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Abstract

Parametric identification of plant growth models formalized as discrete dynamical systems
is a challenging problem due to specific data acquisition (system observation is generally
done with destructive measurements), non-linear dynamics, model uncertainties and high-
dimensional parameter space. In this study, we present a novel idea of modeling plant growth
in the framework of non-homogeneous hidden Markov models ([6]), for a certain class of plants
with known organogenesis (structural development). Unknown parameters of the models are
estimated via a stochastic variant of a generalised EM (Expectation-Maximization) algorithm
and approximate confidence intervals are given via parametric bootstrap. The complexity of
the model makes both the E-step and the M-step non-explicit. For this reason, the E-step
is approximated via a sequential Monte-Carlo procedure (sequential importance sampling
with resampling) and the M-step is separated into two steps (Conditional-Maximization),
where before applying a numerical maximization procedure (quasi-Newton type), a large
subset of unknown parameters is updated explicitly conditioned on the other subset. A
simulation study and a case-study with real data from the sugar-beet are considered and a
model comparison is performed based on these data. Appendices are available online.

keywords: dynamical system; ECM algorithm; maximum likelihood estimation; parametric
identification; plant growth model; sequential Monte-Carlo

1 Introduction

The current study is motivated by the need of a deeper understanding of individual plant growth
dynamics. On one hand, such knowledge could serve as the basis for simplified but satisfying
descriptions of the interactions among complex ecophysiological phenomena which guide plant
growth. On the other hand, it is a standpoint for improving population based models in the
direction of a better prediction of yields in fields or greenhouses at a global scale. A general
family of models of Carbon allocation formalized as dynamic systems serves as the basis for
our study. They belong to the class of functional-structural plant models (FSPMs, [29]), which
combine the description of both structural development and ecophysiological functioning. A
generic model of this kind is the GreenLab model introduced by [11]. In [10], a first approach
for parameter estimation was introduced but based on the rather restrictive assumption of
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an underlying deterministic model of biomass production and uncorrelated errors in the mass
measurements of different types of organs in the plant structure.

The objective of this paper is to introduce a common framework for statistical analysis in
a large variety of plant species by taking into account process and measurement errors. We
provide a frequentist-based statistical methodology for state and parameter estimation in plants
with deterministic organogenesis (structural development) rules. A lot of agronomic plants can
be modeled this way, from maize [16] to rapeseed [20], but trees as well [25]. This framework
can serve as the basis for statistical analysis in plants with more complex organogenesis, see e.g.,
[24].

The rest of this article is organized as follows. In the next section, we describe the version
of the GreenLab model of plant growth which corresponds to the deterministic organogenesis
assumption. In Section 3, by taking into account process and measurement errors, we show
how plant growth models of this type can be represented as non-homogeneous hidden Markov
models. In Section 4, we present an appropriate state estimation technique based on sequential
importance sampling with resampling and how it can be used for performing maximum likelihood
estimation via a stochastic variant of the Expectation Conditional-Maximization algorithm. In
Section 5, a simulated case evaluates the performance of our algorithm and a case-study based
on real measurements of sugar beet plant tests its ability in a real-world scenario. A model
comparison is also performed. This article ends with a discussion on the results of this study
and some perspectives for further work.

2 Preliminaries and Description of the GreenLab model

A large variety of crop models or plant growth models are formulated as source-sink models
([31]) to describe Carbon allocation between different compartments of plant structure: sinks (all
organs) compete for the biomass produced by sources (generally leaves). The specificity of the
GreenLab model introduced by [11] lies in its mathematical formulation as a nonlinear discrete
dynamic system, see [9]. The discretization takes place by partitioning growth into growth
cycles (GCs) with duration depending on a certain amount of accumulated heat which triggers
the appearance of elementary botanical entities, called phytomers ([1]). The set of different types
(here classes) of plant organs (e.g., blade, petiole, internode, flower, ...) is denoted by O and
depends on the plant under study. For example, in the sugar-beet O = {blade, petiole, root}, or
symbolically O = {b, p, r}. Each GC is determined by the following mechanisms: organogenesis
and functioning. Organogenesis is the procedure of creation of new organs in the plant. In this
study, we restrict ourselves to the case where organogenesis is known and deterministic. So,
the interest will be focused on functioning represented as a recursive mechanistic procedure of
biomass allocation and production.

2.1 Biomass allocation

Starting by the initial mass q0 of the seed, at the n-th GC a certain amount qn of biomass is
produced and is available for distribution to all expanding organs. In order to determine the
allocation pattern we need to make some assumptions. Let to be the expansion time period
and poal an unknown euclidean vector of fixed parameters for each class of organs o ∈ O. All

allocation parameters are contained in the vector pal
def
= (poal)o∈O.

Assumption 1. i) At GC(n) the produced biomass qn is fully available for allocation to all
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expanding (preexisting + newly created) organs and it is distributed proportionally to the class-
dependent empirical sink functions given by

so(i ; p
o
al) = po c

(
i+ 0.5

to

)ao−1(
1−

i+ 0.5

to

)bo−1

, i ∈ {0, 1, . . . , to − 1}, (1)

where poal = (po, ao, bo) ∈ R
∗
+ × [1,+∞)2 and (po)o∈O is a vector of proportionality constants

representing the sink strength of each class (by convention pb = 1) and c is the normalizing
constant of a discrete Beta(ao, bo) function, where its unnormalized generic term is given by the
product of the two last factors of (1).
ii) to = T for all o ∈ O − {r}, where T denotes their common value.

Assumption 1(ii) is only used to simplify the subsequent mathematical notations and it can
be relaxed. Concerning the parameterization, some of the aforementioned parameters could be
considered fixed for identifiability reasons (depending on the number of available data), therefore
reducing the dimension of the parameter vector.

In order to determine the percentage of biomass which is allocated to each expanding organ
at each GC we need to make explicit the associated normalization constant.

Definition 1. The total biomass demand at GC(n), denoted by dn, is the quantity expressing
the sum of sink values of all expanding organs at GC(n).

Let us denote by {(No
n)o∈O}n∈N the vector-valued sequence of preformed organs at each GC

(plant organogenesis specific and deterministic in this study). It is straightforward to see by
Assumption 1, by the fact that an organ is in its i-th expansion stage if and only if (iff) it has
been preformed at GC(n− i), and by the uniqueness of the root that

dn(pal) =
∑

o∈O−{r}

min(n,T−1)∑

i=0

No
n−i so(i; p

o
al) + sr(n; p

r
al). (2)

2.2 Biomass production

Except for the initial mass of the seed q0 subsequent biomasses {qn}n≥1 are the result of photo-
synthesis and leaf blades are the only organs to participate in this procedure. At a given GC the
total photosynthetically active leaf blade surface is formed by summing the surface of leaf blades
which are photosynthetically active at the same GC. In this direction, we have the following
definition.

Definition 2. i) The photosynthetically active blade surface at GC(n + 1), denoted by sactn , is
the quantity expressing the total surface area of all leaf blades that have been preformed until
GC(n) and will be photosynthetically active at GC(n+ 1),
ii) the ratio (percentage) of the allocated biomass Ql which contributes to sactn will be denoted by
πact
l,n .

For the rest of this article we make the following assumption.

Assumption 2. i) The initial mass of the seed q0 is assumed to be fixed and known,
ii) the leaf blades have a common photosynthetically active period and equals T ,
iii) the leaf blades have a common surfacic mass denoted by eb.
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By Assumption 2(ii) and Definitions 1 and 2(i), we have that a blade being in its j-th
expansion stage at GC(l) contributes to sactn , iff l + T − j ≥ n + 1. By combining this with
Definition 2(ii), we get the following parametric expression:

πact
l,n (pal) =

1

dl(pal)

min(l,l+T−n−1)∑

j=0

N b
l−jsb(j; p

b
al), (n− T + 1)+ ≤ l ≤ n, (3)

where x+ = max(0, x), dl is given by (2), sb by (1) and N b
n is the number of preformed blades at

GC(n). By Assumption 2(ii)-(iii) and Definition 2, an expression of sactn is obtained by dividing
the mass of the active blade surface by its surfacic mass, to get:

sactn (q(n−T+1)+:n; pal) = e−1
b

n∑

l=(n−T+1)+

πact
l,n (pal) ql, (4)

where πb
l,n(pal) is given by (3) and xi:j = (xi, . . . , xj), for i ≤ j and x a generic variable. Now,

we describe how {qn}n≥1 is obtained.

Assumption 3. In the absence of modeling errors, the sequence of produced biomasses {qn}n≥1

is determined by the following recurrence relation known as the empirical Beer-Lambert law (see
[16]):

qn+1 = Fn(q(n−T+1)+:n, un; p) = un µ spr

{
1− exp

(
−kB

sactn (q(n−T+1)+:n; pal)

spr

)}
, (5)

where un denotes the product of the photosynthetically active radiation during GC(n) modulated
by a function of the soil water content, µ is the radiation use efficiency, spr is a characteristic
surface that represents the two-dimensional projection on the ground, of space potentially oc-
cupied by the plant, kB is the extinction coefficient in the Beer-Lambert extinction law, sactn is

given by (4) and p
def
= (µ, spr, kB, pal).

Note that qn+1 also depends on pal, but only through sactn , and that p could have lower
dimension if some of the aforementioned parameters are fixed or calibrated in the field.

2.3 Parameter estimation

In [10] a parameter identification method for individual plant growth was proposed based on the
GreenLab formulation described as above. The available data Y contain organ masses, measured
at a given GC(N) by censoring plant’s evolution (destructive measurements). The authors define
a multidimensional state sequence which records the theoretical masses of all organs present in
the plant at GC(N) and make the following assumptions: i) no errors exist in the production
equation given by (5), ii) measurements errors are independent normal distributions, sharing
common variance parameters φo for common classes of organs. If we denote by XN the vector
of all produced biomasses until GC(N) and by φ = (φo)o∈O, then by these assumptions we have

Y ∼ Nd(G(XN ; p),Σ(φ)), (6)

where G is the d-dimensional allocation function (parameterized by p) which determines the
vector of theoretical masses of the-d-observed organs at GC(N) as a function of XN and Σ(φ)
is a diagonal covariance matrix (by the independence assumption). The normality assumption
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simplifies considerably parameter estimation, but the complexity of the model leads to a difficult

inverse problem. An efficient numerical approximation technique for estimating θ
def
= (p, φ)

is necessary. Maximum likelihood estimation via a Gauss-Newton procedure (see [3]) or an
adaptation of the two-stage Aitken estimator (see [30]) were implemented for this purpose,
leading to similar results (see [8]). Nevertheless, independence and normality are crude for
this application context. A more challenging approach consists in introducing a process error
in equation (5), automatically departing from these restrictive assumptions. In the rest of
this article, we develop an appropriate statistical methodology for making state and parameter
estimation feasible in a more flexible model. In this way, for a given data set it is possible to
choose the most appropriate model with the help of model selection techniques.

3 The GreenLab model as a hidden Markov model

In this section we formalize a more flexible GreenLab version by revisiting assumptions i)-ii)
given in subsection 2.3. The key idea consists in rearranging the available data Y into sub-
vectors Yn by taking into account the preformation time of all available organs. This gives us
the possibility to treat data sequentially. Each subvector Yn will contain the masses of the organs
which are preformed at GC(n) and consequently appear for the first time at GC(n+ 1). If we
denote by Gn the vector-valued function that expresses the theoretical masses of all the different
classes of organs which started their development at GC(n), then by summing the allocated
biomass at each expansion stage and Assumption 1 we obtain directly

Gn(qn:(n+T−1); pal) =




T−1∑

j=0

qj+n

dj+n(pal)
so(j; p

o
al)




o∈O−{r}

. (7)

The following assumptions determine the stochastic nature of the model.

Assumption 4. Let (Wn)n∈N and (Vn)n∈N two mutually independent sequences of i.i.d. random
variables and vectors respectively, independent of Q0, where Wn ∼ N (0, σ2) and Vn ∼ Nd(0,Σ),
with Σ an unknown covariance matrix and d the cardinality of O−{r}. By setting No

n = 1,
∀o ∈ O−{r},

i) a multiplicative model error determines the hidden state variables:

Qn+1 = Fn(Q(n−T+1)+:n; p)(1 +Wn),

where Fn is given by (5),

ii) an additive measurement error determines the observed vectors:

Yn = Gn(Qn:(n+T−1); pal) + Vn, n ≥ 0,

where Gn is given by (7).

Remark 1. i) The error in the state process is assumed to be multiplicative and not additive
since in our application context biomasses change orders of magnitude,
ii) the states Qn represent masses (idem for Yn) and rigorously take values in R+, but as is the
case in many applications, we consider normal errors, and not distributions with constrained
support, in order to simplify the computations.
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The functional representation of the above model is that of a state-space model with state
sequence Q, and state and observation equation given by Assumption 4. Since the use of
conditional distributions is more appropriate for the statistical inference we prefer its equivalent
formulation as a hidden Markov model (HMM). For a wide coverage of HMM theory see [6].
Now, we give the type of HMM induced by our assumptions. The proof is direct and will be
omitted.

Proposition 1. Under Assumptions 1-4, the bivariate stochastic process (Q,Y) defined on a
probability space (Ω,F ,Pθ), where θ = (p, σ2,Σ) can be represented as an HMM, where

i) the hidden sequence Q, with values in R+, evolves as a time-inhomogeneous T -th order
Markov chain with initial distribution Pθ(Q0 ∈ ·) = δq0(·) (dirac at q0), where q0 ∈ R

∗
+, and

transition dynamics given by

Pθ(Qn+1 ∈ · | Q(n−T+1)+:n)
law
≈ N

(
Fn(Q(n−T+1)+:n; p), σ

2F 2
n (Q(n−T+1)+:n; p)

)
, (8)

ii) the observable sequence Y, with values in (R+)
d, conditioned on Q forms a sequence of

conditionally independent random vectors and each Yn given Q depends only on the vector
Qn:(n+T−1) with conditional distribution given by

Pθ(Yn ∈ · | Qn:(n+T−1))
law
≈ Nd

(
Gn(Qn:(n+T−1); pal),Σ

)
, n ≥ 0. (9)

Remark 2. i) We pinpoint the fact that normality in (8) and (9) is only valid approximately
since we deal with positive r.v. . In practice, some constraints should be taken into account for
the involved variances.
ii) Obviously, if we define Q̃

def
= (Qn:n+T−1)n≥0, then the bidimensional stochastic process (Q̃,Y)

is a time-inhomogeneous first order HMM, but this theoretical simplification has no other prac-
tical benefits.

4 State and Parameter estimation

The first issue that we tackle in this section is state inference, and in particular, estimation
of the conditional distribution of the hidden state sequence Q0:N given the observation vector
Y0:N . This is a smoothing problem, but it is well known in the classical hidden Markov models
([6]) that smoothing can result from a filtering procedure which approximates recursively the
conditional distribution of Qn given the vector observation Y0:n for n ∈ {0, 1, . . . , N}. State
estimation could have an interest in its own right, when model parameters are assumed to be
known, or it could be a part of the parameter estimation process. This is exactly the case
in the maximum likelihood estimation technique that we propose for this model, where the
conditional distribution of the hidden states given the observed ones interferes at each E-step
(computed under a fixed parameter value) of an appropriate stochastic variant of a generalized
EM-algorithm (Expectation-Maximization). The quality of state estimation determines the
quality of approximation of theQ-function and consequently the quality of parameter estimation.

4.1 State estimation via sequential importance sampling with resampling

The exact evaluation of pθ(q0:N |y0:N ) is only feasible in finite state space HMMs ([2]) or HMMs
that can be represented as linear Gaussian state space models (see [6], chapter 5). This is
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not the case in this model where the state-space is continuous and the unobserved process
is nonlinear. In order to approximate this conditional distribution we will use sequential im-
portance sampling ([17]) where the target distribution can be approximated recursively with
the help of a sequence of intermediary and lower-dimensional sub-target distributions. A final

weighted M -sample {q
(i)
0:N , w̃

(i)
N }Mi=1 is said to target the pθ(·|y0:N ) in the sense that realizations

from the distribution
∑M

i=1 w̃
(i)
N δ

q
(i)
0:N

(·) can be (approximately) considered as realizations from

the target one, where w̃
(i)
N denotes the normalized importance weight associated to the i-th

path q
(i)
0:N

def
= (q

(i)
0 , q

(i)
1 , . . . , q

(i)
N ) at the final GC(N). Since resampling is needed to avoid weight

degeneracy ([15]), the above method is referred to as Sequential Importance Sampling with Re-
sampling (SISR). The term particle filter is also extensively used, especially in the engineering
and filtering community. For an excellent coverage of the implementation of SISR techniques in
HMMs see [6].

The joint smoothing density pθ(q0:N |y0:N ) corresponding to the HMM given by Proposition
1 can be written as:

pθ(q0:N |y0:N ) = pθ(q0:N |y0:N−T+1)
pθ(yN−T+2:N |qN−T+2:N )

pθ(yN−T+2:N |y0:N−T+1)
,

where the first factor can be computed recursively by

pθ(q0:n|y0:n−T+1) = pθ(q0:n−1|y0:n−T )
pθ(qn, yn−T+1|qn−T :n−1)

pθ(yn−T+1|y0:n−T )
, T ≤ n ≤ N.

Note that the denominator can be considered as a normalization constant. Indeed, it corresponds
to a ratio of successive likelihood terms which are common to all particle paths. The self-
normalized versions of IS estimates are invariant to normalization constants and consequently
the denominators can be excluded from the IS procedure. This is a great benefit in this context
since they cannot be computed explicitly.

Now, we give a description of the SISR algorithm corresponding to the HMM given by
Proposition 1. It consists in a modification of the SISR algorithm for first-order (homogeneous)
HMMs given for example in Chapter 7 of [6] (Algorithm 7.3.4). This modification takes into
account the T -order dependency in the underlying Markov chain. The underlying assumption
of time-inhomogeneity both in the hidden Markov chain and in the observation densities adds
a further dependency on time but does not change the computational methodology. Since we
are dealing with measures that have densities with respect to the Lebesgue measure (or trivially
Dirac at the index 0), we use densities and not Radon-Nikodym derivatives in the presentation
of our results. Likewise, we will use the term instrumental (or importance) transition density
for the conditional density function of Qn corresponding to the instrumental (or importance)
kernel given Qn−T :n−1 = qn−T :n−1. It will be denoted by rθ(·|qn−T :n−1) and it could depend on
n since we are in a non-homogeneous context. The conditional densities pθ(qn|qn−T :n−1) and
pθ(yn|qn:n+T−1) correspond to the densities of the normal distributions given in Proposition 1
by (8) and (9) respectively.

Algorithm 1. (SISR corresponding to the HMM given by Proposition 1)

Initialization:

– Draw {q̃
(i)
0:T−1}

M
i=1, where q̃

(i)
0 = q0, q̃

(i)
n ∼ rθ(·|q̃

(i)
0:n−1), n = 1, . . . , T − 1.
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– Compute the first importance weights

w
(i)
0 = pθ(y0|q̃

(i)
0:T−1)

T−1∏

n=1

pθ(q̃
(i)
n |q̃

(i)
0:n−1)

rθ(q̃
(i)
n |q

(i)
0:n−1)

, i = 1, . . . ,M. (10)

– Do resampling if necessary and update trajectories (see General step).

General step: For n = T, . . . , N,

– Draw {q̃
(i)
n }Mi=1, where q̃

(i)
n ∼ rθ(·|q

(i)
n−T :n−1).

– Update the importance weights: For i = 1, . . . ,M,

w
(i)
n−T+1 =





w
(i)
n−T pθ(yn−T+1|q

(i)
n−T+1:n−1, q̃

(i)
n )

pθ(q̃
(i)
n |q

(i)
n−T :n−1)

rθ(q̃
(i)
n |q

(i)
n−T :n−1)

if T ≤ n < N, and if n=N,

w
(i)
N−T

N∏

n=N−T+1

pθ(yn|q
(i)
n:N−1, q̃

(i)
N )

pθ(q̃
(i)
N |q

(i)
N−T :N−1)

rθ(q̃
(i)
N |q

(i)
N−T :N−1)

(11)

– Do resampling if necessary (we describe the multinomial resampling): Draw a multi-
nomially distributed random vector with probabilities of success given by the normal-

ized importance weights, i.e., (N1, . . . , NM ) ∼ M(M, w̃
(1)
n−T+1, . . . , w̃

(M)
n−T+1), where∑M

j=1Nj = M and set for i = 1, . . . ,M,

I(i)n = l, where l ≥ 1 is such that
l−1∑

j=0

Nj < i ≤
l∑

j=0

Nj . (12)

Then, set w
(i)
n−T+1 = c, where c is a positive constant.

– Update the trajectories: For i = 1, . . . ,M,

q
(i)
0:n =

(
q
(I

(i)
n )

0:n−1, q̃
(I

(i)
n )

n

)
,

where I
(i)
n = i, if there is no resampling, otherwise, it is given by (12).

We obtain two important special cases of Algorithm 1 by specializing the importance tran-
sition densities rθ(·|qn−T :n−1) of Qn given the history of the hidden process.

• Bootstrap (or Blind) filter: rθ(·|q(n−T )+:n−1) = pθ(·|q(n−T )+:n−1). By putting the ratio
pθ/rθ = 1 in (10) and (11), we get the first importance weights and the update equation
respectively.

• Improved filter:

rθ(·|q(n−T )+:n−1) =

{
pθ(·|q0:n−1) if 1 ≤ n ≤ T − 1,
pθ(·|qn−T :n−1, yn−T+1) if T ≤ n ≤ N,

(13)
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where pθ(·|qn−T :n−1, yn−T+1) is a density of a normal distribution, with parameters given in
Appendix A. By (11) and (13) we get the following recurrence for the importance weights,
for T ≤ n < N and n = N respectively:

w
(i)
n−T+1 =





w
(i)
n−T pθ(yn−T+1|q

(i)
n−T :n−1)

w
(i)
N−T pθ(yN−T+1|q

(i)
N−T :N−1)

N∏

n=N−T+2

pθ(yn|q
(i)
n:N−1, q̃

(i)
N ),

(14)

where the initial weights w
(i)
0 are given as in the bootstrap filter and

pθ(yn−T+1|qn−T :n−1) is a computable incremental weight (see Appendix A).

The term improved filter is used to indicate that choosing rθ in this way allows to take into
account during simulation information from the available data, while the bootstrap filter does
not. Note that this filter does not coincide with the optimal filter of [34] since the T -dependence
makes the model depart from the assumptions of the latter filter.

4.2 Maximum Likelihood Estimation

The maximum likelihood estimator (MLE) cannot be derived explicitly in hidden Markov models
and for this reason an EM-type (Expectation-Maximization) algorithm is a sensible choice (see
[13] for the general formulation and [2] as a method for estimation in finite state space HMMs),
since it is particularly adapted to incomplete data problems. Starting from an arbitrary initial
value, the original deterministic version of the EM-algorithm produces a convergent sequence
of parameter updates, under some regularity conditions ([4], [33]). Each iteration of the EM
algorithm consists in two steps, the expectation step (E-step) and the maximization step (M-
step). In the first step, the conditional expectation of the complete data log-likelihood given the
observed data is computed under the current parameter estimate (called Q-function). In the
second step, the parameters are updated by maximizing the Q-function of the E-step. For an
extensive literature on the EM, see [26] and the references therein.

If the integral involved in the E–step is analytically intractable, then one should approximate
the Q-function. This is one of the motivations of a large class of stochastic EM-type algorithms,
including in increasing order of generalization, the Stochastic EM (SEM) ([7]), the Monte Carlo
EM (MCEM) ([32]) and the Stochastic Approximation EM (SAEM) ([12]). Their common
characteristic is that at each iteration they all approximate the Q–function by simulating the
hidden state sequence from its conditional distribution given the observed data (see also [19]). In
the general context of the EM-algorithm [19] distinguishes three different simulation paradigms:
i.i.d. simulation via rejection sampling, independent simulation via importance sampling (IS), or
generating dependent samples via Markov chain Monte-Carlo (MCMC). In the context of hidden
Markov models the latter two are the most appropriate and [6] give a systematic development
of the SISREM (the most appropriate variant of IS in hidden Markov models) and MCMCEM
(with explicit M-step), illustrating their performance in the stochastic volatility model of [18]
(see Example 11.1.2). Both simulation methods were shown to be similar in their results. For
the use of sequential Monte Carlo methods for smoothing in nonlinear state space models with
applications to MLE see [28]. The authors use a modified version of a SISREM algorithm
based on a fixed-lag technique presented by [21] in order to robustify the parameter estimates.
Nevertheless, their approach is not applicable in our case since we are not in the framework of
ergodic hidden Markov models and data sets from plant growth models are usually of small size.
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Unfortunately, any stochastic EM-type algorithm that can be designed for the hidden Markov
model given by Proposition 1 leads to a non-explicit M-step as well. For this reason, a numerical
maximization procedure of quasi-Newton type, should be implemented at each iteration. For
a large dimensional parameter vector this could be rather time consuming and may lead to
convergence towards local maxima. [27] propose to separate a complicated M-step into smaller,
more tractable conditional M-steps and update step by step the parameters of the model. This
is the principle of the ECM (Expectation Conditional Maximization) algorithm, which is an
interesting extension of the classical EM-algorithm. The ECM can also be used when we consider
stochastic variants of the EM. In our setting we can benefit from this principle since we can reduce
the number of parameters to be updated via numerical maximization by updating explicitly in a
first CM (conditional maximization) step a large number of easily tractable parameters with fixed
values of the rest. We describe this idea in the deterministic setting for notational simplicity
since in the stochastic case we just have to replace all the smoothing functionals with their
estimated counterparts.

Let Q(θ; θ′)
def
= Eθ′

[
log pθ(Q0:N , y0:N )|y0:N

]
and assume that θ = (θ1, θ2) and marginal max-

imization w.r.t. θ1 or θ2 is easy. Then, the i-th iteration of the ECM algorithm consists in the
following steps:

• E-step: Compute Q(θ1, θ2; θ
(i)
1 , θ

(i)
2 )

• CM-step:

θ
(i+1)
1 = argmax

θ1
Q(θ1, θ

(i)
2 ; θ

(i)
1 , θ

(i)
2 ),

θ
(i+1)
2 = argmax

θ2
Q(θ

(i+1)
1 , θ2; θ

(i)
1 , θ

(i)
2 ).

Recall that the parameter of the GreenLab model θ = (p, σ2,Σ), where σ2 and Σ are vari-
ance parameters related to model uncertainty and measurement errors respectively and p =
(µ, spr, kB, pal), where the first three are parameters related to the production equation and pal
to the allocation pattern. We will show that an ECM algorithm can be applied to this problem
to reduce the complexity of the maximization problem, if we consider θ1 = (µ, σ2,Σ), which is a
5-dimensional parameter vector (Σ depends on three independent parameters). The rest of the
parameters form θ2 and maximization is performed via the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton procedure.

Let us analyze the Q-function of the model. The density function of the complete model
(complete likelihood function) by (8) and (9) is given by

pθ(q0:N , y0:N ) =
N∏

n=1

pθ(qn|q(n−T )+:n−1)
N∏

n=0

pθ(yn|qn:(n+T−1)∧N ). (15)

Let us denote Kn
def
= µ−1Fn. In the rest, we identify the functions Kn and Gn (see (7)) with

the induced random variable Kn(θ2) and the induced random vector Gn(θ2) respectively, for
an arbitrary θ2 ∈ Θ2, where Θ2 is an appropriate euclidean subset. By the definition of the
Q-function, (15) and Proposition 1 we get

Q(θ; θ′) =
N∑

n=1

Eθ′
[
log pθ(Qn|Q(n−T )+:n−1) | y0:N

]
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+

N∑

n=0

Eθ′
[
log pθ(yn|Qn:(n+T−1)∧N ) | y0:N

]

= C(θ2; θ
′) +Q1(µ, σ

2, θ2; θ
′) +Q2(Σ, θ2; θ

′), (16)

where

Q1(µ, σ
2, θ2; θ

′) = −
N

2
log σ2 − N logµ−

1

2σ2

N∑

n=1

Eθ′

[(
µ−1QnK

−1
n−1(θ2)− 1

)2
| y0:N

]
,

(17)

Q2(Σ, θ2; θ
′) = −

N + 1

2
log(detΣ)

−
1

2

N∑

n=0

Eθ′

[(
yn −Gn(θ2)

)⊤
Σ−1

(
yn −Gn(θ2)

)
| y0:N

]
, (18)

and C(θ2; θ
′) is independent of θ1.

Note that for fixed θ2 the initial maximization problem of Q w.r.t. θ1 can be separated into
two distinct maximization problems of Q1 and Q2 w.r.t. (µ, σ2) and Σ respectively. In the
following proposition we give the solution to the maximization problem. The proof is deferred
to Appendix C.

Proposition 2. Let θ̂1,N (θ2; θ
′) =

(
µ̂N (θ2; θ

′), σ̂2
N (θ2; θ

′), Σ̂N (θ2; θ
′)
)
be the maximizers of the

Q-function given by (16) when θ2 is fixed. The update equations for θ1 are given as follows:

µ̂N (θ2; θ
′) = N−1

N∑

n=1

Eθ′
[
QnK

−1
n−1(θ2) | y0:N

]
, (19)

σ̂2
N (θ2; θ

′) = N−1 µ̂−2
N (θ2; θ

′)
N∑

n=1

Eθ′
[
Q2

nK
−2
n−1(θ2) | y0:N

]
− 1, (20)

Σ̂N (θ2; θ
′) = (N + 1)−1

N∑

n=0

Eθ′

[(
yn −Gn(θ2)

)(
yn −Gn(θ2)

)⊤
| y0:N

]
(21)

Remark 3. In case σ2 is fixed (assumed level of uncertainty), we get a different update equation
for the parameter µ, given by

µ̂N (θ2; θ
′) =

(
2Nσ2

)−1

(
∆1/2(θ2; θ

′)−
N∑

n=1

Eθ′
[
QnK

−1
n−1(θ2) | y0:N

]
)
, (22)

where

∆(θ2; θ
′) =

(
N∑

n=1

Eθ′
[
QnK

−1
n−1(θ2) | y0:N

]
)2

+ 4Nσ2
N∑

n=1

Eθ′
[
Q2

nK
−2
n−1(θ2) | y0:N

]
.

For a proof of (22) see Appendix C, Remark 4.

The detailed description of the E-step of the proposed algorithm and the recursive update
of all the aforementioned smoothing functionals needed for the first explicit conditional maxi-
mization step is given in Appendix A.
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5 Results and some practical considerations

In this section we present selected results which concern a simulated case (synthetic example) and
a real data scenario from the sugar-beet. Several practical issues concerning the implementation
of the proposed algorithm are also discussed. The synthetic example is chosen on purpose in the
spirit of the application with the sugar-beet in order to show the theoretical performance of the
algorithm when data are really generated from the assumed model. The state estimation part
was implemented with the Improved filter, since by construction it is more informative than the
blind filter which does not take into account the data in the proposal distributions.

5.1 Simulated data case

In this example we assume that the plant is cut after 50 growth cycles (N = 50). We illustrate
the performance of the SISRECM algorithm that we developed by using a data file generated
by a specific parameter file assumed to be the true one. The parameters are divided into two
categories, those which are assumed to be known or calibrated directly in the field and the
unknown parameter θ that has to be estimated. The values that we used to generate the data
are given in Appendix D (Table 1). The update equations are given in Proposition 2 and
equation (22) for a fixed σQ. The estimation of the covariance matrix of the measurement
errors corresponds to the estimation of the standard deviations σb and σp (for measurements of
the blade and the petiole respectively) and the correlation coefficient ρ. In order to estimate
the parameters of the model we used the averaging technique (see, e.g., [6], page 407) which
smooths the final estimates by averaging (weighted average) successively after a burn-in period
all subsequent EM-estimates with weights proportional to the Monte-Carlo sample size used
in the corresponding EM iterations (see Figure 1). In Table 1 we give the mean parameter
estimates that we obtained from independent runs of the algorithm and under two different
initial conditions (the standard deviations are also given).

Table 1: Parameter estimation results based on the synthetic example (see also Appendix D,
Table 1). Estimates with the fully observed model are given in column 3. We give the means
and the standard deviations of the estimates based on 50 independent runs and two different
initializations (init1=real).

param. real fully-obs. init2 mean1 mean2 std1 std2

ab 3 2.909 2.4 2.793 2.795 0.0094 0.0103
ap 3 2.905 2.4 2.818 2.820 0.0093 0.0102
Pp 0.8165 0.8152 0.6532 0.8150 0.8150 8× 10−6 9× 10−6

µ−1 140 140.07 112 142.05 142.02 0.109 0.124
σb 0.1 0.1136 0.1 0.1187 0.1186 0.0001 0.0001
σp 0.1 0.1058 0.1 0.1102 0.1102 0.0001 0.0001
ρ 0.8 0.8158 0.8 0.8318 0.8318 0.0003 0.0003

Since our algorithm is stochastic we performed independent runs in order to increase the
level of accuracy. The number of runs should be chosen by the user depending on the desired
level. With 50 independent runs we can see very small differences in the estimated means (see
Table 1, columns mean1 and mean2) since independent runs of the algorithm reduce the variance
proportionally to the number of runs. For each independent run of the algorithm, the number of
Monte-Carlo sample size was increased piecewise linearly for the first 50 iterations (starting from
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Figure 1: Parameter estimation during 100 EM iterations for the correlation coefficient and the
sink petiole with 20 independent runs of the algorithm. The effect of averaging is shown in the
right figures. The dotted lines which are nearest to the estimates correspond to the MLE if the
data were fully observed and the other dotted lines to the parameters used to generate the data.
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Figure 2: Bootstrap estimation of the marginal distributions of the MLE of the genetic param-
eters (Leaf resistance, Sink petiole, alpha blade and alpha petiole) based on a 500 bootstrap
sample. The vertical dotted lines correspond to the estimated (0.025, 0.5, 0.975) quantiles of the
MLE. In each subfigure, near to the median the supplementary vertical dotted line represents
the estimated mean of the MLE

250, then increasing by 10 for the first 25 iterations and by 20 for the subsequent 25 iterations),
and for the last 50 iterations we used a quadratic increase until we reach 10.000 trajectories.
The algorithm stopped deterministically after 100 EM-iterations. For an automatic criterion
the averaging technique can be used also as a way to impose a stopping criterion.

We used parametric bootstrap (see [35], Section 3.6.2.) for giving an approximate distribu-
tion of the MLE of the parameters. The bootstrap M -sample (M = 500 in our case) was formed
by obtaining parameter estimates from data files generated independently from the estimated
parameter mean1 given in Table 1. Each bootstrap estimate was based on a single run of the
algorithm. For estimating with better precision higher moments or the tail of the distribution
the bootstrap sample should be further increased and each individual bootstrap estimate should
be taken as the mean of a certain number of independent runs of the algorithm. Nevertheless,
depending on the desired precision this could prove to be rather computationally inefficient. In
Figure 2 we give bootstrap estimates of the marginal distributions of the MLE of the genetic
parameters. In Table 2 we give the estimates of the means and the standard deviations of both
the MLE of the true and the complete data model (if the data were fully observed). Notice the
difference in the standard deviations of the alpha parameters between the fully observed and the
hidden model. These two parameters are mostly affected by the additional variability due to
the incompleteness of the model (compare with the other parameters). The common behavior
of the alpha parameters can be explained by the extremely high positive correlation of their
estimators (see Table 4).

5.2 Experimental data from the sugar-beet

The experimental protocol carried out in 2006 in order to collect the experimental data from
the sugar-beet is detailed in [23]. In this study, we tackle the problem of parameter estimation
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Table 2: Parametric bootstrap estimates of the means and the standard deviations of the MLE
of the hidden model and the MLE of the fully observed (FO) model for comparison reasons.
The estimates are based on a 500 bootstrap sample and are MLE estimates obtained from 500
data files generated with true parameter the MLE given in column 2.

param. MLE FO-mean MLE-mean FO-std MLE-std

ab 2.793 2.792 2.804 0.078 0.224
ap 2.818 2.816 2.828 0.084 0.226
Pp 0.815 0.815 0.815 0.0029 0.0029
µ−1 142.05 142.03 142.03 2.245 3.425
σb 0.119 0.114 0.113 0.012 0.015
σp 0.110 0.106 0.105 0.012 0.013
ρ 0.832 0.833 0.828 0.047 0.053

based on a single plant. In this real-data scenario we make the assumption that blades and
petioles have common expansion durations T = 10.

The parameters are divided into two categories, those which were calibrated directly in the
field and the unknown parameter θ that has to be estimated.

First, based on this real-data scenario, we motivate our choice to introduce the HMM given
by Proposition 1 to fit these data. As a by-product of its formulation this model introduces
three types of correlations, i) in the masses of blade and petiole preformed at the same GC, ii)
in the masses of blades preformed at different GCs (correlation in time), iii) in the masses of
petioles preformed at different GCs (correlation in time). The first correlation is directly taken
into account by including the correlation coefficient as a parameter to be estimated. Correlation
in time is indirectly introduced in the other two cases by introducing stochasticity (with T > 1)
in the biomass production. Intuitively, the simpler model described in Section 2-iii) would be
preferable to the new one if these correlations were not statistically significant. For the rest, the
simpler model is referred to as the normal model. Let us now denote by rbp the sample correlation
corresponding to case i), and rb and rp, the first-order sample autocorrelations corresponding
to case ii) and iii) respectively, if mean theoretical masses are estimated by their fitted means
based on the normal model estimates. The results that we obtained are given as follows:

(rbp, rb, rp) = (0.0820, 0.6318, 0.6606). (23)

Note that in the classical test of the correlation coefficient, under the null hypothesis of null
correlation, with significance level 0.05 the critical values are 0.304 and 0.308 for the first and
the last two correlations respectively. This shows that the fitting with the normal model reveals
that no significant correlation is present in the mass measurements of the blade and petiole but
the correlation in time for blade and petiole are significant and cannot be neglected. This is
reflected in the model comparison that we make in the sequel.

Now, we illustrate the performance of the SISRECM algorithm based on this experimental
data file. The parameter σ2 represents a standard level of uncertainty (σ = 0.1) for the mean
biophysical model given by (5). We used several initializations and the results are similar.
In Appendix D (Table 2) we give the initial values for the presented results. The simulation
procedure that we used is the same as explained in the synthetic example. In Table 3 we give
the MLE that we obtained as a mean of 50 independent runs and the estimates of the means and
the standard deviations of the distribution of the MLE. We also indicate the root mean square
errors with respect to the MLE and the coefficients of variation. Note that the parameter with
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Table 3: Parameter estimates based on the SISRECM algorithm and bootstrap estimates of the
means and the standard deviations of the marginal distributions of the MLE based on a 500
bootstrap sample. The root mean square errors (RMSE) and the coefficients of variation (CV)
are also given.

param. MLE MLE-mean MLE-std RMSE CV

ab 2.829 2.794 0.280 0.282 0.100
ap 1.823 1.805 0.225 0.225 0.125
Pp 0.815 0.814 0.016 0.016 0.020
µ−1 98.125 99.05 5.357 5.432 0.054
σb 0.076 0.073 0.008 0.009 0.110
σp 0.059 0.056 0.007 0.007 0.125
ρ 0.1266 0.137 0.161 0.162 1.175

the highest coefficient of variation (compare std/mean) is as expected the correlation coefficient
of the measurement error model (since the range of its values is close to zero and takes also
negative values). All the MLE of the parameters in the real data scenario have larger estimated
standard deviations than the ones in the synthetic example. The bootstrap estimates of the
marginal distributions of the MLE corresponding to the genetic parameters as well as estimated
confidence intervals are given in Appendix D (Figure 1). In Table 4 we give the estimated
correlation matrix of the MLE (the lower diagonal matrix). Notice the very high positive

Table 4: Bootstrap estimation of the correlation matrices of the MLE based on a 500 bootstrap
sample. The upper diagonal matrix gives the estimated correlation coefficients for the synthetic
example and the lower diagonal matrix for the real data case.

param. ab ap Pp µ−1 σb σp ρ

ab 1 0.970 -0.005 -0.783 -0.074 0.003 -0.036
ap 0.941 1 -0.031 -0.741 -0.057 0.013 -0.021
Pp -0.055 -0.013 1 -0.016 0.070 0.025 -0.007
µ−1 -0.936 -0.822 0.060 1 0.082 0.020 0.028
σb -0.008 -0.013 0.070 -0.004 1 0.6948 0.600
σp -0.021 -0.005 -0.003 0.028 0.038 1 0.630
ρ 0.101 0.092 -0.018 -0.122 0.081 0.104 1

correlation between the MLE of the alpha parameters and their joint highly negative correlation
with the MLE of the leaf resistance (the inverse of the leaf transpiration efficiency).

Finally, driven by the results and the discussion following (23) we repeated the fitting with the
HMM under the assumption that ρ = 0 (one parameter less to estimate). The three competing
models: i) the normal model, ii) the HMM1 (ρ as a free parameter) iii) the HMM2 (ρ = 0)
were compared for their fitting quality on the basis of the two most commonly used model
selection citeria, the corrected Akaike information criterion (corrected AIC) and the Bayesian
information criterion (BIC). In Table 5 we present the results of this comparison. The best
model according to both criteria was shown to be the HMM with ρ = 0 (attains the minimum
AICc and BIC). Even if HMM1 has the maximum log-likelihood (see Table 6) the penalty term
for the estimation of one additional parameter makes it the least probable. These results are
consistent with the preliminary tests based on the sample correlation coefficients given in (23).

16



The MLE corresponding to all competing models are given in Table 6, followed by bootstrap
estimated 95% confidence intervals of the best model.

Table 5: Corrected AIC and BIC evaluation for the three competing models: i) the normal
model, ii) the HMM1 with the correlation coefficient ρ as a free parameter and iii) the HMM2
with no correlation (ρ = 0). The values in parenthesis correspond to the estimated standard
deviation of the mean values of AICc and BIC for HMM1 and HMM2 based on 100 samples of
5×105 independent evaluations. For completeness: AICc = −2(log L̂−d)+2d(d+1)/(n−d+1)
and BIC = −2 log L̂+ d log n, where d is the number of free parameters and n the sample size

model normal HMM1 HMM2

AICc -343.319 -342.174 (0.021) -344.022 (0.035)
BIC -329.825 -326.631 (0.021) -330.528 (0.035)

Table 6: MLE obtained with the normal, the HMM1 (ρ as a free parameter) and the HMM2
(ρ=0) model for the sugar-beet data set, together with their estimated log-likelihoods (up to a
constant term). For the sample size see Table 5. The last two lines give 95% confidence intervals
for the best model HMM2, based on a 500 bootstrap sample.

model ab ap Pp µ−1 σb σp ρ log L̂

normal 2.956 2.030 0.8162 96.33 0.081 0.061 0 178.205 (0.000)
HMM1 2.829 1.822 0.8147 98.13 0.076 0.059 0.13 178.824 (0.010)
HMM2 2.868 1.858 0.8145 98.03 0.074 0.059 0 178.556 (0.018)
q0.025 2.343 1.421 0.7802 88.89 0.056 0.043 0 -
q0.975 3.398 2.329 0.8462 109.58 0.088 0.071 0 -

6 Discussion

In this paper, we developed a theoretical framework for describing plant growth in a class of
plants characterized by deterministic structural development. We also proposed a stochastic
variant of the ECM algorithm for parameter estimation of this class of models. The results
obtained with the sugar-beet plant are encouraging but further research effort is needed in
order to improve modeling and parameter estimation both at individual and population levels.
Further improvements should be made to the existing approach so as to take into account in
a more informative way the organ masses of the last immature members for large expansion
durations. Finding parameterizations which are at the same time adequate and parsimonious
in the modeling of living organisms is always a difficult and demanding task. The difficulty
increases given the limited life time or observation time of several plants.

One implementation issue that still attracts research interest concerns the Monte-Carlo sam-
ple augmentation strategy. The simulation schedule that we used is deterministic (see Section
5) and is similar to that of [6] (see Section 11.1.2). From our experience, even with small sample
sizes at the first iterations, parameter estimates are driven rapidly towards the region of inter-
est. However, a lot of simulation effort is needed near convergence to avoid “zig-zagging”. A
small quadratic increase of the sample size w.r.t. the number of ECM steps was rather satisfy-
ing to keep a moderate final sample size in a sufficient number of ECM iterations allowing to
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detect convergence. The averaging technique further improved the precision of the estimates.
Despite the simplicity and the good control that one can have with a deterministic schedule, in
the routine use of the method, automated and data-driven algorithms can offer an interesting
alternative (see, e.g., [5]). Further studies are needed to assess the benefits of such automated
procedures.

To our knowledge, convergence results are available only for the deterministic ECM ([27])
and not for its stochastic counterpart. The difficulty of handling these questions increases since
one conditional maximization step is performed numerically (see also [22]). The strongest known
results for MCEM algorithms are those of [14] concerning only (curved) exponential parametric
families. Convergence analysis of the present algorithm is a specific focus of our current research
work.

Further perspectives include: i) the model validation in a large variety of plants with de-
terministic organogenesis. For this purpose, different types of model and measurement errors
should be tested and compared with the help of model selection techniques, ii) alternative sim-
ulation based parameter estimation techniques could be developed, tested and compared with
the existing method, as for example an ECM algorithm based on a Markov Chain Monte-Carlo
state estimation technique, iii) a generalization of the proposed methodology for plants with
stochastic organogenesis (including trees), where the total number of organs of each class at
each Growth Cycle are random variables, iv) a natural extension of the proposed methodology
at population level, which seems to be feasible and realistic for low inter-individual variability.

Supplementary materials

Appendices are available online, giving a more detailed description of the algorithm, proofs of
results and figures & tables referenced in the text.

Acknowledgements

The authors are grateful to the editor-in-chief, the associate editor and the referees. Their
valuable comments and suggestions improved considerably this paper.

References
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acterisation of the interactions between architecture and source:sink relationships in winter oilseed
rape (brassica napus l.) using the greenlab model. Annals of Botany, 107(5):765–779, 2011.

[21] G. Kitagawa and S. Sato. Monte carlo smoothing and self-organising state-space model. In A. Doucet,
de Freitas N., and Gordon N., editors, Sequential Monte Carlo Methods in Practice, pages 178–195.
Springer, New York, 2001.

[22] K. Lange. A Gradient Algorithm Locally Equivalent to the EM Algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 57(2):425–437, 1995.
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