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Consider the game of locating a marked vertex

on a connected graph by repeatedly choosing

a vertex of the graph as a probe, and receiv-

ing the distance from the probe to the marked

vertex. The goal is to minimize the number

of probes required. The static version of this

game is the well-known problem of finding the

metric dimension of the graph. We study the

sequential version of this game, and the corre-

sponding sequential location number. Assume

throughout that G = (V, E) is a simple con-

nected graph with n ≥ 2 vertices.



Ou se cache Minou? Where is Minou Hiding?

http://pagesperso-orange.fr/jeux.lulu

/html/dicache/cacheM1.htm

is an Internet game intended for young chil-

dren. Minou the cat is randomly hidden on

one cell of a 9 × 5 grid. The child clicks any

cell to see if Minou is there. If so, she wins the

game. If not, that cell is labelled with its dis-

tance to Minou. The game continues until the

child finds Minou. For a child guessing semi-

randomly it could take many guesses, but the

mathematician will quickly discover that two

well-chosen guesses uniquely locate Minou.



Assume throughout that G = (V, E) is a sim-

ple connected graph with n ≥ 2 vertices. A

resolving set is a set S = {v1, v2, ..., vm} ⊆ V

such that for all u, v ∈ V , if d(vi, u) = d(vi, v)

for i = 1, 2, ..., m, then u = v. The metric

dimension dim(G) is the minimum number of

vertices in a resolving set. A resolving set with

dim(G) elements is a metric basis. Many peo-

ple have investigated these concepts, starting

with Slater [1975] and Harary & Melter [1976].



Theorem 1 [Slater 1975; Harary, Melter 1976]

Let G be a graph with n ≥ 2 vertices.

(a) dim(G) = 1 if and only if G = Pn is a path.

(b) For cycles, dim(Cn) = 2.

(c) For complete graphs, dim(Kn) = n− 1.

(d) For complete bipartite graphs,

dim(Kr,s) = r + s− 2 for n = r + s ≥ 3.

(e) For grids, dim(Pr × Ps) = 2 for r, s ≥ 2.

Theorem 2 [Shanmukha, Sooryanarayana, Har-

inath 2002] Let Wm be a wheel with n = m+1

vertices, m ≥ 3. Then dim(Wm) = b2m+4
5 c.



Let T be a tree which is not itself a path. A

leg at a vertex v is a component of T−v which

is a path, and `v is the number of legs at v.

An exterior major vertex is a vertex v such

that deg(v) ≥ 3 and `v > 0.

Theorem 3 [S,HM] Let T be a tree which is

not a path and let x1, x2, ..., xm be its exterior

major vertices. Then dim(T ) =
∑

(`i − 1), and

any set consisting of the leaves at the end of

all but one of the legs of each exterior major

vertex of T is a metric basis for T .



Consider the Minou game on a graph G where

Minou is hidden at a vertex M ∈ V (G). The

player then has to locate M by choosing a

probe v1 from V and receiving the distance

d(v1, M). The player then chooses a second

probe from V , and this process continues until

the player can uniquely determine the location

of M . The player’s objective is to locate M

with a minimum number of probes.

The sequential location number of G, SL(G),

is the number of probes required in the worst

case by an optimal.



Theorem 4 SL(G) ≤ dim(G) for all G.

If dim(G) ≤ 2, then SL(G) = dim(G).

Corollary 5 SL(G) = 1 iff G is a path.

Corollary 6 SL(Cn) = dim(Cn) = 2.

Corollary 7 SL(Pr × Ps) = dim(Pr × Ps) = 2

for all r, s ≥ 2.

Theorem 8 SL(Kn) = dim(Kn) = n− 1.



Theorem 9 Let 1 ≤ r ≤ s, with s > 1.

Then SL(Kr,s) = max{r, s− 1}.

Corollary 10 SL(K1,s) = dim(K1,s) = s− 1

for s > 1, and SL(Kr,s) < dim(Kr,s) = r + s− 2

for r = 2, s > r and 2 < r ≤ s.

Theorem 11 For a wheel Wm with n = m+1,

SL(Wm) = bm+1
3 c for m ≥ 5,

SL(W3) = 3, and SL(W4) = 2.

Corollary 12 SL(Wm) = dim(Wm)

for m = 3, 4, 5, 7, 8, 10, 11, 15 and 16;

otherwise SL(Wm) < dim(Wm).



Theorem 13 For any tree T with n ≥ 2,

SL(T ) ≥∆(T )− 1.

Theorem 14 For any tree T which is not a

path, if there exists a path P in T such that

all vertices of degree at least 3 lie on P , then

SL(T ) = ∆− 1.



Consider the game where the robber chooses a

vertex vR to hide on. The locator then has to

locate the robber by choosing a probe vertex

v1 from V , and receiving the distance d(v1, vR).

The robber may then move to an adjacent ver-

tex or stay put (but may not move to the probe

vertex). The locator then chooses a second

probe from V , and this process continues until

the locator has minimized the number of pos-

sible locations for the robber, with a minimum

number of probes. At that point the locator

sends a cop to each possible location to catch

the robber. The minimum number of cops re-

quired is the cop number Cop(G).



From the cop and robber tradition we are inter-

ested in graphs with Cop(G) = 1, and from the

metric dimension tradition we are interested

the the robber location number RL(G), the

minimum number of probes needed to locate

the robber when Cop(G) = 1. Thus RL(G)

represents the number of probes required in

the worst case by an optimal strategy for the

locator.



Theorem 15 Cop(Kn) = n− 2 for all n ≥ 1.

Theorem 16 If Cop(G) = 1 then RL(G) = 1

if and only if G is a path.



Theorem 17 Cop(C5) = 2, and Cop(Cn) = 1

for all n 6= 7. Moreover RL(Cn) = 3 for n =

3, 4, 6, 7, 8, 9, 11 and RL(Cn) = 2 for all n > 11.



Theorem 18 Cop(Pr × Ps) = 2 for all r, s > 2.



Robber Location for Trees

Let T be a tree with n vertices. A vertex of

degree at least 3 is a major vertex of T . We

define the frozen root property for a strategy

S on a tree T with root r as the property that

if the robber is initially at the root, or if at

any point the robber moves to the root, then

strategy S will locate the robber at the root

with the next probe.



Lemma 19 Let T be a tree with root r and

edge rs. Let Tr with root r and Ts with root s

be the two components of T − rs. Let Sr and

Ss be strategies to locate the robber on Tr and

Ts respectively such that both have the frozen

root property. Let S0 be a strategy which ei-

ther locates the robber on T , determines that

the robber is on Tr − r, or determines that the

robber is on Ts − s, and which has the frozen

root property. Let ST be the strategy which

consists of applying S0, then if the robber is

on Tr − r applying Sr, and if the robber is on

Ts − s applying Ss. Then strategy ST locates

the robber on T and has the frozen root prop-

erty.



Theorem 20 For any tree, T , Cop(T ) = 1.

Proof. If T is a path, choose any vertex as

root r. If T is not a path, choose a major

vertex as r. For every vertex v 6= r of T , let Tv

be the subtree of T which is the component of

T − vw where vw is the first edge on the path

from v to r in T .

We now prove by induction on n that for any

tree T with root r there exists a strategy ST

which locates the robber on T and has the

frozen root property.



Theorem 21 For any tree T with n ≥ 3 ver-

tices, ∆− 1 ≤ RL(T ) < e(T ).



Robber Location for Caterpillars

Assume C is a caterpillar with n spine vertices

v1, v2, ..., vn. Let v0 be a leaf adjacent to v1 and

vn+1 a leaf adjacent to vn. Let di = deg(vi) for

i = 1, 2, ..., n. Let ∆ be the maximum degree.

Theorem 22 ∆− 1 ≤ RL(C) ≤∆ + bn−1
2 c.


