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Abstract-Using data from professional baseball, basketball, and hockey, 
we estimate the parameters of a sequential game model of best-of-n 
championship series controlling for measured and unmeasured differences 
in team strength and bootstrapping the maximum-likelihood estimates to 
improve their small sample properties. We find negligible strategic effects 
in all three sports: teams play as well as possible in each game regardless of 
the game's importance in the series. We also estimate negligible unob- 
served heterogeneity after controlling for regular season records and past 
appearance in the championship series: Teams are estimated to be exactly 
as strong as they appear on paper. 

I. Introduction 

A SPORTS championship series is a sequential game: 
A Two teams play a sequence of games and the winner is 

the team than wins more games. The sequential nature of a 
championship series creates a strategic element to its 
ultimate outcome. In this paper, we solve the subgame 
perfect equilibrium of a sequential game model for a 
best-of-n-games championship series. In the subgame per- 
fect equilibrium, the outcome of a series is a panel of binary 
responses indicating which team won which games. We 
estimate the parameters of the game-theoretic model using 
data from the championship series in professional baseball, 
basketball, and hockey. 

The game-theoretic model nests, in a statistical sense, a 
model in which teams do not respond to the state of the 
series. In this special case, the subgame perfect equilibrium 
is simply a sequence of one-shot Nash equilibria, and the 
probability that one team wins any game depends only on 
home advantage and relative team ability. We form-ally test 
whether this hypothesis is supported by the data. Because 
each series is a short panel (at most seven games long), we 
apply a bootstrap procedure to the maximum-likelihood 
estimator in an effort to reduce its small sample bias. 

Our data consist of World Series since 1922, Stanley Cup 
finals since 1939, and NBA Championship series since 1955. 
We control for home-field advantage and two observable 
measures of the teams' relative strength: the difference in the 
teams' regular season winning percentages and the teams' 
relative experience in championship series. Patterns in the 
data suggest that the outcomes of individual games may 
depend on the state of the series. In baseball, for example, 
87% of World Series reaching the score of three games to 
zero end in four games. The corresponding percentages in 
hockey and basketball are, respectively, 76% and 100%. 

These large percentages may indicate that teams that fall 
behind 3-0 tend to give up in the fourth game. Reaching the 
state 3-0 is an endogenous outcome that depends on the 
relative ability of the teams. Uncontrolled differences in the 
strengths of the teams induce positive serial correlation 
across the outcomes of games within a series. This serial 
correlation could be mistaken for dependence of outcomes 
on the state of the series. 

However, estimates of the structural model do not support 
the notion that strategic incentives matter in the champion- 
ship series of any of the three sports. Nor are the estimates of 
unobserved heterogeneity in relative team ability significant 
in any of the sports. The estimated strategic effect is largest 
in hockey, but both it and unobserved heterogeneity are still 
small in magnitude compared to home-field advantage. In 
short, cliches such as a team "played with its back against 
the wall" or "is better than it appears on paper" are not 
evident in the data. 

Our analysis relates to some research on patterns in sports 
statistics concerning momentum. Much of this work-such 
as Tversky and Gilovich's (1989) well-known analysis of 
shooting streaks in basketball-studies individual offensive 
performance. It is difficult to relate momentum of this type 
to strategic interactions in a symmetric situation, since 
defensive performance may have a momentum of its own 
that it is harder to measure. Jackson and Mosurski (1997) 
and Magnus and Klaasen (1996) analyze outcomes of tennis 
tournaments which, like championship series, are symmetric 
contests. Jackson and Mosurski find the outcomes of sets 
within a match to be correlated, which is consistent with the 
incentive effects present in our model. Magnus and Klaasen 
analyze individual points at Wimbledon, and they find 
complicated correlations between the state of the match and 
the outcomes of points. For example, they conclude that 
seeded players play important or critical points better than 
non-seeded players, which is consistent with our framework 
of ability differences combined with variable effort levels 
that depend upon the state of the larger competition. 

The model adapts and extends the tournament models of 
Lazear and Rosen (1981) and Rosen (1986) to a sequential 
environment. Ehrenberg and Bognanno (1990), Craig and 
Hall (1994), and Taylor and Trogdon (1999) analyze sports 
data in the spirit of the tournament model. Ehrenberg and 
Bognanno study whether performance of professional golf- 
ers is related to the prize structure of the tournament, and 
Craig and Hall interpret outcomes of pre-season NFL 
football games as a tournament among teammates for 
positions on their respective teams. Our focus is on aggre- 
gate team performance at the last stage of the season when 
the primary objective would not appear to be competition for 
positions. Using a random-effects logit, Taylor and Trodgon 
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find evidence that the NBA draft lottery affects the outcome 
of regular season games. This paper is the first application of 
the tournament model to sports data which imposes all of its 
theoretical restrictions and implications. Our theoretical 
results for sequential tournaments with heterogeneous com- 
petitors extend those of Rosen (1986) and Lazear (1989). In 
particular, by deriving the mixed-strategy equilibrium, we 
can estimate a richer model than previous theoretical work 
would have allowed. 

II. The Model 

A. Setup 

Our model concerns two players (teams) playing a 
sequence of games to determine an ultimate winner of a 
championship. The three sports leagues from which we draw 
our data have a similar structure. All teams play a schedule 
of games during the regular season. This determines a 
smaller number of teams that go on to the playoffs which are 
organized as a single-elimination or knockout tournament, 
except that elimination involves losing a series of games 
rather than a single game. Our data are drawn from the final 
or championship round of these tournaments. Except for the 
increasing number of possible pairings in future rounds, the 
analysis extends easily to earlier rounds as in Rosen (1986). 
Unlike many European sports leagues, the outcome of the 
championship series determines only the year's champion. It 
has no further implications such as the advancement to a 
higher-leveled league or into a separate "cup" competition. 

Let the two teams in a series be called a and b. For many 
elements of the model, the names of the two teams are 
irrelevant. In these cases, we use the indices t and t' to 
indicate the two teams generically, t E {a, b] and t' = la, b} - 
4t}. However, some elements of the model are signed 
according to one team being designated a reference team. In 
these cases, the labels a and b are used. 

Let j index the game number in the series. Our data 
consists of seven-games series (j= 1, 2, . . ., 7), but the 
model applies to any series length n, where n is odd. Figure 1 
illustrates the tree for a n = 5 playoff series. A stage of the 
sequential game is a game in the playoff series. An upward 
branch from one state indicates that team a won the game 
and a downward branch indicates team b won the game. 
Which branch is taken from each state is endogenous and 
stochastic, with the probability assigned to each branch 
depending on the relative performance of the teams and on 
pure luck (i.e., the "bounce of the ball"). 

The sequential game ends when one team has accumu- 
lated (n + 1)/2 victories (in figure 1, (5 + 1)/2 = 3). The 
actual length of the series is therefore endogenous and 
stochastic, and we denote it n , (n + 1)/2 --- n ' n. Our 
assumptions will imply that the state of the series, denoted 
w, is composed of two numbers, (na, nb), where nt is the 

number of games already won by team t. Therefore, 

w E {(lna' nb): 0 ? max { n, nb(1) 

' (n + 1)/2 & O ? n + nb ' nl. 

The game number can be recovered from the state, since j = 

na + nb + 1. 
At state w, the strategic choice variable for team t is xt, 

interpreted as the team's performance or effort. Since each 
game is a one-shot stage-game, the strategic decisions made 
by teams as a game progresses are not modeled. Therefore, 
xtw captures pre-game strategic decisions, such as which 
pitcher to start in baseball, and any difficulties related to 
"psyching up" for a game that depend on its state w. These sports 
are themselves complicated games with intricate possibilities for 
changing strategies during the course of the game. It is therefore 
tempting to try and relate our model to information about the 
course of play, including the final score, injuries, substitutions, 
etc. However, our focus is on measuring the impact of strategic 
considerations generated by the sequential nature of the champi- 
onship series itself. We therefore limit our attention to 
variables measurable only at the level of complete games. 

The equilibrium choice of x,, is determined by three 
structural elements of the model: 

cost of effort: ctj(x,,,), 

score differential: ye = Xa*t, , +Ej, and 

final payoff vector: 

n* (2) 

(Va[na, nbl] 
- Caj(Xaw), Vb[nb, na] 

j=l 

n* 

- E Cbj(XbW) 
j=l 

FIGURE 1.-TREE DIAGRAM FOR A BEST-OF-FIVE SERIES 

(1,O)\ / 

(I loy/ )2V 

8 \\ / \ + ~~~~~~~~~a Wins 

(na,nb)= / / 

(0,O)K (1,1)\ (2,2) 

\\ / \'+/ 2 b Wins 

(0,1)t ~~~~~(1,2) 
/ / 

(0,2) 
1 2 3 4 5 

game number 

Note: The pair of numbers is the number of games won by teams a and b coming into the game. An 
upward arrow indicates the random event that team a wins the game. A downward arrow indicates team b 
wins the game. 
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The cost-of-effort function cj;( ) depends implicitly on 
the rules of the sport and the interaction of players, coaches, 
and referees. For sports as complicated as baseball, basket- 
ball, or hockey, it is not possible to model the equilibrium 
cost of good performance as a function of the nature of the 
sport. For instance, if one wished to derive cj1( ) from the 
"structure" of baseball, it would be necessary to model 
the sequential decisions made by the manager and players 
conditional on the score, the inning, the number of outs, the 
count on the hitter, the quality of the hitter relative to the 
pitcher and the other hitters in the batting order, and so on. 
Instead, we exploit the common strategic elements between 
games of any best-of-n series, taking as given a reduced- 
form characterization of strategic elements within games. 
The cost of effort depends upon the state only through the 
game number j. For instance, ctj may depend upon whether t 
is playing at home or away.1 The final payoff for team t has 
two components: the value the team places on the ultimate 
outcome, denoted Vt[nt, nte], and the total cost of effort 
expended during the series. 

The winner of a game scores more points (or runs or 
goals). To determine the outcome of a series, the sign of the 
score difference fully determines the outcome of the game. A 
single game is therefore a Lazear and Rosen (1981) tourna- 
ment.2 We require only that the score index ye in equation 
(2) be a monotonic function of the actual score difference. 
Linearity of ye with respect to the effort levels is therefore 
less restrictive than it may appear. 

The random term Ej in equation (2) captures elements of luck 
in the relative performance of the two teams. The luck term is 
independently and identically distributed across games with 
distribution and density functions F(Ej) and f(lE), respectively. 
The probabilities that team a and b win game w, conditional 
upon their chosen effort levels, can be written 

Paw(Xaw,xbw)= Prob (y * > )1 = F( (XawXbw)) 

-1 - Pbw(Xbw, Xaw)( 

The equilibrium level of effort also depends upon the 
symmetric marginal probability 

aPaw(Xaw, Xbw) aPbw(Xbw, Xaw) 
=f (w f (Xaw Xbw)) 

= . (4) 
aXaw aXbw 

If the sport were a foot race with several heats, then the 
model has a simple interpretation (Rosen, 1986). Effort x, is 
the average speed of racer t in heat w. Racer t wins the heat if 
his average speed is greater than the speed of his best 

competitor, t'. The random term E captures any unforesee- 
able events, such as cramps, that might occur during the race. 
A better-conditioned athlete could run any speed x with less 
effort (lower value of c,,(x)) than a worse athlete. However, the 
role of conditioning could not be disentangled from psychologi- 
cal factors having to do with competition. Hence, cq, includes 
the propensity for racer t to "choke" or, alternatively, to "rise to 
the occasion." In team sports, of course, effort is multidimen- 
sional. But, in determining the ultimate outcome, effort also 
aggregates into a single number, the team's score. 

AssuMvrION (1). 

[1] The abilities of each team in each game, denoted btj, 
are common knowledge. Cost of effort is exponential 
in effort and separable in ability: 

ctj(x,) = e - tjlrext/r,r (5) 

where r > 0 is a constant. 
[2] The luck distribution F(Ej) is twice continuously 

differentiable, symmetric, and has a single peak at 
Ej = 0: F(Ej) = 1 - F(-Ej); f'(Ej) 0 O for Ej ? 0. 
Irrelevant games are toss-ups: Pt,(-oo, -oo) = 1/2. 

[3] Effort costs are not too convex relative to the density 
of the luck component: r < l/2f(0). 

[4] The luck component is normally distributed: Ej - 

N(0, (2). 

The negative sign in front of btj in equation (5) implies 
that larger values of btj are related to higher ability (lower 
effort costs). In the empirical specification, btj can depend 
upon observed and unobserved characteristics of team t. The 
sport-specific parameter r determines the convexity of the 
cost function. As r tends to zero, the marginal cost of effort 
below ability btj goes to zero, while the marginal cost of 
effort above ability goes to infinity. For low values of r, the 
winning probability (3) in the Nash equilibrium (defined 
below) will depend on only the invariant ability factors. The 
case in which teams do not respond to the state of the series 
is therefore equivalent to a low value of r. 

Assumption AL.[2] states that the luck distribution is 
symmetric around a single peak at Ej = 0. Symmetry implies 
that the winning probabilities in (3) can be written generi- 
cally as Pt4(xt, xt ') = F(xt - xt ). If we define 

l if t = a 
it -1 if t= b, 

then 

F(xt, - xt,) = F(It(xaw - Xbw)), (6) 

enabling us to express Pt,(xt, xt ') in terms of the nonge- 
neric effort levels Xaw and Xbw- 

1 This assumption could be relaxed to allow c to depend on other 
elements of the state of the series. For instance, the idea of "momentum" 
could be captured by letting c depend upon the winner of the last game. 

2 In round-robin tournaments (such as the World Cup of soccer), scores 
within games do have a direct bearing on the ultimate champion. This 
means such tournaments are not tournaments in the sense introduced by 
Lazear and Rosen. 
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Below it is shown that the value of f(O) determines effort 
levels in evenly matched games and that condition AL.[3] 
rules out an equilibrium in which both teams play a mixed 
strategy. 

B. Nash Equilibrium Effort in a Single Game 

Nash equilibrium effort of team t in state w maximizes the 
expected net payoff given the effort of the other team: 

max - ctj(xtw) + E[Ptlv(xtw, xtw)AVVt1v]. (7) 
Xtiv 

The expectation in (7) is taken over the distribution of 
beliefs held by team t concerning effort levels chosen by the 
other team, xt w. AV, is the value team t places on winning 
the game and is determined by the Nash equilibrium in 
subsequent games. Three key indices associated with the 
state w are 

A Vaw 
incentive advantage: vw In AV' 

ability advantage: bj-baj - bbj, and (8) 

strategic advantage: Aw rvw + aj 

We say that team a has the strategic advantage over team b in 
state w if the index of strategic advantage is positive, Aw > 
0. Otherwise, team b has the advantage. Strategic advantage 
embodies the net effect of ability advantage by and incentive 
advantage vw, which in turn incorporates the effect of ability 
advantages in future games. Proposition 1 demonstrates that 
zW is indeed a proper measure of strategic advantage. We 
restrict attention to Nash equilibrium in which teams possi- 
bly play a mixed strategy consisting of one interior effort 
level and giving up completely by setting effort to -oo. The 
equilibrium is described by the effort levels (x4 , x4 ) and 
the probabilities that teams do not give up, denoted (Yaw, 

'Yaw), 

PROPOSITION (1). 

[1] Under A1.[1]-Al.[2], the Nash equilibrium at any 
state w of the series satisfies these necessary condi- 
tions: 

r ln (rYt wf(Aw + r ln -jAVtwe8:tV1) 

X* withprob.XA( (9) 

-0o 

with prob. 1 - 

for t E la, b}. Team t plays a pure strategy (ytv = 1) if 

0 < -yt'(-rf(A, + r In -yt') 

+ F(It/A, + r In -yt',)) + (1 - y)t'w()12. 

Otherwise, ywt solves 

yt'w [r(Aw + rInY$) +F(w A+rlnY),w] (11) 

+ (1- tW) 2 = 0. 
2 

[2] In equilibrium3 

Ptw Prob (team t wins game w) 

= PYtW^Yt wF A + r In (12) 

(1 + .yW)(l - Yt'iv) 
+2 

2 

[3] Let t be the team with a strategic advantage in game j. 
Under Al.[3], team t chooses greater effort than team 
ti and follows a pure strategy (ytw = 1). If IAWI is 
large enough, then team t' gives up with positive 
probability (t', < 1). 

[4] Under Al.[4] the conditions in [1] are sufficient. 
Otherwise, these conditions may fail to be sufficient 
when I Aw I is large. 

Proof: All proofs are provided in appendix A. 
Nash equilibrium strategies may not be pure because the 

symmetry assumption Al.[2] rules out concavity in the 
cumulative distribution of the luck factor E. The objective 
(7) may not be strictly concave so a team may prefer the 
boundary solution xlw = -oo to the interior solution. If so, 
the other team would not choose an interior effort level 
either. Figure 2 illustrates the issue. The components of (7) 
are shown as a function of team t's effort given an initial 
value of the other team's effort, xt w, and a luck distribution 
satisfying Al.[2]. The effort level is so high that for team t 
the benefit to effort, E[Ptw(xtw, xt,w)AVtw], lies everywhere 
below the cost, cj(xtw). (Since team t' is playing a pure 
strategy, the expectation is simply P,(xtV xt w)AVt,.) So 
team t would choose to give up. As team t' begins to put 
positive probability on team t giving up, it reduces the 
marginal value of effort, which lowers xt w. This increases 
Pt(xt,, xt'w) for every value of xt. The mixed-strategy 
equilibrium is achieved when the other team's beliefs lead it 
to set effort to xvw, and the benefit line touches the cost line. 

3 P,, is shorthand for PAV(6\V, 'YwVV Yawv) 
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FIGuRE 2.-MIXED-STRATEGY EQUILIBRIUM 

ctj(Xtw) 

Ph ( 4w) Xt LAVtw1 

E Pt;(xt,,,xtw)AVtI 

Xt, w Xt'w xtw 

Team t becomes indifferent to giving up and setting effort to 
some positive value. 

Nonconcavity in F also makes it difficult to guarantee that 
the conditions in proposition (1) are sufficient. Adding the 
assumption of a normal luck distribution (Al.[4]) provides 
sufficiency. Even with normality, it is also difficult to rule out 
the existence of Nash equilibria in which both teams mix 
over more than one level of interior effort.4 

Propositions 1 .[1] also shows that exponential costs imply 
that AV>, (team t's reward for winning a game) does not 
determine whether the equilibrium strategy is pure or mixed. 
The index of strategic advantage, AuW, determines whether 
either or both teams will follow a pure strategy at state w. A 
cost function that is not exponential in effort or not separable 
in ability would generally not lead to such an index, which 
would make computation of the equilibrium less reliable. 
Instead, proposition 1.[4] leads to a straightforward algo- 
rithm to compute the Nash equilibrium effort levels: 

Algorithm for Computing Nash Equilibrium 

[NI] Compute Aw. If A%' > 0, then team a will not mix, but 
team b may. If Aw < 0, then team b will not mix, but 
team a may. 

[N2] Let t be the team that may mix, so yt' = 1. Check 
condition (10). If (10) is satisfied, then both teams 
follow pure strategies; i.e., they choose the interior 
effort levels given in (9). (Done) 

[N3] If (10) is not satisfied, then solve the implicit equation 
(11) for -y,,. Once solved, the interior effort levels of 

both teams can also be computed with Yt' = 1. Since 
the solution to (11) must lie in the range [0,1], a simple 
bisection method is sufficient to solve for -y>,. (Done) 

The algorithm is more robust than one that requires 
numerical iteration on best response functions. The impor- 
tance for empirical applications of the model of having such 
a straightforward and robust algorithm for solving the Nash 
equilibrium is difficult to appreciate until one considers the 
number of times this algorithm must be called. The empiri- 
cal analysis we specify in section IV and then carry out in 
section V required roughly eight billion solutions to the 
single-game Nash equilibrium.5 

From proposition 1.[4], we can see that whether mixed 
strategies are every played in equilibrium depends on the 
parameter r and the absolute value of ability differences A>. 
We might expect that teams playing in the championship 
series are relatively evenly matched, since they usually are 
the two best teams in the league. Both incentive effects and 
the probability of giving up are small in a championship 
series compared to, say, a series between the best and worst 
teams. 

C. Subgame Perfect Equilibrium 

To derive how strategic incentives evolve during the 
course of a series, we must specify the value of the final 
outcomes. We assume that teams behave as if they care only 
about the ultimate winner of the series and the net costs of 
effort expended during the series. That is, the final payoff 
V,(n,, n* - n,) depends only on max nt, n* - ntj, where n* 

has been defined as the number of games actually played.6 

ASSUMPTION (2). Final payoffs for winning and losing the 
overall series equal + 1 and -1, respectively. Formally, for 
tE{ a,bland(n + 1)/2 C n* ?n, 

Vt[(n + 1)/2, n* - (n + 1)/2] 1 

Vt[n -(n + 1)/2, (n + 1)/2] -1. 

PROPOSITION (2). 

[1] The subgame perfect equilibrium is defined as the 
effort functions x4 in (9) and mixing probabilities yt, 

4 We have not been able to prove or disprove a claim in an earlier version 
of this paper that the equilibrium in proposition (1) is unique. 

S This approximate figure is calculated from: 16 states X 16 points of 
heterogeneity X 198 observations X 200 evaluations to maximize the 
likelihood function X 800 bootstrap resamples = 8,110,080,000. The 
details of these parts of the estimation process are discussed in section IV. 

6 Teams might very well place different values on winning the series. The 
effect of this difference would, however, not depend upon the state of the 
series and would act exactly like an unobserved constant in relative ability 
A>. The empirical analysis controls for unobserved differences in Aj, so 
setting payoffs equal is simply a normalization. 
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in (10)-(11), for tE {a, b}, and 

Vt[nt, n] ytwVtw [-rf (Aw + r In 

YwN 
+ yt'wF fAw + r In - 

'Yt'i,v (13) (1 - ytw) 

+ 2 [yw VtWV[nt nt, + 1] 

+ (1 - 
y,w)Vt[nt + 1, nt]] 

AVtw Vt[nt + 1, nj] - Vt[nt, nt, + 1]. 

[2] As r - 0, the dynamics within the series disappear, 
and the outcome of each game only depends on the 
ability index A>. 

Proof: Backwards induction. 
Proposition 2.[2] implies that the sequential-game model 

defined by assumptions (1) and (2) nests an intuitively 
appealing competing model. As r goes to 0 so does the 
marginal cost of effort below ability 68. The marginal cost 
of effort above ability goes to infinity. Therefore, the two 
teams do not respond to strategic incentives. We call this 
special case of the subgame perfect equilibrium the static 
model. In the static model, the outcome of any game depends 
only upon their relative abilities (including the effect of 
home advantage). Only factors independent of the state of 
the series affect relative team performance. Under the static 
model, many common sports cliches do not apply. For 
instance, teams do not "play with their backs against the 
wall" nor do they "taste victory." For large values of r (relative to 
the ability values), these cliches would apply. They may or may 
not apply in a given game depending upon how abilities and 
incentives interact to determine equilibrium effort. 

D. Discussion 

Before turning attention to the econometric application of 
the model, we discuss some simulations of the model and 
some possible extensions. 

Table 1 illustrates how the state of the series and the cost 
parameter r affect winning probabilities in an extended 
(n = 25) series. (A shorter series is simply the lower-right 
submatrix.) The series is completely symmetric: ability 
differences and home advantage are set to 0 (6j = 0 for all 
j). The left side of the table displays Paw defined in (12) for 
games in which team a is not leading (n,a ? nb). The right 
side displays the chances that team a does not give up (Yaw). 
When the series is even (nal = nb), then Paw = 1/2, and this is 
emphasized by using a * in the table. If team a's strategic 
disadvantage is not too large, then 'Yaw = 1, which is also 
replaced by * in table 1 for emphasis. The luck distri- 
bution was assumed to be standard normal, which implies 
1/2f(O) = 1.25. This is the upper bound on r in assumption 
A1.[3] which guarantees that at mnost one team plays a mixed 

strategy in equilibrium. The model is then solved with two 
values of r-one relatively high and one relatively small. 

We first note the effect of falling behind in the series. With a 
high value of r, falling behind just one game has a dramatic effect 
on equilibrium effort. P,, falls to 0.06 immediately. This is partly 
due to only a 10% chance that team a tries at all. A large value of 
r makes equilibrium effort very sensitive to strategic advantage. 
Falling behind three or four games in a 25 game series leads a 
team to give up completely.7 Subsequent games have no bearing 
on the ultimate outcome, so the strategic advantage goes away 
and both teams put out no effort, leading to equal chances of 
winning the game (Al.[2]). The state of such a series wanders in 
the upper-right corner of the table where * appears. If the state 
approaches the diagonal in the table by team a winning some 
irrelevant games, then the strategic advantage appears, and 
team b will again win with probability one. 

The second part of table 1 shows equilibrium outcomes 
for a lower value of r. Winning probabilities are now less 
sensitive to the state of the series than with a high value of r. 
Giving up completely happens only in the extremes (the 
upper corner of the table where team a has fallen hopelessly 
behind). With a lower r, probabilities differ less away from 
the main diagonal, but they differ more along bands parallel 
to the main diagonal than with a high value of r. The strategic 
effect of being down three games differs a great deal whether 
there are ten games left or four. For even lower values of r, the 
probabilities off the diagonal would converge to 1/2, or more 
generally to the probability associated with 6j in that game. 

As noted earlier, our specification of the tournament model 
allows for heterogeneity in ability and flexibility in the underly- 
ing elTor distribution while producing a straightforward solution 
algorithm. There are several other directions one could imagine 
extending the model. One issue is that luck sometimes spills over 
into the next game through the effect of injuries. Correlation in E 
could be adopted by including its expectation conditional upon 
information available at the start of game j as a state variable. 
Nonzero expected luck would be equivalent to a change in ability 
and would not greatly alter the solution algorithm for a single 
game, but only increase the size of the state space for the 
sequential equilibrium. A related extension would relax common 
knowledge of ability (A1.[1]) and allow leaming about relative 
ability through the outcomes of the series. As long as teams have 
common, normally distributed prior beliefs about oa, this is again 
a feasible but computationally burdensome extension. 

III. Econometric Specification and Implications 

A. Modeling Observed Outcomes of Series 

Using proposition (2), the notion that strategic incentives 
matter can be tested by simply testing whether r is signifi- 
cantly greater than 0. The first step is to posit a specification 
for the cost of effort parameter ,. 

7 This effect is caused by the value of winning the game going to zero in 
machine precision in the simulation. When the luck factor has a true 
infinite support, the probability of winning a game in the Nash equilibrium 
never goes to zero exactly. 
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TABLE 1 -WINNING PROBABILITIES AND MIXED STRATEGIES IN TWO 25 GAME SERIES (N 25) 

Pa,w = Chance team a wins game' NYa = Chance team a tries at all2 

nb nb 

na 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 

Series I: r = 0.9162, or 73% of 1/@f(0) 
0 6% 2% 0% 0% * * * * * * * * 10% 5% 1% 0% * * * * * * * * 
1 * 6% 2% 0% 0% * * * * * * * * 10% 5% 1% 0% * * * * * * * 
2 * 6% 2% 0% 0% * * * * * * * 10% 5% 1% 0% * * * * * * 
3 * 6% 2% 0% 0% * * * * * * 10% 5% 1% 0% * * * * * 

4 * 6% 2% 0% 0% * * * * * 10% 5% 1% 0% * * * * 
5 * 6% 2% 0% 0% * * * * 10% 5% 1% 0% * * * 

6 * 6% 2% 0% 0% * * * 10% 5% 1 % 0% * * 
7 * 6% 2% 0% 0% * * 10% 5% 1% 0% * 

8 * 6% 2% 0% 0% * 10% 5% 1% 0% 
9 * 6% 2% 0% * 10% 5% 1% 

10 * 6% 3% * 10% 5% 
11 * 7% * 10% 
12 * * 

Series II: r - 0.3371 or 27% of l/f(0) 
0 37% 25% 15% 7% 2% 0% 0% 0% * * * * * * * * * 3% 3% 0% * * * * 
1 * 37% 25% 15% 7% 2% 0%O% * * * * * * * * * * 3% 3% * * * * 
2 * 37% 25% 15% 7% 2% 0% 0% 0% 0% * * * * * * * 3% 0% 0% 0% * 
3 * 37% 25% 15% 7% 2% 0% 0% 0% 0% * * * * * * * 3% 3% 0% 
4 * 37% 25% 15% 7% 3% 1% 0% 0% * * * * * * * 3% 3% 
5 * 37% 25% 15% 8% 4% 2% 1% * * * * * * * * 

6 * 37% 26% 17% 10% 6% 4% * * * * * * * 
7 * 38% 28% 19% 13% 9% * * * * * * 

8 * 39% 30% 22% 17% * * * * * 
9 * 40% 32% 26% * * * * 

10 * 42% 34% * * * 
11 * 43% * * 

12 * * 

I * indicates a 50% chance team a will win. 
2 * indicates a 100% chance team a will try. 
Normal distribution of luck which implies that 0.5f(0) = 1.25. Home advantage and ability differences set to zero. 

ASSUMPTION (3). 

5tj =t + Xtj3, (14) 

where Xtj is a vector of observed characteristics of team t in 
game. j, predetermined at the start of game 1; , is a vector of 
unknown parameters that determine how strongly a team's 
ability is predicted by the measurable characteristics Xtj; and 
at is the residual ability of team t not already captured by Xtj. 

In our analysis, Xtj contains the regular-season record, 
past appearances in the championship series (as a measure of 
experience), and home or away status in game j. Assump- 
tion (3) leads to the empirical structure for ability differences 
and winning probabilities: 

observed ability advantage: Xj =Xaj -Xbj, (15) 

residual ability advantage: x-= xa ab (16) 

net ability advantage: 8j = aj 8 bj 
= a + Xj;, and 

winning probability: Ptw =ytwyt,wF 

(Io(t + fX) + rvw)) (17) 

+ (1 + ywt)(l -yt, J12 

To apply probability (17) to data from an observed series, 
we must introduce notation to track the sequence of realized 
states. Let the variable Wj take on the value 1 if team a wins 
game j of the series, and otherwise Wj equals 0. Let W = 

(W1, W2, . . ., W,*) and X = (X1, X2, . . ., Xn*) denote the 
sequences of outcomes and observable characteristics within 
a series. Then the realized state in game j is 

jl1 j-lI 

w(j) -( W., j - n-i W. (18) 
mn=1 m-1 

The probability of the observed sequence of outcomes in a 
single series is 

n* 

P*(W, X, 0-; 1, r) J71 [Paw(I)]Wi[ - Paw(j)]1 (19) 
j=1 

PROPOSITION (3). 

[1] When P*(W, X, (x; ,, r) is bounded away from 0 and 
1, it is a continuous function of the estimated 
parameters 1B and r. 
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[2] If the subgame perfect equilibrium consists of pure 
strategy equilibria at all states of the series, then the 
equilibrium generates a reduced form that is a panel 
data binary choice model: 

P,,, = F(It(c. + 3Xj + rvw(j))) 

+ F(cx + 13XJ + rvw(j))', (20) 

X (1 - F(a + Xj + rvw(J)))t. 

If Ej is normally distributed, then the reduced form is 
a probit model with latent regressor rvw(j). If E 

follows the logistic distribution, then the reduced 
form is a logit. If Ej is uniform, then the reduced form 
is the linear probability model. 

[3] In the reduced form, the parameter r is not separately 
identified. 

Proof: Immediate. 
Continuity of P* in the estimated parameters (3.[1]) is 

critical for empirical reasons, and, if attention were paid 
solely to pure strategies, continuity would not hold. In pure 
strategies, a small change in the ability index 8i induced by a 
change in r or an element of 3 could lead to no equilibrium 
at all, causing the likelihood function to be undefined (or 
incorrect if the problem were ignored). Maximizing the 
likelihood function iteratively from arbitrary starting values, 
even if pure strategies ultimately apply, would be greatly 
complicated by the discontinuity. 

Continuity holds, however, only in series when the 
winning probabilities remain strictly within the range (0, 1). 
The simulations in table 1 illustrated this point. When a 
series reaches a state where y,, = 0, then some other states 
are not decisive to the ultimate outcome. The winning 
probability for games that are not decisive reverts to 1/2 
(upper-right corners in table 1), because assumption AJ.[2] 
implies that games that do not matter have equal winning 
probabilities. A small change in, for example, r can increase 
yt,' to above zero, making some states decisive again. Their 
winning probabilities of 1/2 would switch to either very low 
or very high values. This discontinuity can be avoided by 
relaxing assumption (A2) and letting the payoffs depend on 
the number of games won (and not just who won the overall 
series). Under (A2), winning a game adds nothing to the 
final payoff unless it changes the probability of winning the 
overall series. One could allow teams to "play for pride" 
which would eliminate the possibility that -y, = 0 and the 
discontinuity caused by meaningless games. 

Proposition 3.[2] makes an explicit link between the 
game-theoretic model and a simpler analysis of game 
winners using ordinary probit or logit models. That is, define 
the reduced form of the sequential game model as an 
analysis based on equation (20) in which the subgame 
perfect equilibrium is not solved. The reduced form is 
therefore a binary response model of game winners ex- 
plained by the vector Xj and unobserved ability difference (x. 

The third term of (20), rv>,, is a latent regressor in the 
reduced form. The incentive advantage vw depends implic- 
itly on r, as well as 1B, a, and the values of Xk, for k > j. 
Therefore, it is not possible to treat rvW as a typical error term 
(say, mean zero and heteroskedastic across the state w), 
because it is correlated with included variables and depends 
directly on other estimated parameters. Only for a special 
case of the sequential game model, namely the static r = 0 
model, is the reduced form a simple probit-type model with 
no latent regressor. In this case, the latent term disappears 
because both of its components go to zero. Hence, neither r 
nor the value of v, can be recovered from a reduced-form 
analysis. 

In a structural analysis, the subgame perfect equilibrium 
is solved while estimating the parameters of the model. The 
incentive advantage v, is no longer free nor unknown, but is 
instead a computed value associated with each game of all 
series in the data. Identification of the structural model can 
be thought of in two steps, although it is more efficient to 
estimate the model in one step as our bootstrap maximum- 
likelihood estimator does. First, calculate v, for all games in 
the data based on initial guesses for r, 1, and the distribution 
of ax. Then, estimate 1, r, and the distribution of a. using 
equation (20) as a random-effects probit or logit. Then 
iterate on these two steps until the values of the parameter 
estimates in the two stages agree. If equilibrium vw turned 
out to be proportional to ax/r and ,B/r, then r would cancel out 
of equation (20) and would not be identified. It is not 
possible to rule this out analytically, but r does enter the 
indirect value of each state separately from ax and 13. (See 
equation (A3) in appendix A.) Therefore, r is potentially 
identified by outcomes through the structure of the model. 
Furthermore, r is identified in Monte Carlo experiments we 
have conducted. 

PROPOSITION (4). Let the outcomes of playoff series be 
generated by the sequential equilibrium. Then estimates of P 
are inconsistent if the sequential equilibrium is not solved. 
The amount of bias increases with the cost of effort 
parameter r, holding all else constant. 

One might try to avoid proposition (4) by approximating 
the incentive effect with dummy variables for the current 
state of the series: 

rvWv(j) -3 I*(wj), (21) 

where I* is a vector with elements contained in{- 1, 0, 1} 
that depend on the state of the series.8 The vector 13 would be 
estimated state-of-the-series effects. The problem with ap- 
proximation (21) is that the strength of the incentive index 
v,(j) depends on the relative strength of the teams in the 

8 We estimate exactly this approximation in the next section. Taylor and 
Trogdon (1999) use this approach to study the effect of the NBA draft 
lottery. 
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current and all subsequent games, IXk, k = j, j + 1, . . . , n. 
The error in using (21) to approximate vw(j) is therefore 
correlated with the other regressors. Estimates of 3 are still 
biased even with a large sample of series.9 

We assume the residual ability index at follows the normal 
distribution across series, at - N(0, u2), for oU2 > 0. Under 
assumption Al. [1], the value of at is common knowledge of 
the two teams. Given their information, the probability of a 
series of outcomes W is P*(W, X, ax; 3, r), defined in 
equation (19). To the econometrician, however, the probabil- 
ity is 

Q(W, X; , , r) (22) 

- (P(W, X, oa; , r)4(oal)Iudoa. 

Assuming falsely that a2 =0 (no unobserved heterogeneity) 
induces correlation between winning probabilities of differ- 
ent games conditional upon the observed ability factors. 

In a panel-data model, correlation caused by unobserved 
heterogeneity leads to inconsistent estimates of P. For 
example, we observe in the sports data that, when teams are 
down 3-0, they usually lose the fourth game and conse- 
quently the series. This may be because teams down 3-0 give 
up in the situation (i.e., vu, is large in absolute value), or 
because outmatched teams are more likely to reach the 
situation (i.e., at is large in absolute value), or both. The first 
reason is true state dependence while the second is spurious 
and due simply to ability differences making it likely that a 
series that reaches the state 3-0 has unevenly matched teams. 

B. Adding Covariates for Ability 

The team that played at home in game 1 is coded as the 
reference team (team a in the model section). For example, 
the endogenous variable Wjis takes on the value 1 if the team 
that played at home in game 1 wins game j of the series i in 
sport s, and otherwise Wjis equals 0. Three measures of 
relative team ability were also collected: an indicator for 
home advantage in game j (Home Advantageijs), difference 
in regular season records (Record Diffis), and an indicator 
for differences in appearance in last year's championship 
series (Experience Diffis). The latter two variables do not 
vary with game number j. (These and other variables 
derived from the data are defined in appendix B.) 

Our random-effects estimation procedure controls for 
both true state dependence created by incentive advantages, 
and serial correlation created by unobserved heterogeneity. 

The complete specification of the structural parameters of 
the game-theoretic model is 

8 ij = oti + pxij 

C=i + r3Home Advantageij1 

+ P3 'Record Diffi 

+ P3Experience Diffai (23) 
1* r= els 

eE 

F(E) = 
1 + ee 

Superscripts have been added to Pk and subscripts have been 
added to r and oa to indicate that these values are estimated 
separately for each sport s. We estimate r* and a* to avoid 
having a closed lower bound on the parameter space. Large 
negative values of r* and a* therefore correspond to values 
of rs and as near 0. The luck factor follows the standard 
logistic distribution. All estimated values are therefore 
relative to the variance of random luck inherent in the sport. 
Based on equations (22) and (23), let Qi5(Wis, Xis; os, Ps, rs) 
denote the predicted probability of the i-th series in sport s, 
where superscripts have been added to the data vectors W 
and X. Denote the vector of estimated parameters as 0 (that 
is, the concatenation of Ps, r*, and o* for all three sports). 
The log likelihood function for the combined sample is 

Y(O)- I n Qis(Wisg X is; 98 PS r s*. (24) 
s i 

Each championship series is, in effect, a short panel of 
observations. While maximum-likelihood estimates are con- 
sistent in this context, they may not perform well in samples 
of the size available here.10 One way to correct for this type 
of small sample problem is to perform bootstrap estimation. 
The sample data is randomly sampled with replacement to 
form artificial data sets of the same size.11 Let the ML 
estimate from the actual sample be OML. ML estimates of 0 
are also obtained for each artificial data set. With the average 
estimated vector across resamples denoted 6, the parametric 
bootstrap estimate is defined (Efron & Tibshirani, 1993, ch. 
10)as 

0BS = 20ML - 0 (25) 

9 Interacting the indicator vector with the observable ability vector X 
reduces the bias but does not guarantee that approximation error is 
eliminated. For example, the incentive component in one game not only 
depends on which team has the home advantage in this game, but also the 
sequence of future home advantages. Given the fixed maximum-panel 
length of 7, including interaction terms may make the bias in estimating 3 
worse by including extra parameters. 

10 We conducted Monte Carlo experiments on the ML estimates of the 
sequential equilibrium model. Not surprisingly, we found significant bias 
in the ML estimates with small samples and short series. There was a 
strong tendency for estimates of r, to be pushed close to zero when the true 
values was greater than zero. 

11 Each series represents an observation to be sampled, not individual 
games within series. 
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C. Application to Firms 

The tournament models of Lazear and Rosen (1981) and 
Rosen (1986) were designed to explain wage and promotion 
patterns within firms. Our version of the model provides no 
further insight into firms, but its straightforward solution 
algorithm in the presence of heterogeneity in ability makes it 
a potentially useful tool for empirical studies of wages 
within firms. 

To build a model of the firm, the connection between 
effort levels and output would be specified, so that the firm 
would care about the effort levels generated through compe- 
tition for higher-wage positions. The firm would take as 
given the distribution of ability. The firm would control 
effort by setting the wage levels (or final payoffs) and the 
length of the competition, which would relate to the 
expected time between promotions. The model could easily 
be adapted to a situation in which the series length is not 
fixed but instead ends with some probability and the player 
who is ahead at that point wins. At the same time, the firm's 
internal wage policies would be subject to a participation 
constraint. The screening element of promotion competition 
(placing more able people in critical jobs) could also be 
included by modeling multistage tournaments. As in Rosen 
(1986), this requires additional assumptions about the be- 
liefs held over the ability of opponents in future rounds. By 
solving the firm's problem numerically and relating its 
predictions to observed wages and career profiles, the effect 
of competition and incentives within the firm could be 
inferred. Although there are many theoretical and economet- 
ric issues related to such a project, our robust and flexible 
model of competition itself removes one of the key stum- 
bling blocks. 

IV. Empirical Analysis 

A. Data 

The data consist of championship series in professional 
baseball (Major League Baseball), professional ice hockey 
(National Hockey League), and professional basketball 
(National Basketball Association). Major rule changes over 
the course of the last century created the modem versions of 
each of the sports. In each sport, we selected our sample 
period to include all best-of-seven series since the introduc- 
tion of these rule changes. Baseball introduced the "live 
ball" in 1920, but the 1920 and 1921 World Series were 
nine-games series, so the baseball sample covers 1922- 
1993.12 Professional basketball introduced the 24-second 
clock in the 1954-1955 season, so the basketball sample 
covers 1955-1994. Finally, hockey introduced icing in the 
1937-1938 series, but the 1938 Stanley Cup was a five-game 
series, so the hockey sample covers 1939-1994. 

Table 2 reports summary statistics for each sport. The 
distribution of series length (n*) is an endogenous aspect of 

the model, reflecting both ability differences and incentive 
effects. Baseball series are on average the longest: 42% of 
the 72 series go to 7 games, whereas 30% of the 40 
basketball series, and only 18% of the 56 hockey series go to 
7 games. Four-game series occur infrequently in both 
basketball (13% of the series) and baseball (18% of the 
series). By contrast, 29% of the series end in four games in 
hockey, the most frequent series length. Basketball and 
hockey shared the same sequence of home advantage until 
1985, when basketball switched to the sequence used in 
baseball. 

Our empirical specification includes two fixed measures 
of relative team ability-the difference between regular 
season records and experience in the previous championship 
series. The average absolute difference in records (across 
series not games played) is smallest in baseball and largest in 

TABLE 2.-SUMMARY OF CHAMPIONSHIP SERIES AND GAMES 

Baseball Basketball Hockey 
World Series NBA Finals Stanley Cup 

1922-93 1955-94 1939-94 

Series 

Total 72 40 56 
% Ending After 

4 Games 18 13 29 
5 Games 21 23 27 
6 Games 19 35 27 
7 Games 42 30 18 

Home Sequence HHAAAHH' HHAAHAH2 HHAAHAH 
HHAAAHH3 

Mean Abs (record differ- 
ence) 4.04 10.32 9.77 

% With experience differ- 
ence 47 38 50 

% Won by the team with 
better season record 53 68* 79* 
experience advantage 68* 73* 64* 

Mean (st. dev.) of model vari- 
ables 

Total games played 421 233 299 
W (1 = Team a won, 0.553 0.588 .0.609 

0 = Team a lost) (0.50) (0.49) (0.49) 
Home Advantage (+ 1/-1) 0.002 0.073 0.084 

(1.00) (1.00) (1.00) 

Record Difference 1.004 9.953 8.121 
(4.52) (8.17) (8.46) 

Experience Difference 0.216 0.172 0.151 
(+ 1/0/- 1) (0.60) (0.60) (0.67) 

Team Down 0-3 -0.012 -0.013 -0.023 
(+ 1/0/- 1) (0.19) (0.15) (0.26) 

Team Down 1-3 -0.024 -0.034 -0.023 
(+ 1/0/- 1) (0.26) (0.26) (0.29) 

Team Down 2-3 0.000 -0.026 -0.030 
(+ 1/0/- 1) (0.32) (0.33) (0.29) 

% of games won by team with 
Home Advantage 56* 60* 58* 
1-0 Lead 47 42 67* 
2-0 Lead 44 29* 58 
3-0 Lead 87* 100* 76* 
2-1 Lead 46 46 57 
3-1 Lead 54 56 60 
3-2 Lead 32* 54 60 

Sources: The Baseball Encyclopedia, Macmillan; The Sports Encyclopedia: Pro Basketball, St. 
Martin's; The National Hockey League Official Guide and Record Book, Triumph. 

I Other sequences were used in 1923, 1943-44, and 1961. 
2 Sequence used until 1985. 
3 Sequence used after 1985. 
* = different from 50% given the number of games/series at a 10% level of significance. 

12 The 1994 World Series and 1995 Stanley Cup were not played due to 
strikes by the players. 



714 THE REVIEW OF ECONOMICS AND STATISTICS 

basketball. The sports are similar in terms of the number of 
series where one team has an experience advantage: half of 
the hockey series, 47% of the baseball series, and 38% of the 
basketball series. 

These measures of ability are generally related to which 
team wins the overall series. The team with either advantage 
(not controlling for other factors) wins the overall series 
more often. The proportion does not differ significantly from 
50% in baseball when looking at the difference in season 
records. This compounds two differences between baseball 
and the other sports that suggest that relative record differ- 
ences will be less correlated with relative playing ability in 
baseball. One is simply that the average record difference is 
smaller in baseball. The other is how the baseball regular 
season itself was organized during the sample period. Until 
1997, the two teams meeting in the World Series came from 
leagues that did not play each other during the regular 
season. The difference in their respective champions' regular 
season records would therefore contain less information 
about the teams' relative ability than the records of teams in 
the basketball and hockey championships that played many 
common opponents. 

The second part of table 2 summarizes the variables used 
in the empirical analysis using individual games as the 
sampling unit. (Complete definitions are given in appendix 
B.) The baseball sample includes 421 games, the basketball 
sample includes 233 games, and the hockey sample includes 
299. Recall that the team that played at home in game 1 is 
coded as the reference team (team a), so W equals 1 
whenever that team wins a game. The average value of W 
being above 0.50 in each sport reflects the fact that the team 
that plays at home in the first game wins more games overall. 
The positive average value of the home-advantage indicator 
indicates that team a also plays more games at home. The 
greater values in basketball and hockey reflect in part their 
sequence of home advantage in which team b never plays 
more games at home than team a. In baseball and the last 
part of the basketball sample, however, team b plays more 
games at home for series that end in five games. 

The pattern across sports in the regular-season record 
differences reflects both the wider range of values in 
baseball and hockey and the different ways in which it is 
decided who plays at home first. Baseball would also tend to 
have lower variation in record differences, because it has 
always had a much shorter playoff structure. This makes it 
impossible to get into the World Series with a poor 
regular-season record; whereas, in basketball and hockey, 
teams that finished well behind in the regular season could 
end up in the championship series. 

The TeamDown variables are indicators for certain values 
of the state vector wj following the definition given in 
equation (21). Including these variables in a reduced-form 
model is an ad hoc way to control for the incentive 
advantage. For example, TeamDownO-3 is defined to be 0 
except for fourth games where the state is (0, 3) or (3, 0), in 
which case it takes on the values + 1 and -1, respectively. 

TeamDownl-3 and TeamDown2-3 are defined similarly. 
The negative mean values for these variables indicate that 
team a reaches the brink of defeat less often than team b. In 
baseball, there are exactly equal numbers of series in which 
the teams end up down 2-3. 

The bottom of table 2 shows the sample proportion of 
victories in the current game conditional upon various 
aspects the current state of the series. Note that victory in this 
case is not consistently defined in terms of team a or b, but 
rather for whichever team is in the given situation. For 
example, in all three sports, the team playing at home is 
significantly more likely to win the game. The other 
statistics show the conditional probability that the team 
leading in the series wins the current game. These values can 
be misleading, because they mix the effect of fixed ability 
differences between the teams (better teams tending to lead 
the series) and state-dependent incentive effects (teams 
giving up when they fall behind as illustrated in the 
simulations in table 1). They also mask the patterns of home 
advantage in the different sports. For example, teams leading 
2-0 are more likely to lose the third game in baseball and 
basketball (with the difference statistically significant in 
basketball). But it is often the case that this team is now 
playing away for the first time in the series, so this apparent 
state effect may simply reflect a strong effect of home 
advantage in basketball. Interestingly, in hockey, the leading 
team is always more likely to win the current game, although 
the difference is insignificant in several cases. Since the 
unconditional home advantage is about as strong in hockey, 
this pattern suggests either larger ability differences or larger 
incentive effects in hockey (or both). 

In all three sports, teams leading 3-0 or 3-1 are more likely 
to win the game and end the series. In basketball and hockey, 
the same is true for teams ahead 3-2, but the effect is not 
statistically significant. In baseball, however, the team 
behind is more likely to win the sixth game and force a 
seventh game. This can also be seen simply from the 
distribution of series length shown in table 2, because 
baseball has more seven-game series than six-game series. 

Although these statistics that condition on the state of the 
series suggest that the state may be an important factor in 
determining the winner of the current game, it is difficult to 
draw any strong conclusions without controlling simulta- 
neously for home advantage, observed and unobserved 
differences in the strengths of the teams, and the possible 
incentive effects induced by the current state of the series. 

B. Estimates of the Static Model 

Table 3 reports logit estimates of the winner of games in 
each sport.13 The specifications correspond to the static r ) 
0 model (equivalent to r* -oo). Since these are simple 
logit estimates, the results also summarize the patterns in the 
data that the dynamic model seeks to explain in a more 

13 We also estimated the model assuming a normal distribution (with the 
same variance as the standard logistic). The results were nearly identical. 
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TABLE 3.-MAXIMUM-LIKELIHOOD ESTIMATES OF THE STATIC MODEL 

Specification 1 Specification 2 Specification 3 

Parameter Sport Coeff Std Errf Coeff Std Err1 Coeff Std Err' 

Home Advantage Baseball 0.43* 0.17 0.43* 0.17 0.41* 0.17 
Basketball 0.66* 0.26 0.66* 0.27 0.69* 0.26 
Hockey 0.66* 0.24 0.72* 0.22 0.73* 0.24 

Record Diff. Baseball 0.05 0.04 0.05 0.04 0.04 0.04 
Basketball 0.07* 0.02 0.07* 0.03 0.06* 0.02 
Hockey 0.12* 0.02 0.13* 0.03 0.11* 0.03 

Experience Diff. Baseball 0.54* 0.28 0.54 0.28 0.52 0.31 
Basketball 0.19 0.41 0.19 0.62 0.21 0.42 
Hockey 0.74* 0.35 0.86* 0.41 0.74 0.40 
Baseball 0.004 58.46 0.000 
Basketball 0.000 0.000 
Hockey 1.19* 0.47 0.62 0.93 

Team Down 0-3 Baseball -3.24* 1.39 
Basketball 0.00 
Hockey -1.36 1.16 

Team Down 1-3 Baseball -0.30 0.69 
Basketball -0.90 0.89 
Hockey -0.14 0.98 

Team Down 2-3 Baseball 1.51* 0.65 
Basketball -0.30 0.77 
Hockey -1.01 0.81 

-ln likelihood 606.03 605.03 595.79 
* Indicates significance at the 5% level, 

Standard errors are computed using the outer product of the gradient matrix. 

comprehensive way than the summary statistics presented in 
Table 2. 

The first specification includes only the variables that 
enter 6j (setting a, = r= 0 and implying no unobserved 
heterogeneity and no incentive effect), for each sport s and 
maximizing S(O) over , alone. In all three sports, the 
estimated coefficient on Home Advantage is positive and 
significant at the 5% level. Home advantage is largest in 
basketball and smallest in baseball. Other things equal, the 
team with the better regular-season record is more likely to 
win than to lose any given game of a series. In baseball, 
however, the coefficient on Record Difference is not signifi- 
cant, which is not surprising in light of the earlier discussion 
of table 2. The estimated coefficient on Experience Differ- 
ence is also positive in all three sports, but is significant only 
in baseball and hockey. 

The second specification in table 3 adds the normally 
distributed random effect ox by freeing its standard deviation 
u. The estimate of c implied by u* is nearly zero in baseball 
and hockey and is estimated imprecisely. This suggests little 
evidence for unobserved heterogeneity in these sports after 
controlling for the observed characteristics in the teams. 
Only in hockey is the estimate of u significantly different 
from zero (based on a likelihood ratio test imposing u = 0). 
The main effect on the other estimates is to raise slightly the 
estimate of home advantage in hockey. 

The third specification in table 3 adds the set of indicator 
variables for the score (state) of the series. All of the 
estimated coefficients on the state indicators are negative 
except for TeamDown2-3 in baseball. A negative coefficient 
indicates that teams on the brink of losing the series are more 
likely to lose (all else constant). Since unobserved heteroge- 
neity is also controlled for, these coefficients could perhaps 

be picking up incentive effects. However, only in baseball 
are the effects significantly different from zero on their own. 
The estimated coefficients and t-ratios for Home Advantage, 
Record Difference, and Experience Difference are insensi- 
tive to the inclusion of score dummies, except that coeffi- 
cients on Experience Difference that were significant no 
longer are. 

C. Estimates of the Sequential Game Model 

Table 4 presents various estimates of the model with the 
game-theoretic parameter rs estimated as well as the other 
parameters for each sport. These estimates require calcula- 
tion of the equilibrium effort levels presented in proposition 
(1) for each possible state of a series for each series in the 
data. The first two specifications are maximum-likelihood 
estimates. The estimate of r is significantly different from 
zero only in hockey. In baseball and basketball, the coeffi- 
cient is near zero and poorly estimated. Comparing the 
likelihood value to that reported in table 3 for the static 
model, the difference in the likelihood value when adding rs 
is slight. In other words, the static model without strategic 
incentives is not rejected by the data. The second ML 
specification fixes u, and r, in baseball and basketball to 
their values in specification 1 to determine whether their 
large standard errors affect the estimated standard errors of 
the other parameters. Precision of the other estimates within 
baseball and basketball are not affected by inclusion or 
exclusion of u and r, but standard errors in hockey are 
changed. 

The very small maximum-likelihood estimates of r in 
each sport (implied- by the large negative estimates r* in 
table 4) indicate that the incentive effects vj are not large 
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TABLE 4.-ML AND ML-BOOTSTRAP ESTIMATES OF THE SEQUENTIAL GAME PARAMETERS 

ML Estimates Bootstrap ML 

Specification 1 Specification 2 Resample 

Parameter Sport Coeff Std Err' Coeff Std Err' Mean IQ Range2 Estimate3 

Home Adv. Baseball 0.43* 0.18 0.43* 0.17 0.66 0.34 0.20 
Basketball 0.66* 0.24 0.66* 0.27 1.06 0.44 0.27 
Hockey 0.72* 0.24 0.72* 0.22 0.90 0.51 0.55 

Record Diff. Baseball 0.05 0.04 0.05 0.04 0.04 0.07 0.05 
Basketball 0.07* 0.02 0.07* 0.03 0.03 0.02 0.10 
Hockey 0.13* 0.03 0.13 0.29 0.13 0.04 0.13 

Exper. Diff. Baseball 0.54 0.29 0.54* 0.28 0.51 0.51 0.58 
Basketball 0.19 0.40 0.19 0.62 0.64 0.36 -0.26 
Hockey 0.86* 0.36 0.86 1.93 1.01 0.61 0.71 
Baseball -11.29 -11.29 -4.37 9.97 -106.21 
Basketball -19.99 -19.99 -12.35 2.78 -99.64 
Hockey 0.17 0.41 0.17 3.76 -2.61 2.38 -107.74 

r* Baseball -27.49 59561.0 -27.49 -17.85 4.62 -37.13 
Basketball -43.35 95831.8 -43.35 -16.54 5.27 -70.17 
Hockey -10.44 22778.0 -10.44 8.8E + 08 -18.11 5.59 -2.77 

-ln likelihood 605.03 605.03 
* Indicates significance at the 5% level. 

Standard errors are computed using the outer product of thie gradient matrix. 
2 =Difference between the 3rd and 1st quartile of ML estimates in resamples. Number of resamples = 878. 
3 =2*(ML Estimate in Spec. 1) - Resample Mean. 

in professional sports championship series. To explore 
whether this is an artifact of the series being short panels, the 
last column of table 4 presents bootstrap estimates of the 
most general specification of the model. There are some 
significant differences between the ML estimates and the 
ML-bootstrap estimates. For instance, the value of home 
advantage in each sport is estimated to be greater in the 
bootstrap than in the ML estimates. Differences in regular 
season records, however, are found to be similar predictors 
of relative team ability. The value of past experience is 
slightly larger in baseball and smaller in hockey and 
basketball, where the effect becomes negative. The impor- 
tance of unobserved heterogeneity (size of u) is estimated to 
be even smaller with the bootstrap estimate. After control- 
ling for the observed characteristics of teams, the data 
suggest no significant variance remaining in team abilities. 

The static model with little unobserved heterogeneity 
provides little theoretical possibility of teams following 
mixed rather than pure strategies. Only if teams were greatly 
outmatched on paper (that is, in the observed characteristics 
Xj) would a team give up with some probability. Further- 
more, they would give up in all games played away from 
home since the strategic advantage does not vary with the 
state of the series, except through home advantage. It is not 
surprising then that there are no instances in the data of 
mixed strategies at the bootstrap estimates. But mixed- 
strategy equilibria are encountered while maximizing the 
likelihood function. Since we are using only the champion- 
ship series in each sport, it is not unexpected that estimated 
differences in ability are not great enough to lead to mixed 
strategies in the static model. The sequential game model is 
easy to extend to the case of elimination tournaments: Each 
round would be one instance of our model, and different 
rounds would be handled as in the single elimination model 
of Rosen (1986). In early rounds of professional sports 

playoffs, mismatches are created by the design of the 
toumaments in which the best teams start out playing the 
worst. 

D. Size of the Ability and Strategic Effects 

The bootstrap estimates of the incentive parameter r are 
extremely small in baseball and basketball. Since the data 
are choosing the static model without unobserved heteroge- 
neity for these sports, it is straightforward to measure the 
relative importance of the observed characteristics of the 
game on the probability of either team winning. For 
example, Home Advantage and Experience Difference are 
both 1+ indicator variables. Since PI and r3 are of similar 
magnitudes in these sports, past championship experience 
roughly cancels out the disadvantage of playing a game 
away from home. Furthermore, for teams with equal experi- 
ence, a home advantage is equivalent to having a better 
regular-season record of 11/03 = 16.5 percentage points in 
baseball and 35.3 percentage points in baseball. One can 
compute the unconditional probability (at the start of game 
1) of one team or the other winning the series by computing 
the probability of each of the branches in figure 1. 

In hockey, the bootstrap estimate of r is greater than the 
ML estimate. Both the estimated standard error of the ML 
estimate and the interquartile range of the estimates across 
resamples (reported in table 4) indicate that the value of r is 
not precisely estimated. Determining the implied relative 
size of vj requires solving for the subgame perfect equilib- 
rium. All aspects of the two teams and the evolution of the 
series determine the winning probabilities. Using the boot- 
strap estimates for hockey, the sequential game model was 
solved for each series in the hockey data. The estimated 
probability that team a wins the first game (played at home) 
was computed by backwards induction. The series were then 
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TABLE 5.-DISTRIBUTION OF WINNING PROBABILITIES IN 
HocKEY1 

Pa<, = Chance team a wins game nb 

na 0 1 2 3 

25th Percentile: A(o,o) = 0.96 
0 0.622 0.621 0.472 0.472 
1 0.622 0.473 0.473 0.621 
2 0.474 0.473 0.622 0.472 
3 0.474 0.622 0.473 0.621 

50th Percentile: A(g,o) = 1.68 
0 0.714 0.714 0.576 0.575 
1 0.714 0.577 0.576 0.713 
2 0.578 0.577 0.714 0.576 
3 0.578 0.714 0.577 0.714 

75th Percentile: A(g,o) = 2.50 
0 0.796 0.795 0.679 0.678 
1 0.796 0.680 0.679 0.794 
2 0.680 0.680 0.795 0.679 
3 0.681 0.796 0.679 0.795 

XEstimated probabilities that the hockey team playing at home in game 1 (team a) 
wins the game based on the simulated distribution of A(o,o) using the bootstrap 
estimates in table 4 and the sample distribution of X variables. From this distribution, 
the series at the respective percentiles were selected. 

Boldface indicates team a would be playing away. 

ranked in order of this initial probability (or, equivalently, by 
the order of the strategic advantage in game 1, A(g,o)). The 
series at the 25th, 50th, and 75th percentiles were found. For 
these three series, the probability of team a winning in each 
state of the series is shown in table 5. For example, the home 
team at the 25th percentile wins the first game with probabil- 
ity 0.622. This indicates that "home ice" gives team a an 
edge in game 1 even when though its observable characteris- 
tics put it in the bottom quarter of the game 1 winning 
probabilities. 

The difference in probabilities across the empirical distri- 
bution of abilities is large. The ratio of probabilities between 
the 75th and 25th percentiles is 1.28: A superior team is 28% 
more likely to win the first game at home than an inferior 
team. The percentage change when playing at home ranges 
from 31% at the 25th percentile to 17% at the 75th percentile. 

In contrast, the effect of the state of the series is 
negligible. This can be read from table 5 by tracing 
probabilities along the minor diagonals (which holds con- 
stant the game number). For example, game 6 can have 
either the state (3, 2) or (2, 3). In the series at the 75th 
percentile in initial advantage, the ratio of the two probabili- 
ties of team a winning is only 0.6794/0.6787 = 1.001. The 
upshot is that the bootstrap estimate of r in hockey, while 
much larger than in the other sports, is still too small to 
generate any significant incentive effects in the series. The 
effect of home advantage and constant-ability differences 
swamp any strategic effects generated by the sequential 
nature of the playoff series. 

V. Conclusion 

This paper has analyzed outcomes in professional sports 
championship series to explore some empirical implications 
of game theory. We have developed a sequential game model 

of best-of-n-games series and have estimated the model's 
parameters using data from three professional sports. We 
estimate the effect of home advantage and differences in 
relative team ability revealed by differences in regular- 
season records and previous appearances in the champion- 
ship series. We use a bootstrap procedure to improve the 
small-sample properties of the maximum-likelihood estima- 
tor. We control for unobserved differences in relative team 
abilities as well as the strategic effects on performance 
arising from the subgame perfect equilibrium of the sequen- 
tial game. The strength of the strategic effect is determined 
by a single estimated parameter. We find no evidence of 
strategic effects in the data for any of the three sports. Only 
in hockey do the magnitude and imprecision of the estimates 
leave open the possibility of a measurable strategic effect, 
but the effect on winning probabilities at the bootstrap 
estimates is negligible when compared to, say, the effect of 
home advantage. We conclude that a simple model in which 
teams do not give up nor get overconfident based -on the 
outcome of previous games in the series best explains the 
outcomes of championship series. We also find that unob- 
served heterogeneity in ability differences is not helpful in 
explaining the data after controlling for regular-season 
records and previous championship experiences. That is, 
teams are estimated to be just as good as they appear on 
paper. 

Why are there no incentive effects? One possibility is that 
strategic interactions within games cancel out any incentive 
effects between games of a series. For example, team 
behavior may act to focus individual players on winning the 
current game and to ignore the larger sequential nature of the 
playoff series, even when winning or losing the game is 
nearly meaningless. Perhaps a cooperative model of team- 
mates might explain what elements of the sport would 
enable this outcome to occur. Such a theoretical exercise 
would attempt to make our primitive parameter r an 
endogenous function of the sport. Also, it may be that 
players in these series are in some sense immune to these 
incentives. Perhaps players who reach the highest champion- 
ship in the sport do indeed play to the best of their ability 
regardless of the circumstances. 

Two other sports applications of the model are possible. 
First, the model can be estimated on several rounds of 
single-elimination tournaments that lead to championship 
series, either in these sports or other sports. In earlier rounds, 
the differences in abilities in the teams tend to be much 
greater. Larger differences in ability also lead to a greater 
likelihood of teams giving up. This suggests that any 
teammate interaction that mitigates strategic incentives 
would become less effective in earlier rounds. 

Another application is to perform the same estimation 
procedure on tennis matches. Each game of a tennis match is 
similar to a championship series, except the game does not 
end when one player scores (n + 1)/2 points, because a 
tennis game has no maximum number of points n. Instead, 
the game winner is the player that scores four or more points 
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and leads by at least two points. Each set is, in turn, similar 
to a championship series, but one that relies on a cost 
function specified for each point rather than each game. 
Furthermore, strategic advantage rises and falls within a 
tennis match because the first point of a new game is less 
decisive to the ultimate outcome than the game point in the 
previous game. Compared to a simple championship series 
between teams, a tennis match between individuals may 
provide more leverage to identify strategic incentives. 

While sports is a natural arena for testing the tournament 
model, the model was developed by Lazear and Rosen 
(1981) to study wages within firms that have workers 
compete for fixed-valued prizes, such as promotions or 
bonuses. However, there have been few direct tests of the 
tournament model as an explanation for wages and promo- 
tion polices within firms. The specific tournament model 
developed here provides a robust computational framework 
for studying empirically any contest between heterogeneous 
players composed of a sequence of identical stage games. It 
may therefore serve as a basis for further empirical work 
outside of sports. 
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APPENDIX A: PROOF OF PROPOSITIONS 

A.1 Proposition (1) 

Proposition 1[1] and 1.[2]. 

Step 1. Given that team t' is choosing a mixed strategy of the form 
(9), the objective of team t in choosing effort takes the form 

-e-'-I,erX>, + yt'wF(lt(xaw - XbW))AVt. (Al) 

+ (1 - yt,J)Vt(nt + 1, nt,) + ytV, Vt(nt, nt,+). 

Necessary conditions for an interior solution for teams a and b are the 
first-order conditions 

exatir = rybf(Xa- xbw)AVawe a/ (A2.1) 

exbIr = rYawf (Xaw -XbW)AVbwebi/. (A2.2) 

After some manipulation, their ratio leads to 

Ybw 
Xaw-Xbw.= Av + r ln-. (A3) 

,yaw 

Replacing (A3) in the first-order conditions leads to the interior effort 
levels in (9). 

Step 2. Substituting the interior effort level (9) into (7) leads to the 
indirect value of the interior solution as a pure strategy for team t: 

yt,w AVt(-rf(Aw + r ln y t w) + F(ItAw + r ln -yt w)) 
(A4) 

+ (1 - y,w)Vt(nt + 1, nt) + ytwVt(nt, nt + 1). 

If team t gives up and sets x, = -oo and team t' puts in any effort at all, 
then t loses the game with certainty. Team t' puts in effort with probability 
y,,t. A1.[2] handles the case in which they both give up, so the indirect 
value to team t of giving up at state w is 

Vt(nt + 1, nt) + Vt(nt, nt' + 1) 
,ytwwVt(nt, nlt + 1) + (1 - jYtw) 2 ' (A5) 

Comparing (A4) and (A5), the interior solution is weakly preferred to 
giving up if 

AVt, [jt,w(-7rf(Aw + r In iYt,w) 

+ F(ItAw + r In Yt'w)) + (1 - Yt'w) - 0. 

Dividing by AV,,v leads to the condition (10). If the inequality in (10) holds 
strictly, then team t prefers the pure strategy and sets yt, = 1 in 
equilibrium. 

Step 3. If (10) does not hold, then team t prefers the boundary solution 
and team t' would not follow the first-order condition. A value of -Ytw less 
than 1 induces team t' to lower its effort level in the interior solution. At the 
Nash equilibrium in mixed strategies, team t is indifferent between giving 
up and the interior solution, so (11) holds with equality. 

Step 4. Substituting the interior effort levels into (6) and taking into 
account the probabilities of giving up lead to (12). QED 

PROPOSITION 1.[3] 
Suppose the teams are equally matched (Aw = 0). Then, under A1.[2], 

F(Aw) = 1/2, and effort will be symmetric. Looking at (10), equally 
matched teams choose pure strategies if Al. [3] holds. In an even match, the 
sign of the luck factor E determines the winner, andf(0) determines effort 
levels on the margin. As long as costs are not too convex relative tof(0), 
evenly matched teams strictly prefer the interior solution and will not play 
mix strategies. (Rosen (1986) recognized condition A1.[3] within a model 
of promotion ladders but focussed the analysis on pure strategy equilibria.) 
When IA, > 0, assumption AL1[2] implies -rf(Aw) + F(ItAw) > 
-rf(0) + - > 0. So team t puts no probability on giving up. If IAwI is near 
zero, then the team behind is close enough not to give up completely but 
simply put in less effort. Only when |Aw I gets large enough will the team at 
a strategic disadvantage give up with positive probability. When the team 
behind gives up with positive probability, the effort differential is reduced 
by -r ln -yt,. This effect is bounded by I AwI in equilibrium, so the team 
with the strategic advantage always sets higher interior effort. (Otherwise, 
the net advantage would become nonpositive, and the team behind would 
stop giving up by setting yt, = 1.) Since the team with strategic advantage 
sets higher interior effort and never gives up, the first part of proposition 
1.[3] follows as well. QED 
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PROPOSITION 1.[4] 
Under a normal luck distribution (A1.[4]), the first-order condition for 

team t takes the form 

12 2 
ex= ryt,we(-(-Xwxb,,)2)/29, i\V 9ebi/r (A6) 

2~ro 

The right-hand side of (A6) lies below the marginal cost of effort function 
as xt, goes to -co (because the quadratic term converges to zero more 
quickly than the left-hand side). Taking the logarithm of both sides leads to 
a quadratic equation in x, with at most two real solutions. If there is zero or 
one real solution, then the team prefers to give up with probability one and 
would not be part of a Nash equilibrium. If there are two solutions, then the 
larger solution for xt, is the only interior local maximum. The conditions in 
proposition (1) guarantee that it is a global maximum. So, the necessary 
conditions for a Nash equilibrium are also sufficient. QED 

Without assuming A1.[4] but still assuming A1.[2], the second-order 
condition for the interior solution can be written 

r2 yt,wsgn(xt - xt'w)f'( Xaw - XbWl)LVtw < e-8tj/rextnJr, (A7) 

where sgn(x) is the sign of x. This condition holds automatically when 
team t chooses no more effort than team t'. Under A1.[3] and (10), evenly 
matched teams (L,, = 0) will choose symmetric pure strategies. As the 
teams become less evenly matched, the second-order condition may fail 
for the team at a strategic disadvantage. The second-order condition can 
fail once the solution to the first-order condition becomes an inflection 
point in a decreasing payoff. Although we have no general result on this 
condition, it is likely that, for many cases, such an inflection point will not 
be preferred to giving up with probability one. If so, the other necessary 
conditions in proposition (1) will be violated before (A7). 

A.2 Proposition 4 

The issue is whether the value of the latent incentive advantage rvw(J) 
can be known without going through the backwards induction in (13), 
which in turn requires solution of the Nash equilibria in proposition (1) for 
all possible states of the series. Recall that n is the final game of the series. 
Under assumption (A2), v,, = 0, since both teams place a value of 2 on 
winning the last possible game played. The incentive advantage can be 
ignored a priori in game n, which might suggest using only outcomes from 
game n's to control implicitly for the incentive advantage while estimating 
P. But game n is played only if necessary, because the length of the series 
n* is endogenous to outcomes. This creates a standard sample-selection 
problem in restricting estimation to only game n's. Correcting for the 
sample-selection problem requires a solution to the sequential game model 
to compute Prob(n* = n). Since n* 2 (n + 1)/2, the sample-selection 
problem does not occur in games 1 to (n + 1)/2. However, the incentive 

advantage is only zero in these games if the cost parameter r = 0. 
Therefore, there is no game k available in the data for which vk = 0 a priori, 
and reaching game k is exogenous to the value of the unknown par- 
ameter r. QED 

APPENDIX B: DEFINITIONS OF VARIABLES 

1 if team a is playing at home 
Home Advantagejis-_ 

-1 if team a is playing away. 

Record Differencegi = the difference between the reference team's 
regular-season winning percentage and its opponent's regular-season 
winning percentage. In baseball and basketball, regular-season winning 
percentage is defined as the number of regular-season victories divided by 
the number of regular-season games (multiplied by 100). Regular-season 
games in hockey can end in a tie, so here winning percentage is defined as 
the number of regular-season victories plus one-half of the number of 
regular-season ties divided by the number of regular-season games 
(multiplied by 100). 

Experience Difference1, = 1 if the reference team played in the previous 
year's championship series but its opponent did not; -1 if the reference 
team did not play in the previous year's championship series but its 
opponent did; and 0 if both teams or neither team played in the previous 
year's championship series. 

1 if wj = (0, 3) 

Team Down 0-3 = -1 if wj = (3, 0) 
0 otherwise. 

1 ifw,=(1,3) 

Team Down 1-3 = -1 if wj = (3, 1) 

0 otherwise. 

1 if wj (2, 3) 

Team Down 2-3 = -1 if wj = (3, 2) 

0 otherwise. 

In basketball, all five of the series reaching the score 3-0 subsequently 
ended in four games. If a separate dummy variable for the score 3-0 were 
included in the specification of the model, the maximum-likelihood 
estimate of the coefficient on this dummy variable would be infinity. To 
avoid this result, the dummy variables for 3-0 and 3-1 are combined into 
one variable in basketball. 
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