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A sequence-based dynamic ensemble learning
system for protein ligand-binding site prediction

Peng Chen, ShanShan Hu, Jun Zhang, Xin Gao, Jinyan Li, Junfeng Xia, and Bing Wang

Abstract—Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions

through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is

important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known

structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein

sequences and that of experimentally solved structures.

Results: This paper proposes a dynamic ensemble approach to identify protein-ligand binding residues by using sequence information

only. To avoid problems resulting from highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we

constructed several balanced data sets and we trained a random forest classifier for each of them. We dynamically selected a subset of

classifiers according to the similarity between the target protein and the proteins in the training data set. The combination of the

predictions of the classifier subset to each query protein target yielded the final predictions. The ensemble of these classifiers formed a

sequence-based predictor to identify protein-ligand binding sites.

Conclusions: Experimental results on two CASP datasets and the ccPDB dataset demonstrated that of our proposed method

compared favorably with the state-of-the-art.

Availability: http://www2.ahu.edu.cn/pchen/web/LigandDSES.htm

Index Terms—Protein-ligand binding, Dyanmic ensemble system, imbalanced samples.

✦

1 INTRODUCTION

P ROTEINS interact with other molecules to perform
specific functions. In these cases, the binding sites

in protein-ligand interactions are defined as the protein
residues that physically bind to the ligands. Ligands are
small molecules that form a complex with proteins to serve a
biological function. Ligands can be classified in many ways
such as charge, size (bulk), the identity of the coordinat-
ing atom(s), and the number of electrons donated to the
metal (denticity or hapticity). In biochemistry, ligands are
commonly grouped into several categories, among which
the most common ones are ions (e.g., Ca, Zn, Fe, and Mg),
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inorganic anions (e.g., SO4 and PO4), poly-ribonucleic acids,
and organic ligands for cofactors, substrates, and receptor
agonists or antagonists (e.g., NAD, FAD, ATP, SAM, CoA,
and PLP) [1].

Protein structure information is key to determine the
residues forming protein-ligand binding sites. So far, nu-
clear magnetic resonance (NMR) spectroscopy [2], [3], [4],
[5], [6], [7], [8], [9] and X-ray crystallography [10] have
been used to determine protein structures. Pintacuda et
al. employed lanthanide ions for the determination of
protein-ligand binding sites [2]. Ziarek et al. used auto-
mated and semi-automated throughput-focused NMR as-
signment methods to identify practical aspects of binding
site characterization and structure determination of protein-
ligand complexes [4]. Most of the existing structure-based
approaches are computationally-heavy tasks, making the
identification of ligand binding sites time consuming when
using these methods.

Most of the current computational approaches determine
ligand-binding sites by comparing the query to similar
or homologous structures [1], [11], [12], [13]. In previous
Critical Assessment of protein Structure Prediction (CASP)
competitions all top performing groups employed structure-
based approaches. Although these methodologies yielded
good results in the competitions (within the first ten groups,
there were more “servers” at CASP10 than in CASP9, six in-
stead of two, with an average MCC (Matthews Correlation
Coefficient) of 0.62 [14]), such structure-based techniques
are restricted by the number of available protein structures
or strictly speaking, by that of available protein structures
similar to the query protein. Therefore, sequence-based ap-
proaches are particularly useful especially when no similar
structural information can be retrieved.
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Previous works explored sequence-based approaches for
identification of protein-ligand binding sites [15], [16], [17].
Passerini and co-workers developed a method for identi-
fying histidines and cysteines participating in the binding
of transition metals and iron complexes [16]. Shu et al.
developed a method combining support vector machines
(SVM) and homology-based predictions to predict zinc-
binding sites (Cys, His, Asp and Glu) from primary pro-
tein sequences [17]. Moreover, some sequence-based pre-
dictors were featured in CASP competitions [18]. However,
prediction of ligand-binding sites from protein sequences
still remains an open problem, as limited progress has
been made in this field. Although Kauffman and Karypis
proposed a method that combined machine learning and
homology information, this did not perform well for the
sequence-based ligand-binding site prediction [19]. A key
issue in the identification of protein-ligand sites is the num-
ber of known protein-ligand complexes. The low number
of known binding sites makes classification difficult. In our
previous work, we made an attempt to propose a random
forest ensemble system to predict protein ligand-binding
sites from sequence information alone [20]. Although we
have demonstrated that using sequence information, we
can predict binding sites to a certain level of accuracy,
our former method always uses the entire ensemble of the
random forest classifiers and does not take the similarity
between the query protein and the proteins in the dataset
into consideration when making predictions.

In this paper, we propose a sequence-based approach,
named ligand binding site prediction by a dynamic selective
ensemble system (LigandDSES), to identify protein ligand-
binding residues on the base of co-evolutionary context
of amino acid residues. First, we built several datasets
to solve the imbalance between ligand-binding sites and
non-binding sites. Each of these datasets was composed of
the binding site subset (the positive subset) and a part of
the non-binding site subset (negative subsets), with all the
negative subsets disjoint to each other. We trained a random
forest (RF) classifier on each data set and dynamically select-
ed a subset of classifiers according to the similarity between
the protein target and the proteins in the training data set.
The combination of all the predictions of the classifier subset
yielded the final prediction for each query. Our experiments
on several benchmark datasets demonstrate the power of
the proposed method.

2 MATERIALS AND METHODS

2.1 Datasets

We used three datasets for protein ligand-binding site pre-
diction. The first one was from the CASP9 assessment on
binding site prediction [18], which consists of 30 targets with
bound ligands. Among the targets, 10 are found in complex
with metal ions, 17 are in complex with non-metal ligands,
and three are in complex with hybrid ligands. The second
dataset was from the CASP8, which contains 27 targets
bound to 37 ligands [21]. The first two datasets are regarded
as benchmark sets and structure/sequence-based methods
in CASPs were evaluated on them. The aim of using the
two datasets is to compare our proposed method with the
state-of-the-art methods.

Moreover, a large data set was extracted from ccPDB
database [22] that contains data sets compiled from the
literature and Protein Data Bank (PDB). In the data set, for
each type of non-metal ligand (BME, EDO, HEM, NAG, PLP,
PO4, or SO4), 50 targets in complex with it were selected,
and for each type of metal ligand (Fe, Mg, Ca, Mn, Zn, Co,
or Ni), 50 targets were selected. There are in total 700 targets
used here.

2.2 Binding site definition

There exists no fixed criterion of binding sites. Different
works adopted different definitions. In common, residues in
proteins are defined as ligand-binding sites if they contain
at least one heavy atom within a given distance from any
heavy atom of the ligands. The distance cutoff in the CASP
assessments was the sum of the van der Waals radii of the
involved atoms plus a tolerance of 0.5 Å [18]. The ligand-
binding sites in [19] had at least one heavy atom within
5 Å to a ligand. For ccPDB, this was based on the PDB-
Ligand [23], where a ligand-binding structure is defined
by the ligands, all the residues and other atoms that are
within 6.5 Å around the ligand. Different ligand-binding site
definitions yield different ligand-binding site datasets. In
Kauffman’s work, its dataset contains 9% of ligand-binding
residues. In this work, about 3.9% of residues (355 sites out
of 8718 reisdues in the 30 proteins) are ligand-binding sites
for the CASP9 dataset, 4.3% (335 sites out of 7718 residues
in the 27 proteins) for the CASP8 dataset. For the ccPDB
data set used here, the ratios are 4.3% (701 sites out of 16513
residues) for non-metal ligands and 1.4% (698 out of 50112
residues) for ”Fe” metal ion. To illustrate the difference of
two ligand-binding definitions, protein 3NO3 is adopted
and shown in Figure 1, where two ions, metal ion “Mg”
and non-metal ion “GOL”, are bound to the protein.

2.3 Feature generation

To encode each residue for the ligand-binding site predic-
tion, AAindex1 database [25] was used, which contains
544 amino acid properties. Since the properties are highly
correlated, a correlation removing technique was applied
[20]. For property i, we first created a correlation list whose
elements denote the correlation coefficient (CC) of i and the
other properties. We counted the correlation number CNi

of elements in the list with value larger than 0.5. We then
randked all the 544 properties according to their correlation
numbers, and from the ranked list CN we removed proper-
ties that were correlated to the top ranking one. As a result,
all the correlated pairs with CC more than 0.5 were removed
and 34 uncorrelated properties were obtained.

For a residue i in a protein chain, the association among
the neighboring residues can reflect the local environment
of the residue to be potential binding site to certain ligand
and is thus considered in this work. We used a sliding
window, such as of length 7, centered at the residue i to
encode the feature vector for this residue. An encoding
schema integrating amino acid properties with sequence
profile was used to represent each residue within the sliding
window [26], [27], [28]. Multipling the sequence profile SPi

for residue i by the amino acid property AAPj we can get
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(a) Ligands and their binding sites by CASP. (b) Ligands and their binding sites by LIGPLOT.

Fig. 1. The difference of binding site residues to ligands by the two definitions for PDB ID, 3NO3. (a) The binding site residues to metal ion Mg301
and non-metal ion GOL303 (colored in cyan). In CASP9 experiment, only His30, Glu59, Asp61, Glu123, Ile156, Phe158, Leu178 and Trp222 are
deemed as ligand binding site residues; (b) binding site residues to ligands for PDB ID, 3NO3 using LIGPLOT [24]. Two additional residues, Thr242
and Asp244, are deemed as ligand binding sites by LIGPLOT.

MSKk
j = SP k

i ×AAP k
j , (1)

where k=1,...,7, j=1,...,20, SP k is the profile for residue k in
the seven residue window, AAPj is for the j−th amino acid
property scale which is a vector with 1×20 dimensions, and
× represents the element-wise product.

As a result, a residue can be encoded as a 1 × 7 vector
when using the seven residue window. The vector and the
corresponding target value will be input to our proposed
method and results can be yielded. The target value is 1 or
0, denoting whether the residue is a ligand-binding residue
or not. Our proposed method is to learn the relationship
between the input vectors and the corresponding target
array.

2.4 Algorithm

2.4.1 Base classifier

For the ligand-binding site prediction, we adopted random
forest [29]. Random forest consists of an ensemble of simple
tree predictors, each of which depends on a set of random
features selected independently. It integrates all the result-
s of a set of predictors and votes for the most popular
ligand-binding site class in this work. In practice, combining
the outputs of a number of individual trees can improve
classification rate since random forest depends on all of
the individual trees and significantly on the relationship
between them. Therefore, the errors made by a tree may
be corrected by the others. Previous results showed that
classifier ensemble can make significant improvement in
prediction accuracy [30], [31], [32], [33], [34].

Given a set of training data {(Xi, Yi)}, i = 1, ..., N , let
the number of training instances be N . Suppose the random
forest contains a set of features J , and builds K trees.
Each tree independently selects a subset of features Jk from
the J features, i.e., Jk ⊂ J , where the number of feature
set Jk should be much less than that of set J . Therefore,
for the k-th tree, a training instance set ϑk composed of
features Jk is generated independently, which is with the

same distributions of the other ones. Building the k-th tree
with the training set results in a classifier RFk(x;ϑk), where
k = 1, ...,K and x is a training instance.

After all of the trees are generated, they vote for the
most popular class with majority vote technique and thus
the prediction for a query instance X can be written as,

RF (X) = majority vote {RFk(X)}Kk=1
. (2)

2.4.2 Classifier set by instance separation and feature de-

pendence

Since the binding site data set is highly imbalanced, i.e., only
3.9% of all the instances are positive samples, balancing the
positive (binding site class) and the negative (non-binding
site class) data was necessary to avoid the over-fitting of
classifiers. We created 25 data sets, Dn

N , n = 1, ..., 25, each
of which contains roughly the same number of the positive
and negative samples. These 25 data sets shared the same
positive samples, but had disjoint negative samples.

Moreover, there are 34 uncorrelated amino acid proper-
ties discussed above. We sequentially divided the properties
as groups, 3 (AADs

S , s = 1, ..., 11, where S is the number
of amino acid properties) descriptors were obtained, each
of which consisted of 11(34/3) amino acid properties. The
last property is ignored in this work. All in all, a total of 75
(25×3) base were obtained, each of which contained differ-
ent subset Dn

N encoded by different amino acid descriptor
AADs

S . Therefore, the classifier system was feature-oriented
(having 3 feature subsets) and instance-oriented (having 25
data subsets). The final prediction was the majority voting
of the 75 random forests and the prediction of the whole
classifier set is,

Clfs(X) = majority vote {RF (X)|Dn

N
,AADs

S
}|n=1∼25

s=1∼3
,
(3)

2.4.3 Classifier selection with diversity measure

Not all of these classifiers were effective nor independent
for the binding site prediction. We then removed invalid
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classifiers and formed the classifier ensemble to improve
binding site prediction. Let X = x1, ..., xN be a labeled
data set, where xi comes from our classification problem.
The output of a classifier Cj can be represented as an
N -dimensional binary vector yj = [y1,j , ..., yN,j ]

T , where
j = 1, ..., L, such that yi,j = 1, if Ci recognizes correctly xi,
and 0 otherwise. There are many measures to evaluate the
similarity of two classifiers, but most of them are based on
labelled outputs. Here we used the correlation coefficient
to assess the similarity of two raw classifier outputs, Cf

and Cs. The correlation coefficient between the two binary
classifier outputs was

ρi,j =
N11 ×N00 −N01 ×N10

√

(N11 +N10)(N11 +N01)(N00 +N10)(N00 +N01)
,

(4)
where N11 denotes the number of both classifiers recog-
nized as the same positive, N00 is that of the same negative,
and N01 as well as N10 are such that they recognized as
different labels.

For each of the classifiers Ci, the ρi to all the other
classifiers was calculated and the average ρi was obtained.
All the |C| classifiers were thus ranked in an ascending
order according to the average ρ. Starting from the top
classifier, we removed from the list all the classifiers that
had large ρ with it, which can be referred as a threshold Tρ.
This process was repeated until no related pair existed in
the list. Different thresholds Tρ resulted in different subsets
of remaining classifiers, i.e., the smaller the Tρ is, the more
diverse these remaining classifiers are.

2.4.4 Similarity between two protein targets

Each protein target can be represented as a subset of in-
stances, each of which is a feature vector for encoding a
residue. The similarity between two protein targets, Tr and
Ts, is shown as,

Pr,s =
1

m

∑

i=1∼m

max
j=1∼n

corr(Tri, T sj), (5)

where Tr and Ts are two subsets of instances, corr(∗, ∗)
is the Pearson correlation coefficient of two vectors, while
m and n are the sizes of subsets Tr and Ts, respectively.
It is noted that two protein targets almost always contain
different number of amino acid residues and thus the sizes
of their encoding matrices are different. Thereafter the more
similar the two targets are, the closer to 1 the score is. Our
aim is to find out the most similar target to the query one in
the training protein data set.

2.4.5 Dynamic classifier ensemble system

For a target protein T , let ℵT be the matrix of input feature
vectors whose rows are for representing instances of amino
acids in the protein. The first step was the search for the
most similar protein matrix ℵTtr from the training data
set ℵtr by Eq. 5. Afterwards, the similar matrix ℵTtr was
taken as training subset and the rest of the set ℵtr as
test subset ℵTts. The ensemble classifiers are run on the
two subsets and the optimal set of classifiers obtained by
selective technique are tested for the target protein T . The
entire flowchart is shown in Figure 2(C).

Dynamic classifier ensemble system:

1) Input: training protein set ℵtr and test set ℵts by
leave-one-out cross-validation (LOOCV);

2) Output: Prediction MCC ;
3) For each protein vectors ℵT in the set ℵts

a) Find the most similar protein matrix ℵTts

from ℵtr by Eq. 5;
b) Obtain the training subset ℵTtr that is from

ℵtr by removing ℵTts and the test subset
ℵTts;

c) Run random forests on the two subsets by
Eqs. 2 and 3;

d) Yield an optimal RF classifier set RFsub ∈
RF by selective technique by Eq. 4;

e) Run the optimal RF set RFsub on ℵtr and ℵT

by Eqs. 2 and 3;
f) Test the optimal RF set RFsub on the vectors

ℵT for the target T ;
g) Calculate the MCC MCCT of the prediction

and the true for the target T ;

4) End

2.5 Combine different sliding windows

Sliding window technique is useful to provide local in-
formation in an encoding system. However, the encoding
system will be changed with respect to the length of the
sliding window. It is difficult to setup the sliding window
length. To smooth the system change according to the s-
liding window, we adopted a combination technique [20].
As in our previous method, we supposed that there are N
predictions Predn resulted from N sliding windows, a new
prediction was obtained by

Predcomb = Pred−

√

√

√

√

1

N

N
∑

n=1

(Predn − Pred)2, (6)

where Pred = 1

N

∑N
n=1

(Predn). The combination predic-
tion yields an average of N predictions.

2.6 Performance comparison

We compare our method with methods participated in
CASP8 and CASP9 meetings. Each method participated in
the meetings submitted their predictions to the meeting. As
in CASP experiments, the format of binding site predictions
for a given target protein consisted of a list of the residue
numbers that were predicted to be binding sites. For ex-
ample, the method FN057 submitted their predictions for
target T0387 like this: ”Binding site: 15-21, 64, 68, 71-72”.
That is to say, the CASP format do not include a confidence
score of binding, so it cannot tell us the possibility that a
residue is predicted to be binding site. Therefore, methods
in CASP meeting only submitted predictions to CASP web-
site, without providing any information of cross-validation
and others. Some methods used 5-fold cross-validation and
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some 3-fold cross-validation. For example, FN132 method
used 3-fold cross-validation for its own datasets DS1 and
DS2, and it only presented results on CASP9 dataset without
showing the description of cross-validation [19]. For com-
parison, we collect all these predictions from CASP website
(http://predictioncenter.org), calculate the performances of
the methods, and compare them with our method. The
proposed method is based on leave-one (protein)-out cross-
validation because of the small sizes of the CASP datasets.

2.7 Evaluation criteria

To evaluate the performance of our method, we adopt-
ed six evaluation measures: sensitivity (Sen), precision
(Prec), F-measure (F1), specificity (Spe), accuracy (ACC),
and Matthews correlation coefficient (MCC) [26], [35].

Since there are many methods participated in CASP8 and
CASP9, Z-score was used to investigate the performance
comparison of different methods on different test protein
targets [18], [20]. The score can reduce the effects of target
difficulty on the ranking. We rewrote the definition of the
Z-score in below. In [18], [20], The Z-score of predictor P for
a given target T can be represented as:

ZP,T =
MCCP,T −MCCT

σT

, (7)

where MCCP,T is the raw MCC score for target T given by
predictor P , MCCT is the mean MCC score for target T ,
and σT is the standard deviation of MCC scores for target
T . The final Z-score for predictor P is the mean of Z-scores
over all targets.

3 RESULTS

Many combination-based Multiple Classifier Systems (MC-
Ss) have been previously described [36], [37], [38] and along
side with so-called Dynamic Classifier Selections (DCSs)
[37], [39], [40]. DCS selects feasible classifiers from a set
of base classifiers for each test protein that contains a set
of residue instances. Different test proteins do not always
yield the same feasible classifier subsets. In this work we
aimed to select classifier subsets which can improve the
prediction of ligand binding sites for test proteins. Our
LigandDSES method (Figure 2 (C)) adopts the principle
of dynamic ensemble methods and applies them in ligand
binding site prediction with sequence information alone. For
comparison with other methods, we calculated predictive
scores for residue sites in each test protein and created an
MCC score for the protein binding to specific ligands..

3.1 Performance of the method on CASP8 and CASP9

We tested our method on the CASP8 data set, which uses
the definition of protein ligand binding site as explained in
the Methods section. Like most of the binding site predic-
tion methods, we employed a sliding window technique to
encode each residue and results with window length 7 are
shown here.

Figure 3 shows the performance comparison when 10%
to 90% of the top classifiers are retained in the classifier se-
lection. Classifier selection with 60% cutoff performs better

Fig. 3. Performance of classifier selection with different percentages of
the top classifiers on the CASP8 data set.

Fig. 4. Performance of classifier selection with top 60% of classifiers on
the CASP8 data set.

than the others. Classifier selection with 70% cutoff achieves
the best precision.

For the classifier selection, the 60% cutoff is able to
correctly predict 60% of binding site residues when it covers
about 40% of binding sites of the CASP8 data set (Figure 4).
Our method obtained similar results on the CASP9 data set
(Figure 5), with a classifier selection precision of 0.6 covering
between 35% to 45% of the binding sites .

Fig. 5. Performance of classifier selection with top 60% classifiers on the
CASP9 data set.

The window length in sliding windows heavily influ-
ences the ensemble system. To evaluate the influence in our
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Fig. 2. Flowchart of the method. (A) Ligands (MG301(A) (colored in cyan) and Gol303(A) (colored in ruby) shaped in rhombus) and their binding
sites of protein PDB:3no3. (B) Amino acid encoding involving evolution on amino acid property, where SD means the calculation of standard
deviation (see Eq. 1). (C) The flowchart of the dynamic classifier ensemble system. (D) The distribution outputs of the classifier ensemble. (E) The
final ROC performance curves for our method.

method, we test the sliding windows with different encod-
ing input lengths. Table 1 shows the prediction performance
on different sliding windows for all ligand site groups
including residues in contact with all atoms of partial and
extended ligands [1]. Among the different sliding windows
tested, length 7 performs the best on CASP9 and CASP8
data sets. To reduce the effect of sliding window selection in
encoding input vectors, we use the combination technique
(Eq. 6). The performance for CASP8 and CASP9 is shown
in the last row of Table 1. The combination of classifiers
with different window lengths eliminates the influence of
the sliding windows and results in better performance. The
combination results in an MCC of 0.484 for CASP8 and
0.433 for CASP9, and each of them performs better than
those with other window lengths (Table 1). It should be
mentioned here that classifier ensembles with smaller win-
dow length perform better than those with bigger length.

To show the improvement of the dynamic system
method, a simple classifier ensemble is implemented by

using all the 75 classifiers and the prediction performance
is listed in Table 2. From Tables 1 and 2, the DSES system
performs better than the simple classifier ensemble system
with respect to window lengths. Moreover, the difference
for CASP9 is larger than that for CASP8. It suggests that the
DSES method is more effective for CASP9 than for CASP8.

3.2 Performance of the method on ccPDB

We used the ccPDB database to evaluate our method. The
data set used consists of seven types of non-metal ligands
and each of which contains 50 ligand binding proteins.
We used 163 protein targets with ”Fe” to evaluate the
performance of the our method (Table 3). The overall MCC
was 0.401 and the F1 was 0.370 for the seven types of non-
metal ligands, and for the seven types of metal ligands,
our method yields an MCC of 0.450 and F1 of 0.392. The
results are then consistent with those obtained for CASP8
and CASP9.
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TABLE 1
Prediction performance for different sliding windows in input vector encoding for CASP8 and CASP9 data sets on the all ligand site group only.

Window CASP8 CASP9
length Sen MCC Prec F1 Sen MCC Prec F1
5 0.476 0.445 0.547 0.428 0.667 0.416 0.361 0.405
7 0.465 0.453 0.588 0.431 0.626 0.423 0.390 0.415
9 0.459 0.448 0.588 0.427 0.601 0.391 0.330 0.386
13 0.481 0.439 0.550 0.420 0.646 0.398 0.351 0.383
17 0.478 0.437 0.555 0.414 0.652 0.415 0.356 0.410
27 0.462 0.435 0.567 0.410 0.623 0.399 0.344 0.391
37 0.489 0.424 0.483 0.415 0.559 0.362 0.330 0.366
combine 0.713 0.484 0.435 0.478 0.667 0.433 0.380 0.422

TABLE 2
Prediction performance for different sliding windows in input vector encoding for CASP8 and CASP9 data sets on the all ligand site group only. The

predictions are resulted from the classifier ensemble without the use of the dynamic system.

Window CASP8 CASP9
length Sen MCC Prec F1 Sen MCC Prec F1
5 0.533 0.410 0.428 0.404 0.402 0.353 0.437 0.337
7 0.507 0.408 0.474 0.392 0.535 0.343 0.345 0.329
9 0.514 0.417 0.481 0.405 0.696 0.346 0.282 0.326
13 0.494 0.408 0.480 0.395 0.446 0.350 0.389 0.341
17 0.444 0.418 0.533 0.400 0.300 0.353 0.544 0.328
27 0.554 0.386 0.373 0.384 0.381 0.330 0.391 0.328
37 0.642 0.356 0.289 0.349 0.583 0.330 0.285 0.319

Since our proposed method aims to find out the most
similar encoding instance matrix of protein to that of query
target, the size of training set may affect the search result
and thus prediction performance may be varyed. However
we cannot conclude that larger training dataset yields better
prediction performance. The only thing we can say is that
larger dataset make our proposed method more statistically
robust. From ccPDB, we extracted 3892 proteins that have
sequence identity less than 25% to proteins in CASP8 and
CASP9. The 3892 proteins are taken as traing set and tested
for proteins in CASP8 and CASP9. A little improvement
is obtained compared with experiments using CASP8 and
CASP9 datasets themselves in Table 1 (results not shown
here).

3.3 Comparison with other binding site prediction

methods

Previous studies showed that template-based methods for
binding site prediction perform much better than de novo
ones [1], [14]. However the former depends solely on the
availability of resolved similar protein structures and bind-
ing sites. Usually, it is difficult to obtain enough such infor-
mation and thus template-based methods perform poorly
if there are not enough similar proteins. Our method aims
to smooth the gap and provides a comparative prediction
on protein ligand binding sites. Performance comparison
on CASP9 and CASP8 data sets show that our method
performs better than some template-based methods (Table
4). In particular, for CASP8, our method ranks in the top 10
predictors (Table 4).

There are a few approaches to predict ligand binding
sites based on sequence information only. Most of ligand
binding site prediction methods, including all of the top
predictors, use structural information of homologous pro-
teins in the prediction. Here we listed some sequence-based
predictors used in the CASP8 and CASP9 competitions.

In CASP9, FN193 adopted SVM to identify protein bind-
ing sites using sequence profile information that results
from disorder prediction and secondary structure prediction
models as additional features. Another partially sequence-
based work was FN132, which combined sequence infor-
mation and homology-based transfer to identify protein
binding sites. Usually, the predictor with sequence infor-
mation only performed worse than combined information
methods. For example, other two sequence-based methods
only achieved an MCC of 0.19 for FN97 and -0.036 for
FN154 (Table 5). FN97 employed global analysis of hy-
drophobicity for ligand binding site prediction while FN154
used residue centrality, a feature known to be related to
functional residues in proteins. Our method yields an MCC
of 0.433, which outperforms all the methods above.

In CASP8, ConFunc consisted of two servers, the first
ConFunc1D predictor used solely sequence information to
infer functional residues (FN437), while ConFunc3D in-
corporated structural data into the ConFunc1D prediction
process. We listed the prediction result for the ConFunc3D
predictor (FN202). FN163 was a threading-based approach
that used FINDSITE [41] toolkit to detect binding pockets for
small molecules. To predict functionally active sites, FN450
trained SVM-based models by PSI-BLAST derived profile
information for a local set of residues within a discriminato-
ry learning framework. Our method outperforms the three
sequence-based predictors. Moreover, two random predic-
tors on CASP8 and CASP9 data sets are also implemented
here and run 100 times. The average performance is respec-
tively appended in the end of Table 5. Results indicates that
our method outperforms the random predictor by all of the
six measures (see section of ”Evaluation criteria”).

3.4 Case studies

We used four targets in the CASP9 and CASP8 data sets to
compare the performance among single classifiers, classifier
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TABLE 3
Prediction performance for ccPDB dataset.

Ligand Sen Spec Acc MCC Prec F1 Positive All ratio

Non-
metal

BME 0.982 0.888 0.891 0.434 0.217 0.356 401 13900 0.029
EDO 0.637 0.900 0.886 0.360 0.263 0.373 867 16319 0.053
HEM 0.534 0.872 0.840 0.318 0.301 0.385 1430 15258 0.093
NAG 0.939 0.906 0.907 0.433 0.223 0.361 526 18843 0.028
PLP 0.871 0.874 0.874 0.383 0.202 0.328 746 21121 0.035
PO4 1.000 0.873 0.876 0.402 0.185 0.313 465 16550 0.028
SO4 0.459 0.988 0.970 0.491 0.557 0.503 488 14171 0.034
Overall 0.786 0.898 0.891 0.401 0.270 0.370 4923 116162 0.42

Metal

Fe 1.000 0.946 0.947 0.448 0.212 0.350 224 15622 0.014
Mg 1.000 0.953 0.953 0.357 0.134 0.236 129 17848 0.007
Ca 1.000 0.978 0.978 0.630 0.406 0.578 249 16777 0.015
Mn 0.998 0.970 0.971 0.532 0.292 0.452 215 17672 0.012
Zn 0.979 0.951 0.952 0.458 0.221 0.362 221 16177 0.014
Co 1.000 0.968 0.969 0.572 0.338 0.505 242 15117 0.016
Ni 1.000 0.967 0.967 0.519 0.278 0.435 177 14068 0.013
Overall 0.997 0.962 0.962 0.501 0.267 0.415 1457 113281 0.013

Overall 0.890 0.930 0.926 0.450 0.268 0.392 6380 229443 0.028

TABLE 4
Performance comparison of different methods on two measures of MCC and Z-score for CASP8 and CASP9 data sets.

CASP8 CASP9
Type Method Num§ MCC Z-score Type Method Num MCC Z-score

Structure

FN475 3 0.838 1.049

Structure

FN311 1 1.000 0.879
FN458 1 0.746 1.009 FN35 25 0.740 0.840
FN289 1 0.672 0.780 FN147 2 0.726 0.800
FN293 19 0.687 1.059 FN96 30 0.715 0.849
FN407 27 0.681 1.141 FN339 30 0.682 0.729
FN202 23 0.666 1.012 FN242 28 0.673 0.617
FN417 27 0.464 0.400 FN110 28 0.666 0.542
FN34 24 0.456 0.326 FN104 26 0.648 0.570
FN209 11 0.455 0.290 FN315 30 0.639 0.540
FN163 23 0.413 0.289 FN94 28 0.611 0.360
FN57 24 0.391 0.188 FN114 29 0.588 0.284
FN325 26 0.350 0.039 FN113 30 0.569 0.264
FN450 26 0.349 0.090 FN452 30 0.566 0.169
FN216 7 0.174 -0.581 FN236 30 0.544 0.146
FN108 26 0.126 -0.694 FN402 28 0.523 0.030
FN198 6 0.076 -0.889 FN458 2 0.498 0.134

unknown#

FN403 1 0.083 -0.142 FN102 30 0.490 -0.191
FN242 27 0.111 -0.733 FN303 27 0.487 -0.098
FN86 25 0.024 -1.035 FN453 29 0.486 -0.167
FN105 27 0.005 -1.065 FN446 30 0.472 -0.142

Sequence
FN437 18 0.205 -0.470 FN425 27 0.460 -0.145
FN483 22 0.067 -0.834 FN17 26 0.447 -0.209
LigandDSES 27 0.484 0.495 FN316 30 0.446 -0.374

FN353 30 0.444 -0.375
FN415 26 0.436 -0.272
FN57 27 0.413 -0.368
FN72 27 0.409 -0.378
FN207 30 0.369 -0.519

Sequence

FN193 29 0.369 -0.530
FN132 30 0.333 -0.776
FN97 5 0.189 -1.753
FN240 6 0.058 -1.524
FN154 5 -0.036 -2.049
LigandDSES 30 0.433 -0.408

# It is not clear whether the method is structure-based or sequence-based.
§ It denotes the number of proteins each method tested on in CASP meeting.
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TABLE 5
Performance comparison of the six methods on CASP9 and CASP8 data sets. The fourth column denotes how many targets in CASP9 or CASP8
are tested in the evaluation of each method. The prediction description of FN193, FN132, FN97, and FN154 can be referred to [18] and FN202,

FN163, FN450 and FN437 can be referred to [21].

Dataset Method Type
# of

targets
Sen MCC Prec F1

CASP9

LigandDSES Random Forest 30 0.667 0.433 0.380 0.422
FN193 SVM 28 0.430 0.369 0.392 0.372
FN132 SVM (LIBRUS) 30 0.574 0.333 0.255 0.336
FN97 Hydrophobicity-based 5 0.153 0.189 0.286 0.190
FN154 Network centrality 5 0.522 -0.036 0.022 0.029
Random Predictor 30 0.100 0.010 0.050 0.060

CASP8

LigandDSES Random Forest 30 0.713 0.484 0.435 0.478
FN202§ PSI-Blast 23 0.807 0.666 0.621 0.655
FN163 Threading-based 23 0.471 0.413 0.439 0.437
FN450 SVM 26 0.522 0.349 0.317 0.349
FN437 PSI-Blast 18 0.422 0.205 0.175 0.225
Random Predictor 27 0.036 0.008 0.053 0.043

§ A structure-based predictor that refines the predictions made by a sequence-based approach.

ensembles and combinations of classifiers with different
window lengths. The first one is T0407 (PDB: 3E38), which
is a two-domain protein containing predicted PHP-like
metal-dependent phosphoesterase. The target interacts with
Cacodylate ion Dimethylarsinate (CAC) and a Zn atom.
Experiments from CASP8 show that the average MCC for
the target over the FN predictions in CASP8 is 0.285. Of
the nine binding sites, the best single classifier identified
three (Figure 6A) while the classifier ensemble with window
length of 7 detected five correctly (Figure 6B). The window
combination technique identified all nine binding sites with
two wrong predicted residues (Figure 6C).

Another case is T0483 (PDB: 3dls). The protein is a PAS
(Per-Arnt-Sim) domain-containing serine/threonine-protein
kinase that coordinates cellular metabolism with metabolic
demand in yeast and mammals. The target binds to a ligand
’DAP’ (Adenosine-5’-Diphosphate) and two ’MG’ metals.
Experiments in CASP8 show that the average MCC for the
target over the FN predictions in CASP8 is 0.410. Of the 20
binding sites, our method covered most of the true binding
sites, and the window combination performed better than
the others. The best single classifier (Figure 7 A), classifier
ensemble (Figure 7B) and window combination (Figure 7C)
identified 2, 5 and 12 binding sites, respectively, although
the number of false binding sites for the latter one is much
more than the others.

The last two cases are for the target T0582 (PDB: 3o14)
and T0635 (PDB: 3n1u) in CASP9 competition. The former
one (Figure 8) is Anti-ECFsigma factor, ChrR mainly binding
to Zn and the latter one is a putative HAD superfami-
ly member (subfamily iii a) hydr legionella pneumophila,
binding to twoCa ions. Most of predictors in CASP9 and
our method identified ligand binding sites correctly. Of
the 4 true binding sites in the target T0582, the window
combination identified 3. The classifier ensemble identified
all of them, but it detected more false binding sites than the
window combination technique. Some wrong predictions
were around those true binding sites. Classifier ensemble
and window combination identified all 3 binding sites for
T0635 (Figure 9) containing 3 true binding sites.

4 CONCLUSION

This paper proposes a dynamic ensemble approach to
predict protein-ligand binding residues by using sequence
information only. To avoid the over-fitting problem resulted
from the highly imbalanced samples between the ligand-
binding sites and non ligand-binding sites, we constructed
several balanced data sets, for each of which a random forest
classifier was trained. We selected a subset of classifiers
dynamically according to the similarity between the target
protein and the proteins in the training set. Combining the
predictions of the classifier subset on each query protein
target our method returns the final predictions. Then the en-
semble of these classifiers formed a sequence-based protein-
ligand binding site predictor. In addition, the encoding
schema integrating properties and evolutionary information
of amino acids is important to obtain the evolutionary con-
text of ligand binding site residues. Thus, our method can
achieve better performances on predicting ligand binding
sites. Although structure-based methods still outperform
sequence-based methods, our method provides a potential
alternative solution to the binding site prediction problem,
especially when structure information is not available.
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