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Abstract. The All-Distances SVM is a single-objective light extension
of the binary μ-SVM for multi-category classification that is competitive
against multi-objective SVMs, such as One-against-the-Rest SVMs and
One-against-One SVMs. Although the model takes into account consid-
erably less constraints than previous formulations, it lacks of an efficient
training algorithm, making its use with medium and large problems im-
practicable. In this paper, a Sequential Minimal Optimization-like algo-
rithm is proposed to train the All-Distances SVM, making large prob-
lems abordable. Experimental results with public benchmark data are
presented to show the performance of the AD-SVM trained with this
algorithm against other single-objective multi-category SVMs.

Keywords: Kernel Machines, Multi-category Classification, Support
Vector Machines, Sequential Minimal Optimization.

1 Introduction

Support Vector Machines [20] (SVMs) are currently well known methods for
pattern recognition and other data analysis, with strong theoretical properties
and practical results when applied to real-world problems. Originally formulated
to deal with linearly separable binary classification problems, they can also deal
with noisy data and non-linearly separable cases using a regularization and a
kernel method extension respectively.

Although the training of these machines can be assumed as finding the so-
lution to a quadratic optimization problem with linear restrictions, traditional
approaches are impractical due to the dense nature of the Hessian Matrix in-
volved in the problem definition. To deal with this, chunking and decomposition
algorithms have been proposed through time, being the Sequential Minimal Op-
timization (SMO) [18,14,10] one of the most popular methods employed for this
purpose.
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Tecnológico de Valparáıso” UTFSM and by DGIP-UTFSM Grant.

I. Bloch and R.M. Cesar, Jr. (Eds.): CIARP 2010, LNCS 6419, pp. 484–491, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Sequential Minimal Optimization Algorithm for the All-Distances SVM 485

In a multi-category context, the use of these training algorithms is straight
forward when several binary SVMs are used in combination (a multi-objective
approach), as with the One-against-the-Rest scheme [20] and the One-versus-
One scheme [15]. The same is not true when the classifier is a single machine
extending a binary SVM to classify more than two classes (a mono-objective
approach), since the objective function of the machine has changed and the
underlying components in which the solvers relay on are not the same (like the
Karush-Kuhn-Tucker conditions used by the SMO algorithm). In these cases, a
suitable training algorithm needs to be designed to address the single-objective
formulation of this new kind of machines. This is the case of the method of
Weston and Watkins [21], the framework of Crammer and Singer [8,7] and the
All-Distances SVM (AD-SVM) [17], among others. Here we focus on AD-SVMs,
a method recently proposed to formulate the multi-category problem using a
reduced number of constraints.

An efficient solver for the AD-SVMs does not currently exist, and only general-
purpose solvers like the one proposed in [6] have been employed until now, mak-
ing possible the use of this machine only for small problems (no more than 500
training examples). The use of general-purpose solvers gets impractical as the
problem size grows, since training time and memory requirements scale above a
quadratic rate, due to the dense Hessian Matrix issue mentioned above. There-
fore a solver specifically designed for the AD-SVM is needed.

In this paper, a specific algorithm to train the AD-SVM is proposed. Its design,
derivation and components are based in the SMO algorithm for binary SVMs.
The SMO was chosen as base for this new solver as it is a fast and well-known
algorithm commonly used in SVM training. The performance of the new solver
is compared against other multi-category mono-objective machine (described
in [7]) both in terms of accuracy and training time efficiency.

The rest of the paper is organized as follow: An overview of binary SVMs and
the AD-SVM is given in section 2; The components and the general structure of
the new training algorithm for the AD-SVM are described in section 3; Finally,
experiments and conclusions are provided in section 4.

2 Background

Given a set of examples S = {xi : i ∈ I} ⊂ X ⊂ �
n of two classess, C− and

C+, the binary classification problem asks to learn a decision function f(x) :
X → {−1, +1} to distinguish patterns of one class from the other class. SVMs
accomplish this by modeling the boundary between C− and C+ as the hyperplane
H = {x : wT x+b = 0} whose parameters w and b are determined by minimizing
a risk functional [20]. To deal with non linearly separable data, SVMs use non-
linear kernel functions K (xi,xj) instead of the linear inner products xiT xj and
have different ways to treat noisy data through the use of slag variables, being
the C-SVM and the ν-SVM [19] two of the most popular approaches.

The All-Distances SVM (AD-SVM) [17] can be considered the natural exten-
sion of the μ-SVM [9] to multiple-classes. The extension consists in minimizing
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the sum of all pairwise distances among the different K convex hulls (each gen-
erated for one class). Its dual form can be stated as follows:

D(u) : minimize{u}
1
4

∑

i∈I

∑

j∈I

uikijuj (1)

subject to
∑

i∈Ir

ui = 1, r ∈ {1, · · · , K} ∧ 0 ≤ ui ≤ μ, ∀i ∈ I, (2)

where kij = αijkij , kij = K (xi,xj), I is the set of all indexes and Ir is the
subset of indexes belonging only to class Cr. Values αij involved in the definition
of kij are defined as:

αij = yi · y′
j =

{
K − 1, if i ∈ Ir ∧ j ∈ Ir

−1, in any other case, (3)

where yi = [yi1, yi2, . . . , yiK ] , yis =
{

K − 1, if s = r, where i ∈ Ir

−1, in any other case. (4)

Note that the labels are not scalar values but K-dimensional vectors, equiva-
lent to those proposed in the formulation of other multi-category classifier [16].
Note also that, when K = 2, the possible values of αij are the same that those
calculated with the scalar yi labels used within the binary SVM [9]. The for-
mulation lead to one hyperplane wr, one offset br and one ρr for every class
r ∈ {1, · · · , K}:

wr =
1
K

∑

i∈I

αiruixi, br =
−1
K2

∑

i∈I

∑

j∈I

uiαirkijuj , (5)

ρr =
1

K2

∑

i∈I

∑

j∈I

uiαirkijαjruj , where αir =
{

K − 1, if i ∈ Ir

−1, in any other case. (6)

As with the αij values, for K = 2, w1 = w2 = w, ρ1 = ρ2 = ρ and b2 = −b1 =
b, that is the hyperplanes model the half-spaces induced by the binary SVM
hyperplane. With this elements, the decision funtion f (·) used to classify new
examples is given by

f (x) = argmax
r

(
1
K

∑

i∈I

αiruiK (xi,x) + br − ρr

)
. (7)

which again coincides with the binary SVM decision function for K = 2 [9].

3 SMO Algorithm for the AD-SVM

The SMO scheme to train binary SVMs works iterating through a sequence of
steps until convergence is reached. At every step, only two variables are selected
for optimization and the others are temporary frozen. An algorithm of this kind
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requires of the following principal components: an (usually) analytic optimiza-
tion step to calculate new values for two Lagrange multipliers; a selection
strategy (heuristic or not) to choose these two Lagrange multipliers, so that
the convergence to the optimum is as fast as possible in every step; a stopping
criteria to efficiently determine when the optimal (or a near optimal) solution
has been achieved; an update system that efficiently updates the values in-
volved in the selection and optimization of two Lagrange multipliers, every time
that the vector of Lagrange multipliers is changed; and an algorithm that utilizes
all of the later components to achieve the optimal or near optimal solution of
the SVM problem. Here, extensions of each of these components are given to
define a functional SMO solver to train the AD-SVM. We start by defining the
subsets I0r, I1r and I2r

I0r = {i : i ∈ Ir, 0 < ui < μ} , I1r = {i : i ∈ Ir, ui =0} , I2r = {i : i ∈ Ir, ui =μ} ,

and the quantities βup
r and βlow

r

βup
r = min

{
Fi , i ∈ Iup

r := I0r ∪ I1r
}
, βlow

r = max
{
Fi , i ∈ Ilowr := I0r ∪ I2r

}

where Fi =
∑

j∈I

ujkij .

These elements will be useful for the definition of the SMO components.

3.1 Stopping Criteria

At any given moment of the training, it is useful and necesary to know if op-
timality has been reached. As demonstrated in [13] for the binary case and
futher extended in [3] for multi-category instances, when βlow

r − βup
r ≤ 0 for all

r ∈ {1, . . . , K} classes, the algorithm has reached its optimum. Since it is not
always possible to achieve optimality due to the limits of computer arithmetics
and other numerical issues, a tolerance τ > 0 is conveniently defined by the user.
If well defined, the use of this tolerance also allows a faster convergency of the
algorithm at expenses of a low precision loss. With this in mind, a τ -tolerance
optimum is achieved when βlow

r − βup
r ≤ 2τ .

3.2 Selection Strategy

If the algorithm has not achieved optimality, it means that at least one pair of
indexes {i, j} in a class r is violating optimality, i.e. Fj − Fi > 2τ , with i ∈ Iup

r

and j ∈ Ilowr . Most of the time, there will be several of these violating pairs, and
choosing the most violating one at each step will lead to a faster convergence.

Here, we implement an extension for the AD-SVM of the heuristic proposed
in [10] that uses second order information: For the index i= argmint {Ft , t ∈ Iup

r }
of every class r, find index j such that

j = arg max
t

{
b2
it

ait
, t ∈ Ilowr ∧ Ft > Fi

}
(8)

where ait = kii − 2kit + ktt, bit = Ft − Fi (9)
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Select the pair of indexes {i, j} among all K classes such that the factor b2
it/ait

is maximal. Note that a similar strategy can be followed with i = arg maxt{
Ft , t ∈ Ilowr

}
.

If the kernel function is not positive definite, there will be cases in which ait

will adopt problematic values (ait ≤ 0). It has been shown in [5] for binary
SVMs that in these cases the value of ait can be set to a very small positive
value 0 < ε 	 1, redefining the problem as convex and thus it can be solved in
the same way as when ait > 0. In the experiments that have been carried for the
AD-SVM, this strategy has worked in the same way as expected for the binary
case.

3.3 Optimization Step

As it is shown in [3], when two Lagrange multipliers ui, uj exist whose indexes
are a violating pair, new values can be analytically calculated in order to achieve
optimality for the problem when all other variables are left constant. Here, we
start by calculating the new Lagrange multiplier for j, as unew

j = uj − bij

aij
. Note

that, since aij and bij were already calculated for selecting the pair {i, j} in (8),
they do not need to be recomputed here. Also note that unew

j needs to be clipped
to satisfy its boundary constraints, that is

unew,clipped
j =

⎧
⎨

⎩

L, if unew
j ≤ L

unew
j , if L < unew

j < H
H, if unew

j ≥ H
(10)

where L = max {0, (γ − μ)} , H = min {γ, μ} , γ = ui + uj (11)

Now unew
i can be computed as unew

i = γ − unew
j . Since unew

i also needs to ful-
fill boundary constraints, it must be clipped as unew

j was. After this step, the
new Lagrange multipliers unew,clipped

i and unew,clipped
j are returned to the main

algorithm.

3.4 Ft’s Update

As with traditional SMO algorithms, Ft’s values can be updated efficiently after
new values of a pair of Lagrange multipliers are calculated:

Fnew
t = Ft +

(
unew,clipped

i − ui

)
· kit +

(
unew,clipped

j − uj

)
· kjt (12)

3.5 Algorithm Structure

The components of the SMO procedure just defined are organized in algo-
rithm 1.1.

Algorithm 1.1 is a very general implementation of the SMO algorithm. In
practice, the SMO implemented for the experiments of this contribution [2] fol-
lows a scheme similar to those proposed in [18] or [14], where each iteration in
the training process works first by using only the I0r set of each class, and then,
in a second stage, optimality is checked with all remaining indexes. Also, a LRR
cache strategy is used to store kij products.
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Algorithm 1.1. SMO Algorithm for the AD-SVM

1: Initialize u satisfying constraints stated in 2.
2: Calculate Ft, ∀t ∈ I .
3: Find βlow

r and βup
r for each class.

4: while βlow
r − βup

r > 2τ for at least one r ∈ {1, . . . , K} , do
5: For every class r, select i = arg mint {Ft , t ∈ Iup

r }.
6: For the selected i ∈ Ir, select j = arg maxt

{
b2it
ait

, t ∈ Ilowr ∧ Ft > Fi

}
.

7: Select the pair of Lagrange multipliers {ui, uj} with maximal
b2ij

aij
among all

the classes.
8: Calculate

{
unew,clipped

i , unew,clipped
j

}
.

9: Update Ft, ∀t.
10: Find new βlow

r and new βup
r for each class.

11: end while

4 Experiments and Conclusions

Experiments were conducted to measure and compare the classification
accuracy and training runtime of the AD-SVM trained with the proposed SMO
algorithm against the Multi-Category SVM proposed in [7] (MC-SVM).
In order to obtain a platform and implementation independent comparison,
the number of kernel calls1 was used instead of the execution time to mea-
sure runtime complexity. Also, no cooling of the tolerance2 was used in any of
the algorithms.

A RBF Kernel K(xj ,xj) = e(−‖xi−xj‖2/σ2) was used in all the experiments,
with parameter σ. To find optimal values for μ and σ, a grid search was performed
using k-fold cross-validation, with k = 10 folds for relatively small datasets
(Glass, Vowel, Satimage, Shuttle small, Letter small, MNIST small) and k = 5
folds for relatively large datasets (USPS, Letter, Shuttle).

The values tested for hyper-parameters correspond as usual to a regular
logarithmic grid in base 2: for σ it was

{
2−4/2, 2−3/2, . . . , 29/2, 210/2

}
and for

μ,
{
1, 2−(1·log2(ms)/14), . . . , 2−(13·log2(ms)/14), 2−(14·log2(ms)/14)

}
, where ms =

min
(

I1, I2, . . . , IK

)
is the size of the smaller class in the training sets of the

cross-validation folds. The values for μ obey to the observation that values lower
than 2−(14·log2(ms)/14) = 1/ms lead to an infeasible optimization problem, while
values greater than 1 do not change the feasible space. In the case of the MC-
SVM, a parameter B must be set instead of μ. The same values for σ were tested,
with B ∈ {2−2, 2−1, . . . , 211, 212

}
.

1 The number of kernel calls counts every time a kij product is used in the algorithm,
either being calculated in the moment or retrieved from the cache.

2 The cooling of the tolerance is the iterative refinement of the numerical tolerance
until a desired precision is obtained.
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The usps [11], Glass, Vowel, Satimage, Shuttle and Letter datasets [1] were
used in their normalized and publicly available versions [4] (this reference also
provides datasets descriptions). The training datasets for Shuttle small, Letter
small and MNIST small are all subsets of 5000 examples randomly selected
from the original datasets. Unlike the others, the Glass dataset does not have a
separated test set. In this case, 5-fold cross-validation with the whole dataset was
used to evaluate test performance. Results obtained with the values of hyper-
parameters selected in the cross-validation procedure are listed in table 1.

Table 1. Experiment Results

Datasets Machine σ B & μ Test Acc. % Kernel Calls

Glass MC-SVM 0.707 0.5 72.89 2.96 × 106

ms = 8 AD-SVM 2.828 0.125 80.61 1.97 × 105

Vowel MC-SVM 0.25 0.25 50.87 7.43 × 105

ms = 43 AD-SVM 2 0.068 44.81 2.97 × 106

Satimage MC-SVM 2 0.5 91.40 2.60 × 109

ms = 374 AD-SVM 2.828 0.034 88.30 4.49 × 107

Shuttle small MC-SVM 2 0.25 99.79 3.46 × 108

ms = 5 AD-SVM 4 0.224 99.71 2.85 × 107

Letter small MC-SVM 2.828 0.25 63.73 7.02 × 1010

ms = 1 AD-SVM 2.828 1 60.82 1.19 × 108

MNIST small MC-SVM 16 1 99.04 5.05 × 108

ms = 407 AD-SVM 32 0.032 93.55 8.14 × 107

USPS MC-SVM 5.657 0.5 95.37 5.48 × 109

ms = 433 AD-SVM 32 0.272 93.21 1.22 × 108

Letter MC-SVM 2.828 0.25 71.31 1.24 × 1012

ms = 1 AD-SVM 2 1 65.66 8.43 × 108

Shuttle MC-SVM 0.707 0.25 99.90 2.26 × 109

ms = 5 AD-SVM 4 0.447 99.89 5.15 × 108

As it can be noted, in most cases the number of kernel calls is bigger for the
MC-SVM than the AD-SVM, with a difference in order of magnitude of at least
1. In the classification performance, the situation changes, exhibiting the MC-
SVM a better classification accuracy most of the time. This is expected, since
the AD-SVM is a light extension of the μ-SVM with a number of constraints
significatively lower than MC-SVM. Nevertheless, note that the difference is not
larger than 6%.

Further work can be done to improve the time performance of the algorithm
applying for example tolerance cooling or dinamic shrinking techniques [12].
The theoretical analysis of the algorithm can be also expanded concerning the
algorithm: We believe that the convergence proof for the binary SMO presented
in [13] can be extended to this multi-category SMO. The same can be said about
the redefinition of the term aij explained at the end of subsection 3.1 to handle
semi-definite or indefinite kernels.
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