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A Sequential Procedure for Multihypothesis 
Testing 

Carl W. Baum, Member, IEEE and Venugopal V. Veeravalli, Member, IEEE 

Abstract-The sequential testing of more than two hypotheses 
has important applications in direct-sequence spread spectrum 
signal acquisition, multiple-resolution-element radar, and other 
areas. A useful sequential test which we term the MSPRT is 
studied in this paper. The test is shown to be a generalization of 
the Sequential Probability Ratio Test. Under Bayesian assump- 
tions, it is argued that the MSPRT approximates the much more 
complicated optimal test when error probabilities are small and 
expected stopping times are large. Bounds on error probabilities 
are derived, and asymptotic expressions for the stopping time 
and error probabilities are given. A design procedure is pre- 
sented for determining the parameters of the MSPRT. Two 
examples involving Gaussian densities are included, and com- 
parisons are made between simulation results and asymptotic 
expressions. Comparisons with Bayesian fixed sample size tests 
are also made, and it is found that the MSPRT requires two to 
three times fewer samples on average. 

Index Terms-Sequential analysis, hypothesis testing, infor- 
mational divergence, nonlinear renewal theory. 

I. INTRODUCTION 

T 

HE use of sequential tests for binary hypothesis 
testing has been well studied, and the properties of 

the Sequential Probability Ratio Test (SPRT) have been 
thoroughly investigated in the literature [l]-[3]. The rea- 
son for the interest in the SPRT is due mainly to its 
optimality property; for specified levels of error probabili- 
ties, the SPRT is the test with the minimum expected 
stopping time [l], [4]. Also, in practice, the SPRT outper- 
forms the best fixed sample size test by a very wide 
margin; typically one-half to one-third the number of 
samples on average are required. 

Although the majority of research in sequential hypoth- 
esis testing has been restricted to two hypotheses, there 
are several situations, particularly in engineering applica- 
tions, where it is natural to consider more than two 
hypotheses. The following are some examples. 

1) Consider the serial acquisition of direct-sequence 
spread spectrum signals [5]. The acquisition problem 
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2) 

3) 

4) 

51 

is to determine the true phase of the incoming code 
sequence. A serial search scheme achieves this goal 
by testing the correctness of each possible phase 
serially. If two or more phases (in particular, M - 1 
phases, M > 2) are tested at a time, then we have an 
M-ary hypothesis ,testing problem-each of M - 1 
of these hypotheses correspond to deciding that a 
particular phase is correct, and an additional hypoth- 
esis corresponds to deciding that none of these M - 
1 phases are correct. A sequential test is of great 
interest here since the correct phase should be ac- 
quired as soon as possible. 
In the context of multiple-resolution-element radar, 
we have sequential decision problems with a single 
null hypothesis and multiple alternative hypotheses 
[6]. For example, if there are N resolution elements 
with each element possibly having a target, the num- 
ber of alternative hypotheses is 2N. 
Consider a fault detection problem in a system where 
there could be more than one possible kind of fault, 
and the goal is not only to detect the presence of a 
fault as quickly as possible but also to determine the 
type of fault. This useful extension of the standard 
binary quickest change detection problem [7] pro- 
vides a setting for an M-ary sequential test. 
In the context of clinical trials, deciding which of 
several possible medical treatments is the most ef- 
fective as quickly as possible is a multihypothesis 
sequential problem. 
Statistical pattern recognition is a source of multiple 
hypothesis problems. Fu [S] discusses potential appli- 
cations of multihypothesis sequential tests in this 
area. 

The problem of sequential testing of multiple hypothe- 
ses is considerably more difficult than that of testing two 
hypotheses. Published work on this problem has taken two 
approaches. One approach has aimed at finding an opti- 
mal multihypothesis sequential test. A recursive solution 
to the optimization problem in a Bayesian setting has 
been obtained [9]-[ll]. However, this solution is very 
complex and impractical except in a few special cases. 

A second approach has been to extend and generalize 
the SPRT to the case of more than two hypotheses 
without much consideration to optimality. Several ad hoc 
tests based primarily on repeated pairwise applications of 
the SPRT have been proposed and studied. Some exam- 
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ples of these tests are the Sobel-Wald test [12], the 
Armitage test [13], the Simons test [14], the Lorden test 
[15], and the m-SPRT [16] (a recent survey of these tests 
is found in [17]). It should be noted that many of these 
tests are restricted to the case of three hypotheses. 

Unlike these ad hoc tests, the test that we propose in 
this paper, the MSPRT, is based on the solution to the 
Bayesian optimization problem. Unlike the optimal solu- 
tion, the MSPRT has a simple structure that facilitates 
implementation. The MSPRT is applicable to any number 
of hypotheses, and it reduces to the SPRT when there are 
two hypotheses. Furthermore, like the SPRT, the MSPRT 
is amenable to an asymptotic analysis using renewal the- 

w- 
This paper is organized as follows. After introducing 

the MSPRT in Section II, we explore its optimality under 
a Bayesian modeling in Section III. A recursive solution 
to the general Bayesian optimization problem (akin to 
that obtained in [9]-[ll]) is given first. We then note that 
the MSPRT has a much simpler structure than the opti- 
mal solution, and, furthermore, the MSPRT provides a 
good approximation to the optimal solution, especially 
when the cost per observation is small compared to the 
cost of choosing the wrong hypothesis. Because this cost 
structure generally corresponds to small error probabili- 
ties and large stopping times, we see that the approxima- 
tion is best for the very applications that can benefit the 
most by a significant reduction in average sample size. 

Performance analysis of the MSPRT is discussed in 
Sections IV-VI. Just as in the case of the SPRT, it is not 
possible to obtain exact expressions for the error probabil- 
ities and expected stopping time except in special cases. In 
Section IV, upper bounds on Bayesian and frequentist 
error probabilities are derived using techniques similar to 
the ones used by Wald for .the SPRT [l]. It is suggested 
that these bounds can -be used as approximations, much 
like Wald’s approximations for the SPRT. In Section V, 
approximations for the expected stopping time are ob- 
tained using elementary renewal theory [3]. In Section VI, 
improved approximations for the error probabilities are 
obtained using nonlinear renewal theory [3]. All of the 
renewal theory approximations are shown to be asymptot- 
ically exact as the error probabilities go to zero and the 
expected stopping time becomes infinite. The approxima- 
tions for the error probabilities and expected stopping 
time may be used in the design of the MSPRT for specific 
applications; methods of design are considered in Section 
VII. In Section VIII, two examples utilizing the MSPRT 
are discussed, and comparisons are made between the 
asymptotic results and simulations. Comparisons are also 
made between the MSPRT and optimally designed hxed 
sample size tests. Conclusions and directions for further 
research are given in Section IX. 

II. M-ARY SEQUENTIAL PROBABILITY RATIO TEST 

Let X,, X,, a** be an infinite sequence of random 
variables, independent and identically distributed (i.i.d.1 
with density f, and let Hi be the hypothesis that f = fi 

for j = 0, l;.., M - 1. We assume that fk #h almost 
surely for all j # k. Stated informally, the problem at 
hand is to determine the true hypothesis with a desired 
accuracy as quickly as possible. 

Assume that the prior probabilities of the hypotheses 
are known, and let rrj denote the prior probability of 
hypothesis Hi for each j. If only n observations are 
available, the minimum-probability-of-error test uses as 
the test statistic the following vector of posterior probabil- 
ities: 

where 

pn = (p,“,.-‘,p,M-l) 

pi = P(H = Hi I xi,***, X,]. 

The minimum-probability-of-error test picks the hypothe- 
sis with the largest posterior probability, g;ven the obser- 
vations [ 181. 

For our problem, the available number of observations 
is, in theory, infinite, and a compromise must be struck 
between the number of observations used and the error 
probability. When the observations arrive periodically over 
time, this compromise is between the delay in making a 
decision and the accuracy of that decision. A test that 
strikes such a compromise is a sequential test, and it 
consists of a stopping rule and a final decision rule. The 
stopping rule determines the number of observations that 
are taken until a decision is made, and the final decision 
rule chooses one of the M hypotheses as its best estimate 
of the true hypothesis. 

In this paper, we ‘consider one such sequential test, 
which we call the M-ary sequential probability ratio test 
(MSPRT). The stopping time NA and final decision 6 for 
the MSPRT can be described as follows: 

1 
NA = first y1 2 1 such that p,” > 1+~ for at least one k 

k 

6 = H,,,, where m = arg maxpi*. 
j 

Using Bayes’ rule, the posterior probabilities can be 
written as 

rj fJh(x,) 

Pi = M-l 
r=l 

,fb Tk( Lfifk(xi) 

and thus, an equivalent description of the MSPRT is 

7Tk iifkcxi) 

NA = first y1 2 1 such that 
i=l 

> -&-- for at least one k 
k 

6=H,, wherem = argmy (rjfih(Xi)). 
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The parameters Aj are assumed to be positive, and as 
we shall see in the following sections, the typical design 
values are all less than one. If each parameter Aj is 
indeed less than one, then the condition p,! > l/(1 + Aj) 
can be satisfied by at most one value of j (since the 
posterior probabilities must sum to one). In this case, the 
MSPRT takes the form 

NA = first n r 1 such that ,,,-i 

1 
~ for some k 

>l+A, 

S=H,. 

For comparison, the SPRT (for sequential testing of 
two hypotheses H, and H,) with parameters A’ and B’ is 
defined [l] as 

NCA,,s,) = first IZ 2 1 such that L, 

lrIf&u 
i=l 

n E [A’, B’l 

IlfO(xi) 
i=l 

S=H,ifL,>B’andS=H,ifL,<A’. 

It is straightforward to show that the MSPRT with M = 2 
is identical to the SPRT with parameters 7~~ A~/GT~ and 
rO/(ml A,). Note that for the SPRT, the prior probabili- 
ties can be incorporated into the parameters A’ and B’. 
For the MSPRT, however, the priors cannot be absorbed 
into the thresholds A,, AI;**, A,-, unless M = 2. 

III. BAYESIAN OPTIMALITV 

In this section we investigate the MSPRT in the context 
of designing optimal sequential hypothesis tests under a 
Bayesian framework. Towards this end, we first provide a 
formulation for determining the best (in the Bayesian 
sense) sequential test for determining the true hypothesis. 
A set of admissible sequential tests is defined, and the 
performance of each admissible sequential test is quanti- 
fied through the use of a cost assignment. 

An admissible sequential test y is defined as follows: 
Let Za be the a-field generated by X,, X,;.., X,. The 
stopping time N of y is a {Zn, n = L2,e.e }-stopping time, 
and the final decision S of y is measurable with respect 
to Z$. The set of all admissible sequential tests is denoted 
by I. 

For notational convenience, we let H denote the ran- 
dom variable that represents the true hypothesis. Then H 
takes the value Hj with probability rj. To avoid any 
trivialities, we assume throughout that the priors rrj are 
all nonzero. 

For the cost assignment, we assume that each time step 
taken by y costs a positive amount c, and that decision 

errors in the final decision S are penalized through a 
uniform cost function W(S; HI, that is, 

W(Hj, Hi) = 0 

W( Hj, Hk) = 1 for j # k. 

The Bayesian optimization problem is then formulated 
as 

~II E{cN + W(S; H)}. (1) 

A recursive solution to this problem has been obtained 
by researchers previously (see, for example, [9]-[ll]). In 
the following, we give a sketch of this recursive procedure 
using dynamic programming (DP) arguments. 

A. Dynamic Programming Solution 

It can easily be shown that the vector of posterior 
probabilities introduced in Section II is a sufficient statis- 
tic for a DP argument for the problem ,in (1). 

Using Bayes’ rule we obtain the following recursion for 

Pn: 

P;+~ = P{H = Hk IX 
P,kf!JX,+J 

1, .YX~+~> = M-l 

c P$(X,+,) 
j=O 

with initial condition p,, = m := (~,,;*a, ~~~~1. The con- 
ditional density of X,,, 1 given Zn, which we denote by 

f< - ; p,>, is given by 

M-l 

f(x;p,) = c p;f;(x). 

j=O 

(2) 

Furthermore, the vector of posterior probabilities is con- 
strained to lie in the convex set ‘8 given by 

%?= {p:O .spj 2 1, j = O;**,M-- 1 

and p” + ... +p”-’ = 1). 

Finite-Horizon Optimization: First restrict the stopping 
time N to a finite interval, say [O, Tl. The finite-horizon 
DP equations can then be derived. Toward this end, we 
note that the minimum expected cost-to-go at time n is a 
function of the sufficient statistic pn, and we denote it by 
JT(p,>, defined for 0 I n I T. It is easily seen that 

J&> = g(p,) 

where g(p) = min{(l - p’>;..,(l -p”-l)}. 
For 0 5 n I T - 1, a standard DP argument gives the 

following backward recursion: 

J,T(p,> = min {g(p,>, c + Awl (3) 

where 

A;(p,) = E{J:+l(p,+l> IZnl 

. 
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Note that the functions J,’ and AZ are defined on the 
set 5?. Also note that the optimum cost for the finite- 
horizon sequential test is J:(n). 

Infinite-Horizon Optimization: In order to solve the opti- 
mization problem in (11, the restriction that N belongs to 
a finite interval is removed by letting T + m. As a first 
step, note that for all T, for all n 5 T, and for all 
p E E”, 0 5 J:(p) I g(p). Furthermore, J,” ‘(p> I J:(p), 
because the set of stopping times increases with T. This 
implies that, for each finite n, the following limit is well 
defined: 

lim J:(p) = Ti$z, J:(p). 
T+m 

Denote this limit by J,“(p). Now, because the observations 
are i.i.d., a time-shift argument shows that J,“(p) is inde- 
pendent of n.‘We hence denote the limit by J(p), which 
we will refer to as the infinite-horizon cost-to-go function. 

Now, by the dominated convergence theorem [19], the 
following limit is well defined for all n: 

lim AZ(p) 
T+m 

The limit, which is independent of n, is denoted by A,(p). 
It follows that the infinite-horizon cost-to-go function 

satisfies the following Bellman equation [201 whose solu- 
tion can be shown to be unique (the proof is nearly 
identical to a parallel argument in [211): 

J(p) = min {g(p), c + A,(p)}. (4) 

Note that the optimum cost for the problem in (1) is 
J(m). In addition, if J(p) is computed for all p E %?, then 
the optimal sequential test can be obtained from (4). The 
uniqueness of the solution implies that a successive ap- 
proximation technique can be used to compute J(p) for 
all p E E’ (see [21] for a discussion of one such successive 
approximation procedure). However, the optimal test has 
a very complex structure [9] that makes implementation 
very impractical. Thus it is of interest to explore subopti- 
ma1 or approximately optimal solutions which have a 
simpler structure. 

B. Approximation to the Optimal Solution 

We begin by investigating some properties of the func- 
tions J(p) and A,(p) in the following lemma whose proof 
is quite straightforward (see [211 for the proof of a similar 
result). 

Lemma 3.1: The functions J(p) and A,(p) are non- 
negative concave functions of p on the set Z?‘. Further- 
more, 

A,(l, 0;.., 0) = A,(O, 1, O;.., 0) 

= . . . =A,(O;--,O, 1) = 0. 

Now, on the convex set ‘&‘, g(p) obtains its maximum 
value of 1 - l/M at p = (l/M;+., l/M). If c + 
A,(l/‘M;-., l/M) > 1 - l/M, then the optimal sequen- 
tial test ignores all the observations and bases its decision 
solely on the prior probability vector m. If c + 
A,(l/M,-, l/M) I 1 - l/M, then the concave func- 
tions g(p) and c + A,(p) intersect on some curve; the 
projection of this curve on %? is a closed connected set, 
which we denote by gi,,. The optimal test yopt is then 
described by 

N,,, = first n 2 1 such that p,, ~6 ‘iTi,, 

S 
opt =ff,, where m = arg min pi. 

j 

If the set pi:,, has a simple characterization, then the 
structure of the optimal test can be much simplified. For 
M = 2, 57 is the line segment joining the points (0,l) and 
Cl,01 in two-dimensional space, and the set %Yi,, is a piece 
of this line segment. Hence for h4 = 2, gii, = E? n {p” I 

a,} n {p’ I a,> for some thresholds a, and a,, which 
leads to the well-known SPRT structure for the optimal 
test. Unfortunately, such a threshold characterization of 
the set %?‘i’i, is not possible, in general, for It4 > 2. For 
M > 2, the set %? is the (M - l)-dimensional set join- 
ing the points (l,O;**,O),(O, 1,0;~~,0>;~~,(0;~~,0,1) in M- 
dimensional space, and the set pi?,, is obtained from G? by 
“pinching off’ pieces at the corners. The piece that is 
pinched off from the .jth corner, denoted by Aj, is the 
region of ‘8’ in which Hi is chosen by the optimal test. 
The following property of the decision regions Ai is easily 
established. 

Lemma 3.2: The decision regions Aj are convex. 
Fig. 1 illustrates the sets F: and @Yi?,, for the case M = 3. 

In this figure, PO = (l,O, 01, P, = (0, l,O>, Pz = (O,O, l), 
and Z? is the set of all points in the triangle. If p, lies 
within ~ii,, another sample is taken, and if pn lies within 
the region denoted by Aj, no further samples are taken 
and hypothesis Fj is chosen. 

As mentioned m Section I, we are mainly interested in 
the asymptotic performance of the M-ary sequential test 
when the error probabilities are small and the expected 
stopping time is large. In the Bayesian formulation, this 
corresponds to asymptotics as c + 0. We first investigate 
the behavior of A,(p) as c * 0. The following lemma is 
proved in the Appendix. 

Lemma 3.3: A,(p) is continuous in c and 

A,(p)lO as c 10. 

From Lemma 3.3 it follows that for c <i 1, the decision 
regions Aj are also small. This fact along with the result 
of Lemma 3.2 leads us to propose to approximate the set 
pi?,, by a set of the form ‘8’ n n E. {p’ I a,}, for c -=K 1. 
That is, the approximation we propose to the optimal test, 

denoted by ~~~~~~~~ has the following form: 

N approx = first n 2 1 3 p,” > ak for at least one k 

S ?lpprlX =ff,, where m = arg min (1 -pi). 
j 
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Fig. 1. Typical decision regions for an optimal test with M = 3. Fig. 2. Typical decision regions for an MSPRT with A4 = 3. 

Setting aj = l/l + Aj in yapprox gives us the MSPRT 
structure’ of Section II. 

An example of such an approximation for M = 3 is 
illustrated in Fig. 2. In this figure, the solid lines denote 
the boundary regions for an optimal test, and the dashed 
lines denote the boundary curves for an MSPRT. Note 
that if the optimal test were known, the parameters Aj 
could be chosen to provide a “best” approximation in 
some sense. 

For c CC 1, this test may perform quite well, as it 
captures the essential features of the optimal test. By way 
of example, consider a hypothesis testing problem for 
which Xi, X,;.‘., is a sequence of independent and iden- 
tically distributed random variables such that Xi can take 
on the values 0, 1, and 2. Let Ho be the hypothesis that 
P(X, = 1) = P(X, = 2) = l/2, let H, be the hypothesis 
that P(X, = 0) = P(X, = 2) = l/2, and let Hz be the 
hypothesis that P(X, = 0) = P(X, = 1) = l/2. In [ll] it is 
shown that the optimal sequential test for this problem 
with a nonuniform cost function can be solved without the 
need of iterative techniques. (Note that only a handful of 
very specialized problems can be solved in this manner.) 
Using the approach of [ll], we can solve this problem 
assuming a uniform cost function. As is done in [ll], it is 
convenient to redefine the probability coordinates before 
proceeding with the solution. In the new coordinate sys- 
tem, a particular probability vector (p’, d’, p’) is repre- 
sented as a point in 5%’ at a distance p” from the line 
opposite PO, a distance p1 from the line opposite P,, and 
a distance p* from the line opposite P2. (Note that the 
third specification is redundant.) 

The result is that the boundary between ‘Zi,, and the 
decision region A, is given by a connected set of line 
segments successively joining (1 - 2c,2c,O), (1 - 2ac, 
2ac - 4ac2, 4ac2), (1 - 2bc + 4bc2, 2bc - 8bc2, 4bc2), 
(1 - 2bc - 4bc2, 4bc2, 2bc - Sbc’), (1 - 2ac, 4ac2, 

‘Tartakovskii shows in [9] that the MSPRT structure is also obtained 
in the limiting case where the Kullback-Leibler distance between the 
conditional densities under each pair of hypotheses goes to infinity. 

/ tin \ 

p/J &Jp2 
1 

Fig. 3. Decision regions for an actual optimal test drawn in the rede- 
fined coordinated system. 

2ac - 4ac2), and (1 - 2c, 0,2c), where 
1 

and 
a = 1 - 2c + 2c2 

1 
b= 

1 - 4c + 4c2. 
The boundaries between gi:,, and the other decision re- 
gions can be obtained by successive cyclic permutation of 
the coordinates. 

These decision regions are shown in Fig. 3. From this 
figure, it would appear that the decision boundaries ap- 
proach straight lines (parallel to the opposite side of the 
triangle) as e + 0. In fact, it is straightforward to show 
that the boundary between $Yi” and A0 is of the form 

p” - (1 - 2~) = h(c,p) 

where h is a function that is O(c2> for any fixed p; that is, 
the boundary approaches the straight line p” = 1 - 2c 
on E”, as c + 0. This means that the optimal test for this 
example is asymptotically equivalent to the following sym- 
metric MSPRT (as c + 0): 

NC = first n 2 1 3 p,” > 1 - 2c for at least one k 

S, = 4, where m = arg min (1 -px). 
j 



BAUM AND VEERAVALLI: SEQUENTIAL PROCEDURE FOR MULTIHYPOTHESIS TESTING 1999 

While we have not proved the asymptotic optimality of 
the MSPRT in general, we believe that the simplicity of 
the test makes it a good choice for implementation. Fur- 
thermore, the numerical results of Section VIII indicate 
that for specified levels of error probabilities, the MSPRT 
takes two to three times fewer samples on average than 
the corresponding fixed sample size test, a gain similar to 
that obtained by using the SPRT for binary hypothesis 
testing. 

IV. PERFORMANCE BOUNDS 

We begin our analysis of the MSPRT by first deriving 
useful bounds on its stopping time and error probabilities. 
In the proofs of the results ‘in this and subsequent sec- 
tions, it is sometimes convenient to use the alternative 
description of NA given below. 

NA = first n 2 1 such that Mc1 2 fi ~ 
fjCxi> 

j=O rk i=l fk(xi) 
j#k 

< A, for at least one k. 

As with any other stopping time, it is important to 
determine the conditions or restrictions, if any, for which 
NA is finite. The following theorem shows that the proba- 
bility that NA exceeds y1 decreases exponentially with IZ. 

Theorem 4.1: The stopping time NA is exponentially 
bounded, conditioned on each of the hypotheses Hk, 
k = O;..,M - 1. 

Proofi For any fixed k, it is easily verified that the 
following inequalities are satisfied: 

NA I first IZ 2 1 such that “c’ 2 fi I 
f’Cxi> 

i=o rrk i=l fk(X,) < “1’” A, 

I first n 2 1 such that 2 n ___ 
iI fjCxi> 

rk i=l fk(x,> 

min, A, 

< M-l 
~ Vjjj#k. 

Thus, it is true that 

7rk min, A, Ti -~ 
rrj M-l 

where 

Note that the second-to last inequality is simply Markov’s 
inequality applied to each term in the summation. All that 
remains is to show that, for j f k, pi < 1. But this follows 
immediately from the Cauchy-Schwartz inequality since 

(Note that the inequality is strict because, as we assumed 
in Section II, fk # fi a.s.> q 

A consequence of this theorem is that, conditioned on 
each hypothesis, all the moments of NA are finite. As an 
immediate corollary, we have the following. 

Corollary 4.1: Conditioned on each hypothesis, NA is 
finite with probability one. 

We now state and prove a result that gives upper 
bounds on all relevant error probabilities. 

Theorem 4.2: Let cyi, k = Pf, (accept H,), let ak = 
P(accept Hk incorrectly), and let (Y be the total probabil- 
ity of an incorrect decision. Then 

a> 
b) 

If, in 

ff k = Cj:j'k 37-jCYj,k 5 r,A, for all k 

(Y = Ck (Yk 5 Ck %-,A,. 

c> 

addition, A, = AI = ... = A,+,, 

A 

as l+A’ 

Proofi Because NA is finite with probability one, we 
can write 

(Ye, k = 2 Pfk(accept Hk, NA = n) 
n=l 

-fj(xz> *** f&x,> d-q dx, *** dx, 

1 M-l 

= ~k(l +A,) j=o 
c rjaj,k 

1 

= %-,(I +A,) 
cTkak,k + ak) 
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where the inequality follows from the definition of the 
MSPRT. Subtracting l/(1 + A,) LY$,~ from ,each side 
gives 

prOOfi Let D(fk, fi*> = min;:j+ k D(fkP fi” We ‘an 

The fact that (Y k k 5 1 yields part a). Part b) follows 
trivially. Part c) is proven by starting with the fact [implied 
from the proof of part a)] that 

1 M-l 

7Tkakxk - 1 +A j=o 
> --i- c ‘rriffj,k. 

Summation over k and the fact that ff = 1 - c rk ak. k 

proves the desired result. 
k 

0 

The bounds in Theorem 4.2 are derived using tech- 
niques similar to the ones used by Wald for the SPRT [l]. 
It should be noted that the (Y~‘s given above are frequen- 
t&t error probabilities; they are not to be confused with 
the probabilities of error conditioned on particular hy- 
potheses. The individual conditional error probabilities 
cannot be expressed in terms of frequentist error proba- 
bilities except for M = 2. 

In addition to obtaining bounds for the error probabili- 
ties, Wald [l] obtained approximations for the expected 
stopping time of the SPRT conditioned on each hypothe- 
sis. These approximations were obtained by an application 
of Wald’s lemma [l]. For the MPSRT, however, Wald’s 
lemma is not applicable for M > 2 because the test 
statistic cannot be expressed as a sum of independent and 
identically distributed random variables. However, as we 
show in the following section, approximations for the 
expected stopping time of the MSPRT can be obtained 
using elementary renewal theory [3]. Furthermore, these 
approximations are shown to be asymptotically exact. 

V. ASYMPTOTICS OF STOPPING TIME 

In order to proceed further with analysis of the MSPRT, 
it is helpful to denote the Kullback-Leibler distance 
between densities f and g by D(f, g), so that 

/ 

f(x) 
f(x) log go dx. 

It is a well-known fact that D(f, g) 2 0 with equality if 
and only if f = g a.s.-f. 

We are interested in the studying the behavior of the 
MSPRT when the parameters A,, k = O;.., M - 1, si- 
multaneously approach zero, that is, when maxk A, ap- 
proaches zero. This corresponds to asymptotics where the 
error probabilities are small and the stopping time is 
large. 

We consider the asymptotic behavior of NA first. To- 
wards this end, we state several relevant lemmas. 

Lemma 5.1: Assume that, for fixed k, minjZj+ k D(fk, f,) 
is positive and finite. Then NA ---f ~0 a.s.-fk as maxi A, + 0. 

write 

P&y,, I n> 

5 Pf, for some 1 and any j # 1, 
i 

min fi fjcxi) < + 

l<mS?2 j=l flCxi) Tj I 

= Pf, for some 1 and any j # 1, 
t 

max 5 log $-$ > -log*] 
l<m<n j=l I 1 T 

The first term on the right-hand side converges to zero as 
max, A, + 0, since Kullback-Leibler distances are non- 
negative. The second term converges to zero as maxI A, 
* 0, since D(fk,fj*) is finite. Thus, NA + 00 in probabil- 
ity as maxi A, + 0. This implies that a subsequence of 
the NA’s goes to infinity a.s.-fk. However, it is. easily seen 
that NA is nondecreasing a.s.-fk as each of the A,‘s 
decreases to 0. This implies that NA converges as.-fk as 
maxi A, -+ 0, proving the lemma. 0 

The next lemma is a technical result that can be proven 
from elementary real analysis on sequences. 

Lemma 5.2: Suppose that, for 1 I j 5 m, Yn(j) -+ pi 
a.s., and let 6 = mini J.L~. If 0 < 6 < ~0, then 

1 
-- 

n 
log f e-“i” + 6 a.s. 

( I j=l 

as It + a. 0 
Note that, in particular, there is no requirement of 

independence between the Y,(j)‘s. 
The following lemma establishes almost sure conver- 

gence of a stopping time closely related to NA that is 
defined solely for use in the proof of Theorem 5.1. The 
proof is given in the Appendix. 

Lemma 5.3: For any fixed k, let 

GA = first 12 2 1 such that 

If minj:j+ k ~(f~, fj) is positive and finite, then 

1 

-1Og A, + ly$k D(fk, fj) 
a&-fk 

as maxI A, + 0. 
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We now state the main theorem on the asymptotics of 
the stopping time NA. The proof is given in the Appendix. 

Theorem 5.1: Assume that mini:;+ k D(fk, fj> is positive 
and finite. Then 

NA 1 

-logA, _. + I?+: D(fk, 6) 

a.s.-fk 

as maxi A, + 0 and 

EfkfN,] 1 

-logA, + ]yFk D(f/c, fj) 

as maxI A, + 0. 

VI. AS~MPTOTICS OF ERROR PROBABILITIES 

We now turn to the problem of determining asymp- 
totics for error probabilities. Results are obtained through 
the application of nonlinear renewal theory [3]. To pro- 
ceed we need the following definition 131. 

Definition 6.1: The sequence of random variables 
{ [,J:= 1 is said to be slowly changing if it is uniformly 
continuous in probability (u.c.i.p.> [3] and 

in probability as n + 00. 
We now state two lemmas before proceeding to the 

main theorem on error probabilities. 
Lemma 6.1: Let 

where Vjj), I$;) a* * are i.i.d. with mean pj > 0, and a, b,, 

b 21”‘> b, are al; positive constants. Then { &,P= 1 is slowly 
changing. 

Proofi It follows from the Strong Law of Large Num- 
bers that (,, + 0 a.s. The remainder of the proof is 
elementary. 0 

Lemma 6.2: Assume X,, X2;.*, are i.i.d. and nonarith- 
metic [3], with E[X,] = Al. > 0. Let t, be the first IZ 2 1 
such that C;= i Xi - (,, > c. If {&Jr=, is slowly changing, 
then 

tc 
c xi - [*, - c + w 

i=l 

in distribution as c + a, where 

and where rf is the first IZ 2 1 such that Cy==, Xi > 0. 
Proofi Immediate from Theorem 4.1 of [3]. q 

The following result, which is proved in the Appendix, 
gives the asymptotics of the error probabilities. 

Theorem 6.1: Assume that D(fk, fj*> = 

minjZj + k D(fk, fi) is positive and finite, and that j* is 
unique. Assume also that the log-likelihood ratios are 
nonarithmetic. Then 

- + Yk 
TkAk 

as maxI A, + 0, where yk = Efk[ eC Wk], and wk has distri- 
bution 

Pf,(w, 5 w> = 

and where r: is the first n 2 1 such that 

c;=“=log fk(x,>/f,*(xj> > 0. 

It should be noted that the asymptotic expression for 
the error probability (Ye differs from the bound given in 
Theorem 4.2 by the factor yk. It is easily shown that 
0 < yk < 1 for each k. Techniques for computing the yk’s 
can be found in the SPRT literature 131. 

VII. MSPRT DESIGN 

Employing the asymptotic results from the previous 
section as approximations, we have the following approxi- 
mations: 

Efk[NAl = 

-1Og A, 

min D(fk, fi> 
j:j#k 

ffk = Tk‘%yk 

M-l 

a= c TkAkyk. 
k=O 

The design of the MSPRT for specific applications 
requires choosing values for threshold parameters A,. If 
all the frequentist error probabilities (Y,,;.., (Ye- i are 
specified, then we simply set 

AkZX. 
7TkYk 

If the total error probability (Y or the expected stopping 
time E[N,] is specified, then we can choose the parame- 
ters so as to minimize the Bayes risk defined in Section 
III, that is, 

E[cN, + W(6, H)]. 

Now 

M-l M-l 

E[cNAl = C c @&&l = C c Tk mi;l;c;kf,, 
k=O k=O 

j:j#k 
’ J 
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and 

E [ W( S, H)] = 1 . P(incorrect decision) 
M-l 

= 
(y = c nkAkYk* 

k=O 

Putting these approximations together, we get 

M-l 

E[cN, + WCS, fO1 = c flk 
k=O i 

m;c;,“;, 
j:j#k 

’ J 

It can be shown that the expression on the right-hand side 
is minimized over the parameters A, by setting 

A, = d.- 
skYk 

for k = 0, l;.., M - 1, where 6, = minj:;+ k D(fk, fi). 

With this choice, 

M-l 

H.NAI = C Tk 

-1Og A, 

k=O 

s 
k 

and 
M-l 

a = c n-,A,y, = “c’y 
k=O k=O k 

(5) 

If it is desired that E[N,] is fixed to a desired level, then 
setting 

c = exp 
-E[N,l 

+ 

M-l 

c 
k=O 

\ 

(6) 

1 

is appropriate. Alternatively, if (Y is fixed, 

ff 
c= M-1 (7) 

c: 
k=O k 

should be chosen. Equation (5), in combination with (6) or 
(7), as desired, completely specifies the MSPRT. 

VIII. EXAMPLES 

In this section we consider two examples employing the 
MSPRT. The first is for sequential detection of a signal 
with one of M amplitudes, and the second is for sequen- 
tial detection of one of M orthogonal signals. In both 
examples, the signals are corrupted by additive white 
Gaussian noise. 

Example 1: Consider the problem of determining the 
amplitude of a signal in noise. For k = 0, l;.., M - 1, Hk 
is the hypothesis that X,, X,;.., is a sequence of inde- 
pendent Gaussian random variables with mean Ok and 
variance m2, where the 0,s and a2 are known quantities. 

ZXi A 

A 
1 

, 

YYyn 

Fig. 4. Decision regions for Example 1. 

With no loss of generality, it is assumed that the 6,s are 
strictly increasing with k. With the assumptions of equal 
priors and (T 2 = 1, it is easily verified that the MSPRT 
takes the following form: 

M-l 

NA = first y1 2 1 such that C eEF=~Xz(e,p@,)+ i(eZ-ef) 

j=O 
;+k 

< A, for some k 

S=H,. 

The decision regions are plotted in Fig. 4 for M = 3. It 
can be seen that the curves become straight lines asymp- 
totically as y1 + w. For general M, expressions for the 
straight lines that these curves approach are given by 

k 

and 

n(ok + 6k+l) 
i=l 

2 - $“A:+; 
k+l k 

where k ranges from zero to M - 2. It is interesting to 
note that these asymptotic expressions correspond to the 
decision regions for M - 1 SPRT’s, one for H, versus 
H,, one for H, versus H,, and so forth. The test which 
uses these M - 1 SPRT’s is precisely the ad-hoc test that 
is discussed in much of the previous work on M-ary 
sequential hypothesis testing (see, for example, [12]-[14], 
[22], [23]). The decision regions shown in Fig. 4 are very 
similar to those in [12] and [14]. 

The performance of this test for M = 3 and for specific 
values of the 8,s and the A,s is given in Table I. The test 
has been designed for specific values of (Y using the 
techniques of the previous section. Here, equal priors 
have been assumed, and E[N,] denotes the average (un- 
conditional) expected stopping time. For the simulations, 
the sample size is taken to be such that the standard 



BAUM AND VEERAVALLI: SEQUENTIAL PROCEDURE FOR MULTIHYPOTHESIS TESTING 2003 

TABLE I 
ERRORPROBABILITIESANDSTOPPINGTIMESFOREXAMPLE 1 

Sequential (MSPRT) 

Asymptotics Simulation 

Fixed Sample Size 

b = -0.3, e1 = 0.0, e2 = 0.6 

1.59 x 10-l 4.72 x 1O-2 0.10 32.9 8.99 x 1OP 32.7 9.02 x lo-* 59 

4.76 x 10-1 1.42 x 1OV 0.03 53.0 2.90 x 10-Z 55.6 2.89 x 1O-3 131 

1.59 x 10-Z 4.72 x 10-S 0.01 71.3 9.90 x 1O-3 75.5 9.91 x 1O-3 210 

e. = -0.4, e, = 0.0, e2 = 0.5 

1.43 x 10-I 9.73 x lo-’ 0.10 22.4 9.27 x lo@ 26.0 9.40 x 1O-1 44 

4.30 X lo-’ 2.92 x lo-’ 0.03 35.6 2.94 x lo-* 42.0 2.88 x 10-z 85 

1.43 x lo-* 9.73 x 1OW 0.01 47.7 9.92 x 1O-3 55.6 9.93 x lo-$ 126 

deviations are less than 1 percent of the simulated quanti- 
ties. In the calculation of the asymptotic expression for (Y, 
the y values are obtained from 13, Table 3.11. From the 
results, we see that the asymptotic expressions for the 
error probabilities and stopping times are reasonably ac- 
curate even for moderate values. The expressions for the 
error probabilities are especially accurate. 

The performance of this test can also be compared with 
the performance of an appropriately designed fixed sam- 
ple size test. For M = 3, (T ’ = 1, and equal priors, the 
minimum-probability-of-error hxed sample size test 
chooses Ho if 3, I (13~ + /3,)/2, chooses HZ if TN 2 
(0, + 8,)/2, and chooses H1 otherwise, where 

1 N 

and N is the (fixed) number of observations. It can be 
shown that the probability of error for this test is given by 

fx = ;Q(m(B, - e,)/2) + ;Q(m(s, - q/2) 

where Q<*> is defined to be 

Q(x) = [+e -t2/2 dt. 
Evaluation of (Y shows that significantly fewer samples are 
needed to achieve a desired error probability by using the 
MSPRT. For the 6’ values in Table I, the MSPRT re- 
quires, on the average, roughly one-third to one-half the 
number of samples needed for the fixed sample size test. 
The table also shows that the speedup factor increases as 
(Y decreases. 

Two additional observations merit further discussion. 
The first is that the absolute error between the asymptotic 
and simulated values of E[N,l appears to increase as A,, 
A,, and A, decrease. This should not cause concern, 
because the asymptotic expressions for E[N,l can only 
guarantee that the relative error decreases toward zero. 

The performance of this test for M = 4 and 6’ = 0.125 
is given in Table II. The test has been designed for 
specific values of cu using the techniques of the previous 
section assuming equal priors. Note that multiple hy- 
potheses are equidistant from the true hypothesis. Thus, 
Theorem 6.1 has not been proven in this case. However, 
the simulation results in Table II clearly seem to indicate 
that the theorem does indeed hold. For the simulations, 
the sample size is taken to be such that the standard 
deviations are less than 1 percent of the simulated quanti- 
ties. From the results, we see that the asymptotic expres- 
sions are quite accurate in estimating (Y (even though 
Theorem 6.1, as stated, does not apply), but they are not 
at all accurate in estimating E[N,]. The reason for this is 
that multiple hypotheses are equidistant from the true 
hypothesis, and, as explained in Example 1, the nearer the 
other hypotheses, the less accurate the asymptotic expres- 
sion. However, it can be seen that the percentage error is 
decreasing as A decreases. 

The second observation is that the asymptotic values The performance of this test can also be compared with 
for E[N,] appear to be more accurate for the 8, = -0.3, the performance of an appropriately designed fixed sam- 
f31 = 0.0, 8, = 0.6 case than for 8, = -0.4, 8, = 0.0, 8, ple size test. With equal priors, the minimum-probability- 

= 0.5. This should match intuition, because the asymp- 
totic expression neglects all but the nearest (in terms of 
the informational divergence) hypothesis. One would ex- 
pect, then, that the further away the other hypotheses, the 
more accurate the asymptotic expression. 

Example 2: Now consider the problem of detecting one 
of M orthogonal signals in Gaussian noise. For simplicity 
it is assumed that the 1M signals contain equal energy, and 
that exactly one signal is present. The data consists of an 
infinite stream of independent and identically distributed 
random vectors, denoted Xi, X2, .a* . Furthermore, Xi, is 
written as (Xi o, X, 1,.*., Xi M-l). For k = 0, l;.., 1M - 1, 
clr, is the hypothesis that, for each i, Xi,k is Gaussian with 
mean 0 and variance (T ‘, and Xi j is Gaussian with mean 
zero and, variance a2 for all j’# k. It is also assumed 
that, conditioned on each hypothesis, Xi,o, Xi, i;.., Xi,,,- I 
are mutually independent. 

With the assumption of equal priors, it can be shown by 
a symmetry argument that the MSPRT should be de- 
signed with A, = A, = *.. = AM-i, and the common 
value is denoted by A. If in addition a2 = 1, the MSPRT 
can then be written as follows: 

M-l 

NA = first n 2 1 such that c eeE:=l(x~.,-x~.~) 
j=O 
j#k 

<A for some k. 

At time NA, hypothesis H, is chosen if m is the value of 
k that satisfies the above inequality. Equivalently, m is 
the value of k for which 

? Xi,k 
i=l 

is maximized. Unfortunately,, the decision regions are 
difficult to plot, because M axes are required. 
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TABLE II 
ERROR PROBABILITIES AND STOPPING TIMES FOR EXAMPLE 2 

Sequential (MSPRT) Fixed Sample Size 

Asymptotics Simulation 

A a Wal 01 Wal a N 

M=4,8=1/J8 

1.34 x 10-l 0.100 16.1 9.37 x 1O-2 29.9 9.35 x 1O-2 50 

1.34 x 10-Z 0.010 34.5 1.03 x 10-Z 55.0 1.01 x 10-Z 114 

1.34 x 10-3 0.001 52.9 1.00 x 10-S 76.9 1.01 x 1O-3 184 

of-error fixed sample size test chooses Hk if zhk’ = 
maxj x$), where 

X”’ = ; ,E Xi,k 
r=l 

and N is the number of observations. It can be shown 
that the probability of error for this test, assuming u ’ = 1, 
is given by 

a=l--.....- -(t-fi@/2[1 - Q(t)J”-’ dt 

where Q(s) is given by (8). 
From Table II it can be seen that many fewer samples 

are needed to achieve a desired probability by using the 
MSPRT. As with the first example, the average number of 
required samples for the MSPRT is roughly one-third to 
one-half the number needed for the fixed sample size test. 

IX. CONCLUSIONS 

In this paper we have presented a sequential test for 
multihypothesis testing that generalizes the two-hypothe- 
sis SPRT. The test has been motivated by examining the 
optimality of sequential tests under a Bayesian framework 
when the cost per observation is small. We have also 
provided one example for which the optimal test can be 
computed straightforwardly, and we have shown that the 
MSPRT is asymptotically optimal in this case. In addition, 
we have given bounds on error probabilities, and we have 
found asymptotic expressions for both the error probabili- 
ties and stopping times. A design procedure has been 
provided to determine the parameters A,. We have also 
presented two examples and compared asymptotic results 
with simulations, as well as with appropriately designed 
fixed sample size tests. 

There are a number of questions regarding the MSPRT 
that merit further research. First, although the arguments 
presented in Section III certainly provide a justification 
for the using the MSPRT when the cost per observation is 
small compared to the cost of an incorrect decision, they 
do not constitute a proof of the asymptotic optimal@ of 
the MSPRT. It would be of interest to investigate if the 
MSPRT is indeed asymptotically optimal, and to deter- 
mine the conditions, if any, under which it is so. 

Second, it should be’noted that Theorem 6.1 assumes 
that minjri + k o<.fk7 6) is achieved for a unique j. An 
important question is whether this theorem can be ex- 

tended to the situation in which ties occur. The proof as 
given cannot be extended easily, because the nonlinear 
term &, in general, will no longer be slowly changing. 
Because problems in M-ary hypothesis testing may often 
contain symmetry, the extension of the theorem merits 
further research. Furthermore, Example 2 clearly indi- 
cates that there are at least some cases for which the 
theorem can be extended. 

Third, it has been noted through the examples that the 
asymptotic expressions for E[ NA I are not especially accu- 
rate; this is particularly true when multiple hypotheses are 
equally distant from each other (in the sense of the 
informational divergence). Through the use of nonlinear 
renewal theory, it may be possible to obtain second order 
results for asymptotics on E[N,] in a manner similar to 
the second order results for the stopping time of the 
SPRT (see [3, chap. 31). It is suspected that such a result 
will be considerably more difficult to obtain when multiple 
hypotheses are equidistant than when a unique j achieves 
minj:j+ k D(fk, fj>. 

Finally, it would be helpful to analyze the MSPRT when 
the data fits none of the hypotheses, and to develop 
techniques for the design of the MSPRT for composite 
hypotheses. Some work in this area has been done for the 
SPRT [3]. Such work should increase the number of 
potential applications for the MSPRT. 

APPENDIX 

Proof of Lemma 3.3: For the purposes of-this proof, 
we abuse notation slightly and write the cost functions 
explicitly as functions of c. For example, AZ(p) is written 
as Az(p; c). 

Claim: For any T and any n < T, Ai(p; c) is a con- 
cave, continuous and monotonically increasing (c.c.m.i.1 
function of c on the interval [O, ~1. 

Proof of Claim: The claim is true for y1 = T - 1 since 
the function AF-l(p; c> does not depend on c. Now, 
suppose the claim is true for n = m + 1 < T. Then it is 
easily checked that 

J,‘+ l(p; c> = min {g(p), c + Ai+l(p; cl> 

is a c.c.m.i. function of c on [O,~]. This implies that the 
claim is true for 12 = m. By induction, the claim follows 
for all IZ < T. 0 

Now, for each c E [O, ~1, 

Ag(p; c> 1 A,(p; c> as T ?m. (9) 

The infimum of concave and monotonically increasing 
functions is also concave and monotonically increasing. 
Hence A,(p; c> is a concave, monotonically increasing 
function of c on [O, ~1. This implies that A,(p; c) is a 
c.c.m.i. function of c on the interval (0, w). 

For c = 0, the optimal test simply takes an infinite 
number of observations to determine the true hypothesis 
precisely. (This is possible since we have assumed that 
fk # fi almost surely for all j # k.) Thus, J(p; 0) = 0, and 
consequently, A,(p, 0) = 0. 
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TO finish the proof of the lemma, the continuity of 
A,(p; c) at c = 0 needs to be established. Given E > 0, 
pick r such that 

&(p;O) -A,(p;O) I :, forallT> 7. (10) 

(This is possible by (9%) Also pick 6 > 0 such that 

Ai(p; c) - A’,(p; 0) 5 G for all c 5 6. 01) 

(This is possible by the continuity of Ai(p; c) at c = 0.) 
From (9), (lo), and (ll), it is easy to show that the 

following is true: 

Ai(p; c) - A,(p; 0) 5 E for all c 4 6 and for all T 2 .T. 

Taking limits as T + CC in the above equation gives 

A,(p; c) - A,(p; 0) I E for all c 4 S 

which establishes the continuity of A,(p; c)_at c = 0. q 

Proof of Lemma 5.3: It is clear that NA 2 NA. Thus, 
by Lemma 5.1, &, + 00 a.s.-fk as maxI A, + 0. Now, note 
that NA may be written as 

tiA = first n 2 1 3 

-1 log 
n 

-log A, 
> 

n ’ 

Also note that 

-+ D(fk, $1 a.~.-fk 

as n + 00. Therefore, 

1 
-7 

44 
1s C exp 

j:j#k 

+ log 2 
7Tk 

+ JII$~ D(fk y 6) a.s.-fk 

and 

.I1 

- + log n;- 
rk I) 

-+ ]?yi; D(fk, 6) a.sa-fk 

both as maxl A,. + 0. Furthermore, by the definition of 
GA, we have 

1 
-- 

&l 
1s + log 2 ok Ii 

-1Og A, 

> 

#4 

and 

- 

-log A, 
I 

GA-l. 

Taking appropriate infimums and supremums gives the 
desired result. 0 

Proof of Theorem 5.1: To show almost sure conver- 
gence, we can write, for all E > 0, 

44 1 

Pfk -1Og A, - IlliIlj:j+k D(fk,fi) 
-IzAk - minj:j&icfk;iil 

> E and accept H, 1, 
GA 1 

-log A, - minj:j+k D(fk,f,) 

44 1 

+ c % 
l:l#k 

-1Og A, - minj:j+ k D(fk, fi) 

> E and accept H[ 

fiA 1 

-log A, - minj:j+k D(fk,f,> 

+ c Pfk(accept H[). 
I:l#k 

Now, the term on the left-hand side converges to zero as 
maxi A, + 0 by Lemma 5.3, and the terms on the right- 
hand side converge to zero as maxI A, + 0 by application 
of Theorem 4.2. This proves the first part of the theorem. 

To show convergence in mean, it suffices to establish 
uniform integrability of {NA/( -log Ak), maxl A, < l} (see 
[19] for explanation and definition). First note that 

NA 5 first 12 2 1 such that 5 
fkcxi) 

log - 
i=l fjCxi> 

(A4 - l)?Tj 
Akrk 

1 
Vjsj#k. 
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Now, let 

i = first n 2 1 such that 2 log ___ 
fk(z) 

7 
f,Cxi> 

>l Vjsj#k 
i=l 

7 2 = first n 2 1 such that c 
i=71+1 

Vjsj#k 

and define 7i for i > 2 in the obvious way. Note that 

~1,72,“‘, are independent and identically distributed. Also 
note that Ef,[rl] < ~0. To see this, define 

r[ = first yt r 1 such that 2 log ~ 
i=l 

for all j # k, where 

iii = log 
(A4 - l)?Tj 

Aknk 1 

and note that 

Furthermore, the fact that 

=D(fk,fi)>O Vjsj#k 

implies that Ef,[r[l < ~0 for all j # k (see [241 for proof). 
Thus, ri also has finite expected value. 

Now, note that 

rl+ “’ fr, 

c 
i=l 

‘log% >fij 
I 1 

for all j # k, so that r1 + --- + TV. 2 NA. Since, by the 
Strong Law of Large Numbers, ’ 

; ,? Ti - E&l as.-& asmaxA,-+O 
IL=1 

[ 

and since 

it follows that (see [191) 

is uniformly integrable, which implies that {NA/( -log Ak), 
maxI A, < 1) is also uniformly integrable. 0 

Proof of Theorem 6.1: We can write 

a k= c 2 
j:j+k n=l 

= jl (accept H, N -n) ) A- 

Aknk 
-log- 

Tj 

If the second term is denoted tNA, then by Lemmas 6.1 
and 6.2, it follows that 

in distribution as maxI A, + 0. Furthermore, since the 
indicator function in the above equation for ffk converges 
to 1 in probability, the entire expression inside the expec- 
tation converges to eCwk in distribution. Since it is 
bounded between 0 and 1, the expectation converges to 
yk, which gives the desired result. 0 
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