Caip) is Aj (in x and/?), it
clearly implies that Cn G H£, hence «6 Ifj.

If n G M^, then by definition the set A - C„ is the Aj-union of a sequence
(•¿Ae- of sets in U^n*. Let R(p,k)^k G U ,<t»; A ^, = Q. By the
induction hypothesis VJr¡<íW7) = U^^ /^ is nj, and hence R is nj. Now V/? 3&
R(p, k), hence by the Uniformization Lemma, there is some Aj real a such that for
all/7, R(p, a(p)). Clearly this a witnesses that n belongs to PÍ.   □
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Remark. Working along the same lines and using the Uniformization Lemma, it
is not hard to see that the definition of the Aj-recursive hierarchy sketched in the
introduction and the precise one given above lead to the same sets, i.e. that
2{* = UaeA¡ 2j(«) and n* = Ua(EA¡ n°(a). The verification is left to the reader.

Theorem A. For all recursive ordinals £, 2£ = £° n Aj and n* = Iï% n Aj.

This theorem is an easy corollary of the following separation result.

Theorem B. Let i be a recursive ordinal, and let A and B be two 2j subsets of X.
If A is 'S,®-separable from B, then A is ^-separable from B.

Theorem A easily follows from Theorem B. The inclusion 2* c 2° n Aj is
obvious. Now if A is both Aj and 2°, A is 2j and E°-separable from the 2j set
A - A. Theorem B then implies A is 2*.

Theorem B is proved by induction on £. Before we give the proof, we introduce a
family of topologies on A, which will be our main tool.

Definition 5. We define, for all £, 1 < £ < co,, the topology Tt on X to be the
topology generated by all sets which are both 2j and in U,<í HJ¡. Similarly, Tx is
the topology on A generated by all 2j subsets of X. The topology Tx is implicitly
used in Harrington's paper [Ha], via a notion of forcing previously considered by
Gandy. (See our paper in [GMS].) From the definition, T, is the usual topology on
A, the topologies (T()(<a are increasing with £ and coarser than Tx. In the sequel,
we always mention £ when denoting the topological notions associated with Tf. We
use the words £-open, £-closed, Ai, int£, and so on. We shall need the following
proposition, which is implicit in Harrington's paper [Ha].

Proposition 6. The space (A, Tx) is a Baire space.

Proof. Let (C/„)new be a sequence of oo-dense oo-open sets, and A a nonempty
2j subset of A. We must prove that A C\ fl „G„ # 0. To do that, we construct by
recurrence a family (F™)n<m of TT° subsets of A X co" satisfying:

(i) For fixed n, (F™)m>n is a decreasing family of IT? sets of diameter tending to
0.

(ii) irx(F^) c A and for each n, irx{F") c G„.
(iii) For all m, nn<mvx(F?) # 0.
Suppose (F™)n<m<k have been constructed. Let Ak = H n<kTrx(F*). Ak is a

nonempty 2{ subset of X, and by the oo-density of Gk+l, there is a nonempty 2j
set Bk c Ak n Gk+V Let F**,1 be a n° subset of A X co" such that Bk = M^+i')-
Now, choose for each n < k a basic open set N(pn, X X co") of diameter less than
l/2* + 1 such that F„*+1 = F* n N(p„, X X co") satisfies C\„<k+lF^+i * 0. This
is clearly possible. This defines the sequence (F™)n<m<k + l. The resulting sequence
(F„m) clearly satisfies (i), (ii), and (iii).

As A X co" is complete, by (i), for each n, nn<mFnm reduces to a singleton {(x„,
a„)}, and by (iii), xn = x does not depend on n. Now, by (ii), x G A and for each n,
x G G„. So A n (n„G„)^0.    □

We now suppose Theorem B is known for all 17 < £ < co,.
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Lemma 7. Let A be a 2j subset of X. Then A* is 11^ and 2j, and hence £ + l-open.

Proof. A( is clearly n° (this is true for all sets A), as its complement is a
countable union of £-open, hence 2° sets.

Now we have x G Jf «-» 3tj < £ 3/4' G 2¡ n 11^ (x G A' A A' n /4 = 0). Now
if /!' is 2{ and n° and disjoint from the 2j set A, then by the induction hypothesis,
A' is n*-separable from A. Hence we obtain

x G J£ «-* 3« G  U   »; (x G C„ A C„ n ^ = 0).

But this last relation is nj, hence A( is 2j.   □
For each set H, there is a largest £-open set GH such that H n GH is oo-meager.

We set H1 = A - GH. Clearly //Ms £-closed and H — H( is oo-meager. Actually
we have

Lemma 8. // H is n°, //* is equal to H modulo an co-meager set.

Proof. We have to prove that //* — H is oo-meager. This is done by induction.
If H is IT?, H ' is contained in H. So suppose the lemma is known for all 17 < £.
There is a sequence (//„), with Hn G n°, tj„ < £, such that A - H = U „#„• So

H(-H cH*n\J   Hnc{J   [(//£ n H*) U (//„ - #*)].
n n

Each set //„ — JÏ* is oo-meager, so we just have to show that each set //* n Ä^ is
oo-meager. Now H( is £-closed, and H* is tj,,-closed, hence they are oo-closed. So
we have to check that Hi n H^" is oo-rare. Let A be a 2j set contained in it. Then
Av- c //,?" and, by Lemma 7, ¿4* is tj„ + l-open, hence £-open. Moreover A * n //
C #* n // C H^"-Hn is oo-meager, and by the definition of //{, i4% fl #4 is
empty. This clearly implies A is empty.    □

Lemma 9. Lei A and B be two 2j subsets of X with A separable from B by a 2j set.
Then A n B( = 0.

(This lemma is an intermediate separation result. In case £ = 1, it is obvious.
This explains why case £ = 1 is easy to prove.)

Proof. Let H G n^ separate B from A. We claim first that H1 D B. B - H( is
an 00-open set, and is included in H — //*, which is oo-meager by Lemma 8. By
the Baire category theorem for Tx, B — Hi is empty. Next we claim A n B* = 0.
This set is, by Lemma 7, a 2j subset of A. Now B c //£, so fi£ c Hc; A n H =
0, so by Lemma 8, A n H( is oo-meager. Hence A n B* is oo-meager, and again
by the Baire category theorem for Tx, is empty.    □

End of proof of Theorem B. Let A and B be two 2j subsets of A, with A
Sj-separable from B. By the induction hypothesis and Lemma 9, A n B( = 0.
Consider the relation

R(x, n) <-» x G ¿ V (« G  U   W^ A x G C„ A C„ n fi = 0).
V 7,<{ /

From Proposition 4, /? is a nj relation. Now for each x in y4, x G #*• Then there is
some Tj < £ and some A' G 2j n n° such that x G ,4' and /I ' n fi = 0. By the
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induction hypothesis, we infer that there is some A" G n* such that A" D A' and
A" n B = 0. So we have proved that Vx G A 3n R(x, n). By the Uniformization
Lemma, there is some Aj-recursive total function /: A -^ co such that Vx G A
R(x,f(x)). The set f(A) is 2j in co, and contained in the nj set D = {n G
Un<£ W^\ C„ n B = 0}. By the ordinary separation theorem for 2j sets, there is
some Aj set E such that/(/i) c E c D. Let G(x, n) <-> n G E A x G Cn. G is Aj in
A" X co and the set H = U„Gn  = U nsEC„ is clearly a 2¿* set separating /I from
b. a

2. Effective properties of the Borel hierarchies. This section is devoted to the
effectivization of some well-known results on the Borel hierarchies of sets and
functions, with the help of the results of §1. We shall particularly be interested in
separation and reduction results for Borel sets, and in the Lebesgue-Hausdorff
theorem about analytically representable functions. Classical proofs of these re-
sults, particularly convenient to our purpose, can be found in [Ku]. When looking
at these proofs, one can see at once that they are constructive, so they can easily be
transformed in proofs for effective versions. We discuss that possibility in one
example, the reduction property of £° sets. If A and B are two 2° sets, £ > 1, in
some Polish space X, there exist two disjoint 2° sets A' and B' such that A' c A,
B' c B and A' u B' = A u B. From the proof in [Ku] it is clear that Borel £-codes
for A' and B' are given effectively from Borel £-codes for A and B. Now by our
Theorem A, if A and B are Aj, they admit Aj £-codes. It is then easy to verify that
the £-codes for A' and B' are also Aj.

This phenomenon is quite general. Almost all results of the classical theory of
Borel hierarchies may be effectivized that way, using Theorem A (or sometimes
Theorem B). Putting down all proofs in the effective context would be quite long
and uninteresting, so we just write down the effective versions, with reference to a
classical proof, and sometimes give indications for modifications which may be
necessary.

It is worth noticing that this "Aj-recursive theory" we sketch here is not only a
refinement of the classical theory. As it will be clear in §3, it leads to nontrivial
results, even of classical type.

A. Reduction and separation results for Borel sets. We fix a r.p. space A. It is well
known that many of the properties of the Borel classes are false in general for the
first classes of the Borel hierarchy, depending on the properties of disconnectedness
of the space A. We shall say that A is of type 0 if each basic open set N(n, X) is
also closed in A.

Theorem 1 (co-reduction of 2° sets). Let A be a Aj subset of X X co, with all its
sections An, « G co, in S°, for £ > 1. There is a Aj set B included in A, with all its
sections Bn in 2", such that the sets Bn are disjoint and U„An = U„fi„. Moreover if
X is of type 0, the result is also true for £ = 1.

Proof. See [Ku, II, §30, VII, Theorem 1].    \J
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Corollary 2 (co-separation for H£ sets). If A is a A\ subset of X X co, with
each section An in IIo, for £ > 1 (or £ > 1 if X is of type 0), and fl „A„ = 0, iAe«
/Aere « some Aj sei fi containing A, with all its sections in A°, such that D „Bn = 0.

Corollary 2 easily implies the effective separation of n° sets. Now using the
Uniformization Lemma, we may infer a uniformized version of it.

Corollary 3 (uniform separation of n° sets). // A and B are two disjoint Aj
subsets of X X co, with their sections in LTj, for £ > 1 (£ > I if X is of type 0), there is
a Aj set C with sections in A° which separates A from B.

It is also possible, along the same lines, to obtain structural results for ambiguous
sets (i.e. sets in A£).

Theorem 4. Let A be a Aj and A0 subset of X, for £ > 2 (£ > 2 if X is of type 0).
There is a Aj subset B of X X co such that for each n the section Bn is A^ for some
Tj„ < £, with A = n „ Umfi„ + m = U„ nmfi„ + m. Moreover i/£ = X + 1, with limit
X, one can find B such that for each n, t)n < X.

Proof. See [Ku, II, §30; IX, Theorems 1 and 2].   □
This structure result is the key step in the proof of the effective version of the

Lebesgue-Hausdorff theorem.
Another important result in the theory of Borel sets concerns the "resolution in

alternated series". An effective version of it for sets which are both A^ and Aj is due
to Burgess [Bu]. For £ > 3, the problem can be reduced to the case studied by
Burgess using the method of [Ku, III, §37; II and III], with the aid of the notion of
generalized homeomorphisms.

Theorem 5. For each A in A°+1 n Aj, £ > 2, there is a Aj and closed subset F of
co", and a ^-recursive function f from F onto X which is injective and continuous,
such that for each open subset G o/co",/(G) G 2° and such that f~\A) is both Aij and
Aj in co".

Proof. See [Ku, III, §37; II, Theorem 1].   Q
From Theorem 5 and Burgess' result, it is not hard to infer the following result.

Theorem 6 (resolution in alternated series). Let £ be a recursive ordinal,
£ > 1, and let A be a Aj and A°+, subset of X. There is a recursive real a G WO, of
length \a\ = X, and Aj sets C and C in A X co, such that if C, — {x E A:
(x, n) G C}, and C^ = {x G X: (x, n) G C'},for tj < X, i) = \a„\, then

(i) C„ and C„' are in n°.
(ü)//t,<t,',c, d c;z> C„. D Q.
Ou) nv<xcv = 0.
(iv) A = U„<x (C„ - C„').

B. The hierarchy of A\-recursive functions. The hierarchy of Borel functions from
some Polish space A into some Polish space Y is usually defined via the inverse
images of open sets. The family B, of functions of class £ is defined by: / G fi> if
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for each open subset G of Y, /~'(G) is in 2°. (We remark that this definition does
not agree with the classical one for finite £. Here continuous functions are given the
class 1.)

There is another classification related to the operation of taking pointwise limits
of sequences of functions. Starting from Bx in case X is totally disconnected or
Y = [0, 1], and from B2 in the general case, it leads to the hierarchy of analytically
representable functions and the Lebesgue-Hausdorff theorem. (See [Ku, II, §31;
VIII; IX].) If we restrict our attention to Aj-recursive functions, this classification
must be adapted. We introduce the notion of A J-limit. We say that a function/is
the Aj-limit of a sequence (/„)„<=„ of functions from A into Y (where X and Y are
r.p. spaces), if / is the limit of the sequence (/„) and if the function g: A X co —> Y,
defined by g{x, n) = /„(x), is Aj-recursive.

Theorem 1. Suppose Y is compact. Let f be a A\-recursive function, from X into Y,
of Borel class £ + 1, for 1 < £ < co,. 77iew / is the A\-limit of a sequence (/,) of
functions of Borel class £. Moreover if £ is a limit ordinal, each function /„ can be
chosen of class less than £.

If X is of type 0, the conclusion is also true for £ = 1.
For proving this theorem, the general case is first reduced to the case of finite Y;

this only uses the fact that Y is compact, and the uniform separation corollary of
§2A (see [Ku, II, §31; VIII, Theorem 3]). The case of finite Y is then proved by an
easy application of Theorem 4 (§2A). (See [Ku, II, §31 ; VIII, Theorem 4].)    □

Theorem 1, as the Lebesgue-Hausdorff theorem, is false in general for functions
in B2. Take for example A = [0, 1], Y = (0, 1), and for/the characteristic function
of {0}. Clearly / is Aj and of class 2, but is not the limit of a sequence of
continuous functions from A into Y, as such functions are constant.

A particular case when Theorem 1 is true for case £ = 1 is when A is of type 0,
as quoted in the statement of Theorem 1. But there is also another important case
when Y = [0, 1]. This is related to the effective normality of r.p. spaces.

Proposition 2. Let X be a r.p. space. Then X is A\-normal, i.e. for each pair of
disjoint Aj and closed subsets F, and F2 of X, there exist disjoint Aj and open sets G,
and G2 such that F, c G, and F2 c G2.

Proof. By a result in [Mo], there exist two Aj reals a and ß such that
X - F2 = U„ N(a(n), X) = U„iV(a(n),A) and X - F, = U„ N(ß(n), X) =
U„ V( ß(«), A). Set

G,(x, n) <h> x G N(a(n), X) A VA: < n x G N(ß(k),X),

and

G2(x, n) «h> x G N( ß(n), A) A VA: < n x G N(a(k), X) .
Then G, = U „G,(/i) and G2 — U „G2(n) are Aj and open sets, G, n G2 = 0, and
F, c G, and F2 c G2.    □

Using this result and the methods of proof of Urisohn's lemma and Tietze
theorem, we can infer the following results.
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Proposition 3. Let A and B be two disjoint Aj closed sets in X. There is a
Aj-recursive and continuous function /: A —> [0, 1] such that /(x) = 0/or x G A and
f(x) = Xfor x G B.

Proposition 4. Let f be a Aj-recursive and continuous function from a closed and
Aj subset A of X into [0, 1]. There is a total A\-recursive and continuous function /:
A —> [0, 1 ] which extends the function f.

Theorem 5. A Aj-recursive function from X into [0, 1] belongs to B2 {i.e. is of the
first class, in the classical terminology) if and only if it is the A\-limit of a sequence of
continuous functions from X into [0, 1].

Proof. See [Ku, II, §31; VIII, Theorem 7].
C. The relativized classes. Until now, in §§1 and 2, we restricted our attention to

the class Aj, mainly for simplicity of notations. But clearly all our proofs work as
well for the relativized classes Aj(x).

Define, for x in some r.p. space A, the Aj(x)-recursive hierarchy on some r.p.
space Y by closing successively the canonical basis of Y under complementation
and AJ(x)-union (with an obvious definition). The closure ordinal of this hierarchy
is co,*, the first ordinal nonrecursive in x, and the hierarchy (n*(x), 2*(x))i<M,
obtained that way satisfies the analogs of Theorems A and B.

Theorem A'. For all i, 1 < £ < »,*, 2{*(x) = 1¡¡ n Aj(x) and Uf(x) = n£ n
Aj(x).

Theorem B'. If A and B are two 2j(x) subsets of Y, and A is Inseparable from B,
then A is 2*(x)-separable from B.

From these two theorems, one can derive the relativized versions of all the results
stated in §§2A and 2B. The precise statements are left to the reader. They will be
used in §3 in order to derive noneffective results in product spaces. It will be done
by using the Uniformization Lemma, and a particular uniform coding of the classes
n£*(x). We fix from now on a pair <W, C> of nj relations, WcAXco, CcAX
co X Y, such that for all x in A, ttu(C(x)) = W(x), C(x) is universal for Aj(x)
subsets of Y, and the relation W(x, ri) A -iC(x, n,y) is nj. If we then define the
set W£ of codes for n|"(x) sets by the relation n G W£ <-> W(x, n) A Cx „ G
n|"(x), then by the same argument as in the proof of Proposition 4 of §1, we obtain
that the relation (in x, n, and a), a G WO A « G Wfa is nj.

3. Borel hierarchies in product spaces. Let (A, M) be a measurable space, that is a
set A equipped with a a-algebra M of subsets of A. We denote by A(M) the result
of the Suslin operation performed on elements of M, and by bi A(M) the family of
sets B in A(M) such that X — B also belongs to A(M). bi A(M) is a a-algebra
containing M, and bi /l(bi A(M)) = bi A (A/). When A is metrizable separable, and
M is the family of Borel subsets of X, sets in A(M), resp. bi A(M), are just called
analytic, resp. bianalytic.

Let y be a Polish space, with open basis U. We denote by M ® U the a-algebra
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on A X y generated by M X U = {B X G: B G M, G G U}, and we let N =
bi A(M ® U). It is easy to check that M 0 U c bi /4(M) ® ¿7 c A7 =
bi A(bi A(M) 0 Í/). In general bi A(M) 0 U =£ N, for it is easy to prove that if B
is in bi A(M) 0 U, the sections Bx, x G A, are of bounded Borel class below K,, a
property which in general is not satisfied by all sets in N.

We define two hierarchies among N. The first one is related to global properties
of sets in N, and the second one to properties of sections.

We define first N0 = bi A(M) X U, Nf - (U,<4 N™)„ and N? = -i Nf, where
a denotes the closure under countable unions. Next we define 50 = N0 and
Sf = {B G N: Vx G A" fi, G ££} and Sf1 = -iSf. Then 5 = U i<Ki 5{2 =
U £<t< Sf1 is the family of elements of N with sections of bounded Borel class
below N,.

The abstract version of the section problem stated in the introduction is
answered positively by the following theorem.

Theorem 1. For all £ < «,, Sf = Nf and Sf1 = Nf. Hence S = bi A(M) 0 U.

Similarly, we can prove a separation result.

Theorem 2. Let £ be a countable ordinal, A and B two elements of A(M 0 U). If
for each x in X the section Ax is ^separable from the section Bx, then A is separable
from B by a set in Nf.

Clearly for all £, Nf is contained in Sf. Hence Theorem 1 is an easy corollary of
Theorem 2. The proof of this theorem is made by successive reductions of the
problem to simpler cases. The first step consists in replacing the abstract space A"
by a metrizable separable space A.

Lemma 3. Let A and B be two sets in A(M 0 U). There is a measurable mapping
\p from (A, M) into (2", Aj), such that, denoting by \¡/ the application \p(x,y) =
(\fs(x),y), and X = i/<A), then ^p(A) and $(B) are analytic in X X Y.

Proof. This is a well-known result due to Marczewski. If A and B are in
A(M 0 U), they are in A(M' 0 U) for some countably generated sub-a-algebra
M' of M. Let Bn, n G co, generate M', and define \p by \p(x) = {«: x G B„}. Then
clearly \p satisfies the requirements of the lemma.    □

The function ^ of the lemma is clearly bi A(M) — bi /l(Aj(A")) measurable,
hence by inverse images \p maps all classes N^, N^1, S*, S", defined from (A, Aj)
into the corresponding classes defined from (A, M). Thus, the section problem is
reduced to the case when A is a subset of 2", equipped with the a-algebra of its
Borel subsets, and A and B are two analytic subsets of A X Y, that is the traces on
A X F of two Sj subsets A' and B' of 2" X Y.

We may suppose without loss of generality that Y is an r.p. space (by considering
it if necessary as a Gs subset of [0, 1]"), that £ is a recursive ordinal, and that A' and
B' are 2 j in 2" X Y (the relativized result being proved similarly).

The next step consists in replacing A" by a nj subset of 2".
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Lemma 4. Let i be a recursive ordinal, and A and B two 2j subsets of 2" X Y.
Then X = {x G 2": Ax is ^¡¡-separable from Bx) is nj in 2".

Proof. By the relativized version of Theorem B (see §2C),

x G X++ 3n G fV((Ax CCMA Cx¡n n Bx = 0).

By the properties of the coding <W, C), A is nj.    □
Proof of Theorem 2. Suppose Theorem 2 is proved for all r¡ < £. By Lemmas 3

and 4, we may assume that A is a nj subset of 2" and A and B are two 2} subsets
of 2" X y, such that for all x in A, Ax is 2j-separable from Bx.

Let ß be a recursive real such that for each », ß„ E If O and the sequence
(ß„)„£u is nondecreasing with sup„ ( #„ + 1) = £. We define fi by

fi(x, a) «-» x G X A V« a(n) G Wfo A 4« C  U   Cx o(n)
n

A U  cx,a(n)n Bx = 0.
n

R is a nj relation, and by Theorem B', Vx G A 3a G Aj(x)fi(x, a). By the
Uniformization Lemma, there is a partial nj-recursive function /: 2" —» co" such
that/is defined on X and Vx G A fi(x,/(x)).

Let C„ = {(x,^): x G A A y G C,^^}, and C = U „C„. By the definition of
R, C separates A n X X Y from B n A X Y. Now, as/is nj-recursive, each C„ is
nj and the relation relAjí C^a^x«) *s a^so ^i» nence

C„ Gbi/4(Aj(A" X y)).

Finally each Cnx = CxJ(x)(„) is in Djai» so C„ G 5|^j. But by the induction
hypothesis Sy¡ | = N^,, so C is in A^2, and /I n X X y is ^-separable from
B n a x y.   □

Remark. The preceding proof shows that Theorems 1 and 2 may be improved
into effective results in case A is a nj subset of an r.p. space E. In this case, say
that a subset A of A is bi 2j in X if A and X — A are nj in E. This is clearly the
effective analog of the notion of bianalytic set. If / is a partial nj-recursive
function from E into Y, and A = dom(/), then Graph(/) is bi 2j in X X Y.
Conversely, if / is defined on some nj subset X of E, and Graph(/) is bi 2j in
X X y, then / is a partial nj-recursive function from F into Y, for it implies that
for each x in A,/(x) is Aj(x) and then

D*(x, n) «-» x G A A 3^ G Aj(x)((x,j) G Graph(/) A * G JV(n, Y))

is nj. So the notion of partial nj-recursive function is the effective analog of the
notion of function which is bianalytic on its domain.

The effective version of Theorems 1 and 2 is the following.
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Theorem 5. Let £ be a recursive ordinal, A a nj subset of some r.p. space E and Y
an r.p. space.

(i) Let A and B be two 2j subsets of E X Y, and suppose that for each x in X, Ax
is Inseparable from Bx. Then there is a bi 2j subset C of u X A X Y such that for
each n, the sections Cn x, for x in X, are in 11^ , for some t)„ < £, and the set
D =  U„ C„ separates A n (A X Y)from B n (A" "x Y).

(ii) In particular, if B is a bi 2 j subset of X X Y with all its sections in 2^, then
there is a set C as above such that B = (J nCn.

The case when A is Polish (resp. when X is an r.p. space for the effective results)
is a bit simpler, as the family N of bi /1(A{) subsets of A X y reduces to the family
of its Borel subsets (resp. the family of bi 2j subsets of A X y reduces to that of Aj
sets). Then in this case Sf is the family of Borel sets with sections in 2°, and Nf is
the family of Borel sets obtained at the £th stage when closing the family of
rectangles B X G, where B is Borel in A and G is a basic open set in Y, by
countable union and complementation.

We suppose for the rest of this section that A is Polish. Then it is not difficult to
extend all classical results on Borel hierarchies to the hierarchy (Sf, Sf) we have
introduced.

One way to do this is to mimic the classical proofs, and use Theorem 1 of §3, in
the same manner we did in §2. Another possible way is to use directly the results of
§2 together with the Uniformization Lemma, as in the proof of Theorems 1 and 2.
We sketch here a third method, which seems to be of some interest in many
problems of functional analysis. We first restate Theorem 1 in case of a Polish
space A in a somewhat different manner.

Let A"0 = (A, F0) be a Polish space, and suppose F, is a finer topology on X such
that A, = (A, F,) is also Polish. Then an easy application of the Suslin-Lusin
theorem on continuous injective images of Borel sets shows that F, is generated by
a family (fi„)n(El0 of Borel sets of A0, and A0 and A, have the same Borel sets. This
statement has a sort of converse. Suppose (Bn)n^a is a sequence of Borel subsets of
A0 = (A", F0). Then there is a finer Polish topology F, on X such that each Bn is
open in A", = (A, F,). Using these remarks, Theorem 1 in case A is Polish may be
restated as follows.

Theorem 6. Let X0 = (A, T0) and Y be two Polish spaces. Then a set A included
in X0 X Y is a Borel set with sections in 2° // and only if there is a finer topology F,
on X such that A, = (A, F,) is Polish, and A is 2£ in A, X Y.

Proof. If A is E° in A, X Y, then all sections of A are 2° in Y, and A is Borel in
A0 X y by the preceding remarks. Conversely if A is in Sf, then by Theorem 1, A
is, for some family (Bn) of Borel subsets of A0, in the additive £th class obtained
from the rectangles BnX G, G open in Y, by using countable union and comple-
mentation. So, if F, is a finer Polish topology on A such that all sets Bn are open
for F„ then A is 2£ in A, X Y.   □

As an example of use of Theorem 6, we state the analog for product spaces of
the Lebesgue-Hausdorff theorem on analytically representable functions. Let X, Y
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and Z be Polish spaces, and let / be a Borel function from A" X y into Z. We say
that/ is partially of class £ if for each x in A, the partial function fx: Y —> Z is of
class £.

Theorem 7. Let f: X X Y^Z be partially of class £ + 1,/or £ > 1 (or £ > 1 // Y
is totally disconnected or Z = [0, 1]). Then f is the pointwise limit of a sequence of
Borel functions which are partially of class at most £ (less than £ // £ is limit).

Proof. Let (An)aeu be a basis of open sets of Z, and Bn = f~\An). By the
hypothesis, each B„ is Borel with sections in 2£+1. So by Theorem 6, we can refine
the topology T0 of A into F, such that each B„ becomes 2°+, in A", X Y, hence /
becomes of class £ + 1 from A X y into Z. (In the case £ = 1 and Y is totally
disconnected, we can also choose T, totally disconnected.) We can then apply the
Lebesgue-Hausdorff theorem. / is the pointwise limit of a sequence of Borel
functions from A, X y into Z which are of class at most £ (less than £ if £ is limit).
But such a sequence clearly satisfies the conclusions of the theorem.    □

As an immediate corollary, we obtain the following result of conservation of the
Borel class under integration. (The particular case £ = 2 is due to Bourgain [Bol].)

Corollary 8. Let ft be a probability measure on A, and let f be a Borel function
from X X Y into [0, 1]  which is partially of class £ + 1.   Then  the function F:
Y -» [0, 1] defined by F(y) = jf(x,y)dn(x) is of class £ + 1.
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