
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Burdett, Robert & Kozan, Erhan
(2010)
A sequencing approach for creating new train timetables.
Operations-Research-Spektrum, 32(1), pp. 163-193.

This file was downloaded from: https://eprints.qut.edu.au/29827/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/s00291-008-0143-6

https://eprints.qut.edu.au/view/person/Burdett,_Robert.html
https://eprints.qut.edu.au/view/person/Kozan,_Erhan.html
https://eprints.qut.edu.au/29827/
https://doi.org/10.1007/s00291-008-0143-6


 1 

A Sequencing Approach for Creating New Train Timetables 

 

R. L. Burdett and E. Kozan 

 

School of Mathematical Sciences, Queensland University of Technology, 

PO Box 2434, QLD 4001, Australia 

 

 

Abstract: Train scheduling is a complex and time consuming task of vital importance. To 

schedule trains more accurately and efficiently than permitted by current techniques a novel 

hybrid job shop approach has been proposed and implemented. Unique characteristics of train 

scheduling are first incorporated into a disjunctive graph model of train operations. A 

constructive algorithm that utilises this model is then developed. The constructive algorithm 

is a general procedure that constructs a schedule using insertion, backtracking and dynamic 

route selection mechanisms. It provides a significant search capability and is valid for any 

objective criteria. Simulated Annealing and Local Search meta-heuristic improvement 

algorithms are also adapted and extended. An important feature of these approaches is a new 

compound perturbation operator that consists of many unitary moves that allows trains to be 

shifted feasibly and more easily within the solution. A numerical investigation and case study 

is provided and demonstrates that high quality solutions are obtainable on real sized 

applications. 

 

Keywords: Job shop scheduling, train timetabling, meta-heuristics 

 

 

1. Introduction  

 

Trains provide a relatively clean and cheap method of transportation for passengers and 

freight, and compare favourably if not better than alternative modes of transportation such as 

road, air and sea in many circumstances. Furthermore the utilisation of railway systems can 

only increase in the future as roads become even more congested, trains become faster and 

infrastructure is extended. Due to the size, weight and speed of trains the coordination of train 

movements (by train scheduling) is vital in order to utilise these systems safely and 

effectively. However train scheduling on current systems is still a relatively difficult and time 

consuming task as the size and complexity is prohibitive.  Train scheduling problems have 

unique properties and pose a number of unique difficulties that distinguish it from other 

related scheduling problems. These will be discussed in a later section. The manual 

construction of a schedule by a human expert with the help of computer software is the most 

common first and last resort in practice.  

In practice there are a variety of different scheduling problems that must be solved, 

though in principle two main variants exist. The first considers the development of a new 

timetable that is typically but not necessarily to be applied at regular intervals such as daily, 

weekly or monthly. The second scheduling problem concerns the re-development of an 

existing timetable. For example, an existing timetable may become undesirable and or 

infeasible after unforseen delays have caused significant deviations to the original plan. In the 

first variant there is usually no limitation on when trains may enter the system, i.e. they may 

enter at any time. However in the second variant trains have to enter at predefined time and 

some trains may already be within the system at the start of the schedule. In recent years the 

majority of papers in the literature have addressed the second “rescheduling” problem, and 

examples include Carey M. (1994a,b) and Higgins et al (1996) for exact approaches and Cai 
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and Goh (1994), Higgins and Kozan (1997), Cai et al (1998), Chiang et al (1998), Sahin I. 

(1999), and Adenso-Diaz et al (1999), Dorfman and Medanic (2004) for heuristic approaches. 

The first problem has been addressed more recently by Odijk (1996), Brannlund et al (1998), 

Goverde (1999), Lindner (2000), Kroon and Peeters (2003). Train platforming and pathing is 

another aspect that has received attention recently by Carey and Lockwood (1992), 

Zwaneveld et al (1996), Kroon et al (1997), Cordeau et al (1998), Zwaneveld et al (2001), 

Billionnet (2003), Carey and Carville (2003).  

In this paper the most efficient way for a specified number (mix) of trains with 

predefined routes to traverse a railway system (network) between their pre-defined origin and 

destination location subject to a variety of technical constraints is considered. This is achieved 

by a new “hybrid” job shop scheduling (JSP) approach. A job shop approach is taken as it is 

new and more importantly because it has the potential to be significantly better than other 

existing approaches. To our knowledge this approach has not been taken before and if so, not 

to the same extent to which it is taken in this paper. In recent years however some aspects of 

the train scheduling problem have been addressed separately in the machine scheduling 

literature. These include: Khosla I. (1995), Werner and Winkler (1995), Dauzere-Peres and 

Paulli (1997), Nowicki Allahverdi et al (1999), Daniels et al (1999),  (1999), Steinhofel 

(1999), Mastrolilli and Gambardella (2000), Mati et al (2001), Mascis and Pacciarelli (2002), 

Kim et al (2003), Kis (2003), Corry and Kozan (2004), Murovec and Suhel (2004) and 

Zoghby et al (2005). In summary this literature addresses scheduling problems with routing 

flexibility, capacitated buffers, sequence dependant setup times, parallel machines, and more 

complex technical constraints. 

A makespan objective criterion is used in this paper to measure the relative merits of a 

new timetable though other criterions could easily be used as our approaches are quite 

generic. The makespan objective is a well known scheduling measure and provides a good 

benchmark for comparing the efficiency of the techniques proposed in this paper. In our 

experience train scheduling criteria vary from one region and operator to the next and when 

constructing a new timetable the best objective criterion is particularly debatable. What is 

clear though is that new schedules are not affected by previous “timings”. Therefore 

minimising delays such as those caused by the non-adherence to an existing schedule is not 

applicable. Furthermore minimising scheduled delays is not entirely sufficient because trains 

may be scheduled with no delays but the schedule horizon (makespan) can be very large. In 

other words throughput will be very poor and this is not particularly desirable. New 

timetables should be efficient in terms of throughput at least in certain time periods and the 

makespan objective is good for achieving this. The makespan minimisation criterion is also 

particularly useful as it allows the capacity of the system for a specific mix of trains to be 

accurately determined. No other fool proof method exists to our knowledge. In this scenario 

timetable creation may be viewed as a tool for making higher level economic decisions. For 

more information on capacity determination approaches and theory Kozan and Burdett (2005) 

and Burdett and Kozan (2006) may be consulted. 

In the next section unique characteristics of train scheduling are first incorporated into 

the disjunctive graph representation of the solution. Constructive algorithms that utilise this 

representation are then developed in section 3. In section 4 the details of the meta-heuristics 

are presented. A numerical investigation and case study then demonstrates in section 5 the 

suitability of the proposed approaches and the quality of solution that can be obtained. In the 

last section the outcomes and the significance of the paper is summarised and the future 

research directions are given.   
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2. Model Development 

 

Timetables are typically constructed manually or heuristically by manipulating the schedule 

representation of the solution. This is a list of train arrival and departure times at discrete 

identifiable locations (such as signalling device) along a railway line. The schedule may 

alternatively be represented by a list of entry and exit times for the sections of rail that occur 

between each pair of adjacent locations. In addition a sequence based representation of the 

problem is also possible. For example a schedule may be represented as a unique sequence of 

train movements on each section of the railway. The schedule and sequence are more or less 

equivalent because each can be obtained from the other. While one set of sequences can be 

obtained from each schedule, this is not necessarily true in the reverse sense. For example for 

the makespan objective train operations may be scheduled as early as possible, late as 

possible or anywhere in between.  

When entry and exit times or sequences are used to represent a train timetable the problem 

is best described by the job shop scheduling framework and this is due to its generality and 

comprehensiveness. In a job shop approach for train scheduling, trains and sections 

respectively are synonymous with jobs and machines. It should be especially noted that job 

and train and section and machine respectively are used interchangeably in the 

remainder of the paper. The indices i and j are used to denote train (job) and section 

(machine) respectively. The set of jobs and machines is J and M respectively. Train 

scheduling is however not a classical variant of the job shop scheduling problem. An 

operation is now regarded as the movement / traversal of a job across a machine and not only 

as the processing of a job on a machine.  An operation is denoted by ,i ko  and represents the 

traversal of train i across its kth section which is denoted by ,i km . The time to traverse a 

section is ,i kp  and is also known as the sectional running time (SRT). The term “stage” is 

used to describe index k and the total number of stages is denoted by iK . The list of machines 

visited by the train is the train route.  

Train scheduling problems can not be modelled as classical job shops because of a 

number of features that are not commonly accommodated by the machine scheduling 

perspective but are common in railways. They are as follows: 

 

 Trains and sections have length whereas jobs and machines do not. The length of train i 

and section j (in kilometres) is defined as  and i jl l respectively (the index distinguishes 

which length is referred to). 

 A train may be on multiple sections at one time. 

 Each train operation does not take a pre defined amount of time, for example if 

acceleration and deceleration and variable velocities are included. The velocity of a train 

in particular is normally assumed to be fixed at some upper level, but realistically a train 

may travel at any speed below that. 

 Once visited, a section may be revisited. For example, a train may reach a location and 

then returns to its starting point. In job shops the usual assumption is that jobs visit a 

machine once. 

 After a job is processed on a machine, the next job may not begin immediately because 

the current jobs path is blocked or there is an imposed setup / separation time. The setup 

time of operation o  if preceded by operation o (i.e. the finish-start headway (separation) 

between operation o and o ) is given by ,o os .  
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 Passing loops and other passing facilities are equivalent to parallel machines or 

capacitated buffers which are very difficult extensions of the standard job shop for which 

no efficient solution has yet been found. 

 A non delay scheduling policy is usually assumed. That is, unforced idle time is not 

allowed and operations of a job should be processed immediately on a machine if that 

machine is ready. In other words operations must be scheduled as early or as late as 

possible, i.e. forwards or backwards scheduling is performed. 

  

The differences above need to be incorporated in order for train scheduling to be performed 

realistically. In the remainder of this section these features are incorporated by changing and 

modifying the classical activity on node (AON) disjunctive graph structure of the job shop. 

For the standard JSP, nodes and arcs respectively represent operations and the precedence’s 

between operations. Arcs are defined as either conjunctive or disjunctive and have a weight of 

zero. Disjunctive arcs in particular represent precedence’s between operations of different 

jobs while conjunctive arcs represent precedence’s between operations of the same job. The 

set of conjunctive and disjunctive arcs is denoted by A and E respectively and the set of 

operation nodes is set V.   Nodes weights are equal to the operation processing time.  A source 

node and a sink node are also added to the graph. The first and last operation of each job is 

attached from the source and to the sink node respectively. The longest path from the source 

to the sink node defines the schedule and gives the makespan. A new schedule may be 

obtained for example by selecting and reversing “critical” disjunctive arcs. Reversing a 

disjunctive arc is equivalent to reversing the position of two jobs within a machine sequence. 

It should be noted that the non delay scheduling policy and fixed train speeds are 

retained in our approach. The non-delay scheduling policy is retained because allowing 

unforced idle time does not usually result in further improvements in the makespan. Removal 

of the non-delay policy is possible and could be incorporated at a later stage. Currently no 

mechanism other than a mathematical programming model exists to accomplish this. Fixing 

train speeds greatly reduces the complexity of the problem without significantly affecting the 

solution quality. In the context of constructing a new timetable and or determining the 

capacity of a system this assumption is more than reasonable and the reduction in the level of 

realism is minimal.  

 

2.1. Train Length and Dwell Times 

 

When the length of a train is neglected (i.e. a train is represented as a point) a section may be 

designated as being unoccupied when it isn’t. This occurs when the rear of the train has yet to 

leave the section.  Modifying the sectional running time (SRT) (i.e. the time to travel across 

the section) to include the time for the rear to exit the section however is insufficient as the 

actual entry time of the front will be incorrect (i.e. overestimated). The correct incorporation 

of train length results in overlapping operations in this hybrid job shop. A train operation may 

in fact begin before several predecessor operations are complete if the train is very long and 

or the previous sections are very small. 

To incorporate train length the front of the train is explicitly modelled while the rear is 

not. For example the movement of the front of the train on each section is represented as a 

separate node in the disjunctive graph. The rear of the train is then modelled by making two 

alterations to the graph. The arc between the last node for the train (i.e. last train operation) 

and the sink node is given a weighting equal to the standard time lag (stl). The standard time 

lag is defined as the time for the train to traverse a distance equal to its own length while 

travelling at its regular / specified speed. This ensures that the train departs the system at the 

correct time. The standard time lag for train i in minutes is 60 /i i istl l v  where iv  is the 
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speed of train i in km/h. The standard time lag may be defined for each and every section that 

is traversed if the speed of the train is not constant. 

The second alteration is to add the standard time lag to the disjunctive arcs which 

normally have a weight of zero. This then ensures the correct precedence relationship between 

the rear of one train and the front of another.  This approach is simpler and more elegant than 

other competing approaches that were developed that are outside the scope of this paper. In 

particular it requires fewer nodes and fewer alterations to the original graph. 

Trains may also be required to stop at certain locations for pre-specified periods of time. 

In this paper, dwell time denoted by ,i k is manifested at the section boundary in the direction 

of travel (i.e. a train stops just prior to leaving a section) and is incorporated as additional 

machine processing time.  That is, dwell time is added to the node weight of the disjunctive 

graph. Dwell time however is defined separately from the machine processing time because of 

additional complexities that arise when a train’s length exceeds the current section. This is 

because additional occupation time is required on the previous section over and above the 

planned sectional running time. Dwell times are not just incorporated as additional node 

weights; they are utilised as additional time lag.  A graphical demonstration of time lags and 

additional time lags in a distance versus time line chart is shown in Figure 1. 

 
Figure 1. A graphical demonstration of time lags 

 

For operation ,i ko the additional time lag denoted by ,i katl  is calculated by the following 

equation:  

 

 ,

, , ,

, , ,

0 ,  ; 1

where | 1 ,

i

i k

i K i k i k i

k

i k i i k i k i

atl atl i J k K

k k k K dt dt l

             (1)

  

In the above equation the distance travelled up to (and including) the kth section is ,i kdt . In 

addition, ,i k  is the set of all later train operation that affect ,i ko . These operations ,i ko  affect 

operation ,i ko  because the elapsed distance ,i kdt  is not sufficiently far away, i.e. 

, ,i k i k idt dt l . The elapsed distance can be calculated in the following way: 

 

 ,0 , , 1 , , 1 ,0, 1 , , =
i ii i k i k j i i k i K i K idt dt dt l k K j m dt dt l  i        (2) 
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2.2 Headways (Separation) 

 

In general train mass is very large and this causes poor stopping performance. Consequently 

for safety reasons it is not permitted for trains to be close to each other in case of collision. 

Therefore headways are utilised to facilitate the safety of all trains. Headways may be 

measured from the exit or entry time of one train and the entry time of another, and are called 

finish-start (F-S) or start-start (S-S) headways respectively. In this paper F-S headways are 

utilised. These values may be positive or negative depending on whether a section occupation 

condition of one train is required or not respectively. Headways are viewed as sequence 

dependent setup times and are incorporated in the graph representation as additional 

disjunctive arc weightings. These values are known (i.e. defined and or computed) 

beforehand. For more details on the calculation of headway parameters we refer the reader to 

Burdett and Kozan (2004) for example. 

 

2.3 Blocking Conditions 

 

Unlike the standard job shop, jobs do not automatically leave a machine after processing is 

completed. This is because after a train has traversed a section, its path may be blocked on the 

next section by another train. A section is deemed unoccupied only when the rear of the 

previous train has entered its next section. Therefore an operation performed on another 

machine must be inspected in order to establish occupancy about the current machine. 

Consequently pairs of disjunctive arcs are not the reverse (as in classical job shops) and 

the sequence is not given by a continuous chain of disjunctive arcs; conjunctive arcs are 

also present. 

To enforce proper blocking conditions, different disjunctive arcs must be generated 

which are reliant upon additional “train specific” parameters. The parameters that must be 

computed are the stage and position of the front when the rear is departing the kth section in 

the route, denoted by , , and i k i kfstage fpos respectively. They are calculated in the following 

way. 

 

 
, , ,min | 1 1i k i i k i k ifstage k k k K dt dt l  , 1,.., ii k K        (3)  

 
,, , , 1 ,

i ki k i k i i fstagefpos dt l dt i k                      (4) 

 

The front of the train must be in the next adjacent section , 1i km which is the next stage or else 

in another later section which is a later stage again. The actual position of the front lies 

between 
,, 1i ki fstagedt  and 

,, i ki fstagedt as 
,, , 1i ki k i i fstagedt l dt  . 

 

2.4. Train Speeds 

 

In some train timetabling problems a constant train speed may be taken. For example the 

sectional running times on all section are proportional to this speed and remain static. There 

are several advantages to such an approach. For example the exit time of the back end can be 

accurately modelled because a constant speed causes a constant (and standard) time lag on 

each section. The time lag being the time for the rear to exit a section after the front has 

already exited.  

However when train scheduling in practice it becomes apparent that sectional running 

time can be affected by track degradation, track curvature, track gradient and speed limits. 

Consequently the assumption of constant speed on every section can not be realised. The 
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sectional running times can not be simply modelled and hence actual sectional running times 

must be measured and not computed. If the first approach is used then small “incorrect” 

delays may be created. These delays are caused because of the usage of incorrect time lags 

when determining exit times. These delays can cause existing procedures to “fall over”.  What 

is proposed therefore is the selection of a speed on each section (and the computation of 

SRT’s) or the computation of a speed based upon input sectional running times. The result is 

still a fixed speed model, but not a constant speed model. 

The time lag on each section must be computed and will no longer be constant.  The 

time lag can not be simply computed as 
, ,60i k j i klag l V  where ,i kj m  due to the effect of 

train length and dwell profiles on nearby sections. The new equations for computing the 

correct time lag can be expressed in the following way: 

 
,

,

1

, , , , ,

1

,
i k

i z

fstage

i k i k i k i z i k m

k k

lag srt srt fpos l i k                   (5) 

 

where iz K  if ,i k ifstage K  and ,i kz fstage  otherwise. The planned occupancy time on 

each section is , , , ,i k i k i k i kot srt lag . The additional time lag and standard time lag 

parameters used in previous sections become redundant as a consequence of using this more 

accurate time lag calculation.  

  

2.5 Passing Loops  
 

Passing loops (also known as crossing loops) allow trains to overtake or pass each other at 

predetermined positions and consist of at least two parallel tracks or sometimes more. 

Without passing facility, only uni-directional flow is possible on a single track. Passing loop 

incorporation is an important and complex facet of the train scheduling problem. In theory 

passing loops may be modelled explicitly or implicitly. An explicit approach represents each 

track as an additional “sequence-able” machine. This causes additional routing alternatives 

(routing flexibility). An implicit approach represents the passing loop as a capacitated 

intermediate storage area (buffer). The buffer is itself modelled as an additional machine with 

no sequence and no associated disjunctive arcs. It should be noted that buffer machines must 

also be explicitly included in a jobs path.  

The buffer approach assumes that passing loop length and processing time is fixed. 

However in reality, each track may be a different length and may take a different amount of 

time to traverse for example due to safety conditions and track curvature. Consequently the 

routing flexibility approach for the representation of passing loops is more accurate than the 

buffer approach. Another advantage of the routing flexibility approach is that the contents of 

the passing loop are explicitly known, i.e. there is a sequence for each track. The main 

advantage of the second approach is that there are far fewer machines in the problem. There 

are also no alternative routing complexities and consequently the disjunctive arc data remains 

static. However buffer occupancy violations (BOV) may occur and must be identified and 

resolved.  

In this paper either approach or a combination of both may be taken. The first approach 

however is required when there is legitimate routing flexibility that can not be modelled by 

capacitated buffers. Buffer occupancy may be determined after the disjunctive graph has been 

evaluated and decoded. In particular the operation entry and exit times may be used as they 

provide an interval of machine occupancy. The original overlapping intervals of machine 

occupancy are split into separate non-overlapping intervals, each with its own integer 
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parameter signifying the number of occupants. In other words a machine occupancy record 

(MOR) is a three tuple , ,start end number  which signifies the interval of occupancy and 

the number of job occupants.  If the number of occupants of any non-overlapping interval 

exceeds the capacity of the buffer, then a buffer occupancy violation (BOV) has been found.  

The complete ordered list of non-overlapping intervals is required in order to prove that 

a capacitated buffer is not overloaded. The process of finding all the non overlapping intervals 

is achieved by an efficient iterative algorithm. First the original intervals of machine 

occupancy are ordered chronologically. Adjacent pairs of intervals (starting from the first) are 

then sequentially compared.  For example two intervals [a,b] and [c,d] are deemed to overlap 

if b is greater than c. The two intervals may be split in the following ways: ( [a, b] ),  (  [a, b], 

[b, d] ), (  [a, c], [c, d], [d, b] ), ( [a, c], [c, d] ) and ( [a, c], [c, b], [b, d] ). When two intervals 

overlap, zero to three new sub intervals may be created. However at most, only one must be 

inserted into the set according to the ordering condition. The modification of the original 

intervals ensures that the unnecessary creation of new intervals and their subsequent insertion 

is not performed. It should also be noted that if the newly created interval already exists then 

the current occupancy level is increased and the interval is not re-inserted. Due to an interval 

ordering condition no sub interval can be inserted before position k-1 and hence the k-1
st
 

MOR is never removed, although it may be modified. This means that the comparison process 

can continue without starting from the beginning when the set of intervals is enlarged or 

reduced.   

 

2.6. The Disjunctive Graph Model 

 

In this section the complete disjunctive graph model is presented as the necessary 

elements needed to construct it have all been discussed. It should be noted that this new 

disjunctive graph model operates in the same fashion as explained for the classical JSP. Its 

structure however is different. 

 

, , ,

1

,0.0 , ,0.0
iK

i k i k i k

i J k

V so o p si           (6) 

,1 , 1 , ,

2
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i

i

K

i i i k i k i K i

i J i J k i J

A so o rlt o o o si stl         (7) 
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1 2

,i k i k jj M o o E

E e e               (8) 

* * *
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* *
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*

, , , ,, , ,

1
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i k i k i k

i k i k i k

i k o o i k m i k ii k i k i k

i k o o i k m i k ii k i k

o o s p fpos l k fstage K

e

o o s p fpos l k fstage K

          (9)    

* * *
, , *,

* *
, , *,

*

, , , , ,, , ,

2
*

, , , ,, ,

, , 1  for 

, ,  for 

i k i k i k

i k i k i k

i k o o i k m i k ii k i k i k

i k o o i k m i k ii k i k

o o s p fpos l k fstage K

e

o o s p fpos l k fstage K

   (10) 

                 

According to (6) each train operation has an associated node in the graph. The conjunctive arc 

set is constructed in (7); each three tuple represents an arc between two nodes with the given 

arc weight. The release time of train i and train operation ,i ko  is denoted by , and i i krlt rlt  

respectively. Release times are incorporated for additional timing constraints that may be 
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imposed by planners. It should be noted that whenever a trains route is modified (as in the 

routing flexibility approach for modelling passing loops) set A must also be modified. The set 

of disjunctive arcs is created by expression (8)-(10). Equation (8) states that there are 

disjunctive arcs associated with every section (i.e. non buffer machine). On each of these 

sections and for each pair of train operations 
, ,,i k i ko o  that use this section there is a pair of 

arcs as defined by 1e  and 2e , one for the precedence , ,i k i ko o  and one for the precedence 

, ,i k i ko o  respectively. Equations  (9) and  (10) are based upon the logic provided in sections 

2.1 – 2.3. As this problem is not a classical job shop the disjunctive arcs are not 
, ,,i k i ko o  

and 
, ,,i k i ko o . The length of trains is included and the arcs must start from other operation 

nodes namely *,i k
o  and *,i k

o  which are later operations of train i and i  respectively. The arc 

weights in essence project backwards from these later nodes and take into account the 

processing requirements that occur between *, ,
,i k i k

o o and *, ,
,i k i k

o o  respectively (where *k  

is different in each). 

To decode a particular disjunctive graph after the longest path algorithm has been 

applied (i.e. to actually schedule train operations) the following equations are necessary: 

 

 , , , ,:i k i k i k i kentry lpv p  , ,..,1ii J k K                  (11)

 , ,:i k i k iexit lpv stl  , ii J k K                    (12)

 * * *
*,

, ,, , ,
: 1

i k
i k i k mi k i k i k

exit lpv p fpos l    

 
*, 1,..,1|i ii J k K k K  where 

*

,i kk fstage                          (13)

 * *
*, 1

, ,, 1 , 1
: 1

i k
i k i k mi k i k

exit lpv p fpos l  

  
*, 1,..,1| 1i ii J k K k K  where 

*

,i kk fstage                (14) 

 
, , , , , ,i k i k i k i k i k i kdelay exit entry p lag  , ,..,1ii J k K                         (15)

     

In these equations , , ,,   and i k i k i kentry exit delay  are the scheduled entry, exit time and delay for 

train operation ,i ko .  The value of the longest path to operation ,i ko is ,i klpv . The longest path 

to a particular node represents the completion time of the front but not the departure/exit time 

for the rear.  The entry time is simply the completion time of the front minus any section 

occupation time (SOT) that it must incur. There are three cases for determining the correct 

exit time for an operation. Determining the exit time is more complex because the rear of the 

train must be taken into account. Equation (12) is valid for the last stage where the front and 

rear depart straight away. Equation (13) and (14) are valid respectively for all stages (except 

the last), where the front still lies within the system or where the front has departed the 

system. In these equations the exit time of the rear is obtained by projecting backwards and 

forwards respectively from the entry time of the front on another section. 

The disjunctive graph may alternatively be evaluated in a backwards fashion so that 

operations are scheduled as late as possible as opposed to as early as possible. For this 

backwards scheduling option, the longest path values must be converted to forwards time. 

This is achieved by subtracting from the makespan the current longest path value and then 

adding the node weight.  
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3. Constructing a Schedule 

 

A constructive algorithm is proposed for sequencing trains as a standalone approach or 

to provide starting solutions for meta-heuristic strategies. There are two variants of the 

constructive algorithm. The first is primarily for the situation where passing loops are 

modelled as capacitated buffers and train routes are fixed. The second variant is for the other 

situation where passing loops are modelled as additional machines and additional routing 

decisions must be made. In other words jobs have selectable and not fixed routes. 

To determine a feasible schedule it is proposed that trains are inserted iteratively (i.e. 

one by one). The operations of each train are also inserted iteratively. The order that trains are 

inserted is from largest to smallest total transit time (processing time) though a number of 

other alternatives could be taken. The way in which trains are inserted depends on the status 

of certain user defined boolean (binary) flags. The flags are re_route, route_greedy, 

insert_greedy and permit_BOV and their affect should become apparent as the details of the 

constructive algorithm are further discussed. The methodology of the constructive algorithm 

is very much the same as that of the NEH insertion algorithm of Nawaz et al (1983) for the 

flow shop in which the sequence is constructed one job at a time. The main difference is that 

there are m sequences instead of one and each operation of a train must be separately inserted. 

Further details are as follows: 

 

3.1. Fixed Route Variant 

 

The InsAlg_1 procedure attempts to insert trains with fixed routes. The operations may 

be inserted in a forwards or backwards manner with respect to the route, i.e. from first to last 

or last to first operations. The backwards approach however has been taken in order to remain 

compatible with other procedures. For each operation performed on a standard machine (i.e. 

for non buffer operations), a test insertion phase is performed. Each position in the current 

partial sequence is inspected for feasibility by temporarily inserting the operation and then re-

evaluating the disjunctive graph. The insertion of an operation causes one or two disjunctive 

arcs to be added to the graph. An existing disjunctive arc is made redundant if the operation is 

not inserted in the first and last position of the current partial sequence. It is not required for 

redundant arcs to be removed in this procedure however. Redundant arc are only removed 

when the insertion position is finalised and the operation is inserted permanently.   

If a cycle occurs in the graph, the position is marked as infeasible. If the position is 

feasible and the permit_BOV flag is false then buffer machine occupancy is determined. If no 

violations have occurred and the insertion results in the smallest makespan, it is recorded as 

the best insertion point found so far. The operation is then removed and the graph is returned 

to its previous state. At the end of this phase the insertion of the operation is made if a feasible 

insertion point exists. For the insert_greedy equals true case (i.e. the greedy local search 

option) the operation is inserted in the best position, otherwise a position is chosen randomly.  

The insertion point is then flagged as infeasible in case backtracking is required at a later 

stage. The operation counter is then decremented and the next operation is tested for insertion 

in the same manner. Buffer operations are automatically inserted but are not sequenced. 

It should be noted that a very important part of the test insertion phase that is associated 

with re-entrant paths was not mentioned above. For example, a train operation can not be 

inserted before predecessor operations of the same train that traverse the same section because 

the precedence conditions would be violated. Therefore insertion positions before the last 

occurrence of the train on the section are not inspected. To facilitate this, a variable that stores 

the last insertion position is created and continually inspected and updated whenever 

necessary. 
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If at any stage an operation may not be feasibly inserted into the partial sequence for the 

associated section, a backtracking phase is initiated. Firstly the operation counter is 

incremented. If the value is greater than iK  the algorithm is terminated because no further 

backtracking is possible, and the train is not inserted. Otherwise the insertion of the previous 

operation is undone, i.e. the operation is removed and the graph is returned to a previous state. 

The previous operation re-enters the test insertion phase but the previous insertion point is not 

re-inspected as it has been flagged as infeasible.  

 

3.2. Flexible Route Variant 

 

The InsAlg_2 procedure attempts to insert trains that have flexible routes. It is similar 

but more complex than the InsAlg_1 algorithm. The main conceptual difference is that a 

number of alternative operations may be selected at each stage of the algorithm and 

subsequently added to a trains route. In other words the route is built at the same time as the 

train is inserted (scheduled). The procedure starts from the sink node in the train’s precedence 

network and continues until the source node is reached. For each alternative operation each 

possible insertion position is evaluated and compared. For the route_greedy case the 

operation with the best insertion position is chosen, otherwise an operation is chosen 

randomly. It should be noted that for standard train scheduling problems the computational 

burden will not be significantly greater since the number of alternatives will be small, i.e. two 

for a standard passing loop. The backwards approach must be taken here because the route is 

not known and because of the blocking conditions for an operation that require information 

about a successor operation. For example the successor operation is not known when the route 

is constructed in a forwards manner and hence an operation can not be inserted correctly. 

There are several sources of additional complexity. The first is the difficulty in storing 

and maintaining backtracking information. For example, when the routes are fixed, the 

dimensions of the backtracking parameters are also fixed. When the routes are constructed 

dynamically, the dimensions are constantly increasing and decreasing. There is also more 

backtracking information “floating about” due to the choice of additional operations at each 

stage. The second source of additional complexity is associated with the re-calculation of train 

parameters and disjunctive arc information. For example all disjunctive arc information may 

be preliminary calculated when train routes are fixed. However disjunctive arc information 

must be continually updated when train routes are dynamically constructed. It should be noted 

that it is not computationally reasonable to preliminarily compute disjunctive arc information 

for all possible routing possibilities and precedence relationships between trains. The 

parameters associated with the position of the front in particular also changes and must be 

updated when the route changes. 

 

 

4. Meta-Heuristic Improvement  

 

In recent years meta-heuristics have been applied greatly to job shop scheduling problems 

particularly classical. Examples  include Van Laarhoven et al (1992), Steinhofel et al (1999), 

Kolonko (1999), Nowicki (1999), Mastrolilli and Gambardella (2000), Murovec and Suhel 

(2004), Corry and Kozan (2004), Zoghby et al (2005), Groflin and Klinkert (2007). Meta–

heuristic approaches however must be adapted and extended for train scheduling problem. 

The application of the Simulated Annealing and Local Search meta-heuristic are 

concentrated upon in this paper (and section). Tabu Search (TS) was not investigated because 

the possibility of asymmetric neighbourhood stops cycling (Kolonko 1999). Evolutionary 

Algorithms (EA) including Genetic Algorithms (GA) were not investigated because they are 
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expected to be inferior on this type of discrete problem. This assumption is based upon past 

experience. In particular the crossover mechanism will in all likelihood result in vastly 

infeasible solutions that will be difficult if not costly to repair. The offspring solutions will 

also more than likely be completely different from their parent solutions and will be of 

inferior quality. Lastly the computational burden (in terms of CPU time) of manipulating a 

population of solutions is too large.  Several EA and GA approaches however have been 

applied to some classical and non classical job shop problems in the past. Most recent 

examples are Mattfeld and Bierwirth (2004), Kim et al (2003) and Candido et al (1998). None 

of these papers however compare their approach with other meta-heuristics. 

 

4.1. BOV Handling  

 

The BOV’s that are created in the course of perturbing a solution may be dealt with in one of 

three ways. They may be allowed but penalised in the objective function. Secondly they may 

not be allowed at all, or thirdly they may be resolved. Resolution of buffer occupancy 

violations explicitly is expected to be a computationally time consuming task and the code 

and algorithms required more complex. Consequently this approach is not taken. It should be 

noted that if the starting solution contains BOV’s (i.e. it is infeasible) then the penalisation 

option must be used otherwise a feasible solution can not be obtained. If the starting solution 

contains no BOV’s (i.e. it is feasible) then either the penalisation or restrict option may be 

used. 

The main disadvantage with penalising the objective function is that a feasible solution 

may not be obtained nor is it guaranteed. However this approach may allow better solutions to 

be reached that would not otherwise be reachable (i.e. by the restricted case). There are 

several ways in which to penalise the objective function and two alternatives are shown:   

 

 OBJV Cmax BOV  or  
kk j

k BOV

OBJV Cmax cap    (16) 

 

In these equations jcap  gives the capacity of buffer machine j, jU  is the set of operations that 

require machine j, and the set of buffer occupancy violations is 

, | ,1 jBOV j j M U  which is a set of 2-tuples. Each element signifies the 

associated machine and the number of occupants respectively. The first equation only 

penalises the occurrence of a violation while the second also penalises the extent of the 

violation. The penalty value  may be fixed or it may be variable. A variable penalty value 

could be increased as the temperature in a Simulated Annealing approach is reduced. 

Similarly a variable penalty value could be increased as the number of iterations in a Tabu or 

Local Search approach is increased.  

The first approach for penalising BOV’s was taken.  The second approach was not taken 

because no great benefit was observed. In particular buffers are seldom overloaded by more 

than a few jobs and the extent of the difference is small. If the penalty value is large then 

overloading the buffers is not acceptable as a consequence of a move. If the value is small 

then it is very difficult to improve the objective function and maintain correct buffer levels. 

Furthermore resolving heavily overloaded buffers causes unreasonable amounts of congestion 

which again leads to inferior solutions. 
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4.2. Simulated Annealing Details 

 

The standard SA control structure was used.  For example there is an outer temperature loop 

which is terminated when the number of temperature steps reaches a predefined limit and an 

inner loop which is terminated after a given number of state changes at the given temperature. 

A state change is accepted using the standard metropolis function. Lastly the temperature is 

altered at the end of the inner loop. The basic geometric cooling schedule was used and the 

initial temperature was chosen using past experience and experimentation. 

A new feature that is added to the SA approach is the addition of the BOV penalty 

value. The penalty value z  is increased proportionally as the temperature zt  decreases. If the 

initial penalty value is 0 IP  and the final penalty value is FP  then an expression for the 

penalty value at step z is z

z
 where 

1

Z

I F

Z

P P
and 

1

F I

Z

P P
. This 

equation was derived by firstly observing that z gives the correct relationship between the 

number of steps and the increasing penalty value. The correct values of  and  are 

obtained by substitution using 0 IP  and Z FP . 

An important feature of the changing penalty value that is not immediately visible is the 

effect on the best solution and the current solution. When the penalty value is altered at the 

end of the inner loop after the temperature has been altered, the best and current solutions will 

change if they contain BOV’s. Consequently a solution that is viewed as superior at one stage 

in the search may be viewed as inferior at a later stage. Consequently an additional procedure 

must be called to update these values if the search is to proceed correctly. 

 

4.2.1 Unitary Perturbation Operators 

 

The solution which is a collection of operation sequences (i.e. one for each non buffer 

machine) may only be realistically and efficiently perturbed in a small number of ways. For 

example operations may be individually shifted, pairs of operations may be interchanged or 

exchanged, or a sub sequence of operations may be reversed. Entire jobs may also be 

removed and re-inserted using the constructive algorithm as an alternative perturbation 

strategy. 

Reversal of a sub sequence is a poor strategy for train scheduling problems due to 

blocking conditions and the capacitated buffers. In particular if the buffers may not be 

overfilled then the reversal of most sub sequences will not be accepted as they will result in 

infeasible solutions. If buffer overflows are penalised, high levels of infeasibility will still 

likely be caused and those moves will be rejected unless the penalty value is very small. 

Consequently much of the computational effort will be wasted. For similar reasons, an 

exchange operator and a general shift move is also quite poor. Similarly the computational 

overhead of re-moving and re-inserting an entire job is much too great. The interchange 

operation which is equivalent to a shift move of one adjacent position (i.e. to the left or right) 

is therefore the most suitable “unitary” perturbation move. 

Three alternative operation selection strategies were implemented and investigated. The 

first is a random selection strategy. The second approach chooses operations based upon the 

level of delay that has been incurred. A roulette wheel selection is used and those operations 

that have been delayed are the most more likely to be chosen. The third strategy selects 

operations from the critical path. In each of the three strategies the set of selectable operations 

does not include “buffer” operations. This is because buffer operations are not sequenced 
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Apart from the different ways of selecting an operation the steps of the perturbation 

operator remain the same. If the position of the operation is first or last then there is only one 

possible shift that may be taken; right and left respectively. Otherwise the shift direction is 

chosen randomly. An operation however must not be shifted past any predecessor or 

successor operations of the same job on the same machine (OSM) otherwise errors will 

occur. This occurs for example when trains revisit sections multiple times. Return paths are 

the most typical example in train scheduling problems. 

It should be noted that when the critical path is used to select operations, the local 

search neighbourhood becomes asymmetric. Asymmetry implies that a solution y may be 

reached from x (i.e. x N y ) but x is not necessarily reachable from y (i.e. y N x . A 

symmetric local search operator is normally assumed and utilised by meta-heuristics. The 

critical path is also a little different to that of the classical job shop and this is due to the 

blocking conditions, the capacitated buffers and re-entrancy issues. Typically the critical path 

is a list of operations linked by disjunctive arcs. The critical path in this paper now consists of 

both conjunctive and disjunctive arcs and has a “zig-zag” shape. Operations on the critical 

path may also be processed on buffer machines for which no sequence exists and no 

disjunctive arcs. Direct links between operations of different jobs no longer occurs except at 

machines where blocking conditions are not enforced (input-output points to be precise). 

Links between operations of different jobs occur through adjacent operations on adjacent 

machines.  

 

4.2.2. Compound Perturbation Operators 

 

From numerical investigations it was found that shifting an operation within a sequence is 

sufficient as a means of perturbing (refining) an existing train schedule and allows relatively 

good solutions to be obtained with reasonable computational expense (overheads). However it 

has also been observed that these moves often exhibit serious limitations because of the more 

complex and constrained search space for this type of problem. This is even more apparent on 

larger instances. For example the operators become less efficient as the number of trains and 

sections and hence the number of operations increases. To reach a better solution it often 

requires a large number of non improving moves to be made. What these non-improving 

moves are is not known. It is also quite difficult if not impossible to move from one feasible 

solution to another feasible solution at times without allowing BOV.  Therefore it is quite 

clear that compound moves are necessary in order to find better solutions and in a more 

computationally efficient manner. It should also be noted that without the benefit of a 

compound move a single interchange may result in a multiple overtaking situation (conflict) 

as shown in Figure 2(b) which is highly undesirable due to the added congestion that is 

caused and the pointlessness of the scenario. In Figure 2 the diagonal lines represent train 

trajectories for two trains u and v respectively in a time versus distance chart that is 

commonly used to visualise train schedules. Stationary trains are identified by the horizontal 

lines in Figure 2(b). The rectangles in Figure 2(a) identify two train operations that occur on 

the same section of rail that for arguments sake are to be reversed in the associated machine 

sequence. The rectangles also demonstrate the section boundaries. The other train operations 

and are not explicitly shown nor are other trains that could be in the current schedule.  
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(a)      (b) 

Figure 2. Train chart demonstrating the creation of a multiple overtaking conflict  

 

The focus of the proposed compound moves is to perform interchanges without causing 

multiple overtaking conflicts and secondly to move whole trains past each other easily within 

an existing schedule. In our approach simple interchanges and exchanges are used as the basis 

of the compound moves. An interchange swaps the position of two adjacent operations while 

exchanges swap the relative position of two operations that are not necessarily adjacent. The 

compound moves require several of these “single” moves to be performed “simultaneously”.  

The compound moves are created by firstly choosing two operations. These operations 

must be adjacent in a machine sequence and must not be part of the same job. Each compound 

move therefore consists of at least one interchange move and the focus of the compound 

move occurs at this point (i.e. the machine). Each operation has a direction of travel (i.e. up or 

down) and therefore four cases can occur. 

The first two cases result in a multiple overtaking situation as the trains both travel in 

the same direction. To stop this from occurring the order of the trains must be completely 

reversed or a single overtake can be allowed. The “make overtake” and “undo overtake” 

compound moves are shown graphically in Figure 3 and 4 respectively. 

 

 
(a)       (b)     (c) 

Figure 3. Train chart demonstrating a  make overtake compound move 

u v v u u v 

Compound 

move 2 

Compound 

move 1 

u v u v 
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(a)        (b)    (c) 

Figure 4. Train chart demonstrating an undo overtake compound move 

 

When trains travel in opposite directions compound moves are also necessary because 

precedence impossibilities can result. An example is shown in Figure 5. 

          

                                          
(a)       (b) 

Figure 5. Train chart demonstrating the creation of a precedence impossibility  

 

 
(a)       (b)     (c) 

Figure 6. Train chart demonstrating shift & undo passing compound moves 
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Compound 
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(a)         (b)     (c) 

Figure 7. Train chart demonstrating  make passing compound moves 

 

Precedence impossibilities are identified during the evaluation of the disjunctive graph 

and when found the moves that cause them are usually reversed. It is better however not to 

make moves that cause precedence impossibilities if possible before the disjunctive graph is 

evaluated in order to reduce unnecessary “wasteful” calculations. Two compound moves can 

be applied for this scenario and are shown in Figure 6 and 7. 

Trains may also be completely swapped as a compound move. This alternative though 

is not used because the schedule could be disrupted too greatly.  If two trains do not interact 

with others then such a move is fine. 

A compound interchange is formally defined as a three tuple 

, ,  CPDINT i i where  i i and , , , ,, | ,i k i k i k i ko o k k m m . The size of the set 

of operation pairs  can not exceed the number of operations in both jobs, i.e. 

min ,i iK K .  

Algorithm 1 (whose finer details can be found in the Appendix) coordinates the creation 

of compound moves between two operations. The set of machines common to each pair of 

jobs is first required. Two trains i and i are deemed to travel in the same direction if they 

have the same route through the common machines. That is: 

 

, ,

,1,...,

_
i z i z

i i

order order

z common

same dir m m       (17) 

 

where iorder  and iorder  are the order in which train i and i  traverse the common machines. 

The position of the selected operations within the orderings is required next as this 

position is the “focal point” of the compound move. Following this the specific passing 

scenario is identified and sub procedures are called to generate the compound move. When 

two trains pass each other a compound move to shift the passing point or completely remove 

it are available. Which alternative is best is not known. The shift passing option is chosen at 

this stage because it encompasses the other strategy. In particular if the operation associated 

with the first common machine is selected then the passing is completely removed. In all 

other circumstances the passing is maintained but the position is shifted. The term passing is 

also used to signify overtaking. To identify passing Algorithm 2 (in the Appendix) compares 

the precedence’s that occur between two operations on adjacent non buffer machines. Passing 

is identified when these precedence’s differ. 

The details of the MakePassing, UndoPassing and ShiftPassing procedures are 

shown in Algorithm 3 – 5  of the Appendix. The main difference between these algorithms is 

the starting and finishing position for the compound move. 

u v u u v v 

Compound 

move 
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4.3. Local Search Details 

 

A standard local search algorithm is used in this paper. For example there is a single loop 

which terminates after a specified number of steps (iterations) Z have been performed. At 

each step all solutions in the current neighbourhood are evaluated and the best is chosen as the 

new current solution. This approach differs from Tabu Search in that there exists no tabu list 

mechanism (i.e. it does utilise memory) and no intensification and diversification strategies. 

This approach could be adapted to a Tabu Search approach but this is left for a future 

occasion. This technique does not have a temperature parameter and hence the penalty value 

must be modified according to the iteration counter. The following equation 

F I
z I

P P
P z

Z
 is used in this paper. This equation does not use the existing 

temperature reduction parameter but another parameter . Parameter  takes positive values 

greater than or equal to one. At one the relationship is linear. Larger values ensure that the 

increase in the penalty value is slower but more drastic towards the end of the search. As with 

SA, the current and best solutions should be altered to reflect the current penalty value. The 

penalty value is also changed at the end of each step after the neighbourhood has been 

searched. 

As with SA a solution is again perturbed using shift moves. However in LS more than one 

move is evaluated at each step. The neighbourhood may be defined in many different ways. 

The following are three strategies that have been implemented and were investigated in this 

paper. 

 

 ShiftAll_Operation: This involves the re-insertion of a single chosen operation and is 

equivalent to testing all possible shifts. The operation is chosen randomly or from the 

critical path. An operation may be re-inserted in one of the 1jU  positions where jU  is 

the set of operations that require machine j. 

 ShiftAll_Job: This involves shifting the position of all operations (separately) of a chosen 

job by one position forwards (+1) or backwards (-1). The size of the neighbourhood for 

job i is twice the number of operations in its itinerary (route). 

 ShiftAll_Machine: This involves shifting the position of all operations (separately) on a 

selected machine by one position forwards (+1) or backwards (-1). The size of the 

neighbourhood for machine j is 1jU .  Redundant moves are avoided by evaluating 

forward moves only. For example for two adjacent operations “u” and “v” shifting “u” 

forwards is equivalent to shifting “v” backwards. This operator is also equivalent to 

performing all interchanges of operations. 

 

A fourth strategy in which all critical (non buffer) operations are (separately) shifted one 

position could also be taken and may be quite effective. This approach was not implemented 

as the former strategies were deemed to be more promising and secondly due to the different 

critical path property of this type of scheduling problem. For example, shifting only critical 

operations may not be sufficient to reach the optimal. 

Each of the three strategies above must take into account the possibility of revisited 

machines like the perturbation operators of SA.  
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5. Numerical Investigation 

 

5.1. Test Problems 

 

The primary purpose of this numerical investigation was to identify the best solution approach 

for creating train timetables. More specifically the best meta-heuristic approach, perturbation 

operator, control parameters and BOV handling option are sought. The proposed techniques 

were judged according to the usual measures of performance CPU time and solution quality 

for a variety of interesting and increasingly demanding train scheduling problems. The results 

were obtained using a Pentium 4  3 Ghz computer. 

A variety of solutions obtained from the constructive algorithm (and associated 

numerical investigations) were used as starting solutions for the meta-heuristics. The different 

SA and LS perturbation operators were also investigated. For SA the following control 

parameters were used. 

 

10 / 0.01 / 0.95 / 50  134 / 6700  1.0 / 0.01 / 0.99 / 50  458 / 22900 

10/ 0.01 / 0.99 / 50  687 / 34350   1.0 / 0.01 / 0.99 / 100  458 / 45800 

 

From left to right these are: the initial temperature, the final temperature, the temperature 

reduction factor and the evaluations at each temperature step. From these values the total 

number of temperature steps and evaluations can be computed. Past experience and the results 

of preliminary experimentations dictated the choice of these particular parameters. The main 

LS parameter required is the number of iterations and three values 1000, 2000 and 3000 were 

investigated. The value =1 was chosen for increasing the penalty value when the 

penalisation option is selected. In total nearly 3000 test problem instances were solved. 

Scheduling may be performed in a forward or backward manner and both were 

investigated because each utilises buffers differently.  In each problem equal mixtures of 60, 

80, 100, 120 and 160 km/h trains respectively were scheduled to make the problems more 

challenging. The variation in train speeds ensures that fast trains will run into slower trains 

quite easily and careful planning of passing and overtaking is necessary in order to maximise 

throughput. The test problem dimensions are summarised in Table 1. The problem sizes are 

quite typical of job shop scheduling instances found in recent papers and some smaller 

railway applications. It should however be noted that the added complexities of this problem 

(such as blocking, capacitated buffers, etc) make it more difficult to solve than classical job 

shop scheduling problems. This has been observed for example by Mascis and Pacciarelli 

(2002). These sized problems allow the techniques to be accurately judged with a reasonable 

amount of effort. 

 

Table 1. Test problem dimensions  

Case Type 
Input / Output 

Points 

Machines 

(Sections / Passing 

Loops) 

Trains 

(Jobs) 

Number of 

Operations 

1 Serial (121.67 km) 2 39 (20 / 19) 20 780 

2 Serial (88.96 km) 2 33 (12, 11) 20 460 
3 Serial (260.25 km) 2 45 (23, 22) 20 900 

4 Serial (56.2 km) 4 17 (10, 7) 24 240 

5 Circular (39 km) 1 8 (5, 3) 12 60 
6 Network (188.6 km) 5 41 (30, 11) 54 1620 

7 Serial (467.76 km ) 2 107 (55,52) 30 3210 

 

Track layouts and section lengths for case studies 4, 5 and 6 are shown in Figure 8. It should 

be noted that circles are input-output location.  
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Figure 8. Track layouts for case study 4, 5 and 6 

 

The other examples are serial lines consisting of alternating section and passing loop 

segments. The section lengths for case studies 1, 2 and 3 are shown below. The lengths of 

passing loops are underlined. The last case (i.e. 7) is case 1, 2 and 3 added together 

respectively. At the meeting of the sub problems there are two adjacent sections not separated 

by a passing loop. 

 
Case 1:   6.753, 0.847, 4.732, 0.866, 6.956, 0.83, 4.137, 0.88, 4.745, 0.872, 4.083, 0.548, 4.767, 1.138, 2.879, 

0.865, 2.558, 0.867, 3.167, 0.932, 7.608, 0.96, 3.924, 0.846, 5.38, 1.08, 6.036, 1.068, 7.732, 0.827, 4.852, 1.094, 

2.7219, 1.8411, 9.639, 0.864, 6.23, 0.923, 4.618 

 

Case 2: 2.725, 0.982, 8.266, 1.19, 4.956, 0.874, 13.985, 0.838, 6.129, 0.834, 5.914, 1.042, 5.118, 0.868, 7.654, 

0.666, 6.094, 1.029, 6.879, 0.876, 4.747, 0.742, 5.591 

 

Case 3: 14.252, 0.874, 9.308, 0.84, 3.796, 0.906, 8.467, 0.859, 7.074, 0.929, 8.533, 0.868, 9.589, 0.886, 7.789, 

0.864, 10.8, 1.445, 0.997, 0.606, 6.824, 0.886, 14.618, 0.844, 8.058, 0.84, 15.589, 0.981, 11.249, 0.754, 10.239, 

1.125, 9.563, 0.935, 11.062, 0.867, 12.339, 0.917, 10.622, 1.03, 13.357, 1.095, 19.609, 0.846, 14.161 

 

5.2 Lower Bound 

 

The following lower bound for the makespan is proposed and is used to judge the quality of 

solutions. 

 max j
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For job i, ,i k  is the minimum time left after ,i ko  is performed, and ,i k  is the minimum time 

required before ,i ko  can be performed. ,i k  is associated with the path of the front, while ,i k  

is associated with the path of the rear. The lower bound is computed as the maximum 

machine lower bound. A lower bound associated with a machine is the total processing 

requirement for that machine plus the minimum time to reach the machine and leave the 

machine for a particular job.  

The main limitation of the proposed lower bound is that setups (headways) between 

operations of different jobs have not been included. For problems without setups the lower 

bound will be more accurate. 

 

5.3. Results  

 

The full list of numerical results is too large to be displayed in this paper so a summary of the 

best results is displayed. The results of the constructive algorithm for forward / backward 

scheduling and for the buffer representation option are shown in Table 2 and 3. The solutions 

obtained with the BOV permit option contain a reasonable number of BOV’s and often have 

significantly smaller makespans. In Table 2 and 3 the results for example 1-6 were obtained in 

under 10 seconds. Example 7 however is a much larger problem and requires in the order of 

10 minutes. For the forbid BOV option and forward scheduling, example 7 was too large to 

solve in entirety in reasonable time and only 20 of the 30 trains were scheduled. 

 

Table 2. Constructive algorithm starting solutions (forward scheduling case) 

Case LB 

Insert Greedy / 

 BOV forbid 

Insert Greedy / 

BOV permit 

Insert Random / 

BOV forbid 

Insert Random / 

BOV permit 

Cmax  Cmax  BOV Cmax  Cmax  BOV 

1 144.64 367.32  235.8  9 1021.57  1169.05  69 

2 201.1 507.98  232.57  17 791.69  911.95  59 
3 298.1 504.06  457.58  6 2148.98  2461.39  78 

4 118.35 179.86  149.49  8 358.18  362.41  20 

5 162.8 212.25  165.05  28 272.6  349.2  0 

6 309.1 1026.96  554.2  74 1999.06  1941.27  35 

7 442.92 - 749.27 10 5221.62 6250 296 

 

 

Table 3.  Constructive algorithm starting solutions (backward scheduling case) 

Case LB 

Insert Greedy / 

 BOV forbid 

Insert Greedy / 

BOV permit 

Insert Random / 

BOV forbid 

Insert Random / 

BOV permit 

Cmax  Cmax  BOV Cmax  Cmax  BOV 

1 144.64 249.35  235.8  18 1013.48  1177.04  69 
2 201.1 274.9  232.57  15 785.63  929.38  53 

3 298.1 473.32  457.58  9 2153.01  2462.45  76 

4 118.35 143.95  144.88  6 341.22  331.9 26 
5 162.8 198.2  164.8  27 332.55  315.1  1 

6 309.1 528.53  554.2  69 1873.85  1901.31  31 
7 442.92 901.15 749.27 33 5123.32 6270.48 355 

 

A summary of the extensive meta-heuristic results are shown in Table 4.  

 

Table 4. Summary of meta-heuristic solutions 

Case LB 
Best (Forward) Best (Backward) 

SA LS SA LS 
1 144.64 205.14 208.468 226.42 236.47 

2 201.1 239.24 229.675 229.07 227.7 

3 298.1 410.774 411.159 441.91 444.42 
4 118.35 137.2 146.61 143.95 143.95 

5 162.8 196.15 198.1 192.8 196.4 

6 309.1 975.5 888.352 508.99 508.99 
7 442.92 859.58 792.64 900.00 755.12 (11 BOV) 
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LS was found to be slightly superior particularly on larger problems like example 7. LS is 

able to resolve the original BOV in the starting solution more easily. The best solutions were 

also obtained in the majority of cases when forward scheduling. This is quite surprising since 

backward scheduling gave superior solutions via the constructive algorithm. 

The fourth parameter set was generally the best for SA. This is not surprising since 

more evaluations were performed. Starting from a low temperature (a fairly greedy approach) 

has previously been observed to give better solutions and has again been observed here. LS is 

generally best when the number of iterations is highest, and hence 3000 iterations was best. 

For SA the best perturbation operator was generally SA3 (the critical path operator) 

however large differences in solution quality were not often observed. For LS the best 

permutation operators were clearly LS3 and LS4. This is not surprising since more effort is 

expended by these operators. LS3 was observed to be fractionally better than LS4. 

The overall strategy of constructing a feasible solution with the CA and insert greedy & 

forbid BOV option and then refining the solution by MH’s using the forbid BOV option was 

observed to be generally the best. This is not entirely surprising since starting from the best 

constructive algorithm solution and penalising buffer occupancy violations will always give a 

good quality solution that is always feasible. Starting from a randomly generated solution of 

poor quality and which is feasible or infeasible is not particularly efficient. In fact, those 

strategies regularly gave very poor solutions. This is because the effort required by the meta-

heuristic algorithms was just too great when starting the search so far away from the optimal 

and for a problem with such a complex search space. 

Alternative strategies that permit BOV’s but penalise their occurrence however could 

often be clearly superior to the strategy mentioned in the previous paragraph. The ability to 

move through the infeasible part of the search space has definite merit. For example, 

movement through the feasible part of the search space can limit the solution quality. This is 

because there is sometimes no feasible move that can be made without causing BOV’s. 

Alternatively all of the feasible moves that can be made may result in greatly inferior 

solutions. Starting from essentially the classical job shop solution (with infinite buffers) and 

proceeding to resolve the existing buffer occupancy violations (BOV’s) is quite efficient and 

useful.  The main downside however is that solution feasibility can never be truly guaranteed. 

In the majority of cases these strategies performed very well but in some cases the results 

were highly infeasible. The number of buffer occupancy violations that still needed to be 

resolved was quite large. Re-running the meta-heuristic again from the current infeasible 

solution is the best avenue for resolving all of the BOV’s. 

The CPU time required by the meta-heuristics was very reasonable. The largest time 

required on the largest problem was about 10 minutes. Most of the computation time is spent 

evaluating the schedule makespan via the disjunctive graph. This is a well known 

disadvantage of job shop sequencing techniques however further modification and 

simplification can still be made and will speed up the process. 

In general the solution quality was fairly good. For the smaller problems the optimal 

schedules could be obtained. On the larger serial instances solution quality was relatively 

close to the lower bounds however further improvements could still be obtained. Some 

manual manipulation of these solutions allowed some even better schedules to be obtained. 

On the more complex network example (i.e. example 6) solution quality was however quite 

poor. The reason for this is explained in the next paragraph. 

Solution quality was significantly poorer on problems that contain adjacent sections not 

separated by crossing loops (i.e. example 6). This is because the necessary compound moves 

have not yet been implemented. Many of the current unitary moves must be restricted because 

precedence impossibilities result. Consequently solutions that are closer to the optimal can not 

always be reached. Solution quality may also be poor when unnecessary overtaking is 
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allowed. Undoing unnecessary overtaking is difficult to achieve by standard operators and 

may be more computationally demanding. We are certain that the restriction of unnecessary 

overtaking in the meta-heuristics and in the constructive algorithm will lead to even better 

solutions. 

Simulated Annealing was re-applied using the compound interchange as the primary 

perturbation operator. Table 5 compares the new results with the previous ones and shows 

that significant improvements have been realised. The speed of convergence is also much 

more rapid though this is not shown here. It should also be noted that these solutions are 

particularly good considering the fact that buffer occupancy violations (BOV) were not 

permitted. Allowing BOV’s has been a useful mechanism to “get out of trouble” when parts 

of the schedule become highly congested and simple interchanges become insufficient at 

feasibly perturbing the solution. With compound moves the reliance to use this option is much 

reduced though at times it has been observed that it is still beneficial to temporarily allow 

moves that cause BOV’s.  

 

Table 5. Comparison of solutions obtained by SA with compound perturbation operator 

Case LB Previous Best New  Best Improvement 

1 144.64 202.92 183.40 19.52 

2 201.1 220.22 214.75 5.47 

3 298.1 404.41 398.98 5.43 

4 118.35 136.54 127.9 8.64 

5 162.8 196.15 185.99 10.16 

6 309.1 494.95 469.62 25.33 

7 442.92 792.64 701.66 90.98 

 

 

6. Conclusions 

 

This paper addressed the representation and construction of accurate train timetables by a 

hybrid job shop approach. As a consequence of this research a new approach is proposed 

for solving job shop problems with capacitated buffers. The job shop approach in 

particular was developed because it has many advantages over existing conventional 

approaches and has the potential to be greatly extended. Unique aspects of train scheduling 

such as train length, dwell times, blocking, headways, alternative routing, re-entrant and 

circular path were incorporated into the job shop scheduling framework and more precisely 

into an innovative AON disjunctive graph representation. To our knowledge these unique 

components have not been incorporated in this way before. The proposed AON graph 

representation differs from traditional versions in several important ways. For example the 

disjunctive arcs are no longer the reverse of one another and do not have a weight of zero. The 

weights which represent time lags or overlaps between operations now include train 

headways, dwell times and processing times and can take either positive or negative values. 

The immediate successor operation is also no longer sufficient to signify the completion and 

departure of an operation and the availability of a machine, and consequently arc generation is 

more sophisticated. 

With an efficient graph representation of the solution, algorithms for the construction of 

a feasible schedule were then developed. The main algorithm constructs a schedule job by job 

and operation by operation using insertion, backtracking and sophisticated dynamic route 

selection mechanisms. In this way a feasible solution is guaranteed. The purpose of the 

constructive algorithm (CA) was to provide a robust and substantial search capability as 
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apposed to the alternative of obtaining any solution as quick as possible using dispatching 

rules. 

Simulated Annealing and Local Search meta-heuristic improvement approaches were 

lastly adapted / extended. Train schedules in particular are perturbed using shift moves or an 

innovative compound interchange operation. Solution feasibility may be strictly enforced or 

infeasible moves may be permitted and penalised in the objective function. Either way good 

quality solutions approaching optimality can be quickly obtained from starting solutions 

obtained via constructive algorithms.  

From the numerical investigations and case study it was observed that ignoring BOV’s 

allows significantly higher quality solutions to be constructed more quickly although the 

solutions are mostly infeasible. The application of meta-heuristics may be (but not 

exclusively) viewed as the primary mechanism in which to resolve the original BOV’s. 

Movement through only the feasible part of the search space can limit the solution 

quality. Sometimes there are very few if any conventional moves that can be made without 

causing BOV’s. Similarly all of the feasible conventional moves that can be made may result 

in greatly inferior solutions. Movement through the infeasible part of the search space 

however does not guarantee convergence to better (overall) feasible solutions. 

Solution quality is inferior on problems that contain adjacent sections not separated by 

crossing loops. This is because the necessary compound moves have not yet been 

implemented. Many of the current unitary moves must be restricted because precedence 

impossibilities result and consequently solutions that are closer to the optimal can not always 

be reached.  

Compound perturbation operators can restrict multiple overtaking conflicts from 

occurring. The properties upon which critical path operators have been applied previously do 

not hold for train scheduling problems.  Critical path operators may therefore be inferior or 

insufficient because the movement of non critical operations associated with capacitated 

buffers can affect critical operations. Even so the numerical investigation has shown that 

critical path operators still perform adequately if not more so. 

During the course of this research a number of alternative avenues and extensions were 

found for further research. These include the merging and splitting of trains, the minimisation 

of disruption when additional trains must be added to an existing schedule, scheduling under 

alternative objective criteria, scheduling involving machines with periods of unavailability, 

scheduling involving fixed jobs. 
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Appendix 

 

Algorithm 1: CreateCompoundInterchange( , ,,i k i ko o ,cpdint) 

Begin 

. , ,| , :i i i k i kcommon j M k k m m j ;  // Define the set of common machines 

 

// Determine the order in which common machines are visited by either job: 

GetOrdering ,, , , _ , ,i i i ii i common same dir order order ;  

  

  Determine position of 
, ,&  i k i ko o  in the orderings: 

 *

* *

, ,,
. . 1i k i i ki k

pos k s t k order order o ; 

 *

* *

, ,,
. . 1i k i i ki k

pos k s t k order order o ; 

 

// Identify the compound move: 

 found = IdentifyPassing(same_dir, passPos, ,i iorder order ); // Identify whether trains pass each other 

 if(found)  

   begin 

if(same_dir) UndoPassing(same_dir, passPos, ,i iorder order , cpdint);  

         else  ShiftPassing(same_dir,
,i kpos ,passPos, ,i iorder order , cpdint); 

 end 

 else MakePassing(same_dir, 
,i kpos , ,i iorder order , cpdint); 

End 

 
Algorithm 2: IdentifyPassing(pos, ,i iorder order ) 

Begin 

 0; 0; iz prev ub order ; 

 found = false; // Assume no overtake until otherwise proven 

 while  and z ub found begin 

  , , ;i k i zo order  , , , 1_ ? :i k i z i ub zo same dir order order ;  

, ,i k i kj m m ; 

  if isbuffer j  begin  

   curr = , , ?1: 1i k i ko o ; 

   if 0 and z prev curr  begin // An overtake has been found 

      found = true; // Update the flag 

    pos = z-1;  // Define the overtake position 

   end 

   prev = curr; 

  end  

  z++; 

 end 

 return found; 

End 

 
Algorithm 3: MakePassing(same_dir, pos, ,i iorder order ,cpdint) 

Begin 

; iz pos ub order ;   

 while z ub do begin 

  , , ;i k i zo order  , , , 1_ ? :i k i z i ub zo same dir order order ; , ,i k i kj m m ; 
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if isbuffer j  , ,,i k i kcpdint. o o ; // Add element (i.e. 2 tuple) to the set 

  z++; // Go to the next pair 

 end  

End 

 

Algorithm 4: UndoPassing(pos, passPos, ,i iorder order ,cpdint) 

Begin 

; iz passPos ub order ;   

? 1:1incr pos passPos ; 

do begin 

  
, , ;i k i zo order  , , , 1_ ? :i k i z i ub zo same dir order order ; , ,i k i kj m m ; 

if isbuffer j  , ,,i k i kcpdint. o o ; // Add element (i.e. 2 tuple) to the set 

  z+=incr; // Go to the next pair 

end  

while 1 1 0incr z ub incr z  

End 

 
Algorithm 5: ShiftPassing(pos, passPos, ,i iorder order ,cpdint) 

Begin 

; iz pos ub order ;   

 ?1: 1incr pos passPos ; 

do begin 

  
, , ;i k i zo order  , , , 1_ ? :i k i z i ub zo same dir order order ; , ,i k i kj m m ; 

if isbuffer j  , ,,i k i kcpdint. o o ; // Add element (i.e. 2 tuple) to the set 

  k+=incr; // Go to the next pair 

 end  

while 1 1incr k passPos incr k passPos  

End 

 


