
SIAM J. OPTIMIZATION
Vol. 5, No. 3, pp. 590-640, August 1995

{) 1995 Society for Industrial and Applied Mathematics
007

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
USING AN INCOMPLETE SOLUTION OF THE SUBPROBLEM*

WALTER MURRAYt AND FRANCISCO J. PRIETO:

Abstract. We analyze sequential quadratic programming (SQP) methods to solve nonlinear
constrained optimization problems that are more flexible in their definition than standard SQP
methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard
approach when solving large problems. Specifically we no longer require a minimizer of the QP
subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus
is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results
are derived for this algorithm under weaker conditions than previously assumed; in particular, it is
not assumed that the iterates lie on a compact set.

Key words, nonlinearly constrained minimization, sequential quadratic programming, quasi-
Newton method, large-scale optimization

AMS subject classifications. 49D37, 65K05, 90C30

1. Introduction. The problem of interest is the following:

NP minimize F(x)
xE
s.t. c(x) >_ O,

where F n _+ and c n _+ m. Since we shall not assume that second
derivatives are known, computing x*, a point satisfying the first-order Karush-Kuhn-
Tucker (KKT) conditions for NP is the best that can be achieved. Such points are
feasible and satisfy the following conditions"

(I.i) VF(x*) Vc(x*)TA*, ,)icj(x*) 0 j 1,...,m

for some nonnegative multiplier vector A* E m. Whenever the term "KKT point"
is used in the following sections, it will mean a point satisfying the first-order KKT
conditions for NP. Despite this theoretical limitation, we prefer some KKT points to
others to try and satisfy our real purpose of finding a minimizer. For example, if the
initial estimate is feasible we do not wish to converge to a nearby KKT point if at
that point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies
(1.1) for some multiplier vector A Em that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {xk} converging to a
solution, by solving at each point, xk, a quadratic program (QP) of the form

Received by the editors January 1, 1990; accepted for publication (in revised form) March 28,
1994. This research was supported by National Science Foundation grant DDMo9204208, Department
of Energy grant DE-FG03-92ER25117, Office of Naval Research grant N00014-90-J-1242, and the
Bank of Spain.

Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California 94305-4022 (walter@sol-walter. stanford, edu).

Department of Statistics and Econometrics, Universidad Carlos III de Madrid.

590

SIAM J. OPTIMIZATION
Vol. 5, No. 3, pp. 590-640, August 1995

© 1995 Society for Industrial and Applied Mathematics
007

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
USING AN IN COMPLETE SOLUTION OF THE SUBPROBLEM*

WALTER MURRAyt AND FRANCISCO J. PRIETOt

Abstract. We analyze sequential quadratic programming (SQP) methods to solve nonlinear
constrained optimization problems that are more flexible in their definition than standard SQP
methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard
approach when solving large problems. Specifically we no longer require a minimizer of the QP
subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus
is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results
are derived for this algorithm under weaker conditions than previously assumed; in particular, it is
not assumed that the iterates lie on a compact seto

Key words. nonlinearly constrained minimization, sequential quadratic programming, quasi
Newton method, large-scale optimization

AMS subject classiftcations. 49D37, 65K05, 90C30

1. Introduction. The problern of interest is the following:

NP minimize F(x)
xE~n

S.t. c(x) ;::: 0,

where F : ~n -+ ~ and e : ~n -+ ~m. Since we shall not assume that second
derivatives are known, cornputing x*, a point satisfying the first-order Karush-Kuhn
Tucker (KKT) conditions for NP is the best that can be achieved. Such points are
feasible and satisfy the following conditions:

(1.1)

for sorne nonnegative multiplier vector >-.* E ~m. Whenever the term "KKT point"
is used in the following sections, it will mean a point satisfying the first-order KKT
conditions for NP. Despite this theoretical lirnitation, we prefer sorne KKT points to
others to try and satisfy our real purpose of finding a minimizer. For example, if the
initial estimate is feasible we do not wish to converge to a nearby KKT point if at
that point the objective function is higher.

We use the terrn stationary point to denote a point that is feasible and satisfies
(1.1) for sorne multiplier vector >-. E ~m that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {xd converging to a
solution, by solving at each point, Xk, a quadratic program (QP) of the form

* Received by the editors January 1, 1990; accepted for publication (in revised form) March 28,
1994. This research was supported by National Science Foundation grant DDM-9204208, Department
of Energy grant DE-FG03-92ER25117, Office of Naval Research grant NOOOl4-90-J-1242, and the
Bank of Spain.

t Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California 94305-4022 (llalterlDsol-llalter. stanford. edu).

t Department of Statistics and Econometrics, Universidad Carlos III de Madrid.

590

SIAM J. OPTIMIZATION
Vol. 5, No. 3, pp. 590-640, August 1995

© 1995 Society for Industrial and Applied Mathematics
007

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
USING AN IN COMPLETE SOLUTION OF THE SUBPROBLEM*

WALTER MURRAyt AND FRANCISCO J. PRIETOt

Abstract. We analyze sequential quadratic programming (SQP) methods to solve nonlinear
constrained optimization problems that are more flexible in their definition than standard SQP
methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard
approach when solving large problems. Specifically we no longer require a minimizer of the QP
subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus
is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results
are derived for this algorithm under weaker conditions than previously assumedj in particular, it is
not assumed that the iterates lie on a compact seto

Key words. nonlinearly constrained minimization, sequential quadratic programming, quasi
Newton method, large-scale optimization

AMS subject classiftcations. 49D37, 65K05, 90C30

1. Introduction. The problem of interest is the following:

NP rninirnize F(x)
xE~n

s.t. c(x) ;::: 0,

where F : ~n -+ ~ and e : ~n -+ ~m. Since we shall not assurne that second
derivatives are known, computing x*, a point satisfying the first-order Karush-Kuhn
Thcker (KKT) conditions for NP is the best that can be achieved. Such points are
feasible and satisfy the following conditions:

(1.1)

for sorne nonnegative rnultiplier vector >-.* E ~m. Whenever the terrn "KKT point"
is used in the following sections, it will mean a point satisfying the first-order KKT
conditions for NP. Despite this theoretical limitation, we prefer sorne KKT points to
others to try and satisfy our real purpose of finding a rninirnizer. For example, if the
initial estimate is feasible we do not wish to converge to a nearby KKT point if at
that point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies
(1.1) for sorne rnultiplier vector >-. E ~m that is not necessarily nonnegative.

Typically SQP algorithrns generate a sequence of points {xd converging to a
solution, by solving at each point, Xk, a quadratic program (QP) of the forrn

* Received by the editors January 1, 1990; accepted for publication (in revised form) March 28,
1994. This research was supported by National Science Foundation grant DDM-9204208, Department
of Energy grant DE-FG03-92ER25117, Office of Naval Research grant NOOOl4-90-J-1242, and the
Bank of Spain.

t Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California 94305-4022 (walterCOsol-walter. stanford. edu).

t Department of Statistics and Econometrics, Universidad Carlos III de Madrid.

590

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 591

QP minimize
pE
Soto

VF(xk)Tp + 1/2pTHkp
C(Xk) + VC(Xk)p >_ O,

for some positive definite matrix Hk. Let Pk (referred to as the search direction)
denote the unique solution to QP. We define Xk+l =-- xk / OkPk, where the steplength
ak is chosen to achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP
when n is small < 200). As the size of the problem grows, usually so does the relative
importance of the effort to solve QP when compared to the total effort. Indeed, for
many large problems the effort to solve QP dominates the total effort.

When the minimizer ofQP is used to define the search direction, it is not necessary
in any theoretical discussion of an SQP algorithm to define how the QP subproblem
is solved. Most implementations of SQP methods currently available use an active-
set method to solve the QP subproblem. For a comprehensive survey of active-set
methods see [18], [13], and [17]. The potential number of iterations to solve a QP using
an active-set method grows exponentially with n. In practice the number of iterations
grows much more slowly than exponential (if this was not the case active-set methods
would be hopelessly inefficient). Nonetheless, the number of iterations required to
solve a large QP is usually large. In any implementation of an SQP method it is
necessary to limit the number of iterations allowed to solve a given QP subproblem.
If the QP solution process is terminated prematurely the SQP algorithm may break
down. It is in part for this reason that the development of SQP methods for large-
scale problems has been inhibited. Even for small problems there are occasions when
the number of QP iterations is excessive. Since the definition of "small" continues to
increase as computers become more powerful we can expect the cost of solving the
subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiency
of SQP methods by circumventing the need to determine the minimizer of QP. We
show that a suitable search direction may be computed from information available at
any stationary point of QP. Stationary points occur as iterates within most active-set
methods to solve QP and for such methods the number of iterations to determine a
stationary point increases only linearly with the size of the problem. Consequently,
the search direction may be found by applying an active-set method to QP and ter-
minating the procedure early.

It may be thought that by expending much less effort to compute the search
direction, the number of iterations for the outer algorithm may increase. However,
it has been observed that large numbers of QP iterations are required only when xk
is a poor approximation to x*, that is, when the QP subproblem does not model
the nonlinear problem well. We hypothesize that a search direction based on the
minimizer of such subproblems is little better than using information at a stationary
point. Our preliminary results reported in 6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP mul-
tipliers, which are often used to estimate the multipliers of NP. In general, SQP
methods usually use some specific estimate of the NP multipliers in the definition
of the method and hence in the proof of convergence. When solving large problems
specific definitions of multiplier estimates are not always computationally attractive.
In our analysis we allow for flexibility in how multipliers are defined by requiring only
that the multiplier estimates satisfy certain conditions.

QP

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 591

minimize
pERn

S.t.

V F(Xk)Tp + !pTHkP

C(Xk) + VC(Xk)p ;::: O,

for some positive definite matrix Hk. Let Pk (referred to as the search direction)
denote the unique solution to QP. We define Xk+1 == Xk + O:kPk, where the steplength
O:k is chosen to achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP
when n is small (< 200). As the size of the problem grows, usually so does the relative
importance of the effort to solve QP when compared to the total effort. Indeed, for
many large problems the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary
in any theoretical discussion of an SQP algorithm to define how the QP subproblem
is solved. Most implementations of SQP methods currently available use an active
set method to solve the QP subproblem. For a comprehensive survey of active-set
methods see [18], [13], and [17]. The potential number of iterations to solvea QP using
an active-set method grows exponentially with n. In practice the number of iterations
grows much more slowly than exponential (if this was not the case active-set methods
would be hopelessly inefficient). Nonetheless, the number of iterations required to
solve a large QP is usually large. In any implementation of an SQP method it is
necessary to limit the number of iterations allowed to solve a given QP subproblem.
If the QP solution process is terminated prematurely the SQP algorithm may break
down. It is in part for this reason that the development of SQP methods for large
scale problems has been inhibited. Even for small problems there are occasions when
the number of QP iterations is excessive. Since the definition of "small" continues to
increase as computers become more powerful we can expect the cost of solving the
subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiency
of SQP methods by circumventing the need to determine the minimizer of QP. We
show that a suitable search direction may be computed from information available at
any stationary point of QP. Stationary points occur as iterates within most active-set
methods to solve QP and for such methods the number of iterations to determine a
stationary point increases only linearly with the size of the problem. Consequently,
the search direction may be found by applying an active-set method to QP and ter
minating the procedure early.

It may be thought that by expending much less effort to compute the search
direction, the number of iterations for the outer algorithm may increase. However,
it has been observed that large numbers of QP iterations are required only when Xk
is a poor approximation to x*, that is, when the QP subproblem does not model
the nonlinear problem well. We hypothesize that a search direction based on the
minimizer of such subproblems is little better than using information at a stationary
point. Our preliminary results reported in §6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP mul
tipliers, which are often used to estimate the multipliers of NP. In general, SQP
methods usually use some specific estimate of the NP multipliers in the definition
of the method and hence in the proof of convergence. When solving large problems
specific definitions of multiplier estimates are not always computationally attractive.
In our analysis we allow for flexibility in how multipliers are defined by requiring only
that the multiplier estimates satisfy certain conditions.

QP

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 591

minimize
pE!Rn

s.t.

V' F(Xk)Tp + ~pTHkP

C(Xk) + V'C(Xk)P;::: O,

for some positive definite matrix Hk. Let Pk (referred to as the search direction)
denote the unique solution to QP. We define Xk+l == Xk + akPk, where the steplength
ak is chosen to achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP
when n is small (< 200). As the size ofthe problem grows, usually so does the relative
importance of the effort to solve QP when compared to the total effort. Indeed, for
many large problems the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary
in any theoretical discussion of an SQP algorithm to define how the QP subproblem
is sol ved. Most implementations of SQP methods currently available use an active
set method to solve the QP subproblem. For a comprehensive survey of active-set
methods see [18], [13], and [17]. The potential number of iterations to solve a QP using
an active-set method grows exponentially with n. In practice the number of iterations
grows much more slowly than exponential (if this was not the case active-set methods
would be hopelessly inefficient). Nonetheless, the number of iterations required to
solve a large QP is usually large. In any implementation of an SQP method it is
necessary to limit the number of iterations allowed to solve a given QP subproblem.
If the QP solution process is terminated prematurely the SQP algorithm may break
down. It is in part for this reason that the development of SQP methods for large
scale problems has been inhibited. Even for small problems there are occasions when
the number of QP iterations is excessive. Since the definition of "small" continues to
increase as computers become more powerful we can expect the cost of solving the
subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiency
of SQP methods by circumventing the need to determine the minimizer of QP. We
show that a suitable search direction may be computed from information available at
any stationary point of QP. Stationary points occur as iterates within most active-set
methods to solve QP and for such methods the number of iterations to determine a
stationary point increases only linearly with the size of the problem. Consequently,
the search direction may be found by applying an active-set method to QP and ter
minating the procedure early.

It may be thought that by expending much less effort to compute the search
direction, the number of iterations for the outer algorithm may increase. However,
it has been observed that large numbers of QP iterations are required only when Xk
is a poor approximation to x*, that is, when the QP subproblem do es not model
the nonlinear problem well. We hypothesize that a search direction based on the
minimizer of such subproblems is little better than using information at a stationary
point. Our preliminary results reported in §6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP mul
tipliers, which are often used to estimate the multipliers of NP. In general, SQP
methods usually use sorne specific estimate of the NP multipliers in the definition
of the method and hence in the proof of convergence. When solving large problems
specific definitions of multiplier estimates are not always computationally attractive.
In our analysis we allow for flexibility in how multipliers are defined by requiring only
that the multiplier estimates satisfy certain conditions.

592 WALTER MURRAY AND FRANCISCO J. PRIETO

1.1. Incomplete solutions for QP subproblems. There have been other pro-
posals to define the search direction for an SQP algorithm other than as the minimizer
of the QP subproblem. In Dembo and Tulowitzki [9] an algorithm is analyzed for
which the search direction Pk has the property that

wherep denotes the minimizer for the kth QP subproblem, (unless stated otherwise
all norms in the paper are g2-norms).

We follow a different approach and define a search direction for which the effort
to compute it has a guaranteed bound. A different algorithm, but using the same ap-
proach, was suggested by Gurwitz and Overton [20]. However, no global convergence
results were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are sta-
tionary points. We show that such points may be used to construct a suitable search
direction. The step to the stationary point is not generally an adequate search direc-
tion. However, if the stationary point is not a minimizer then there exist nonoptimal
multipliers. We show how an auxiliary direction may be constructed using informa-
tion about the nonoptimal multipliers. This auxiliary direction, when combined with
the step to the stationary point, gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP
algorithm in a number of critical ways. Not only is the search direction different,
but also the QP multipliers will not be available. The merit function of principal
interest requires the definition of a search direction in the space of the multipliers. In
the past, this search direction has been defined using the QP multipliers. The fact
that such multipliers are positive was crucial in the analysis of these algorithms. The
consequences of terminating the QP solution process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form
of the general algorithm, and the definition of the search direction. Section 3 studies
the convergence properties of the algorithm; it is shown that such an algorithm is
globally convergent. In 4 we show that the algorithm converges superlinearly. We
also show that the penalty parameter used in the merit function is bounded. Section 5
considers the use of alternative merit functions. Finally, 6 presents numerical results
obtained from an implementation that uses the merit function of principal interest.

2. Description of the algorithm. The search direction we propose could be
used with most of the merit functions analyzed in the literature. However, our primary
interest is the following merit function:

(2.1) LA(x, A, s, p) F(x) AT(c(x) s)+ 1/2P(C(X) s)T(c(x) s),

where s _> 0 are slack variables, and the scalar p is known as the penalty parameter.
This merit function was suggested by Gill et al. [16] and is used in the SQP code

NPSOL. It is similar to merit functions proposed by Wright [34] and Schittkowski
[32]. Although our primary interest is this specific merit function, we also show (5)
how the ideas discussed can be extended to the use of other merit functions. The
reason for our focus on this merit function is due to the success in practice of NPSOL.
The merit function is also used in a new SQP code, LSSQP [10], designed to solve
large problems.

592 WALTER MURRAY AND FRANCISCO J. PRIETO

1.1. Incomplete solutions for QP subproblems. There have been other pro
posals to define the search direction for an SQP algorithm other than as the minimizer
of the QP subproblem. In Dembo and Tulowitzki [9] an algorithm is analyzed for
which the search direction Pk has the property that

IIpk - p~1I = O(lIpkll),

where p~ denotes the minimizer for the kth QP subproblem, (unless stated otherwise
all norms in the paper are i 2-norms).

We follow a different approach and define a search direction for which the effort
to compute it has a guaranteed bound. A different algorithm, but using the same ap
proach, was suggested by Gurwitz and Overton [20]. However, no global convergence
results were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are sta
tionary points. We show that such points may be used to construct a suitable search
direction. The step to the stationary point is not generally an adequate search direc
tion. However, if the stationary point is not a minimizer then there exist nonoptimal
multipliers. We show how an auxiliary direction may be constructed using informa
tion about the nonoptimal multipliers. This auxiliary direction, when combined with
the step to the stationary point, gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP
algorithm in a number of critical ways. Not only is the search direction different,
but also the QP multipliers will not be available. The merit function of principal
interest requires the definition of a search direction in the space of the multipliers. In
the past, this search direction has been defined using the QP multipliers. The fact
that such multipliers are positive was crucial in the analysis of these algorithms. The
consequences of terminating the QP solution process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form
of the general algorithm, and the definition of the search direction. Section 3 studies
the convergence properties of the algorithmj it is shown that such an algorithm is
globally convergent. In §4 we show that the algorithm converges superlinearly. We
also show that the penalty parameter used in the merit function is bounded. Section 5
considers the use of alternative merit functions. Finally, §6 presents numerical results
obtained from an implementation that uses the merit function of principal interest.

2. Description of the algorithm. The search direction we propose could be
used with most ofthe merit functions analyzed in the literature. However, our primary
interest is the following merit function:

(2.1) LA(x, >., s, p) = F(x) - >.T(c(x) - s) + !p(c(x) - s?(c(x) - s),

where s ;::: O are slack variables, and the scalar p is known as the penalty parameter.
This merit function was suggested by Gill et al. [16] and is used in the SQP code

NPSOL. It is similar to merit functions proposed by Wright [34] and Schittkowski
[32]. Although our primary interest is this specific merit function, we also show (§5)
how the ideas discussed can be extended to the use of other merit functions. The
reason for our focus on this merit function is due to the success in practice of NPSOL.
The merit function is also used in a new SQP code, LSSQP [10], designed to solve
large problems.

592 WALTER MURRAY AND FRANCISCO J. PRIETO

1.1. Incomplete solutions for QP subproblems. There have been other pro
posals to define the search direction for an SQP algorithm other than as the minimizer
of the QP subproblem. In Dembo and Tulowitzki [9] an algorithm is analyzed for
which the search direction Pk has the property that

Ilpk - p~11 = o(lIpkll),

where p~ denotes the minimizer for the kth QP subproblem, (unless stated otherwise
all norms in the paper are €2-norms).

We follow a different approach and define a search direction for which the effort
to compute it has a guaranteed bound. A different algorithm, but using the same ap
proach, was suggested by Gurwitz and Overton [20]. However, no global convergence
results were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are sta
tionary points. We show that such points may be used to construct a suitable search
direction. The step to the stationary point is not generally an adequate search direc
tion. However, if the stationary point is not a minimizer then there exist nonoptimal
multipliers. We show how an auxiliary direction may be constructed using informa
tion about the nonoptimal multipliers. This auxiliary direction, when combined with
the step to the stationary point, gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP
algorithm in a number of critical ways. Not only is the search direction different,
but also the QP multipliers will not be available. The merit function of principal
interest requires the definition of a search direction in the space of the multipliers. In
the past, this search direction has been defined using the QP multipliers. The fact
that such multipliers are positive was crucial in the analysis of these algorithms. The
consequences of terminating the QP solution process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form
of the general algorithm, and the definition of the search direction. Section 3 studies
the convergence properties of the algorithm; it is shown that such an algorithm is
globally convergent. In §4 we show that the algorithm converges superlinearly. We
also show that the penalty parameter used in the merit function is bounded. Section 5
considers the use of alternative merit functions. Finally, §6 presents numerical results
obtained from an implementation that uses the merit function of principal interest.

2. Description of the algorithm. The search direction we propose could be
used with most of the merit functions analyzed in the literature. However, our primary
interest is the following merit function:

(2.1) LA(x, A, s, p) = F(x) - AT(c(x) - s) + ~p(c(x) - sf(c(x) - s),

where s ::::: O are slack variables, and the scalar p is known as the penalty parameter.
This merit function was suggested by Gill et al. [16] and is used in the SQP code

NPSOL. It is similar to merit functions proposed by Wright [34] and Schittkowski
[32]. Although our primary interest is this specific merit function, we also show (§5)
how the ideas discussed can be extended to the use of other merit functions. The
reason for our focus on this merit function is due to the success in practice of NPSOL.
The merit function is also used in a new SQP code, LSSQP [10], designed to solve
large problems.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 593

The search is performed on an expanded space, including the Lagrange multiplier
estimates A, and the slack variables s. The symbols p, , and q will be used to denote
the components of the search direction on the corresponding subspaces. In this case,
the value of the merit function as a function of the steplength will be denoted by

((; x, p, :k, , s, q, p) LA (x + p,)t + c, s + cq, p).

The explicit reference to the parameters will be omitted in what follows. The deriva-
tive of with respect to c is denoted by ’. Also, Ck(C) and (c) will be used to
indicate the values of and ’ evaluated at (Xk, Pk, Ak, k, Sk, qk, Pk).

The following conventions will be used in the rest of the paper:

gk VF(xk), Ak =-- Vc(xk), Ck =--C(Xk),

and the symbols k and k will be used with the same meaning as Ak and ck, but
restricted to the set of active constraints at the given point. The term active constraint
will be used to designate a constraint that is satisfied exactly at the current point
(cj(x) 0 in NP, or ap -cj in QP), and the set of all constraints active at a given
point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by Ck(P),

(2.3) TCk(P) g[P + P Hkp.

Sometimes, will denote the function of one variable

For any vector v, the notation v- will be used to denote the vector whose jth
element is defined as

v- min(0, vj).

Also, the symbol e denotes the vector (1,..., 1)T, and symbols of the form abc
denote fixed scalars related to properties of the problem, or the implementation of
the algorithm, where "abc" identifies the specific scalar represented.

Finally, throughout the paper we will use the symbol]lull to denote the g2-norm
of the vector u, unless we explicitly indicate that a different norm is being considered.

2.1. The algorithm. We first present an outline of the algorithm. Given H0
positive definite, x0 and 0, select
fig > I1011 and tip > 0.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 593

The search is performed on an expanded space, including the Lagrange multiplier
estimates A, and the slack variables s. The symbols p, e, and q will be used to denote
the components of the search direction on the corresponding subspaces. In this case,
the value of the merit function as a function of the steplength will be denoted by

(2.2) 4>(a;X,p,A,e,s,q,p) == LA(x + ap,A + ae, s + aq,p).

The explicit reference to the parameters will be omitted in what follows. The deriva
tive of 4> with respect to a is denoted by 4>'. AIso, 4>k(a) and 4>~(a) will be used to
indicate the values of 4> and 4>' evaluated at (Xk,pk, Ak, ek, Sk, qk, Pk).

The following conventions will be used in the rest of the paper:

and the symbols Ak and Ck will be used with the same meaning as Ak and Ck, but
restricted to the set of active constraints at the given point. The term active constmint
will be used to designate a constraint that is satisfied exactly at the current point
(Cj(x) = O in NP, or a;p = -Cj in QP), and the set of all constraints active at a given
point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by 'l/Jk(P),

(2.3)

Sometimes, 'I/J will denote the function of one variable 'l/Jk(-r) == 'l/Jk(P + "'Id).

For any vector v, the notation v- will be used to denote the vector whose jth
element is defined as

AIso, the symbol e denotes the vector (1, ... , l)T, and symbols of the form (3abc
denote fixed scalars related to properties of the problem, or the implementation of
the algorithm, where "abe" identifies the specific scalar represented.

Finally, throughout the paper we will use the symbolllull to denote the t'2-norm
of the vector u, unless we explicitly indicate that a different norm is béing considered.

2.1. The algorithm. We first present an outline of the algorithm. Given Ho
positive definite, Xo and AO, select P-l ;::: O, O < (f < 1/ < 1, (3c ;::: IIc-(xo)lloo,
(3p. 2: IIAolI and (3p > O.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 593

The search is performed on an expanded space, including the Lagrange multiplier
estimates A, and the slack variables s. The symbols p, ~, and q will be used to denote
the components of the search direction on the corresponding subspaces. In this case,
the value of the merit function as a function of the steplength will be denoted by

(2.2) c/J(a; X,p, A,~, s, q, p) == LA(x + ap, A + a~, s + aq, p).

The explicit reference to the parameters will be omitted in what follows. The deriva
tive of c/J with respect to a is denoted by c/J'. Also, c/Jk(a) and c/Jk(a) will be used to
indicate the values of c/J and c/J' evaluated at (Xk,Pk, Ak, ~k, Sk, qk, Pk).

The following conventions will be used in the rest of the paper:

and the symbols Ak and Ck will be used with the same meaning as Ak and Ck, but
restricted to the set of active constraints at the given point. The ter m active constraint
will be used to designate a constraint that is satisfied exactly at the current point
(ej(x) = O in NP, or aTp = -ej in QP), and the set of all constraints active at a given
point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by 'lfJk(p),

(2.3)

Sometimes, 'lfJ will denote the function of one variable 'lfJk(r) == 'lfJk(p + 'Yd).

For any vector v, the notation v- will be used to denote the vector whose jth
element is defined as

Also, the symbol e denotes the vector (1, ... , 1)T, and symbols of the form {3abc
denote fixed scalars related to properties of the problem, or the implementation of
the algorithm, where "abe" identifies the specific scalar represented.

Finally, throughout the paper we will use the symbol Ilull to denote the f 2-norm
of the vector u, unless we explicitly indicate that a different norm is being considered.

2.1. The algorithm. We first present an outline of the algorithm. Given Ho
positive definite, Xo and Ao, select P-l ~ O, O < a < r¡ < 1, {3c ~ Ilc-(xo)lloo,
{3i-' ~ 11 AO 11 and {3p > O.

594 WALTER MURRAY AND FRANCISCO J. PRIETO

ALGORITHM ETSQP

k+-0
repeat

Obtain the search direction Pk from the QP subproblem

minp Ck(P) g[P + 1/2pTHkp
s.t. Akp + ck >_ 0

Compute #k, an estimate of A* such that

if Pk- 0
Compute sk from (sk)j max(0,

else
Compute sk from (Sk)j max(0, (ck)j

end if
qk +-- AkPk -+-Ck- Sk

Tif Ck(0) <_ -pkH}p}
Pk +- Pk-1

else

(+
Pk max.2p_, liCk Skll 2 /

end if
if Ck (1) _< Ck (0) +a (0)

else
Select & e (0,1) to satisfy

(a) < (0)+.a(0), I(a)l <-(0)
end if
while c(xk + Pk) --ce or Ck(&) > Ck(0)+ a&(0) do

a +-- a12
end do
ck +--- &

Compute 9k+1, Ak+l and c+
Update Hk to form Hk+l
k+-k+l

until convergence

The following are some comments on the steps of the algorithm.
(i) At each point xk, we form the QP subproblem

lpT(2.4a) minimize g’p + 5pE}

(2.4b) subject to Akp >_ --ck,

and determine a stationary point for QP, that is, a point ihk satisfying

(2.5a) gk + Hkk ATkrk,
(2.5b) Akk + Ck >_ O, r[(Akk + Ck) O,

for some vector rk Em (the QP multipliers at i5}).

594 WALTER MURRAY AND FRANCISCO J. PRIETO

ALGORITHM ETSQP

kf-O
repeat

Obtain the search direction Pk from the QP subproblem

minp 'l/Jk(P) == g'[p + ~pT HkP
s.t. AkP+Ck ~ O

Compute J.Lk, an estimate of A* such that IIJ.Lkll ~ {3,.,.
ek f- J.Lk - Ak
if Pk-l = O

Compute Sk from (Sk)j = max(O, (Ck)j)
else

Compute Sk from (Sk)j = max(O, (Ck)j - (Ak)j/ Pk-l)
end if

qk f- AkPk + Ck - Sk
if 4{(0) ~ -~prHkPk

Pk f- Pk-l
else

(2 'l/Jk(Pk) + (2Ak - J.Lk)T(Ck - Sk) (3)
Pk f- max Pk-l, 11 11 2 ' P Ck - Sk

end if

if <Pk(l) ~ <Pk(O) + (j<P~(0)
0:f-1

else

Select O: E (0,1) to satisfy
<Pk(O:) ~ <pdO) +JO:<p~(O), 1<p~(0:)1 ~ -1]<P~(0)

end if

while C(Xk + O:Pk) t. -(3ce or <Pk(O:) > <Pk(O) + (j0:<p~(0) do

O: f- 0:/2
end do

ak f- O:

(~::~) f- (~:) + ak (~:)

Compute gk+1, Ak+l and Ck+1
Update Hk to form Hk+l
kf-k+1

until convergence

The following are sorne comments on the steps of the algorithm.
(i) At each point Xk, we form the QP subproblem

(2.4a)

(2.4b)

minimize grp + ~pTHkP
pE!Rn

subject to AkP ~ -Ck,

and determine a stationary point for QP, that is, a point Pk satisfying

(2.5a)

(2.5b)

gk + HkPk = Ar 'Trk,

AkPk + Ck ~ O, 'Tr'[(AkPk + Ck) = O,

for sorne vector 'Trk E ~m (the QP multipliers at Pk).

594 WALTER MURRAY AND FRANCISCO J. PRIETO

ALGORITHM ETSQP

k+-O
repeat

Obtain the search direction Pk from the QP subproblem

rninp 'ljJk(p) == g'fp + ~pT HkP
s.t. AkP+Ck ~ O

Compute J.Lk, an estimate of A* such that IIJ.Lkll ~ {3,.,.
f.k +- J.Lk - Ak
if Pk-l = O

Compute Sk from (Sk)j = max(O, (Ck)j)
else

Compute Sk frorn (Sk)j = max(O, (Ck)j - (Ak)j/ Pk-l)
end if
qk +- AkPk + Ck - Sk
if <p;'(0) ~ -~pIHkPk

Pk +- Pk-l
else

(2
'ljJk(Pk) + (2Ak - J.Lk)T(Ck - Sk) (3)

Pk +- max Pk-l, 11 112 ' P Ck - Sk
end if
if <Pk(l) ~ <Pk(O) + 0"<p;'(0)

&+-1

else
Select & E (0,1) to satisfy

<Pk(&) ~ <pdO) +0-&<p;'(0), I<p;'(&)1 ~ -1]<P;'(0)
end if
while C(Xk + &Pk) t. -(3ce or <Pk(&) > <Pk(O) + 0"&<p;'(0) do

& +- &/2

end do
ak +- &

(~::~) +- (~:) + ak (~:)

Compute gk+1, Ak+l and Ck+1
Update Hk to form Hk+l
k+-k+1

until convergence

The following are sorne comrnents on the steps of the algorithm.
(i) At each point Xk, we form the QP subproblem

(2.4a)

(2.4b)

minimize g'fp + ~pTHkP
pE!Rn

subject to AkP ~ -Ck,

and determine a stationary point for QP, that is, a point Pk satisfying

(2.5a)

(2.5b)
gk + HkPk = AI1fk,

AkPk + Ck ~ O, 1f'f (AkPk + Ck) = O,

for sorne vector 1fk E ~m (the QP multipliers at Pk).

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 595

From information available at the stationary point we construct a search direction

Pk and #k an estimate of)*. The precise conditions that Pk and #k need to satisfy
are given later in this section. If Pk -0, we set Ak #k and terminate. Otherwise,
we compute the search direction in the space of the multiplier estimates k as

(2.6) k #k Ak.

(ii) The slack variables sk are computed from

max (0, (ck)j)
(,kk)j

otherwise.(Sk)i max O, (ck)j
Pk-1

These values minimize the merit function (2.1) at (Xk,k,Pk-1) with respect to the
slack variables. The slack variables sk appear in the merit function (2.1) as part of
the term ck Sk. From (2.7), this term takes the value

if Pk- 0,min (0, (Ck)))(2.8) (ck)j -(sk)j min((ck)j, p-_]
otherwise.

The following inequality will be useful in the analysis of the algorithm:

To simplify the notation in the justification of this result, we drop the subscript k.
If cj sj cj then clearly Ic sjl-Icl _> Ic-I.
If cj sj ?t cj and cj >_ O, then c 0 <_ Icj sjl. Otherwise, cj sj t cj and

cj < 0. From (2.8) we get cj- sj < cj < 0, and hence Icj -sjl > Icjl >_ [c- I. We have
shown Ic-l <_ Icj -sjl under all circumstances, implying (2.9).

(iii) The search direction in the space of the slack variables qk is set to the vector
of slack variables for the QP subproblem, i.e.,

qk Akpk -t--ck Sk.

For a linear constraint this choice keeps the corresponding slack variable at its opti-
mum value.

(iv) The penalty parameter will not be modified if the condition

is satisfied, where Ck(c) is defined in (2.2). Otherwise, we define the penalty param-
eter as

(2.12) p max(2p_,,/k, p),

where fp is some positive constant,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 595

From information available at the stationary point we construct a search direction
Pk and J.Lk an estimate of >.*. The precise conditions that Pk and J.Lk need to satisfy
are given later in this section. If Pk = O, we set >'k = J.Lk and terminate. Otherwise,
we compute the search direction in the space of the multiplier estimates ~k as

(2.6)

(ii) The slack variables Sk are computed from

(2.7)
if Pk-l = O,

otherwise.

These values minimize the merit function (2.1) at (Xk, >'k, Pk-l) with respect to the
slack variables. The slack variables Sk appear in the merit function (2.1) as part of
the term Ck - Sk. From (2.7), this term takes the value

(2.8)

The following inequality will be useful in the analysis of the algorithm:

(2.9)

To simplify the notation in the justification of this result, we drop the subscript k.
If Cj - Sj = Cj then clearly ICj - sjl = lejl ~ Icjl.

If Cj - Sj 1: Cj and Cj ~ O, then cj = ° ~ ICj - sjl. Otherwise, Cj - Sj 1: Cj and
Cj < O. From (2.8) we get Cj - Sj < Cj < O, and hence ICj - Sj I > ICj I ~ Icj l. We have
shown Icjl ~ ICj - sjl under all circumstances, implying (2.9).

(iii) The search direction in the space of the slack variables qk is set to the vector
of slack variables for the QP subproblem, Le.,

(2.10)

For a linear constraint this choice keeps the corresponding slack variable at its opti
mum value.

(iv) The penalty parameter will not be modified if the condition

(2.11)

is satisfied, where <Pk(a) is defined in (2.2). Otherwise, we define the penalty param
eter as

(2.12)

where {3p is some positive constant,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 595

From information available at the stationary point we construct a search direction
Pk and Ji-k an estimate of }.*. The precise conditions that Pk and Ji-k need to satisfy
are given later in this section. If Pk = O, we set }.k = Ji-k and terminate. Otherwise,
we compute the search direction in the space of the multiplier estimates 'k as

(2.6)

(ii) The slack variables Sk are computed from

(2.7)
if Pk-l = O,

otherwise.

These values minimize the merit function (2.1) at (Xk, }.k, Pk-l) with respect to the
slack variables. The slack variables Sk appear in the merit function (2.1) as part of
the term Ck - Sk. From (2.7), this ter m takes the value

(2.8)

The following inequality will be useful in the analysis of the algorithm:

(2.9)

To simplify the notation in the justification of this result, we drop the subscript k.

If Cj - Sj = Cj then clearly ICj - sjl = lejl ~ Icjl.
If Cj - Sj =1= Cj and Cj ~ O, then cj = O:=; lej - sjl. Otherwise, Cj - Sj =1= Cj and

Cj < O. From (2.8) we get Cj - Sj < Cj < O, and hence ICj - Sj I > ICj I ~ Icj l. We have
shown Icj I :=; ICj - Sj I under all circumstances, implying (2.9).

(iii) The search direction in the space of the slack variables qk is set to the vector
of slack variables for the QP subproblem, Le.,

(Z.10)

For a linear constraint this choice keeps the corresponding slack variable at its opti
mum value.

(iv) The penalty parameter will not be modified if the condition

(2.11)

is satisfied, where cPk(O:) is defined in (2.2). Otherwise, we define the penalty param
eter as

(2.12)

where {3p is sorne positive constant,

596 WALTER MURRAY AND FRANCISCO J. PRIETO

k(Pk) "+- (2Ak #k)T (Ck St:)P I1 11

and Ok was defined in (2.3). It will be shown that the definition (2.12) ensures that
(Pk,k, qk) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

(v) The steplength ak > 0 is computed to reduce Ck(a) while keeping the con-
straint violation bounded. The termination conditions for the linesearch are as follows:
If

() ,(0) < I(0),

set & 1. Otherwise, find an & E (0, 1) such that

(2.15a)
(2.15b)

(a) (0) < ai(0),
I() > I(0),

where 0 < a < r < 1.

If the condition

(2.16) c(xk + &pk) >_ -ce

holds, we define ak &; otherwise we compute ak by performing a backtracking
linesearch from & until (2.15aa) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that c(xk) >_ --ce for all k. A more sophisticated
algorithm could be used to determine ak when (2.16) does not hold. However, we
anticipate such events will be rare.

(vi) Finally, xk and Ak are updated from

(217)

2.2. The definition of the search direction. At each iteration of Algorithm
ETSQP an inner iteration is performed to determine the search direction by solving
the QP subproblem (2.4a) using an active-set method. The following is an outline of
a suitable algorithm to determine the search direction. The outer iteration subscript
has been omitted, and the subscript refers to the inner iterations.

We assume that positive constants/p,/b, /M have been defined (/b _< 1).

596 WALTER MURRAY AND FRANCISCO J. PRIETO

(2.13)

and 'ljJk was defined in (2.3). It will be shown that the definition (2.12) ensures that
(pk, ~k, qk) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

(v) The steplength ak > O is computed to reduce cPk(a) while keeping the con
straint violation bounded. The termination conditions for the linesearch are as follows:
If

(2.14)

set a = 1. Otherwise, find an a E (0,1) such that

(2.15a)

(2.15b)

where O < a < 1} < 1.

If the condition

(2.16)

cPk(a) - cPk(O) ::; aacP~(O),

cP~ (a) 2: 1}cP~ (O),

holds, we define ak = a; otherwise we compute ak by performing a backtracking
linesearch from a until (2.15aa) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that C(Xk) 2: -f3ce for all k. A more sophisticated
algorithm could be used to determine ak when (2.16) does not hold. However, we
anticipate such events will be rareo

(vi) Finally, Xk and Ak are updated from

(2.17) (~::~) = (~:) + ak (~:).

2.2. The definition of the search direction. At each iteration of Algorithm
ETSQP an inner iteration is performed to determine the search direction by solving
the QP subproblem (2.4a) using an active-set method. The following is an outline of
a suitable algorithm to determine the search direction. The outer iteration subscript
has been omitted, and the subscript i refers to the inner iterations.

We assume that positive constants f3p , f3b, "1M have been defined (f3b ::; 1).

596 WALTER MURRAY AND FRANCISCO J. PRIETO

(2.13)

and 'l/Jk was defined in (2.3). It will be shown that the definition (2.12) ensures that
(Pk, ~k, qk) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

(v) The steplength ak > O is computed to reduce qyk(a) while keeping the con
straint violation bounded. The termination conditions for the linesearch are as follows:
If

(2.14)

set & = 1. Otherwise, find an & E (0,1) such that

(2.15a)

(2.15b)

where O < a < TI < 1.

If the condition

(2.16)

qyk(&) - qyk(O) ::; a&qy~(O),

qy~(&) ~ r¡qy~(O),

holds, we define ak = &j otherwise we compute ak by performing a backtracking
linesearch from & until (2.15aa) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that C(Xk) ~ -(3ce for all k. A more sophisticated
algorithm could be used to determine ak when (2.16) does not hold. However, we
anticipate such events will be rareo

(vi) Finally, Xk and A.k are updated from

(2.17)

2.2. The definition of the search direction. At each iteration of Algorithm
ETSQP an inner iteration is performed to determine the search direction by solving
the QP subproblem (2.4a) using an active-set method. The following is an outline of
a suitable algorithm to determine the search direction. The outer iteration subscript
has been omitted, and the subscript i refers to the inner iterations.

We assume that positive constants (3p, (3b, "1M have been defined ((3b ::; 1).

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 597

ALGORITHM SD

Compute p0 satisfying:

Apo + c > 0, Ilpo llc-II, BTRo llc-II
Form 0, the active-set matrix at p0, as the set of all rows in A corresponding
to
active QP constraints at p0

i.--0
repeat

()0Compute/3i from fi.i

7i min(1 infj{ -cj +ap6-- aT-

Pi+l Pi +
Set i+l to be the active-set matrix at
ii+l

until p is a stationary point. p
if>0
pp

else

"), .-- min(- (g + H)Td
dTHd

if [[i5 + q/d[[> 11i5[I
p+--+Td

else
p+-p

end if
end if

Set vr - 1 if #r < b mini #j, otherwise set vr *- 0
Compute by solving: min{r .i v}
d d/[[d[[

inf,{ c + a’i5 O})a"d a"d < ’M

Some comments on this procedure are presented below.

(i) An initial feasible point p0 of the QP subproblem is obtained. When the
minimizer of the QP is used as the search direction, then, given the uniqueness of p,
the choice of P0 is irrelevant. If we determine the search direction from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of p0. We wish to define the initial point in such a
manner that all stationary points are satisfactory points at which to terminate the
solution process. It will be seen that the following conditions on p0 are sufficient to
ensure our objective.

For some constant p > 0,

(2.18) Ilpoll pllc-II and gTpo

(ii) A sequence of feasible descent steps are taken, for example, by first computing
the unique step i to the minimizer of the QP on the current working set as the least-

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 597

ALGORITHM SD

Compute Po satisfying:

Apo+c ~ O,

Form ...lo, the active-set matrix at Po, as the set of aH rows in A corresponding
to
active QP constraints at Po
i+-O
repeat

Compute Pi from (1 Al) (~~) = (-g ~ HPi)

• (• { Cj +aJPi T- })
"{i +- mm l,mfj - aJPi I ajPi < O

PHl +- Pi + "{iPi
Set AH1 to be the active-set matrix at PHl
i +-i+l

until Pi is a stationary point. fí +- Pi
if i" ~ O

else
p+-fí

Set Vr +- 1 if i" r ~ f3b minj i" j, otherwise set Vr +- O
Compute dby solving: min{JI'd I ...lid = v}
d +-d/lldll

. ((g+Hfí)Td. {Cj +aJfí T })
"{+-mm dTHd ,mfj - a'fd I ajd<O ,"{M

3

if llfí + "{dll > llfíll
P +- fí+"{d

else
p+-fí

end if
end if

Some comments on this procedure are presented below.

(i) An initial feasible point Po of the QP subproblem is obtained. When the
minimizer of the QP is used as the search direction, then, given the uniqueness of p,
the choice of Po is irrelevant. If we determine the search direction from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of Po. We wish to define the initial point in such a
manner that all stationary points are satisfactory points at which to terminate the
solution process. It will be seen that the foHowing conditions on Po are sufficient to
ensure our objective.

For some constant f3p > O,

(2.18)

(ii) A sequence of feasible descent steps are taken, for example, by first computing
the unique step Pi to the minimizer of the QP on the current working set as the least-

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 597

ALGORITHM SD

Compute Po satisfying:

Apo + e 2: O,

Form Ao, the aetive-set matrix at Po, as the set of all rows in A corresponding
to
active QP constraints at Po
i+-O
repeat

Compute Pi from (1 Al) (~~) = (-g~HPi)

({
ej + aJ Pi T }) ,i +- min 1, infj - aTpi I a j Pi < O

J
PHI +- Pi + 'iPi
Set Ai+l to be the active-set matrix at PHI

i+-i+1
until Pi is a stationary point. p +- Pi
if ir 2: O

else
p+-p

Set V r +- 1 if ir r ~ (3b minj ir j, otherwise set Vr +- O
Compute d by solving: min {JI' d I Aid = v}
d +- d/lldll

. ((g+Hp)Td. { ej +aJp T })
,+-mm dTHd ,mfj - aTd I ajd<O "M

if IIp + ,dll > Ilpll
P +- p+,d

else
p+-p

end if

J

end if

Sorne comments on this procedure are presented below.

(i) An initial feasible point Po of the QP subproblem is obtained. When the
minimizer of the QP is used as the search direction, then, given the uniqueness of p,
the choice of Po is irrelevant. If we determine the search direetion from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of Po. We wish to define the initial point in such a
manner that all stationary points are satisfactory points at which to terminate the
solution process. It will be seen that the following conditions on Po are sufficient to
ensure our objective.

For sorne constant (3p > O,

(2.18)

(ii) A sequence of feasible descent steps are taken, for example, by first computing
the unique step Pi to the minimizer of the QP on the current working set as the least-

598 WALTER MURRAY AND FRANCISCO J. PRIETO

length solution of the system of equations

(2.19) Ai 0 -# 0

where Pi i8 the current estimate. A step /i i8 taken, where i is obtained a8 either
one or the step to the nearest constraint,

(2.20) 7i min(1 ipf -cj + aypi aT_

The QP algorithm may be terminated at any stationary point . (Algorithm SD
is terminated at the first stationary point.) It will be seen in the proof8 that to alway8
use as the search direction will not in general ensure convergence.

(iii) If i8 the minimizer of the QP 8ubproblem the search direction p i8 defined
p , else

+ f 1111 < I1 + dll,(.1) P otherwise,

where the vector d and the scalar are computed with the following properties:
u8euA 0,d I111 X.

The rate of descent along d is "suciently" large. By this we mean d satisfies

where 0 < d 1, H + g and d* solve8

min
(.a) s.t. Ad o,

There are many procedure8 for computing a suitable vector d. For example, if the
singular values of are bounded above and below and i ha8 full row rank then a
suitable d may be computed follows. Define a vector v to 8atis

1 if i < 0,
vi 0 otherwise.

We then compute the least-length solution of iy v and define d

For this direction d we have

1 n.(.24) Td T Tv

Under the sumptions made on it follows I]]] is bounded. We shall now show
d is a "sucient" descent direction. Let u* denote the 801ution of the problem

minu Tu
s.t. 0, IIll 1.

598 WALTER MURRAY AND FRANCISCO J. PRIETO

length solution of the system of equations

(2.19)

where Pi is the current estimate. A step "ti is taken, where "ti is obtained as either
one or the step to the nearest constraint,

(2.20) ({ Cj + aJPi T })
"ti = min 1, i~f - T- I aj Pi < O .

J a j Pi

The QP algorithm may be terminated at any stationary point p. (AIgorithm SD
is terminated at the first stationary point.) It will be seen in the proofs that to always
use p as the search direction will not in general ensure convergence.

(iii) If pis the minimizer of the QP subproblem the search direction pis defined
as P =p, else

(2.21) if IIpll < IIp + idll,
otherwise,

where the vector d and the scalar i are computed with the following properties:
d satisfies Aid 2:: O, and Ildlloo = 1.
The rate of descent along d is "sufficiently" large. By this we mean d satisfies

(2.22) -Td < f.l -Td* 9 _fJdg ,

where O < f3d ~ 1, 9 = Hp + 9 and d* solves

(2.23)
mind
s.t.

~g

Aid 2:: O,
IIdlloo ~ 1.

There are many procedures for computing a suitable vector d. For example, if the
singular values of Ai are bounded above and below and Ai has full row rank then a
suitable d may be computed as follows. Define a vector v to satisfy

Vj = { ~ ifij<O,
otherwise.

We then compute d as the least-Iength solution of Aiy = v and define d as

For this direction d we have

(2.24) -Td ~TA~ d ~T < 1 . ~
9 = 'Ir i = 'Ir V - IIdlloo m¡n'lrj.

Under the assumptions made on Ai it follows IIdlloo is bounded. We shall now show
d is a "sufficient" descent direction. Let u* denote the solution of the problem

minu iTu
s.t. u 2:: O, lIull oo ~ 1.

598 WALTER MURRAY AND FRANCISCO J. PRIETO

length solution of the system of equations

(2.19) (If AT) (Pi) = (- g - H Pi)
Ai O -if O'

where Pi is the current estimate. A step "!i is taken, where "!i is obtained as either
one or the step to the nearest constraint,

(2.20)
T

. (. {cj+aj Pi T- }) "!i =mm 1,mf - T-. 1 ajPi <O .
J aj p,

The QP algorithm may be terminated at any stationary point p. (Algorithm SD
is terminated at the first stationary point.) It will be seen in the proofs that to always
use p as the search direction will not in general ensure convergence.

(iii) If P is the minimizer of the QP subproblem the search direction P is defined
as P == p, else

(2.21) if Ilpll < IIp + idll,
otherwise,

where the vector d and the scalar i are computed with the following properties:
d satisfies Aid ~ O, and Ildll oo = 1.
The rate of descent along d is "sufficiently" large. By this we mean d satisfies

(2.22)

where O < f3d ::; 1, iJ = Hp + g and d* solves

(2.23)
mind
S.t.

dTiJ
Aid ~ O,

Ildll oo ::; 1.

There are many procedures for computing a suitable vector d. For example, if the
singular values of Ai are bounded above and below and Ai has full row rank then a
suitable d may be computed as follows. Define a vector v to satisfy

ififj<O,
otherwise.

We then compute d as the least-length solution of Aiy = v and define d as

d == d/lldll oo .

For this direction d we have

(2.24) -Td 'TA' d 'T < 1 .,
g =71' i =7I'v-lldII00~m7l'j.

Under the assumptions made on Ai it follows Ildll oo is bounded. We shall now show
d is a "sufficient" descent direction. Let u* denote the solution of the problem

minu ifTu
S.t. u ~ O, Ilull oo ::; 1.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 599

We have #Tu* > m mini #j. Define z Aid*. We get

(JTd* Td* 77T(> mllll m.in
3

since z2 > 0. If liAII is bounded it follows IIll is bounded. From .(2.24) and the above
inequality we get

I
rn?j<

I ffTd,ffTd 7?T"id 7?Tv --< ildll mll ll Ildll
Lemma 2.1 presents some properties of the solutions of (2.23). These properties

are based on the observation that the cost vector and the coefficients of each constraint
can be normalized without affecting the feasible region or the solutions of the problem.
Since we are concerned with sequences we reintroduce the outer subscript. Define
k - k/llkll and a matrix Bk whose jth row is the normalized jth row of i. The
problem

mind
(2.25) s.t.

ATgkd
Bkd > 0,

has the same feasible region and the same solutions as (2.23). We tacitly assume
no row of .zii is a zero vector, otherwise it could be omitted from both problems.
Likewise, if IIk 0 it implies/hk is the minimizer of the QP.

LEMMA 2.1. Given a subsequence of iterates (Xk}, generated by Algorithm ET-
SQP and such that for all of themk Pk, the directions dk obtained as solutions of
(2.23) at each point satisfy -Tz.y tk < 0 and Ildk I1 1. Furthermore, if gkdk* -- 0 along
the subsequence, then eitherk --* 0 or for any limit (t, B) of the sequence {(k, Bk)},
defined as in (2.25), it holds that BT, with > O.

Proof. Since Pk --Pk is a feasible descent direction of (2.23) at d 0 it follows
that d 0 is not optimal, and the solutions of (2.23) satisfy gkdk* < 0 and I]dk* IIc 1.

Consider now the sequence of problems of the form (2.25) and the problem ob-
tained from a limit of the sequence {(k, Bk) }. The feasible regions of all problems are
compact convex polytopes; if we denote the vertices of the polytope corresponding to
problem k by {d }, where the index takes a finite number of different values, it holds
that for each l, d --. dl, a vertex for the polytope corresponding to the feasible region
of the limit problem (assume without loss of generality that the convergent subse-
quence has been chosen so that the number of vertices is the same for all problems in
the subsequence).

Any feasible point of the limit problem, d, can be written as a convex combination
of the vertices dl, d Yt tdr" We can then construct for any feasible d a sequence
{dk}, where each point dk is defined as dk =_ t ldk, having the properties that dk

is feasible for the kth problem (2.25), and dk d.
Ifk 0 then _-T. ^T *g dk ---* 0 implies gk dk 0 and it must hold that d 0 is

an optimal solution of the limit problem, implying that there exists a vector > 0
satisfying BTI. FI

Note that gk dk O, if and only if kdk --+ O, where dk is a sufficient descent
direction.

The scalar is given by

(2.26) min(9,-, 7M),

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 599

Wehavei'Tu* ;::mminji'j. Defineü::.Aid*. Weget

yTd* = i'T .Aid* = i'Tü ;:: mllüll m~n i' j,
3

since ü ;:: O. If lI.Ai 11 is bounded it follows lIüll is bounded. From (2.24) and the aboye
inequality we get

-Td ~TA' d ~T < 1 ., < 1 -Td*
9 = 7r i = 7r V - IIlllloo ~m7rj - mllülllldll oog .

Lemma 2.1 presents some properties of the solutions of (2.23). These properties
are based on the observation that the cost vector and the coefficients of each constraint
can be normalized without affecting the feasib1e region or the solutions of the prob1em.
Since we are concerned with sequences we reintroduce the outer subscript. Define
Yk :: Yk/IIYkll and a matrix Bk whose jth row is the norma1ized jth row of Ai. The
prob1em

(2.25)
mind
s.t.

has the same feasib1e region and the same solutions as (2.23). We tacit1y assume
no row of .Ai is a zero vector, otherwise it cou1d be omitted from both prob1ems.
Likewise, if IIYkll = O it implies Pk is the minimizer of the QP.

LEMMA 2.1. Given a subsequence 01 iterates {xd, generated by Algorithm ET

SQP and such that lor all 01 them Pk =1= pt, the directions d'k obtained as solutions 01
(2.23) at each point satisfy gTd'k < O and IId'klloo = 1. Furthermore, il grd'k -+ O along
the subsequence, then either Yk -+ O or lor any limit (y, B) 01 the sequence {(gk, Bk)},
defined as in (2.25), it holds that y = B T v, with v ;:: O.

Proof. Since pt - Pk is a feasib1e descent direction of (2.23) at d = O it foHows
that d = O is not optima1, and the solutions of (2.23) satisfy grd'k < O and IId'klloo = 1.

Consider now the sequence of prob1ems of the form (2.25) and the prob1em ob
tained from a limit of the sequence {(gk, B k)}. The feasib1e regions of aH prob1ems are
compact convex po1ytopes; if we denote the vertices of the po1ytope corresponding to
prob1em k by {dL}, where the index 1 takes a finite number of different va1ues, it ho1ds
that for each l, dL -+ di, a vertex for the po1ytope corresponding to the feasib1e region
of the limit prob1em (assume without 10ss of generality that the convergent subse
quence has been chosen so that the number of vertices is the same for al1 prob1ems in
the subsequence).

Any feasib1e point of the limit prob1em, d, can be written as a convex combination
of the vertices di, d = LL (¡di. We can then construct for any feasib1e d a sequence
{dk}, where each point d is defined as dk :: L¡ (¡dL having the properties that dk
is feasib1e for the kth prob1em (2.25), and dk -+ d.

If Yk f+ O then gTd'k -+ O implies gr d'k -+ O and it must ho1d that d = O is
an optima1 solution of the limit prob1em, imp1ying that there exists a vector v ;:: O
satisfying 9 = BT v. O

Note that gr d'k -+ O, if and on1y if gr dk -+ O, where dk is a sufficient descent
direction.

The scalar i' is given by

(2.26)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 599

We have ifTu* ? mminj ifj. Define ü == Aid*. We get

fFd* = ifTAid* = ifTü ? mllüll m~nifj,
J

since ü ? O. If IIAil1 is bounded it follows Ilüll is bounded. From (2.24) and the aboye
inequality we get

Lemma 2.1 presents some properties of the solutions of (2.23). These properties
are based on the observation that the cost vector and the coefficients of each constraint
can be normalized without affecting the feasible region or the solutions of the problem.
Since we are concerned with sequences we reintroduce the outer subscript. Define
gk == 9k/119kll and a matrix Bk whose jth row is the normalized jth row of Ai. The
problem

(2.25)
mind
S.t.

has the same feasible region and the same solutions as (2.23). We tacitly assume
no row of Ai is a zero vector, otherwise it could be omitted from both problems.
Likewise, if 119k 11 = O it implies Pk is the minimizer of the QP.

LEMMA 2.1. Given a subsequenee of iterates {xd, generated by Algorithm ET

SQP and sueh that for all of them Pk i:- pt, the direetions d't, obtained as solutions of
(2.23) at ea eh point satisfy gTd't, < O and Ild't,lloo = 1. Furthermore, if fffd't, ---t O along
the subsequenee, then either 9k ---t O or for any limit (g, B) of the sequenee {(gk, B k)},
defined as in (2.25), it holds that 9 = BTI/, with I/? O.

Proof. Since pt - Pk is a feasible descent direction of (2.23) at d = O it follows
that d = O is not optimal, and the solutions of (2.23) satisfy fffd't, < O and Ild't, 1100 = 1.

Consider now the sequence of problems of the form (2.25) and the problem ob
tained from a limit of the sequence {(gb Bk)}. The feasible regions of all problems are
compact convex polytopes; if we denote the vertices of the polytope corresponding to
problem k by {dD, where the index l takes a finite number of different values, it holds
that for each l, d~ ---t dI, a vertex for the polytope corresponding to the fe asible region
of the limit problem (assume without loss of generality that the convergent sub se
quence has been chosen so that the number of vertices is the same for all problems in
the subsequence).

Any fe asible point of the limit problem, d, can be written as a convex combination
of the vertices dI, d = Ll (ldl . We can then construct for any feasible d a sequence
{dk }, where each point dk is defined as dk == Ll (ld~, having the properties that dk

is fe asible for the kth problem (2.25), and dk
---t d.

If 9k f+ O then gTd't, ---t O implies gI d't, ---t O and it must hold that d = O is
an optimal solution of the limit problem, implying that there exists a vector 1/ ? O
satisfying 9 = B T 1/. O

Note that fff d't, ---t O, if and only if fff dk -+ O, where dk is a sufficient descent
direction.

The scalar l' is given by

(2.26)

600 WALTER MURRAY AND FRANCISCO J. PRIETO

where "7M is a specified upper bound on the steplength,

(2.27) " in.f{ cj + @’15 }
3 ayd

is the largest feasible step from/5 along d, and

(a + S)rd(2.28) -- drHd

is the step to the minimizer of (/5 / d).
2.3. The multiplier estimates. Equation (2.6) defining the search direction on

the ,multiplier space k requires the computation of an estimate #k for the Lagrange
multipliers. The estimates {#k } are then used to update {Ak }, the Lagrange multiplier
estimate used in the merit function. To allow flexibility in algorithm design we have
chosen to specify conditions on the multipliers estimates k rather than give explicit
definitions.

It will be shown that the following conditions on k are sufficient to ensure that
the algorithm is globally convergent.

MC1. The estimates #k are uniformly bounded in norm, that is]]#k]] < .
MC2. The complementarity condition #(Apk + ck) 0 is satisfied at all itera-

tions.
We may satisfy these conditions by choosing #k 0. Condition MC2 is made

for convenience; condition MC1 and the form in which the multiplier estimates are
updated imply that {Ak} are uniformly bounded.

LEMMA 2.2. If condition MC1 holds, then] for all k.
Proof. The proof is by induction. We select to satisfy A0 fl. om (2.17),

(2.29) "k-bl "k -[-Ol’k(#k "k), k

_
O.

Using norm inequalities and 0 < ak

_
1, we have

as required.

2.4. Second-order information. We choose the matrices {Hk} to be positive
definite and bounded, with bounded condition number. In practice, such matrices
may be generated (see [15]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function or the Hessian of the augmented Lagrangian function in
each iteration together with certain safeguards (for example, if the factors of Hk are
updated, by enforcing bounds on the size of the elements, and ensuring sufficiently
positive diagonal elements). These conditions can be written as follows:

HC1.H < oc is the largest eigenvalue of {H}.
HC2. .H > 0 is the smallest eigenvalue of {Hk}.
3. Global convergence results. The results in this section establish global

convergence properties for Algorithm ETSQP, under certain assumptions on the prob-
lem NP. We first introduce these assumptions, and then, under the condition that they
hold, we prove the following results:

(i) The iterates {x} lie on a compact set.

600 WALTER MURRAY AND FRANCISCO J. PRIETO

where "'f M is a specified upper bound on the steplength,

_ • { Cj + aJ P T }
"'f = l~f a'f d I aj d < O ,

3

(2.27)

is the largest feasible step from p along d, and

(2.28)

is the step to the minimizer of 'IjI(p + "'fd).

2.3. The multiplier estimates. Equation (2.6) defining the search direction on
the 'illultiplier space ~k requires the computation of an estimate ¡.tk for the Lagrange
multipliers. The estimates {¡.td are then used to update {Ak}, the Lagrange multiplier
estimate used in the merit function. To allow fiexibility in algorithm design we have
chosen to specify conditions on the multipliers estimates ¡.tk rather than give explicit
definitions.

It will be shown that the following conditions on ¡.tk are sufficient to ensure that
the algorithm is globally convergent.

MC!. The estimates ¡.tk are uniformly bounded in norm, that is lI¡.tkll :::; f3p. < oo.
MC2. The complementarity condition ¡.tf(AkPk + Ck) = O is satisfied at all itera

tions.
We may satisfy these conditions by choosing ¡.tk = O. Condition MC2 is made

for convenience; condition MCl and the form in which the multiplier estimates are
updated imply that {>'d are uniformly bounded.

LEMMA 2.2. JI condition MCl holds, then IIAkll :::; f3p. lor all k.
Proo/. The proof is by induction. We select f3p. to satisfy IIAolI :::; f31-" From (2.17),

(2.29)

Using norm inequalities and O < ak :::; 1, we have

as required. O

2.4. Second-order information. We choose the matrices {Hk} to be positive
definite and bounded, with bounded condition number. In practice, such matrices
may be generated (see [15]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function or the Hessian of the augmented Lagrangian function in
each iteration together with certain safeguards (for example, if the factors of Hk are
updated, by enforcing bounds on the size of the elements, and ensuring sufficiently
positive diagonal elements). These conditions can be written as follows:

HC!. f3lvH < 00 is the largest eigenvalue of {Hk}.
HC2. f3svH > O is the smallest eigenvalue of {Hk}.

3. Global convergence results. The results in this section establish global
convergence properties for AIgorithm ETSQP, under certain assumptions on the prob
lem NP. We first introduce these assumptions, and then, under the condition that they
hold, we prove the following results:

(i) The iterates {Xk} lie on a compact seto

600 WALTER MURRAY AND FRANCISCO J. PRIETO

where "1M is a specified upper bound on the steplength,

(2.27)
T-

_ . { Cj + a j P T }
"1 = l~f aT d 1 aj d < O ,

J

is the largest feasible step from jj along d, and

(2.28)

is the step to the minimizer of 'ljJ(jj + "Id).

2.3. The multiplier estimates. Equation (2.6) defining the search direction on
the 'ffiultiplier space ~k requires the computation of an estimate f.lk for the Lagrange
multipliers. The estimates {f.ld are then used to update {Ak}, the Lagrange multiplier
estimate used in the merit function. To allow flexibility in algorithm design we have
chosen to specify conditions on the multipliers estimates f.lk rather than give explicit
definitions.

It will be shown that the following conditions on f.lk are sufficient to ensure that
the algorithm is globally convergent.

MCl. The estimates f.lk are uniformly bounded in norm, that is IIf.lk 11 :::; f3J-L < oo.
MC2. The complementarity condition f.lf(AkPk + Ck) = O is satisfied at all itera

tions.
We may satisfy these conditions by choosing f.lk = O. Condition MC2 is made

for convenience; condition MC1 and the form in which the multiplier estimates are
updated imply that {Ad are uniformly bounded.

LEMMA 2.2. Jf condition MC1 holds, then IIAkl1 :::; f3J-L for all k.
Proo! The proof is by induction. We select f3J-L to satisfy IIAo 11 :::; f3w From (2.17),

(2.29)

Using norm inequalities and O < D:k :::; 1, we have

as required. O

2.4. Second-order information. We choose the matrices {Hd to be positive
definite and bounded, with bounded condition number. In practice, such matrices
may be generated (see [15]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function or the Hessian of the augmented Lagrangian function in
each iteration together with certain safeguards (for example, if the factors of Hk are
updated, by enforcing bounds on the size of the elements, and ensuring sufficientIy
positive diagonal elements). These conditions can be written as follows:

HCl. f31vH < 00 is the largest eigenvalue of {Hd.
HC2. f3svH > O is the smallest eigenvalue of {Hk}.

3. Global convergence results. The results in this section establish global
convergence properties for Algorithm ETSQP, under certain assumptions on the prob
lem NP. We first introduce these assumptions, and then, under the condition that they
hold, we prove the following results:

(i) The iterates {xd lie on a compact seto

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 601

In Lemma 3.1 we show that the quantities associated with the algorithm
are well defined at all points.
In Lemma 3.2 it is shown that if IlXkll is large then IlPkll cannot be
arbitrarily small.
In Lemma 3.3 we show that p computed using Algorithm SD satisfies

T(p) gTp + p Hp <_ -lpTHp +/211c- sll

where/1 and/2 are positive constants.
Lemma 3.4 proves that the sequence {xk} lies on a compact set.
Lemma 3.5 shows that the sequence {p} also remains bounded.

(ii) The sequence {llPkll} dominates the sequence {llxk-x*ll}, where x* denotes a
KKT point closest to xk. The main implication of this result is that IIP -- 0
is sufficient to ensure that xk --* x*, a KKT point of NP.

It is shown in Lemma 3.6 that the KKT points for problem NP are
isolated.
Lemma 3.7 shows that if Ilxk --x* 0 along a subsequence then along
the same subsequence 117rk * -* 0.
Lemma 3.8 introduces another preliminary result, proving that ifp - 0
along a subsequence then along this subsequence Ilxk x* --* 0, where
x* is a KKT point for NP nearest to x. Moreover, for large enough k,
Pk is the minimizer of the QP subproblem, and the correct active set at
x* is identified.
The proof that IlPkll dominates Ilxk x*ll is given in Lemma 3.9.

(iii) Bounds on the growth of the penalty parameter Pk. We cannot prove that Pk
will remain bounded in the algorithm without stronger conditions on the mul-
tiplier estimate #k, but we can show that its growth is bounded by certain
quantities related with the algorithm, and that is enough to prove conver-
gence.

We show in Lemma 3.10 that at all the iterations where the penalty
parameter is modified the following bounds hold,

In Lemmas 3.11 and 3.12 we show that similar inequalities hold at all
iterations.

(iv) The steplength ak is bounded away from zero if we are not close to a solution.
We first need a bound on the second derivatives of (c). In Lemma 3.13
we prove that (ak) _< N for some positive constant N.
In Lemma 3.14 we show that, if IlPk is large enough, there exists a value
> 0 independent of the iteration such that ak >_ (.

(v) In Theorem 3.15 we show that xk x*.
(vi) Finally, we prove that Ak -- A*.

This result requires stronger conditions on the multiplier estimate #k
than just MC1 and MC2. We start by introducing a third condition
MC3.
Lemma 3.16 strengthens the result in Lemma 3.14 showing that, under
the new conditions on the multipliers, ck is uniformly bounded away
from zero.
In Theorem 3.17 we show that)k A*.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 601

- In Lemma 3.1 we show that the quantities associated with the algorithm
are well defined at all points.
In Lemma 3.2 it is shown that if Ilxkll is large then IIpkll cannot be
arbitrarily small.

- In Lemma 3.3 we show that P computed using AIgorithm SD satisfies

where (31 and (32 are positive constants.
- Lemma 3.4 proves that the sequence {Xk} lies on a compact seto
- Lemma 3.5 shows that the sequence {pd also remains bounded.

(ii) The sequence {llpkll} dominates the sequence {IIXk -x*II}, where x* denotes a
KKT point closest to Xk. The main implication of this result is that IIpk 11 - O
is sufficient to ensure that Xk - x*, a KKT point of NP.

- It is shown in Lemma 3.6 that the KKT points for problem NP are
isolated.

- Lemma 3.7 shows that if Ilxk - x* 11 - O along a subsequence then along
the same subsequence l17rk - >.* 11 - o.

- Lemma 3.8 introduces another preliminary result, proving that if Pk - O
along a subsequence then along this subsequence IIXk - x* 11 - O, where
x* is a KKT point for NP nearest to Xk. Moreover, for large enough k,
Pk is the minimizer of the QP subproblem, and the correct active set at
x* is identified.

- The proof that IIpkll dominates IIXk - x*11 is given in Lemma 3.9.
(iii) Bounds on the growth of the penalty parameter Pk. We cannot prove that Pk

will remain bounded in the algorithm without stronger conditions on the mul
tiplier estimate J.Lk, but we can show that its growth is bounded by certain
quantities related with the algorithm, and that is enough to prove conver
gence.

- We show in Lemma 3.10 that at all the iterations where the penalty
parameter is modified the following bounds hold,

- In Lemmas 3.11 and 3.12 we show that similar inequalities hold at all
iterations.

(iv) The steplength O'.k is bounded away from zero ifwe are not close to a solution.
- We first need a bound on the second derivatives of <1>(0'.). In Lemma 3.13

we prove that <l>k(O'.k) ::; N for sorne positive constant N.
- In Lemma 3.14 we show that, if Ilpkll is large enough, there exists a value

a > O independent of the iteration such that O'.k ~ a.
(v) In Theorem 3.15 we show that Xk - x*.

(vi) Finally, we prove that >'k - >.*.
- This result requires stronger conditions on the multiplier estimate J.Lk

than just MCl and MC2. We start by introducing a third condition
MC3.

- Lemma 3.16 strengthens the result in Lemma 3.14 showing that, under
the new conditions on the multipliers, O'.k is uniformly bounded away
from zero.

- In Theorem 3.17 we show that >'k - >.*.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 601

- In Lemma 3.1 we show that the quantities associated with the algorithm
are well defined at all points.
In Lemma 3.2 it is shown that if Ilxk II is large then Ilpk II cannot be
arbitrarily small.

- In Lemma 3.3 we show that P computed using Algorithm SD satisfies

where (31 and (32 are positive constants.
- Lemma 3.4 proves that the sequence {xd lies on a compact seto
- Lemma 3.5 shows that the sequence {pd also remains bounded.

(ii) The sequence {llpkll} dominates the sequence {llxk-X*II}, where x* denotes a
KKT point closest to Xk. The main implication ofthis result is that Ilpkll --. O
is sufficient to ensure that Xk --. x*, a KKT point of NP.

- It is shown in Lemma 3.6 that the KKT points for problem NP are
isolated.

- Lemma 3.7 shows that if Ilxk - x* II --. O along a subsequence then along
the same subsequence 117l"k - A*II --. O.

- Lemma 3.8 introduces another preliminary result, proving that if Pk --. O
along a subsequence then along this subsequence Ilxk - x*11 --. O, where
x* is a KKT point for NP nearest to Xk. Moreover, for large enough k,
Pk is the minimizer of the QP subproblem, and the correct active set at
x* is identified.

- The proof that Ilpkll dominates Ilxk - x*11 is given in Lemma 3.9.
(iii) Bounds on the growth of the penalty parameter Pk. We cannot prove that Pk

will remain bounded in the algorithm without stronger conditions on the mul
tiplier estimate f.lk, but we can show that its growth is bounded by certain
quantities related with the algorithm, and that is enough to prove conver
gence.

- We show in Lemma 3.10 that at all the iterations where the penalty
parameter is modified the following bounds hold,

- In Lemmas 3.11 and 3.12 we show that similar inequalities hold at all
iterations.

(iv) The steplength ak is bounded away from zero if we are not close to a solution.
- We first need a bound on the second derivatives of q;(a). In Lemma 3.13

we prove that q;k(ak) :S N for sorne positive constant N.
- In Lemma 3.14 we show that, if Ilpk II is large enough, there exists a value

a > O independent of the iteration such that ak ::::: a.
(v) In Theorem 3.15 we show that Xk --. x*.

(vi) Finally, we prove that Ak --. A*.
- This result requires stronger conditions on the multiplier estimate f.lk

than just MC1 and MC2. We start by introducing a third condition
MC3.

- Lemma 3.16 strengthens the result in Lemma 3.14 showing that, under
the new conditions on the multipliers, ak is uniformly bounded away
from zero.

- In Theorem 3.17 we show that Ak --. A*.

602 WALTER MURRAY AND FRANCISCO J. PRIETO

3.1. Assumptions. Some of the following assumptions make use of the concepts
of stationary points and KKT points at infinity. We will say that NP has a stationary
point at infinity if there exist sequences (xk} and (k} such that Ilxkll oc and/or
IIrkll-- c, and

ck- -- 0, AkTrlk gk --+ 0, rlck O.

As before let Ba denote a matrix whose rows are the normalized rows of Ak andk
denote the normalized gradient vector. Define k so that TAk rlk--gk (B[Pk--k)llgkll.
If in addition to the preceding conditions we have p >_ 0, where indicates the limit
of some subsequence (k}, we then say there is a KKT point at infinity.

Finally, we will say that strict complementarity does not hold at some stationary
point at infinity if for the preceding sequences and some constraint j we have

(ck)j -- 0 and ()j - 0.

We make the following assumptions.
A1. For some constant c > 0, the global minimum of the problem

minimize F(x)
s.t. c(x) >_-13e,

is bounded below.
A2. There exist no KKT points at infinity for problem NP.
A3. F, cj, and their first and second derivatives are continuous and uniformly

bounded in norm on a compact set.
A4. The Jacobian corresponding to the active constraints at all KKT points has

full rank.
A5. A feasible point Pko exists to all the QP subproblems, satisfying

for some constant/p > 0.
A6. Strict complementarity holds at all stationary points of NP, including sta-

tionary points at infinity, if they exist.
A7. The reduced Hessian of the Lagrangian function is nonsingular at all KKT

points. The larger the value of 3c, the stronger is assumption A1. There will be
problems, for example F(z) f(x)Tf(x), where it is known a priori that Assumption
A1 holds with/ oc. Also, if A1 does not hold with 3c 0 then it is possible for
any reasonable algorithm to diverge.

Assumption A5 imposes conditions, on the initial point for the QP. It is possible
that no point satisfies these conditions; this would be the case for example if one
of the QP subproblems generated by the algorithm is not feasible. Nevertheless, by
introducing an additional variable it is possible to construct a modified problem for
which satisfying the conditions on Pko is trivial. Consider the problem

minimize ’(x,
(3.1)

s.t. c(x)+e>_O and >_0,

where E and w E [0, 1]. The KKT points for this problem are also KKT points
for NP if NP is feasible and w is sufficiently close to one. The modified problem is

602 WALTER MURRAY AND FRANCISCO J. PRIETO

3.1. Assumptions. Sorne ofthe following assumptions make use ofthe concepts
of stationary points and KKT points at infinity. We will say that NP has a stationary
point at infini ty if there exist sequences {x d and {'T7d such that 11 x k 11 00 and / or
II'T7kll 00, and

c¡; 0, Af 'T7k - gk 0, 'T7f Ck O.

As before let Bk denote a matrix whose rows are the normalized rows of Ak and 9k
denote the normalized gradient vector. Define Vk so that Af 'T7k-gk = (Bf vk-9k)llgkll·
If in addition to the preceding conditions we have v :;:: 0, where v indicates the limit
of sorne subsequence {vd, we then say there is a KKT point at infinity.

Finally, we will say that strict complementarity does not hold at sorne stationary
point at infinity if for the preceding sequences and sorne constraint j we have

We make the following assumptions.
Al. For sorne constant (3c > 0, the global minimum of the problem

minimize F(x)
xE~n

s.t. c(x) :;:: -(3ce,

is bounded below.
A2. There exist no KKT points at infinity for problem NP.
A3. F, Cj, and their first and second derivatives are continuous and uniformly

bounded in norm on a compact seto
A4. The Jacobian corresponding to the active constraints at all KKT points has

fuH rank.
A5. A feasible point Pko exists to aH the QP subproblems, satisfying

for sorne constant (3p > O.
A6. Strict complementarity holds at aH stationary points of NP, including sta

tionary points at infinity, if they existo
A 7. The reduced Hessian of the Lagrangian function is nonsingular at aH KKT

points. The larger the value of (3c, the stronger is assumption Al. There will be
problems, for example F(x) = f(xf f(x), where it is known a priori that Assumption
Al holds with (3c = oo. AIso, if Al does not hold with (3c = ° then it is possible for
any reasonable algorithm to diverge.

Assumption A5 imposes conditions.on the initial point for the QP. It is possible
that no point satisfies these conditions; this would be the case for example if one
of the QP subproblems generated by the algorithm is not feasible. Nevertheless, by
introducing an additional variable it is possible to construct a modified problem for
which satisfying the conditions on Pko is trivial. Consider the problem

(3.1)
minimize F(x,x) = (1- w)F(x) + wx
(x,x)E~n+l

s.t. c(x)+xe:;::O and x:;:: 0,

where x E ~ and w E [O,lJ. The KKT points for this problem are also KKT points
for NP if NP is fe asible and w is sufficiently close to one. The modified problem is

602 WALTER MURRAY AND FRANCISCO J. PRIETO

3.1. Assumptions. Some ofthe foHowing assumptions make use ofthe concepts
of stationary points and KKT points at infinity. We will say that NP has a stationary
point at infinity if there exist sequences {xd and {1Jk} such that Ilxkll --> 00 and/or
II1Jk 11 --> 00, and

As before let Bk denote a matrix whose rows are the normalized rows of Ak and lik
denote the normalized gradient vector. Define Vk so that Af 1Jk-gk = (Bf vk-gk)llgkll·
If in addition to the preceding conditions we have v 2 O, where v indicates the limit
of some subsequence {Vk}, we then say there is a KKT point at infinity.

FinaHy, we will say that strict complernentarity does not hold at sorne stationary
point at infinity if for the preceding sequences and some constraint j we have

We make the foHowing assumptions.
Al. For some constant (3c > O, the global minimum of the problem

minimize F(x)
xE~n

S.t. e(x) 2 -(3ce,

is bounded below.
A2. There exist no KKT points at infinity for problern NP.
A3. F, ej, and their first and second derivatives are continuous and uniformly

bounded in norm on a compact seto
A4. The Jacobian corresponding to the active constraints at aH KKT points has

fuH rank.
A5. A feasible point Pko exists to aH the QP subproblems, satisfying

for some constant (3p > O.
A6. Strict complementarity holds at aH stationary points of NP, including sta

tionary points at infinity, if they existo
A 7. The reduced Hessian of the Lagrangian function is nonsingular at aH KKT

points. The larger the value of (3c, the stronger is assumption Al. There will be
problems, for example F(x) = f(xf f(x), where it is known a priori that Assurnption
Al holds with (3c = oo. AIso, if Al do es not hold with (3c = O then it is possible for
any reasonable algorithm to diverge.

Assumption A5 imposes conditions.on the initial point for the QP. It is possible
that no point satisfies these conditions; this would be the case for exarnple if one
of the QP subproblems generated by the algorithm is not feasible. Nevertheless, by
introducing an additional variable it is possible to construct a rnodified problem for
which satisfying the conditions on Pko is trivial. Consider the problem

minimize F(x,x) == (1- w)F(x) + wx
(x,x)E~n+l

S.t. e(x)+xe20 and x20,
(3.1)

where x E ~ and w E [0,1]. The KKT points for this problem are also KKT points
for NP if NP is feasible and w is sufficiently close to one. The modified problem is

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 603

always feasible, and the corresponding QP subproblem takes the form

minimize
(p,)en+
Soto

(1-)[++ 1/2)H
ck + Akp + ke +e

_
0,

2+p>_O.

For this QP subproblem the point

(o

is feasible since we can ensure that 2k _> 0. Therefore there always exists a feasible
point that satisfies A5 with p 1 since IIP0[I [[(c + "2ke)-II and

V’kTp0 (1--W)gkT

implying that the conditions on Pko in Assumption A5 are trivial to satisfy for (3.1)o
3.2. Existence of the iterates. We start by showing that all the quantities

associated with the algorithm are well defined. In particular, we show that the choice
of penalty parameter ensures (2.11) is satisfied and that the steplength exists.

LEMMA 3.1. Under Assumptions A3, A5 and conditions HC1, HC2, the proce-
dures given in the algorithm to compute the values of the penalty parameter Dk and
the steplength ak are well defined.

Proof. We drop the subscript k denoting the iteration number, to simplify the
notation.

Consider the gradient of the merit function LA, defined in (2.1), with respect to
x, , and s,

g(x) A(x)TA + pA(x)T(c(x) s)
VLA (x, , s) -(c(x) s))- p((x))

It follows from (2.6), (2.10), and (2.2) that ’(0) is given by

(3.3)

where g, A, and c are evaluated at x.
If IIc- sll 0, from (2.9) and (2.18) we have P0 0, and since (p) pTg +

1/2pTHp _< (Po) 0 it follows that _
TH’(O) pTg <_ p p,

implying that p does not need to be modified.
If IIc- sll > 0, we obtain from (3.3) that for p- t (defined in (2.13))

’(o) gTp + (2A)T(c-) ,llc- *II --’lpTrr’/-’/P’

which implies the desired descent condition (2.11) is satisfied for all p > o

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 603

always feasible, and the corresponding QP subproblem takes the form

minimize
(p,p)E!Rn +1

S.t.

(l-w)gfp+wp+ ~ (pT p) Hk (;)

Ck + AkP + Xke + pe ;::: O,
Xk +p;::: o.

For this QP subproblem the point

is feasible since we can ensure that Xk ;::: O. Therefore there always exists a feasible
point that satisfies A5 with {3p = 1 since IIpo 11 = 11 (ek + Xke) -11 00 and

V:Flpo= ((l-w)gf w) (;) =wll(ek+xke)-lIoo:S; II(ek+xke)-lIoo,

implying that the conditions on Pko in Assumption A5 are trivial to satisfy for (3.1).

3.2. Existence of the iterates. We start by showing that aH the quantities
associated with the algorithm are well defined. In particular, we show that the choice
of penalty parameter ensures (2.11) is satisfied and that the steplength exists.

LEMMA 3.1. Under Assumptions A3, A5 and conditions HC1, HC2, the proce
dures given in the algorithm to compute the values o/ the penalty parameter Pk and
the steplength Ok are well defined.

Proo/. We drop the subscript k denoting the iteration number, to simplify the
notation.

Consider the gradient of the merit function LA, defined in (2.1), with respect to
x,)., and s,

(
g(x) - A(X)T). + pA(x)T(e(x) - s))

(3.2) VLA(x,).,s) = -(e(x)-s) .
). - p(e(x) - s)

It follows from (2.6), (2.10), and (2.2) that 4>'(0) is given by

4>'(0) = pTg _ pT AT). + ppT AT(e _ s) _ (e _ s)Te +).Tq - pqT(e - s)

(3.3) = pTg + (2), - J1-?(e - s) - plle - s112,

where g, A, and e are evaluated at x.
If lIe - sil = O, from (2.9) and (2.18) we have Po = O, and since 'I/J(p) = pTg +

~pTHp :s; 'I/J(Po) = O it foHows that

4>'(0) = pT g:S; _~pT Hp,

implying that p does not need to be modified.
If IIc - sil > O, we obtain from (3.3) that for p = p (defined in (2.13»

4>'(0) = gT p + (2), - J1-)T (e - s) - plle - sll2 = _~pT Hp,

which implies the desired descent condition (2.11) is satisfied for all p ;::: p.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 603

always feasible, and the corresponding QP subproblem takes the form

minimize
(p,j5)E~n+l

S.t.

(l-w)g[p+wp+ ~ (pT p) Hk (~)

ek + AkP + Xke + pe ?: O,
Xk + P?: O.

For this QP subproblem the point

is feasible since we can ensure that Xk ?: O. Therefore there always exists a feasible
point that satisfies A5 with fJp = 1 since IIPol1 = II(ek +xke)-lloo and

implying that the conditions on Pko in Assumption A5 are trivial to satisfy for (3.1).

3.2. Existence of the iterates. We start by showing that all the quantities
associated with the algorithm are well defined. In particular, we show that the choice
of penalty parameter ensures (2.11) is satisfied and that the steplength exists.

LEMMA 3.1. Under Assumptions A3, A5 and eonditions HC1, HC2, the proee
dures given in the algorithm to compute the values of the penalty parameter Pk and
the steplength O'.k are well defined.

Proa! We drop the subscript k denoting the iteration number, to simplify the
notation.

Consider the gradient of the merit function LA, defined in (2.1), with respect to
x, A, and s,

_ (g(x) - A(x)TA + pA(x)T(e(x) - s))
(3.2) \1 LA(x, A, s) - -(e(x) - s) .

A - p(e(x) - s)

It follows from (2.6), (2.10), and (2.2) that 1>'(0) is given by

1>'(0) = pTg - pTATA + ppT AT(e - s) - (e - sf~ + ATq - pqT(e - s)

(3.3) = pTg + (2A - JLf(e - s) - plle - s112,

where g, A, and e are evaluated at x.
If Ile - sil = O, from (2.9) and (2.18) we have Po = O, and since 'lj;(p) = pTg +

~pTHp ::; 'lj;(Po) = O it follows that

1>'(0) =pTg ::; _~pTHp,

implying that p does not need to be modified.
If IIe - sil > O, we obtain from (3.3) that for p = p (defined in (2.13))

1>'(0) = gT p + (2A - JL)T(e - s) - plle - sl12 = _~pT Hp,

which implies the desired descent condition (2.11) is satisfied for all p ?: p.

604 WALTER MURRAY AND FRANCISCO J. PRIETO

An immediate consequence of (2.11) and the properties of Hk is the following
bound on the directional derivative:

(.) (0) <-1/2.1111.
It follows from the procedure to increase the value of the penalty parameter (see

(2.12)) that ,ok --o oo if and only if the parameter is increased an infinite number of
times.

We also need to prove that the value of k introduced in the algorithm is well
defined. We show that if condition (2.14) is not satisfied, a steplength &k (0, 1) that
satisfies conditions (2.15) always exists (see, for example, Mor and Sorensen [23]).

Define the functions

() _= () (0) ’(0),
() ’() ’(0),

and note that from a < r/and ’(0) < 0, implied by (2.11), we have

(3.5) X’(a) ’(a) he’(0) < ’(a) ’(0)
for any a.

If (2.14) does not hold,

(1)- (0) > he’(0) = X(1) > O,

and we also have x(O) O. om hese wo results and he mean-value heorem, here
will be a point & e [0, 1] such that X’() > 0, and from (3.5), (5) > 0.

From b’(0) < 0 we have (0) < 0, and the continuity of (Assumption A3) will
imply the existence of a zero of in (0,). Let & denote the smallest point in (0, &)
such that ((c) 0, that is,

(3.6) ’ (c) ’ (0),
and condition (2.15b) is satisfied at &.

From (0) < 0 we must have

(3.7) (a) < 0 Va e [0,&) : ’(a) < re’(0) Va e [0, a),
implying that condition (2.15b) is not satisfied for any point in [0,

Finally, from (3.5) and (3.7), we have

x’() < 0 w e [0,),
and this together with X(0) 0 implies X(8) < 0, that is,

(3.s) ()- (0) < ’(0),
showing that & satisfies both conditions (2.15) simultaneously.

We still need to consider condition (2.16). For the function h(a) c(x+ap)+e
we have from (2.4b)

h’(O) Ap >_ -c.

If-1/2fl _> cj >_ -/3, we have hi(O) >_ 0 and hi(O) >_ 1/2c > 0; if cj >_ -1/23c then

hi(O)

_
1/2c > 0 and in any case there exists a value > 0 such that hi(a) >_ 0

(implying cj(x + ap) >_ -/3c) for all j and all a [0,&], implying that for
[0, min(&, &)] both conditions (2.15a) nd (2.16) hold simultaneously.

This lemma implies that all the quantities associated with the algorithm are well
defined.

604 WALTER MURRAY ANO FRANCISCO J. PRIETO

An immediate consequence of (2.11) and the properties of Hk is the following
bound on the directional derivative:

(3.4)

It follows from the procedure to increase the value of the penalty parameter (see
(2.12» that Pk -+ 00 if and only if the parameter is increased an infinite number of
times.

We also need to prove that the value of ak introduced in the algorithm is well
defined. We show that if condition (2.14) is not satisfied, a steplength ak E (0,1) that
satisfies conditions (2.15) always exists (see, for example, Moré and Sorensen [23]).

Define the functions

x(a) == </J(a) - </J(O) - O'a</J'(O),
((a) == </J'(a) - T/</J'(O),

and note that from O' < T/ and </J'(O) < O, implied by (2.11), we have

(3.5) x'(a) = </J'(a) - O'</J'(O) < </J'(a) - T/</J'(O) = ((a)

for anya.
If (2.14) does not hold,

</J(1) - </J(O) > O'</J'(O) => X(1) > O,

and we also have X(O) = O. Prom these two results and the mean-value theorem, there
will be a point o E [0,1] such that X'(o) > O, and from (3.5), ((o) > o.

Prom </J'(O) < O we have ((O) < O, and the continuity of ((Assumption A3) will
imply the existence of a zero of (in (O, o). Let & denote the smallest point in (O, o)
such that ((&) = O, that is,

(3.6) </J'(&) = T/</J'(O),

and condition (2.15b) is satisfied at &.
Prom ((O) < O we must have

(3.7) ((a)<O YaE[O,&) {:} </J'(a) <T/</J'(O) YaE[O,&),

implying that condition (2.15b) is not satisfied for any point in [O, a).
Finally, from (3.5) and (3.7), we have

x'(a)<O YaE[O,&),

and this together with x(O) = O implies x(&) < O, that is,

(3.8) </J(&) - </J(O) < O'&</J'(O),

showing that & satisfies both conditions (2.15) simultaneously.
We still need to consider condition (2.16). For the function h(a) == e(x+ap)+.Bee

we have from (2.4b)

h'(O) = Ap ~ -e.

If -!.Be ~ ej ~ -.Be, we have hj(O) ~ O and hj(O) ~ !.Be > O; if Cj ~ -!.Be then
hj(O) ~ !.Be > O and in any case there exists a value a > O such that hj(a) ~ O
(implying Cj(x + ap) ~ -.Be) for all j and all a E [O, a], implying that for a E
[O, min(&, a)] both conditions (2.15a) and (2.16) hold simultaneously. o

This lemma implies that all the quantities associated with the algorithm are well
defined.

604 WALTER MURRAY AND FRANCISCO J. PRIETO

An immediate consequence of (2.11) and the properties of Hk is the following
bound on the directional derivative:

(3.4)

It follows from the procedure to increase the value of the penalty parameter (see
(2.12)) that Pk -> 00 if and only if the parameter is increased an infinite number of
times.

We also need to prove that the value of ak introduced in the algorithm is well
defined. We show that if condition (2.14) is not satisfied, a steplength D:k E (0,1) that
satisfies conditions (2.15) always exists (see, for example, Moré and Sorensen [23]).

Define the functions

x(a) == 4>(a) - 4>(0) - aa4>'(O),
((a) == 4>'(a) - r¡4>'(O),

and note that from a < r¡ and 4>'(0) < O, implied by (2.11), we have

(3.5) x'(a) = 4>'(a) - a4>'(O) < 4>'(a) - r¡4>'(O) = ((a)

for any a.
If (2.14) does not hold,

4>(1) - 4>(0) > a4>'(O) => X(I) > O,

and we also have X(O) = O. From these two results and the mean-value theorem, there
will be a point a E [0,1] such that x'(a) > O, and from (3.5), ((a) > O.

From 4>'(0) < O we have ((O) < O, and the continuity of ((Assumption A3) will
imply the existence of a zero of (in (O, a). Let D: denote the smallest point in (O, a)
such that ((a) = O, that is,

(3.6) 4>'(a) = r¡4>'(O),

and condition (2.15b) is satisfied at a.
From ((O) < O we must have

(3.7) ((a) < O Va E [O,a) {::} 4>'(a) < r¡4>'(O) Va E [O,a),

implying that condition (2.15b) is not satisfied for any point in [O, a).
Finally, from (3.5) and (3.7), we have

x'(a) < O Va E [O, a),

and this together with X(O) = O implies x(a) < O, that is,

(3.8) 4>(a) - 4>(0) < aa4>'(O),

showing that a satisfies both conditions (2.15) simultaneously.
We still need to consider condition (2.16). For the function h(a) == e(x+ap)+.Bee

we have from (2.4b)

h'(O) = Ap ?: -e.

If -~.Be ?: ej ?: -.Be, we have hj(O) ?: O and hj(O) ?: ~.Be > O; if ej ?: -~.Be then
hj (O) ?: ~.Be > O and in any case there exists a value a > O such that hj (a) ?: O
(implying ej(x + ap) ?: -.Be) for all j and all a E [O, a], implying that for a E
[O, min(a, a)] both conditions (2.15a) and (2.16) hold simultaneously. o

This lemma implies that all the quantities associated with the algorithm are well
defined.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 605

3.3. Boundedness of the iterates. To prove global convergence we show first
that if Assumptions A1 and A2 hold, all points in the sequence (xk} generated by
the algorithm lie on a compact set. We start by showing that for Ilxkll large enough
we cannot have IlPk arbitrary small.

LEMMA 3.2. Under Assumptions A2 and A6 and condition HC1, there exist
positive constants M and e such that IlXkll >_ M = IlPkll >-- e.

Proof. Assume this result does not hold. Then, for any.positive constants M and
e we can find iterates such that Ilxkll >_ M and IlPkll < e, and we could construct
a sequence (xk}, and its associated sequence (Pk}, along which Ilxkll --+ oc and
IlPkll -- O. For this sequence, from IlPkll --+ 0 and (2.4b), we must have IIc-II --+ 0.
Also, from the definition of Pk, (2.21), it must hold that Ilihkll 0, and from (2.5a)
and MC1, we must have

Since IIpll ---’ 0 and [liSkll 0, using (2.21) and IIdll 1, we also have eitherk
0 or -k 0 for k large enough. It then follows from (2.26) that either min(k, "k) --+ 0
or k k 0 for k large enough. Ifk --+ 0 along a subsequence, then (2.27) implies
for some constraint j that (rk)i 0 and c(xk) 0, but this would contradict
Assumption A6. If ;),k --+ 0 along a subsequence, then from (2.28) and Lemma 2.1
we get >_ 0 in the limit, where is now defined as a limit point of (k}, where

The properties of this sequence,

together with ihk --4 0 and u >_ 0, imply that there exists a KKT point at infinity,
which violates Assumption A2, so the lemma must hold. Q

Another result we need for the compactness proof is a bound on the value of the
QP objective function at the incomplete solution for the QP.

LEMMA 3.3. Under Assumption A5 and conditions HC1, HC2, for p computed
by Algorithm SD there exist constants 1 > 0 and/2 > 0 such that

pTH_ < --lpTHp d- 2 [Ic [[(p) =_ gTp d- - p_

Proof. The result will be shown by considering first the initial point for the QP,
p0, and then the descent achieved in each QP iteration.

By definition

--Po Hpo + gTpo + pTo Hpo.

Since lip011 / pllc-ll and gTpo <_ pllc-ll (Assumption Ah), condition HC1 on H
implies

T(po) - po Hpo + pllc-II + H p211c- II 2

Consider the quadratic function b7 + 1/2c72, where b < 0 and c > 0; then for all
[0,-b/c] (between 0 and the minimizer), we have

b
(3.10) 7<_-- = -y(b+c/)<_0 =c b + 1/2C"2 < 2

--C7

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 605

3.3. Boundedness of the iterates. To prove global convergence we show first
that if Assumptions Al and A2 hold, aH points in the sequence {Xk} generated by
the algorithm lie on a compact seto We start by showing that for IIxklllarge enough
we cannot have IIpk 11 arbitrary smaH.

LEMMA 3.2. Under Assumptions A2 and A6 and condition HC1, there exist
positive eonstants M and € sueh that IIXkll ~ M ::::} IIpkll ~ €.

Proo! Assume this result does not hold. Then, for any positive constants M and
€ we can find iterates such that IIXkll ~ M and IIpkll < ~, and we could construct
a sequence {xd, and its associated sequence {Pk}, along which IIXkll - 00 and
IIPk!! - O. For this sequence, from IIPk!! - O and (2.4b), we must have !!e;1I - O.
AIso, from the definition of Pk, (2.21), it must hold that IIpkll - O, and from (2.5a)
and MC1, we must have

Since !!Pkll - O and IIpkll - O, using (2.21) and IIdkll = 1, we also have either 'Yk -
O or 'Yk = O for k large enough. It then foHows from (2.26) that either min(1k, 'Yk) - O
or 'Yk = 1k = O for k large enough. If 1k - O along a subsequence, then (2.27) implies
for some constraint j that (7rk)j - O and Cj(Xk) - O, but this would contradict
Assumption A6. If 'Yk - O along a subsequence, then from (2.28) and Lemma 2.1
we get v ~ O in the limit, where v is now defined as a limit point of {vd, where
BT '

k Vk = gk·
The properties of this sequence,

together with Pk - O and v ~ O, imply that there exists a KKT point at infinity,
which violates Assumption A2, so the lemma must hold. O

Another result we need for the compactness proof is a bound on the value of the
QP objective function at the incomplete solution for the QP.

LEMMA 3.3. Under Assumption A5 and eonditions HC1, HC2, lor P eomputed
by Algorithm SD there exist eonstants /31 > O and /32 > O sueh that

Proo! The result will be shown by considering first the initial point for the QP,
Po, and then the descent achieved in each QP iteration.

By definition

'IjJ(Po) = -!P5 Hpo + gT Po + P5 Hpo.

Since IIPolI ~ /3plle-!! and gTpO ~ /3plle-1I (Assumption A5), condition HC1 on H
implies

(3.9)

Consider the quadratic function 1ry + !cry2, where b < O and e > O; then for aH
"f E [O, -blel (between O and the minimizer), we have

(3.10)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 605

3.3. Boundedness of the iterates. To prove global convergence we show first
that if Assumptions Al and A2 hold, aH points in the sequence {xd generated by
the algorithm lie on a compact seto We start by showing that for Ilxklllarge enough
we cannot have Ilpk II arbitrary smaH.

LEMMA 3.2. Under Assumptions A2 and A6 and eondition HC1, there exist
positive eonstants M and E sueh that Ilxkll ;::: M ::::} IIPkll;::: E.

Proof. Assume this result do es not hold. Then, for any positive constants M and
E we can find iterates such that Ilxkll ;::: M and Ilpkll < E, and we could construct
a sequence {xd, and its associated sequence {pd, along which Ilxkll --. 00 and
Ilpkll --. o. For this sequence, from Ilpkll --. O and (2.4b), we must have Ile;;11 --. o.
Also, from the definition of Pk, (2.21), it must hold that Ilpkll --. O, and from (2.5a)
and MC1, we must have

Since Ilpk II --. O and Ilpk II --. O, using (2.21) and Ildk II = 1, we also have either ik --.
O or ik = O for k large enough. It then foHows from (2.26) that either min('Yk, ik) --. O
or ik = 'Yk = O for k large enough. If 'Yk --. O along a subsequence, then (2.27) implies
for sorne constraint j that (7rk)j --. O and ej(xk) --. O, but this would contradict
Assumption A6. If ik --. O along a subsequence, then from (2.28) and Lemma 2.1
we get v ;::: O in the limit, where v is now defined as a limit point of {vd, where
B[Vk = gk·

The properties of this sequence,

together with ih --. O and v ;::: O, imply that there exists a KKT point at infinity,
which violates Assumption A2, so the lemma must hold. O

Another result we need for the compactness proof is a bound on the value of the
QP objective function at the incomplete solution for the QP.

LEMMA 3.3. Under Assumption A5 and eonditions HC1, HC2, for P eomputed
by Algorithm SD there exist eonstants (31 > O and (32 > O sueh that

Proof. The result will be shown by considering first the initial point for the QP,
Po, and then the descent achieved in each QP iteration.

By definition

'I/J(Po) = -~P6 Hpo + gT Po + P6 Hpo.

Since IIPol1 ::; (3pllc-11 and gT Po ::; (3pllc-11 (Assumption A5), condition HC1 on H
implies

(3.9)

Consider the quadratic function lry + ~ e""p, where b < O and e > O; then for aH
, E [O, -bje] (between O and the minimizer), we have

(3.10)

606 WALTER MURRAY AND FRANCISCO J. PRIETO

The change in the QP objective function at any intermediate QP iteration i can
be represented as

(.1) (p+,) (p,) 1/2"dHd +(+ Hp)d,

where d is used to denote the QP step obtained from (2.19) or the final step d defined
in (2.22), and 7 is a feasible steplength bounded by the steplength to the minimizer
along v, as defined in (2.20) or (2.26). We have dTHd > 0 (from condition HC2)
and (g + Hp)Td < 0 (from (2.22)), implying that we can apply the bound (3.10) to
(3.11) to obtain

<_

If we have taken N iterations to compute p (the search direction), by adding the
inequalities (3.12) for i= 0,...,N and using (3.9) we obtain

N

(P))(Po) "- E(2(Pi) --)(Pi--1))
i--1

(3.13) < -1 Hpo +E 72dTi Hd + PllC-II + flt’Hfl2P IIc-112"
i=1

We can use the convexity of the function pTHp (implied by property HC2) to
write

P’HP+E 7dT Hdi >- N + 1 o +E 7idi H o +E 7idi N + 1
pTHp"

i=1 i=1 i=1

This result together with (3.13) implies

1
(3.14) (P) -< -2’N(1)+

pTHp + pllc-II + Z H p211c- 2

Since c- _> flee the desired result follows from this inequality and (2.9). [3

We can now prove the main result of this section.
LEMMA 3.4. Under Assumptions A1, A2, A3, A5, and A6, and conditions MC1,

HC1 and HC2, the sequence {xk} generated by the algorithm lies on a compact set.
Proof. First we show the set of points at which the penalty parameter is modified

lies on a compact set. If Pk remains bounded it follows from the manner the penalty
parameter is nodified, (2.12), that there is only a finite set of such points. Therefore
we need only study the case when pk x. Consider the iterations k where the
penalty parameter is modified. From condition MC1 and the boundedness of the
multiplier estimates)k (Lemma 2.2), we have

This result, together with Lemma 3.3 and the definition of the penalty parameter
(2.13), gives

T I_THPkllCk 8kll 2 gkPk " -Pk kPk + (2Ak k)T(ck
fllPk HkPk.<: (ill + 3fltt)llCk kll T

606 WALTER MURRAY AND FRANCISCO J. PRIETO

The change in the QP objective function at any intermediate QP iteration i can
be represented as

(3.11)

where di is used to denote the QP step obtained from (2.19) or the final step d defined
in (2.22), and "ti is a feasible steplength bounded by the steplength to the minimizer
along Vi, as defined in (2.20) or (2.26). We have d[Hdi > O (from condition HC2)
and (g + Hpi)T di < O (from (2.22)), implying that we can apply the bound (3.10) to
(3.11) to obtain

(3.12)

If we have taken N iterations to compute P (the search direction), by adding the
inequalities (3.12) for i = O, ... ,N and using (3.9) we obtain

N

'l/J(p) = 'l/J(Po) + ¿:)'l/J(Pi) -'l/J(Pi-1))
i=1

We can use the convexity of the function pT Hp (implíed by property HC2) to
write

This result together with (3.13) implíes

Since C- 2: f3ce the desired result follows from this inequalíty and (2.9). O

We can now prove the main result of this section.
LEMMA 3.4. Under Assumptions Al, A2, A3, A5, and A6, and conditions MC1,

HC1 and HC2, the sequence {Xk} generated by the algorithm lies on a compact seto
Proof. First we show the set of points at which the penalty parameter is modified

líes on a compact seto If Pk remains bounded it follows from the manner the penalty
parameter is modified, (2.12), that there is only a finite set of such points. Therefore
we need only study the case when Pk - oo. Consider the iterations k where the
penalty parameter is modified. From condition MC1 and the boundedness of the
multiplier estimates Ak (Lemma 2.2), we have

(3.15)

This result, together with Lemma 3.3 and the definition of the penalty parameter
(2.13), gives

Pkllck - skll 2 ::; gkPk + ~PkHkPk + (2Ak - JLk)T(Ck - Sk)

(3.16) ::; (f31 + 3f3/L)lI ck - skll- f31Pk HkPk.

606 WALTER MURRAY AND FRANCISCO J. PRIETO

The change in the QP objective function at any intermediate QP iteration i can
be represented as

(3.11)

where di is used to denote the QP step obtained from (2.19) or the final step d defined
in (2.22), and 'Yi is a fe asible steplength bounded by the steplength to the minimizer
along Vi, as defined in (2.20) or (2.26). We have d; Hdi > O (from condition HC2)
and (g + HPif di < O (from (2.22)), implying that we can apply the bound (3.10) to
(3.11) to obtain

(3.12)

lf we have taken N iterations to compute P (the search direction), by adding the
inequalities (3.12) for i = O, ... , N and using (3.9) we obtain

N

7jJ(p) = 7jJ(po) + 2)7jJ(Pi) -7jJ(Pi-t))
i=1

(3.13)

We can use the convexity of the function pT Hp (implied by property HC2) to
write

This result together with (3.13) implies

(3.14)

Since C- 2': {3ce the desired result follows from this inequality and (2.9). O

We can now prove the main result of this section.
LEMMA 3.4. Under Assumptions Al, A2, A3, A5, and A6, and conditions MC1,

HC1 and HC2, the sequence {xd generated by the algorithm lies on a compact seto
Proof. First we show the set of points at which the penalty parameter is modified

lies on a compact seto If Pk remains bounded it follows from the manner the penalty
parameter is modified, (2.12), that there is only a finite set of such points. Therefore
we need only study the case when Pk -+ oo. Consider the iterations k where the
penalty parameter is modified. From condition MC1 and the boundedness of the
multiplier estimates Ak (Lemma 2.2), we have

(3.15)

This result, together with Lemma 3.3 and the definition of the penalty parameter
(2.13), gives

(3.16)

Pkllck - skl1 2 :S gkPk + ~PkHkPk + (2Ak - J.lkf(Ck - Sk)

:S ({31 +3{3¡..)llck - skll- {31Pk HkPk.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 607

As we have assumed pk -* o, (3.16) implies [[Ck Skll --* O, and from (2.9) also

From Lemma 3.3 and (3.15) we have

(3.17a)
(3.175)

[+ (e ,)r()
1..TH T<-- --t’k kPl llPk HkPk + (/31 + 3/3)11ck sk]l.

If IIpll >- > 0 along an infinite subsequence, then it follows from I1 11 0
and MC2 that there exists an index K such that for all k >_ K in the subsequence,

From (3.17b) we obtain the following bound on wk,

T(3.18) wk <_ --Pk Hkpl,

for k >_ K. From (3.17a) and the bounds (3.18) and (3.3), we have for sufficiently
large k

This last inequality implies that Pk is not modified for all k >_ K, which contradicts
our assumption that the penalty parameter was modified an infinite number of times.

We have shown that IlPkll "+ 0 along the subsequence at which the penalty pa-
rameter is modified. The boundedness of Ilxkll along this subsequence follows from
Lemma 3.2.

We now consider those points corresponding to iterations where the penalty pa-
rameter is not modified. From condition (2.16) on the linesearch and Assumption
A1, we have F(xk) _> /3F > -oc for all k. Also, from Lemma 2.2 IIAkll is bounded,
implying that

(3.19) LA(Xk,.k, Sk, Pk) >_ F max (p,m/c) > --oo.

Since Ilxk[I is bounded when Pk P- and Ln(xk, Ak, sk, pk) is reduced when Pk
Pk-1 it follows that L(xk, Ak, sk, Pk) is bounded. Moreover, for a sequence of itera-
tions for which Pk is not changed the reduction in L(Xk, A,Sk,pk) is bounded. Let
I denote the index at which Pk is modified and let I _< k _< K denote the iterates for
which Pk remains fixed. It follows from the above reasoning that there exists N such
that

K

(3.20))l CK Z (qk Ck-I N,
k--I

where to simplify the notation we have used Ck Ck(0).
From the termination condition for the linesearch (2.15a), (3.4) and (3.20), we

also have

K K

(3.2) 1/2Z=H (llpll <_-(- Ck-I-1)

_
N.

k--I k’--I

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 607

As we have assumed Pk - 00, (3.16) implies IICk - skll - O, and from (2.9) also
IIck"II-O.

From Lemma 3.3 and (3.15) we have

(3.17a)

(3.17b)
Wk == gkPk + (2Ak - J.tk)T(Ck - Sk)

:::; -!Pk HkPk - (31Pk HkPk + ((31 + 3(3,,)lIck - skll·

If IIpkll 2: € > O along an infinite subsequence, then it follows from IICk - skll - O
and MC2 that there exists an index K such that for all k 2: K in the subsequence,

From (3.17b) we obtain the following bound on Wk,

(3.18)

for k 2: K. From (3.17a) and the bounds (3.18) and (3.3), we have for sufficiently
large k

This last inequa.lity implies that Pk is not modified for all k 2: K, which contradicts
our assumption that the penalty parameter was modified an infinite number of times.

We have shown that IIpk 11 - O along the subsequence at which the penalty pa
rameter is modified. The boundedness of Ilxkll along this subsequence follows froro
Lemma 3.2.

We now consider those points corresponding to iterations where the penalty pa
rameter is not modified. From condition (2.16) on the linesearch and Assumption
Al, we have F(Xk) 2: (3F > -00 for all k. Also, from Lemma 2.2 IIAkll is bounded,
implying that

(3.19)

Since IIXkll is bounded when Pk i= Pk-1 and LA(Xk, Ak, Sk, Pk) is reduced when Pk =
Pk-1 it follows that LA(Xk, Ak, Sk, Pk) is bounded. Moreover, for a sequence of itera
tions for which Pk is not changed the reduction in LA (Xk, Ak, Sk, Pk) is bounded. Let
1 denote the index at which Pk is modified and let 1 :::; k :::; K denote the iterates for
which Pk remains fixed. It follows from the aboye reasoning that there exists N such
that

K

(3.20) 4>1 - 4>K = :~:)4>k - 4>k+1) :::; N,
k=I

where to simplify the notation we have used 4>k == 4>k(O).
From the termination condition for the linesearch (2.15a), (3.4) and (3;20), we

also have

K K

(3.21) !u(3svH ¿>~kllpkIl2 :::; ~)4>k - 4>k+1) :::; N.
k=I k=I

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 607

As we have assumed Pk -t 00, (3.16) implies Ilck - skll -t O, and from (2.9) also
11c;11 -t o.

From Lemma 3.3 and (3.15) we have

(3.17a)

(3.17b)

Wk == grPk + (2..\k - J.lkf(Ck - Sk)

~ -~pr HkPk - (31pr HkPk + ((31 + 3(3¡.t)ll ck - skll·

If Ilpk 11 :::: E > O along an infinite subsequence, then it follows from Ilck - Sk II -t O
and MC2 that there exists an index K such that for all k :::: K in the subsequence,

From (3.17b) we obtain the following bound on Wk,

(3.18)

for k :::: K. From (3.17a) and the bounds (3.18) and (3.3), we have for sufficiently
large k

This last inequality implies that Pk is not modified for all k :::: K, which contradicts
our assumption that the penalty parameter was modified an infinite number of times.

We have shown that Ilpk 11 -t O along the subsequence at which the penalty pa
rameter is modified. The boundedness of Ilxkll along this subsequence follows from
Lemma 3.2.

We now consider those points corresponding to iterations where the penalty pa
rameter is not modified. From condition (2.16) on the linesearch and Assumption
Al, we have F(Xk) :::: (3F > -00 for all k. Also, from Lemma 2.2 P'kll is bounded,
implying that

(3.19)

Since Ilxkll is bounded when Pk =1= Pk-l and LA(Xk, ..\k, Sk, Pk) is reduced when Pk =
Pk-l it follows that LA(Xk, ..\k, Sk, Pk) is bounded. Moreover, for a sequence of itera
tions for which Pk is not changed the reduction in LA (Xk, ..\k, sk, Pk) is bounded. Let
1 denote the index at which Pk is modified and let 1 ~ k ~ K denote the iterates for
which Pk remains fixed. It follows from the aboye reasoning that there exists N such
that

K

(3.20) ePI - ePK = L)ePk - ePk+l) ~ N,
k=I

where to simplify the notation we have used ePk == ePdO).
From the termination condition for the linesearch (2.15a), (3.4) and (3.20), we

also have

K K

(3.21) ~(J"(3svH ¿ (}kllpkl1 2 ~ ¿(ePk - ePk+¡) ~ N.
k=I k=I

608 WALTER MURRAY AND FRANCISCO J. PRIETO

This result implies that akllPll is bounded. Hence if IIxll is not bounded there
must exist sets of iterates with indices, say st < k < rt for 1, 2,..., such that

Ilxst <- M, Ilxk > M for M large enough, limt_ rt c, and
It follows that if M is chosen so that M 3, max{llxiII } then Pk is constant in the
interval st < k < rt. The existence of an index such that Ilxs < M is assured since
we have Ilxxll _< M and at least one index in the interval for which [Ixk[I > M. From
these assumptions and definitions it follows that

rt --1

k--st

It follows from Lemma 3.2 that]]pa > e for st / 1 _< k <_ rt. From (3.22) we get

j-’st j--stq-1

but this contradicts (3.21), implying that the points generated by the algorithm must
lie on a compact set.

To complete this section, we show that the search direction computed from the
QP subproblem is bounded.

LEMMA 3.5. Under the assumptions of Lemma 3.4, the sequence {Pk } is bounded.

Proof. We drop the subscript k in the proof.
As all the steps taken in the solution of the QP subproblem are descent steps, we

have from (2.3),

lpT.. 1/2 1/2 2(P0) >-- (P) gTp + - p 1/211H p + H- gll 1/2gTH-lg,

implying from HC2 and Ilall Ila + bll + Ilbll,

V/,H’Ilpll < IIn1/2Pll < IIH-1/2gll / IIH1/2p/ H-1/2gll < IIH-1/2gll + V/2(p0) + gTH-lg

The boundedness of Ilpll follows from this result, Lemma 3.4, conditions HC1 and
HC2 and the bound (3.9). []

It is tacitly assumed in the remaining proofs that the Assumptions A1-A7 and
conditions MC1, MC2, HC1, and HC2 hold.

3.4. The sequence of search directions {pk}. In this section we relate the
behavior of the sequence {x x*}, where x* denotes a KKT point closest to xk, to
that of the sequence {pk}. In particular, we show that IlPkll -- 0 implies xk --+ x*,
and so it is enough to prove that IlPk -- 0 to establish global convergence.

Although the KKT point x* introduced above may nog be unique, the assumptions
made on the problem, and more specifically Assumption A7, imply that if IlXk- x* is
sufficiently small then x* is unique, as the following lemma shows. This result allows
us to work with a well-defined sequence {Xk --x*}, at least close to a KKT point;
it will also imply that the limit point of the sequence generated by the algorithm is
unique.

LEMMA 3.6. The KKT points .for problem NP are isolated.

Proof. Assume that the result does not hold, and let x* denote a KKT point
for NP that is not isolated, that is, for any e > 0 there exists a KKT point y x*

608 WALTER MURRAY AND FRANCISCO J. PRIETO

This result implies that okl\Pkl\ is bounded. Hence if IIxkll is not bounded there
must exist sets of iterates with indices, say SI < k ::; rl for 1 = 1,2, ... , such that
IIxs, 11 ::; M, IIxkll > M for M large enough, liml_oo rl = 00, and liml_oo IIxr¡1I - oo.
It follows that if M is chosen so that M > max{lIx¡lI} then Pk is constant in the
interval SI ::; k ::; rl. The existence of an index such that IIxs ¡1I ::; M is assured since
we have Ilx/11 ::; M and at least one index in the interval for which IIxkll > M. Prom
these assumptions and definitions it follows that

r¡-l
(3.22) L Ok IIpk 11 2: II x r¡ - x s¡lI- oo.

k=s¡

It follows from Lemma 3.2 that IIpkll > € for SI + 1::; k ::; rl. Prom (3.22) we get

r¡-l r¡-l

L Oj IIpj 11 2 > € L Oj Ilpj 11 + OS¡ IIps¡ 11 2 - 00,

j=S¡

but this contradicts (3.21), implying that the points generated by the algorithm must
lie on a compact seto O

To complete this section, we show that the search direction computed from the
QP subproblem is bounded.

LEMMA 3.5. Under the assumptions 01 Lemma 3.4, the sequence {Pk} is bounded.
Proof. We drop the subscript k in the proof.
As all the steps taken in the solution of the QP subproblem are descent steps, we

have from (2.3),

1/J(Po) 2: 1/J(P) = gT P + ~pT Hp = ~IIH!p + H-! gll2 _ ~gT H-1g,

implying from HC2 and lIall ::; lIa + bll + IIbll,

The boundedness of IlplI follows from this result, Lemma 3.4, conditions HC1 and
HC2 and the bound (3.9). O

It is tacitly assumed in the remaining proofs that the Assumptions A1-A 7 and
conditions MC1, MC2, HC1, and HC2 hold.

3.4. The sequence of search directions {Pk}' In this section we relate the
behavior of the sequence {Xk - x*}, where x* denotes a KKT point closest to Xk, to
that of the sequence {Pk}. In particular, we show that IIpkll - O implies Xk - x*,
and so it is enough to prove that IIpk 11 - O to establish global convergence.

Although the KKT point x* introduced above may not be unique, the assumptions
made on the problem, and more specifically Assumption A7, imply that if Ilxk -x* 11 is
sufficiently small then x* is unique, as the following lemma shows. This result allows
us to work with a well-defined sequence {Xk - x*}, at least close to a KKT point;
it will also imply that the limit point of the sequence generated by the algorithm is
unique.

LEMMA 3.6. The KKT points lor problem NP are isolated.
Proof. Assume that the result does not hold, and let x* denote a KKT point

for NP that is not isolated, that is, for any € > O there exists a KKT point Y. f:; x*

608 WALTER MURRAY AND FRANCISCO J. PRIETO

This result implies that O!k Ilpk II is bounded. Hence if Ilxk II is not bounded there
must exist sets of iterates with indices, say SI < k :::; rl for l = 1,2, ... , such that
Ilxs¡11 :::; M, Ilxkll > M for M large enough, liml.-oo rl = 00, and liml.-oo Ilxr¡ II -t oo.
It follows that if M is chosen so that M > max{llxIII} then Pk is constant in the
interval SI :::; k :::; rl. The existence of an index such that Ilxs¡11 :::; M is assured since
we have IlxI11 :::; M and at least one index in the interval for which Ilxkll > M. From
these assumptions and definitions it follows that

r¡-l
(3.22) L O!k Ilpk II ;::: Ilxr¡ - xs¡11 -t oo.

k=s¡

It follows from Lemma 3.2 that Ilpkll > E for SI + 1:::; k :::; rl. From (3.22) we get

r¡-l r¡-l

L O!jllpjl12 > E L O!jllpjll + O!S¡ Ilps¡ 11
2

-t 00,

but this contradicts (3.21), implying that the points generated by the algorithm must
lie on a compact seto O

To complete this section, we show that the search direction computed from the
QP subproblem is bounded.

LEMMA 3.5. Under the assumptions of Lemma 3.4, the sequence {pd is bounded.
Proof. We drop the subscript k in the proof.
As all the steps taken in the solution of the QP subproblem are descent steps, we

have from (2.3),

1/J(po) ;::: 1/J(p) = gT P + ~pT Hp = ~ IIH~p + H-~ gl12 _ ~gT H-1g,

implying from HC2 and Ilall :::; Ila + bll + Ilbll,

The boundedness of Ilpll follows from this result, Lemma 3.4, conditions HC1 and
HC2 and the bound (3.9). O

It is tacitly assumed in the remaining proofs that the Assumptions AI-A 7 and
conditions MC1, MC2, HC1, and HC2 hold.

3.4. The sequence of search directions {pd. In this section we relate the
behavior of the sequence {Xk - x*}, where x* denotes a KKT point closest to Xk, to
that of the sequence {Pk}. In particular, we show that Ilpkll -t O implies Xk -t x*,
and so it is enough to prove that Ilpk II -t O to establish global convergence.

Although the KKT point x* introduced aboye may not be unique, the assumptions
made on the problem, and more specifically Assumption A 7, imply that if Ilxk - x* II is
sufficiently small then x* is unique, as the following lemma shows. This result allows
us to work with a well-defined sequence {Xk - x*}, at least close to a KKT point;
it will also imply that the limit point of the sequence generated by the algorithm is
unique.

LEMMA 3.6. The KKT points for problem NP are isolated.
Prooj. Assume that the result do es not hold, and let x* denote a KKT point

for NP that is not isolated, that is, for any E > O there exists a KKT point Yf =1- x*

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 609

satisfying IIx* --YII < e. Consequently, there exists a sequence {Yk} such that Yk is a
KKT point for all k, yk : x* and Yk x*.

For sufficiently small IIx* -Ykll the active sets at yk and x* must be the same;
otherwise we would have for some constraint j that cj(x*) 0 with both cj(yk) > 0
and (A)j 0 along some subsequence, where A is the multiplier vector at Yk. From
Assumptions A3 and A4 and (1.1) we have Ak A*, the multiplier vector at x*, but,
this would imply cj(x*) ,Xj 0, contradicting Assumption A6.

Let Zk denote a basis for the null-space of 7((yk), the Jacobian of the active
constraints at Yk, and Z* denote the corresponding basis at x*. Among all possible
bases, Z is selected to have continuous first derivatives in a ball around x*. It follows
from Assumption A4 and the fact the active set is constant that such bases exist.

For any element of the sequence Yk and for x* we have from (1.1)

TZ VF(y) 0 and TVF(x*)
The Taylor series expansion of Z[VF(yk) around x* gives

(3.23)

0 zTkVF(yt)= Z[(VF(yk)- Vc(yk)T,x*)
Z*T(VF(x*) Vc(x*)TA*) + (VZ(x*)(VF(x*) Vc(x*)T,x*)
-t-- z*T72L(x*, A*))(y x*) + o(llyk

where L(x,,) is the Lagrangian function of NP. Using (1.1) in (3.23), and dividing
by [[Yk- x*]l gives

Yk x*
(3.24) z*Tv2L(x*,,X*)hk o(1), where 5 [lY x*ll"

Let denote the subset of constraints active at x* and Yk. If e is sufficiently small
then 6k satisfies

(3.25) e(y) 0 x*) / o(lly *11) o(1).

Finally, for any convergent subsequence of the bounded sequence {5}, with limit
we have from (3.24) and (3.25),

re(x*)5 0,

contradicting Assumption A7. []

This result, together with Assumption A2, implies that the number ofKKT points
lying on any compact region is finite. The distinctness and finiteness of the KKT
points implies the existence of e* > 0 such that for any two KKT points, say x and
x, we have I]x xl > 2*. It follows that if Ilxk x*ll < *, where x* is a KKT
point nearest to xk, then x* is unique.

The next result presents some properties of the QP multipliers that will be useful
for the analysis of the convergence and rate of convergence of the algorithm.

LEMMA 3.7. Given a sequence of iterates {x} and the associated sequence of
search directions {Pk } such that Xk -- x*, a KKT point for NP with multiplier vector

* and Pk -- O, then

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 609

satisfying Ilx* - Yell < €. Consequently, there exists a sequence {Yk} such that Yk is a
KKT point for all k, Yk =f. x* and Yk -4 x*.

For sufficiently small Ilx* - Ykll the active sets at Yk and x* must be the same;
otherwise we would have for some constraint j that Cj(x*) = O with both Cj(Yk) > O
and (>'k)j = O along some subsequence, where >'k is the multiplier vector at Yk. From
Assumptions A3 and A4 and (1.1) we have >'k -4 >.*, the multiplier vector at x*, but
this would imply Cj(x*) = >.; = O, contradicting Assumption A6.

Let Zk denote a basis for the null-space of 'V'C(Yk), the Jacobian of the active
constraints at Yk, and Z* denote the corresponding basis at x*. Among all possible
bases, Zk is selected to have continuous first derivatives in a ball around x*. It follows
from Assumption A4 and the fact the active set is constant that such bases existo

For any element of the sequence Yk and for x* we have from (1.1)

and Z*T'V' F(x*) = O.

The Taylor series expansion of Zl'V' F(Yk) around x* gives

0= Zl'V'F(Yk) = Zl('V'F(Yk) - 'V'C(Yk)T>.*)

= Z*T ('V' F(x*) - 'V' c(x*)T >.*) + ('V' Z(x*) ('V' F(x*) - 'V' c(x*)T >.*)

(3.23) + Z*T 'V'2 L(x*, >'*))(Yk - x*) + o(IIYk - x* ID,

where L(x, >') is the Lagrangian function of NP. Using (1.1) in (3.23), and dividing
by IIYk - x* 11 gives

(3.24) where

Let e denote the subset of constraints active at x* and Yk. If € is sufficiently small
then Ók satisfies

(3.25) C(Yk) = O = 'V'C(X*)(Yk - x*) + o(IIYk - x*ID '* 'V'C(X*)Ók = 0(1).

Finally, for any convergent subsequence of the bounded sequence {Ók}, with limit
Ó, we have from (3.24) and (3.25),

'V'C(x*)Ó = O,

contradicting Assumption A7. O

This result, together with Assumption A2, implies that the number of KKT points
lying on any compact region is finite. The distinctness and finiteness of the KKT
points implies the existence of e* > O such that for any two KKT points, say xi and
x~, we have Ilxi - x~ 11 > 2e*. It follows that if IIxk - x* 11 < e*, where x* is a KKT
point nearest to Xk, then x* is unique.

The next result presents some properties of the QP multipliers that will be useful
for the analysis of the convergence and rate of convergence of the algorithm.

LEMMA 3.7. Given a sequence of iterates {Xk} and the associated sequence of
search directions {Pk} such that Xk -4 x*, a KKT point for NP with multiplier vector
>.* and Pk -4 O, then

II7rk - >'*11 -4 O,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 609

satisfying Ilx* - y.11 < f. Consequently, there exists a sequence {yd such that Yk is a
KKT point for all k, Yk =1= x* and Yk -t x*.

For sufficiently small Ilx* - Yk 11 the active sets at Yk and x* must he the same;
otherwise we would have for sorne constraint j that ej (x*) = O with hoth ej (Yk) > O
and P'k)j = O along sorne suhsequence, where >"k is the multiplier vector at Yk. From
Assumptions A3 and A4 and (1.1) we have >"k -t >..*, the multiplier vector at x*, hut
this would imply ej (x*) = >..; = O, contradicting Assumption A6.

Let Zk denote a basis for the null-space of \7C(Yk), the Jacobian of the active
constraints at Yk, and Z* denote the corresponding basis at x*. Among all possible
bases, Zk is selected to have continuous first derivatives in a hall around x*. It follows
from Assumption A4 and the fact the active set is constant that such bases existo

For any element of the sequence Yk and for x* we have from (1.1)

and

The Taylor series expansion of Z[\7 F(yd around x* gives

0= Z[\7F(Yk) = Z[(\7F(Yk) - \7e(Ykf>..*)

= Z*T(\7F(x*) - \7e(x*f>..*) + (\7Z(x*) (\7F(x*) - \7e(x*f>..*)

(3.23) + Z*T \72 L(x*, >"*))(Yk - x*) + o(IIYk - x* 11),

where L(x, >..) is the Lagrangian function of NP. Using (1.1) in (3.23), and dividing
by IIYk - x* 11 gives

(3.24) *T 2 * * Z \7 L(x ,>..)8k = 0(1), where
* Yk - X

8k
= IIYk - x*ll·

Let C denote the subset of constraints active at x* and Yk. If f is sufficiently small
then 8k satisfies

(3.25) C(Yk) = 0= \7C(X*)(Yk - x*) + o(IIYk - x*ll) =} \7c(x*)8k = 0(1).

Finally, for any convergent subsequence of the bounded sequence {8k }, with limit
8, we have from (3.24) and (3.25),

\7c(x*)8 = O,

contradicting Assumption A 7. O

This result, together with Assumption A2, implies that the numher of KKT points
lying on any compact region is finite. The distinctness and finiteness of the KKT
points implies the existence of f* > O such that for any two KKT points, say x~ and
x~, we have Ilx~ - x~11 > 2l. It follows that if Ilxk - x*11 < l, where x* is a KKT
point nearest to Xk, then x* is unique.

The next result presents sorne properties of the QP multipliers that will he useful
for the analysis of the convergenee and rate of convergence of the algorithm.

LEMMA 3.7. Given a sequenee of iterates {xd and the assoeiated sequenee of
seareh direetions {pd sueh that Xk -t x*, a KKT point for NP with multiplier vector
>..* and Pk -t O, then

link - >..* 11 -t O,

610 WALTER MURRAY AND FRANCISCO J. PRIETO

where rk are the QP multipliers at the stationary point. Furthermore,

if IlXk -x*ll <_ Kllkll for some constant K.
Proof. We first show that for any constraint j such that cj(x*) 61 > 0 we

must have (r)j 0 for large enough k. If Pk -- 0 it follows from (2.21) that
iSk 0. Consequently, it follows from Assumption A3 that for k sufficiently large
I1 11 <_ I1 11 > 0. ough

+ >_ > 0,

implying that the multiplier for this constraint is zero.
Let .* andk denote the corresponding Jacobian matrices restricted to the active

set at x* and let * and #k denote their respective multipliers. From (1.1) and (2.5a)
we have

implying

(3.26) ,T(* #k) g* gk HkPk (.* .k)T#k.

From Assumption A4 that
will also have full rank for large enough k, implying that #k is bounded in norm, and
these results together with (2.21), Pk -+ 0 and HC1 yield rk ---* A*.

Using Taylor series expansions in (3.26), we obtain

(3.27) t*T(7k

where L(x,) denotes the Lagrangian function for NP. The required result follows
from (3.27), the condition we have imposed on the sequences {ihk} and {Xk- x*}, the
boundedness of [[#kll, Assumptions A3 and ha and condition HC1.

We now analyze the sequence of search directions {Pk }. The following result shows
that as Pk ---+ 0 we get close to KKT points of NP and we only need to consider values
Pk obtained as the minimizers for the corresponding subproblems. We complete this
result by showing that a small value of IlPk also implies that the correct active set at
x* is identified, in the sense that the active QP constraints at Pk correspond to the
active NP constraints at x*.

LEMMA 3.8. If along a subsequence pk --, 0 then along this subsequence IlXk
x*ll -- O, where x* is a KKT point nearest to xk. For k large enough, x* is unique,

Pk is the QP minimizer and the correct active set at x* is identified.
Proof. A subsequence such that Pk --* 0 exists if and only if a subsequence exists

such that Pk - 0 and the active set at Pk is constant. Let {r} denote the sequence of
indices for such a subsequence.

From the definition (2.21) of Pr it follows immediately that Arp + c >_ O. From
p --, 0 and Assumption A3 it must hold that c- --, 0 and i5 - 0.

From (2.5) we have

(3.28) ATrr g,. H,./?,. 0 and rT(AD / Or) O.

610 WALTER MURRAY AND FRANCISCO J. PRIETO

where lI"k are the QP multipliers at the stationary point Pk. Purthermore,

11lI"k - .x*II = O(IIpkll),

if IIXk - x*11 :::; Kllpkll for some constant K.
Proo! We first show that for any constraint j such that Cj(X*) = 81 > O we

must have (lI"k)j = O for large enough k. If Pk -+ O it follows from (2.21) that
Pk -+ O. Consequently, it follows from Assumption A3 that for k sufficiently large
IIpkll :::; 81/(482), where 82 = Ila;1I > O. For k large enough we have

(ak)]pk + (Ck)j ~ ~81 > O,

implying that the multiplier for this constraint is zero.
Let A* and Ak denote the corresponding Jacobian matrices restricted to the active

set at x* and let 5.* and 7rk denote their respective multipliers. From (1.1) and (2.5a)
we have

implying

(3.26)

From Assumption A4 that A * has full rank and Assumption A3 it follows that Ak
will also have full rank for large enough k, implying that 7rk is bounded in norm, and
these results together with (2.21), Pk -+ O and HC1 yield lI"k -+ .x*.

Using Taylor series expansions in (3.26), we obtain

(3.27)

where L(x,.x) denotes the Lagrangian function for NP. The required result follows
from (3.27), the condition we have imposed on the sequences {pd and {Xk - x*}, the
boundedness of l17rkll, Assumptions A3 and A4 and condition HC1. O

We now analyze the sequence of search directions {Pk}. The following result shows
that as Pk -+ O we get close to KKT points of NP and we only need to consider values
Pk obtained as the minimizers for the corresponding subproblems. We complete this
result by showing that a small value of Ilpk 11 also implies that the correct active set at
x* is identified, in the sense that the active QP constraints at Pk correspond to the
active NP constraints at x*.

LEMMA 3.8. Jf along a subsequence Pk -+ O then along this subsequence IIxk -
x* 11 -+ O, where x* is a KKT point nearest to Xk. For k large enough, x* is unique,
Pk is the QP minimizer and the correct active set at x* is identified.

Proof. A subsequence such that Pk -+ O exists if and only if a subsequence exists
such that Pk -+ O and the active set at Pk is constant. Let {r} denote the sequence of
indices for such a subsequence.

From the definition (2.21) of Pr it follows immediately that ArPr + Cr ~ O. From
Pr -+ O and Assumption A3 it must hold that c;: -+ O and Pr -+ O.

From (2.5) we have

(3.28)

610 WALTER MURRAY AND FRANCISCO J. PRIETO

where 1rk are the QP multipliers at the stationary point Pk. Furthermore,

if Ilxk - x*11 ::; Kllpkll for some constant K.
Proof. We first show that for any constraint j such that Cj (x*) = 81 > O we

must have (1rk)j = O for large enough k. If Pk -t O it follows from (2.21) that
Pk -t O. Consequently, it follows from Assumption A3 that for k sufficiently large
Ilpkll ::; 8tf(482), where 82 = Ila;11 > O. For k large enough we have

(ak);Pk + (Ck)j ~ ~81 > O,

implying that the multiplier for this constraint is zero.
Let .1.* and .1.k denote the corresponding Jacobian matrices restricted to the active

set at x* and let ~* and irk denote their respective multipliers. From (1.1) and (2.5a)
we have

.1.*T~* = g*,
.1.[irk = gk + HkPk,

implying

(3.26)

From Assumption A4 that .1.* has full rank and Assumption A3 it follows that .1.k
will also have full rank for large enough k, implying that irk is bounded in norm, and
these results together with (2.21), Pk -t O and HC1 yield 1rk -t)...*.

Using Taylor series expansions in (3.26), we obtain

(3.27)

where L(x,)"') denotes the Lagrangian function for NP. The required result follows
from (3.27), the condition we have imposed on the sequences {pd and {Xk - x*}, the
boundedness of Ilirkll, Assumptions A3 and A4 and condition HC1. O

We now analyze the sequence of search directions {Pk}. The following result shows
that as Pk -t O we get close to KKT points of NP and we only need to consider values
Pk obtained as the minimizers for the corresponding subproblems. We complete this
result by showing that a small value of Ilpk 11 also implies that the correct active set at
x* is identified, in the sense that the active QP constraints at Pk correspond to the
active NP constraints at x*.

LEMMA 3.8. Jf along a subsequence Pk -t O then along this subsequence Ilxk -
x* 11 -t O, where x* is a KKT point nearest to Xk. For k large enough, x* is unique,
Pk is the QP minimizer and the correct active set at x* is identified.

Proof. A subsequence such that Pk -t O exists if and only if a subsequence exists
such that Pk -t O and the active set at Pk is constant. Let {r} denote the sequence of
índices for such a subsequence.

From the definition (2.21) of Pr it follows immediately that ArPr + Cr ~ O. From
Pr -t O and Assumption A3 it must hold that c; -t O and Pr -t O.

From (2.5) we have

(3.28)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 611

Since 15r - 0 it follows that

(3.29) ATrr g -- 0, T
rrCr - 0 and c- --, 0.

We now show that for large enough r that Pr must have been computed as the
minimizer for the QP. It follows from pr -* 0 and IIdll 1 that either there exists
K such that for all r > K we have ’r 0 or ’r -- 0 (see (2.26)). If we assume the
latter it follows that

min(r, /r) O.

(i) If -, 0 along a subsequence, then from (2.27) along this subsequence we
will have for some constraint j

Vcj(x)T(r + /dr) + cj(x) 0 and (r)j 0,

where (r)j 0 follows from the fact that the QP constraint j is limiting the step,
and so it cannot be active at i5. These equations imply

c(x,.)---O and (r)j 0,

contradicting Assumption A6.
(ii) If - 0 along a subsequence, then from (2.28),

dT H.d.
which implies from condition HC1 and Ildrll 1 that (0) (H,.,. / g.)Tdr ---, O. If
the condition number of -i along the subsequence is bounded, condition (2.24) will
hold and for some constraint j we have (rr)i < 0, (r)j 0 and Vcj(xr)Tr/c(x,.)
0, giving

cj(Xr) 0 and (rr)/ 0,

again contradicting Assumption A6. Otherwise, from Lemma 2.1 in the limit we have
that Vc(x*)T,* VF(x*) with * >_ 0, implying that x* is a KKT point with a
rank-deficient Jacobian matrix for the active constraints, violating Assumption A4.

We conclude therefore that " 0 for r > K and this together with (3.28) implies
pr is the minimizer of the QP subproblem. For r large enough >_ 0, which together
with (3.29) and Assumption A3 implies IIx x*ll 0, where x* is the nearest KKT
point to Xr. For r large enough x* is unique.

Finally, we prove that for r large enough the active set of the QP coincides with
the active set of NP at x*. First note that for r large enough the active set of the
QP must be a subset of the constraints active at x*, otherwise Pr is a step to a
nonactive constraint implying IlPrll > > 0. Assume that for the subsequence we
have Vcj(x)p + cj(x,.) > 0 and cj(x*) 0. From (2.5b) we must have (rr)j 0,,
implying from Lemma 3.7 that Aj 0, but this violates Assumption A6, and for r
large enough the correct active set is known.

This result shows that there is an e > 0 such that if IlPkll < e, then Pk is the
solution of the QP subproblem, and the correct active set is known.

We have just shown that if Pk 0 along a subsequence, then Xk x*. To
show Pk 0, we need a stronger result, giving a relationship between the rates of
convergence of the sequences {Xk x*} and {Pk}.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 611

Since Pr -+ O it follows that

(3.29)

We now show that for large enough r that Pr must have been computed as the
minimizer for the QP. It follows from Pr -+ O and IIdrll = 1 that either there exists
K such that for aIl r > K we have 'Yr = O or 'Yr -+ O (see (2.26)). If we assume the
latter it follows that

min(1'r,7r) -+ O.

(i) If 1'r -+ O along a subsequence, then from (2.27) along this subsequence we
wiIl have for some constraint j

'\1 Cj (xr)T (Pr + 1'rdr) + Cj (xr) = O and (7rr)j = O,

where (7rr)j = O follows from the fact that the QP constraint j is limiting the step,
and so it cannot be active at Pro These equations imply

Cj(Xr) -+ O and (7rr)j = O,

contradicting Assumption A6.
(ii) If 7r -+ O along a subsequence, then from (2.28),

which implies from condition Hel and IIdrll = 1 that "p~(0) = (HrPr + 9r)T dr -+ O. If
the condition number of .ft along the subsequence is bounded, condition (2.24) will
hold and for some constraint j we have (7rr)j < O, (7rr)j -+ O and '\1Cj(xr)T Pr+Cj(xr) =
O, giving

Cj(Xr) -+ O and (7rr)j -+ O,

again contradicting Assumption A6. Otherwise, from Lemma 2.1 in the limit we have
that '\1C(X*)TA* = '\1F(x*) with A* ;;::: O, implying that x* is a KKT point with a
rank-deficient Jacobian matrix for the active constraints, violating Assumption A4.

We conclude therefore that 'Yr = O for r > K and this together with (3.28) implies
Pr is the minimizer of the QP subproblem. For r large enough 7rr ;;::: O, which together
with (3.29) and Assumption A3 implies Ilxr - x* 11 -+ O, where x* is the nearest KKT
point to X r . For r large enough x* is unique.

Finally, we prove that for r large enough the active set of the QP coincides with
the active set of NP at x*. First note that for r large enough the active set of the
QP must be a subset of the constraints active at x*, otherwise Pr is a step to a
nonactive constraint implying IIPrll > lO > O. Assume that for the subsequence we
have '\1Cj(xr)Pr + Cj(xr) > O and Cj(x*) = O. From (2.5b) we must have (7rr)j = O,
implying from Lemma 3.7 that A; = O, but this violates Assumption A6, and for r
large enough the correct active set is known. O

This result shows that there is an lO > O such that if IIpk 11 < lO, then Pk is the
solution of the QP subproblem, and the correct active set is known.

We have just shown that if Pk -+ O along a subsequence, then Xk -+ x*. To
show Pk -+ O, we need a stronger result, giving a relationship between the rates of
convergence of the sequences {Xk - x*} and {Pk}.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 611

Since Pr -; O it follows that

(3.29)

We now show that for large enough r that Pr must have been computed as the
minimizer for the QP. It follows from Pr -; O and Ildrll = 1 that either there exists
K such that for all r > K we have "ir = O or "ir -; O (see (2.26)). If we assume the
latter it follows that

minC,;,r, 1'r) -; O.

(i) If "Ir -; O along a subsequence, then from (2.27) along this subsequence we
will have for sorne constraint j

V'Cj(xrf(Pr + 'Yrdr) + Cj(xr) = O and (1I"r)j = O,

where (11" r) j = O follows from the fact that the QP constraint j is limiting the step,
and so it cannot be active at Pr. These equations imply

contradicting Assumption A6.
(ii) If 1'r -; O along a subsequence, then from (2.28),

which implies from condition HC1 and Ildrll = 1 that '0~(0) = (HrPr + gr)T dr -; O. If

the condition number of Ai along the subsequence is bounded, condition (2.24) will
hold and for sorne constraint j we have (11" r) j < O, (11" r) j -; O and V' Cj (xr) T Pr+Cj (x r) =

O, giving

again contradicting Assumption A6. Otherwise, from Lemma 2.1 in the limit we have
that V'c(x*)T A* = V' F(x*) with A* 2: O, implying that x* is a KKT point with a
rank-deficient Jacobian matrix for the active constraints, violating Assumption A4.

We conclude therefore that "ir = O for r > K and this together with (3.28) implies
Pr is the minimizer of the QP subproblem. For r large enough 1I"r 2: O, which together
with (3.29) and Assumption A3 implies Ilxr - x* II -; O, where x* is the nearest KKT
point to X r . For r large enough x* is unique.

Finally, we prove that for r large enough the active set of the QP coincides with
the active set of NP at x*. First note that for r large enough the active set of the
QP must be a subset of the constraints active at x*, otherwise Pr is a step to a
nonactive constraint implying IIPr II > E > O. Assume that for the subsequence we
have V'Cj(Xr)Pr + Cj(xr) > O and Cj(x*) = O. From (2.5b) we must have (1I"r)j = O,
implying from Lemma 3.7 that A; = O, but this violates Assumption A6, and for r
large enough the correct active set is known. D

This result shows that there is an E > O such that if Ilpk II < E, then Pk is the
solution of the QP subproblem, and the correct active set is known.

We have just shown that if Pk -; O along a subsequence, then Xk -; x*. To
show Pk -; O, we need a stronger result, giving a relationship between the rates of
convergence of the sequences {Xk - x*} and {Pk}.

612 WALTEI MUI:ttY AND FRANCISCO J. PRIETO

LEMMA 3.9. If x* denotes a KKT point closest to xk, then there exists a constant
M such that

Proof. If IIpkll > e for all k then the result holds trivially since IIxk and]Ix* are
both bounded. Again let {r} denote the indices of a subsequence such that Pr --* 0
and the active set at Pr is constant. From Lemma 3.8, for this subsequence we have

Ilxr x* II 0. We assume for the rest of this proof that r is large enough so that x*
is unique, p is the minimizer of the QP and the correct active set has been identified.

Let , A, and # denote the corresponding quantities restricted to the constraints
in the active set. From Assumption A4 we know that * has full row rank, and we
assume that r is large enough so that also has full rank.

Let Z denote a basis for the null space of r, with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for p, (2.5), we get

()(3.30) h(x) Ar Pr e
AT*)).Cr

Since h(x*) 0, we have from the Taylor series expansion that

hj(x) Sj((O)j)(xr x*),

where Sj((O)j) Vhj(x* + (O)j(x x*)) and 0 < (O)j <_ 1. We have therefore

(3.31) (ZTgr)=-S(O)(x-x*)
From (3.23) we get

S(O)--(Z*TV2L(x*’A*)

and Assumptions A4 and A7 imply that S(0) is nonsingular. It follows that for
sufficiently large values of r, S(8) is also nonsingular. It then follows from (3.31)
that for some positive constant

(3.32) lix,. x*lJ < MI(IIzT g,.II +
From Assumption A3, property HC1 and (3.30) it. follows that

for some positive constant M2.
Since the subsequence {p}} such that p} --. 0 is composed of a finite number of

subsequences for which pr -- 0 and the active set at Pr is constant, the required result
follows from (3.32) and (3.33). []

3.5. Bounds on the penalty parameter. The conditions we have imposed on
the algorithm (and more specifically on the multiplier estimate) are not sufficient to
ensure that the penalty parameter is bounded. However, bounds on Pk are related to
the behavior of different quantities in the algorithm, and in particular to IlPkl[and

612 WALTER MURRAY AND FRANCISCO J. PRIETO

LEMMA 3.9. JI x* denotes a KKT point closest to Xk, then there exists a constant
M such that

IIXk - x*1I ~ Mllpkll·

Proof. If IIpk 11 > f for all k then the result holds trivially since IIXk 11 and IIx* 11 are
both bounded. Again let {r} denote the indices of a subsequence such that Pr - O
and the active set at Pr is constant. From Lemma 3.8, for this subsequence we have
IIxr - x* 11 - o. We assume for the rest of this proof that r is large enough so that x*
is unique, Pr is the minimizer of the QP and the correct active set has been identified.

Let e, A, and ft denote the corresponding quantities restricted to the constraints
in the active seto From Assumption A4 we know that A* has full row rank, and we
assume that r is large enough so that Ar also has full rank.

Let Zr denote a basis for the null space of Ar, with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for Pr, (2.5), we get

(3.30)

Since h(x*) = O, we have from the Taylor series expansion that

hj(xr) = 8j ((Or)j)(Xr - x*),

where 8j ((Or)j) = Vhj(x* + (Or)j(Xr - x*)) and O < (Or)j ~ 1. We have therefore

(3.31) (Z~r) = -8(Or)(xr - x*).

From (3.23) we get

8(0) = (Z*T V: L(x*, A*))
A(x*) ,

and Assumptions A4 and A7 imply that 8(0) is nonsingular. It follows that for
sufficiently large values of r, 8(Or) is also nonsingular. It then follows from (3.31)
that for sorne positive constant Mi,

(3.32)

From Assumption A3, property Hel and (3.30) it follows that

(3.33)

for sorne positive constant M2 •

Since the subsequence {Pk} such that Pk - O is composed of a finite number of
subsequences for which Pr - O and the active set at Pr is constant, the required result
follows from (3.32) and (3.33). O

3.5. Bounds on the penalty parameter. The conditions we have imposed on
the algorithm (and more specifically on the multiplier estimate) are not sufficient to
ensure that the penalty parameter is bounded. However, bounds on Pk are related to
the behavior of different quantities in the algorithm, and in particular to Ilpkll and

612 WALTER MURRAY AND FRANCISCO J. PRIETO

LEMMA 3.9. 11 x* denotes a KKT point closest to Xk, then there exists a constant
M such that

Prooj. If Ilpkll > E for all k then the result holds trivially since Ilxkll and Ilx*11 are
both bounded. Again let {r} denote the indices of a subsequence such that Pr -> O
and the active set at Pr is constant. From Lemma 3.8, for this subsequence we have
Ilxr - x* 11 -> O. We assume for the rest of this proof that r is large enough so that x*
is unique, Pr is the minimizer of the QP and the correct active set has been identified.

Let é, A, and 1f denote the corresponding quantities restricted to the constraints
in the active seto From Assumption A4 we know that A* has full row rank, and we
assume that r is large enough so that Ar also has full rank.

Let Zr denote a basis for the null space of Ar , with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for Pro (2.5), we get

(3.30)

Since h(x*) = O, we have from the Taylor series expansion that

hj(xr) = Sj((Br)j)(xr - x*),

where Sj((Br)j) = Vhj(x* + (BrMx r - x*)) and O < (Br)j :S 1. We have therefore

(3.31)

From (3.23) we get

and Assumptions A4 and A7 imply that S(O) is nonsingular. It follows that for
sufficiently large values of r, S(Br) is also nonsingular. It then follows from (3.31)
that for sorne positive constant MI,

(3.32)

From Assumption A3, property He1 and (3.30) it follows that

(3.33)

for sorne positive constant M 2 .

Since the subsequence {Pk} such that Pk -> O is composed of a finite number of
subsequences for which Pr -> O and the active set at Pr is constant, the required result
follows from (3.32) and (3.33). O

3.5. Bounds on the penalty parameter. The conditions we have imposed on
the algorithm (and more specifically on the multiplier estimate) are not sufficient to
ensure that the penalty parameter is bounded. However, bounds on Pk are related to
the behavior of different quantities in the algorithm, and in particular to IIpk 11 and

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 613

lick Sk I1" The following lemmas introduce bounds on the size of Pk in terms of these
quantities. We start by presenting the results for those iterations where the penalty
parameter is modified, and then we extend the results to general iterations.

The notation kl is used in all that follows to indicate iterations at which the value
of the penalty parameter needs to be modified.

LEMMA 3.10. For any iteration kl in which the value of p is modified,

for some constant N.
Proof. All quantities in the proof refer to iteration k, and so this subscript is

dropped.
From the definition of/5, (2.13), and Lemma 3.3 we get

Tllc_ sl]2 gTp + 5P Hp + (2 #)T(c- s)
<_ --DlpTHp+ 21]c-- sll + (2- #)T(c-- S) <_ (/2 +]12- #ll)l]C-- S.I],

where/31 and/32 are positive constants. From (3.15) and the above result we obtain
the first bound in the Lemma,

(3.34)

If the penalty parameter needs to be modified, condition (2.11) cannot hold for
Pkz-, and (3.3) implies

’(0) gTp + (2A- #)T(c-- s) llc- s]l 2 > --1/2pTHp.
It follows that

lpT (2A T 8) > 0.(3.35) gTp + p + #) (c

Replacing in (3.35) the bound for gTp 4- 1/2pTHp given in Lemma 3.3 we obtain

(2A- #)T(c- 8) 4- 2]1c- 81] > pTHp,

which together with Lemma 2.2 implies

(3.36) 3/3 + lie- > pTHp.
jl

From condition HC2 we have I[pll <_ (1/fl.H)pTHp. If we multiply both sides
of this inequality by/5 and use (3.36) to bound pTHp, we obtain

1 3fl +f12IIPlI2 - SVH
pTHp <_

lsvH
llc_ sl _< (33 + 2) 2

where the last inequality follows from (3.34). The second desired bound then follows
from

We now extend these results to all iterations. To simplify notation, we shall use
I and K to denote kl and k+ respectively. Thus, the penalty parameter is increased
at xx and XK in order to satisfy condition (2.11), and remains fixed at px for iterations
I,...,K- 1.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 613

Ilek - skll. The foHowing lemmas introduce bounds on the size of Pk in terms of these
quantities. We start by presenting the results for those iterations where the penalty
parameter is modified, and then we extend the results to general iterations.

The notation k¡ is used in all that foHows to indicate iterations at which the value
of the penalty parameter needs to be modified.

LEMMA 3.10. Por any iteration k¡ in whieh the value of P is modified,

for some constant N.
Proof. AH quantities in the proof refer to iteration k¡, and so this subscript is

dropped.
From the definition of p, (2.13), and Lemma 3.3 we get

plle - sll2 = gT p+ ~pTHp + (2'\ - JL)T(e - s)

:::; -f3IpT Hp + f3211e - sil + (2'\ - JL)T(e - s) :::; (f32 + 112,\ - JLll)lle - sil,

where f3I and f32 are positive constants. From (3.15) and the aboye result we obtain
the first bound in the Lemma,

(3.34)

If the penalty parameter needs to be modified, condition (2.11) cannot hold for
ji == Pk¡-1! and (3.3) implies

It foHows that

(3.35)

Replacing in (3.35) the bound for gT p + ~pT H p given in Lemma 3.3 we obtain

which together with Lemma 2.2 implies

(3.36)

From condition HC2 we have IIpll2 :::; (l/f3svH)pT Hp. If we multiply both sides
of this inequality by p and use (3.36) to bound pT Hp, we obtain

pllpll2 :::; P _1_ pT Hp:::; 3f3", + f32 plle _ sil :::; (3f3", + (32)2 ,
f3svH f3If3svH f3If3svH

where the last inequality follows from (3.34). The second desired bound then follows
from 2p 2 p. D

We now extend these results to aH iterations. To simplify notation, we shall use
1 and K to denote k¡ and k¡+1 respectively. Thus, the penalty parameter is increased
at XI and X K in order to satisfy condition (2.11), and remains fixed at PI for iterations
I, ... ,K -1.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 613

Ilek - skI!. The following lemmas introduce bounds on the size of Pk in terms of these
quantities. We start by presenting the results for those iterations where the penalty
parameter is modified, and then we extend the results to general iterations.

The notation k¡ is used in all that follows to indicate iterations at which the value
of the penalty parameter needs to be modified.

LEMMA 3.10. For any iteration k¡ in whieh the value of P is modified,

for some constant N.
Proof. All quantities in the proof refer to iteration k¡, and so this subscript is

dropped.
From the definition of p, (2.13), and Lemma 3.3 we get

plic - sl12 = gT P + ~pT Hp + (2)' -/Lf(c - s)

::::; _(31pT Hp + (321ic - sil + (2)' - /Lf (e - s) ::::; ((32 + 112>' - /LII) Ile - sil,

where (31 and (32 are positive constants. From (3.15) and the aboye result we obtain
the first bound in the Lemma,

(3.34) plle - sil::::; 3(3/1> + (32·

If the penalty parameter needs to be modified, condition (2.11) cannot hold for
P == Pk¡-l, and (3.3) implies

It follows that

(3.35)

Replacing in (3.35) the bound for gT p + ~pT Hp given in Lemma 3.3 we obtain

which together with Lemma 2.2 implies

(3.36)

From condition HC2 we have IIpl12 ::::; (1/ (3svH) pT Hp. If we multiply both sides
of this inequality by p and use (3.36) to bound pT Hp, we obtain

where the last inequality follows from (3.34). The second desired bound then follows
from 2p;::: p. O

We now extend these results to all iterations. To simplify notation, we shall use
1 and K to denote k¡ and k¡+l respectively. Thus, the penalty parameter is increased
at XI and X K in order to satisfy condition (2.11), and remains fixed at PI for iterations
I, ... ,K -1.

614 WALTER MURRAY AND FRANCISCO J. PRIETO

LEMMA 3.11. There exists a constant M such that for all l,

kt+l --I

(3.37) Pk, IlakPkll2 <c M.
k--k

Proof. For I _< k <_ K- 1, property (2.15a) imposed by the choice of ck, and the
fact that the penalty parameter is not increased, imply that

Summing these inequalities for k I to K- 1, 0 <_ a 1 together with (3.4) gives

K-1

(3.38) lsvg {kPk] 2 <__ 1- CK.
k:I

Consider the term p,(,-). From (2.1) and (2.2),

F- T(o_)+]_.
This equation, together with the boundedness of p[[c- sl and p[cK-s (implied
by p > p and Lemma 3.10), and that of the multiplier estimates (Lemma 2.2),
implies that for some M1 > 0,

(3.39) p(-) M1 + p(F- F).

Consider now iterations for which []p][e, so that Lemma 3.8 applies and
p has been obtained the minimizer for the subproblem (for all other iterations
Lemma 3.10 implies that p is bounded, and the result follows from Assumption A3,
(3.39), and (3.38)).

ExpandingF and c about x, we get

(.40) F F, (z x,), + O([lz,),
(.40b) , d,(x,) + O(]x, x[).

From Lemma 3.9 we have

(3.41)]x,- Mp[[p[and [[x- Mp[[p[I.

As p was obtained as the solution of the QP, condition (2.5a) must hold with mul-
tiplier vector 0. This condition together with (3.40ha), (3.40ab), and (3.41)
implies

F, F (i c),, + O (m(,Ill, ll)).(.4)

Using again (2.5),

cIT T--pTA I _gTp_ pTHp"

Since p is increed at iteration I, we must have that condition (2.11) cannot hold at
that iteration, implying

’(0) gTp + (2A,)T(c S) p_,I[C S, 2 > --pTHp.

614 WALTER MURRAY AND FRANCISCO J. PRIETO

LEMMA 3.11. There exists a constant M such that lor alll,

k¡+l-l

(3.37) Pk¡ L !!akPk!!2 < M.
k=k¡

Proo! For 1 ::; k ::; K - 1, property (2.15a) imposed by the choice of ak, and the
fact that the penalty parameter is not increased, imply that

ePk - ePk+1 2:: -aakeP',..

Summing these inequalities for k = 1 to K - 1, O::; ak ::; 1 together with (3.4) gives

K-I

(3.38) ~a/3svH L lI a kPk!!2 ::; ePI - ePK'
k=I

Consider the term PI(ePI - ePK)' From (2.1) and (2.2),

PeP = pF - p). . .T(c - s) + ~p2l1c - s1l2.

This equation, together with the boundedness of PlllcI -sIII and PlllcK -sKI! (implied
by PK > PI and Lemma 3.10), and that of the multiplier estimates (Lemma 2.2),
implies that for sorne MI > O,

(3.39)

Consider now iterations for which IIPIII ::; E, so that Lemma 3.8 applies and
PI has been obtained as the minimizer for the subproblem (for aH other iterations
Lemma 3.10 implies that PI is bounded, and the result foHows from Assumption A3,
(3.39), and (3.38)).

Expanding F K and CK about XI' we get

(3.40a)

(3.40b)

F K - F I = (XK - x I)T91 + O(!!XI - x KII 2),

cK - cI = AI(XK - XI) + O(lIxI - xKII2).

From Lemma 3.9 we have

(3.41)

As PI was obtained as the solution of the QP, condition (2.5a) must hold with mul
tiplier vector 'lrI 2:: O. This condition together with (3.40aa), (3.40ab), and (3.41)
implies

(3.42)

Using again (2.5),

Since P is increased at iteration 1, we must have that condition (2.11) cannot hold at
that iteration, implying

eP'¡(O) = 9¡T p¡ + (2,xI - J.LI)T(c¡ - SI) - PI-l!!C¡ - s¡1I 2 > -~p¡TH¡PI'

614 WALTER MURRAY AND FRANCISCO J. PRIETO

LEMMA 3.11. There exists a constant M such that for alll,

k¡+1- 1

(3.37) Pk¡ L II a kPkl1
2

< M.
k=k¡

Proo! For 1 ::; k::; K - 1, property (2.15a) imposed by the choice of ak, and the
fact that the penalty parameter is not increased, imply that

ePk - ePk+l ::::: -aakeP~·

Summing these inequalities for k = 1 to K - 1, O ::; ak ::; 1 together with (3.4) gives

K-l

(3.38) ~a(3svH L II a kPkl1
2

::; ePI - ePK'
k=I

Consider the term PI(ePI - ePK)' From (2.1) and (2.2),

PeP = pF - p>..T(c - s) + ~p211c - s112.

This equation, together with the boundedness of PlllcI -sIII and PlllcK -sKII (implied
by PK > PI and Lemma 3.10), and that of the multiplier estimates (Lemma 2.2),
implies that for some M 1 > O,

(3.39)

Consider now iterations for which IlpI II ::; E, so that Lemma 3.8 applies and
PI has been obtained as the minimizer for the subproblem (for all other iterations
Lemma 3.10 implies that PI is bounded, and the result follows from Assumption A3,
(3.39), and (3.38)).

Expanding F K and CK about XI' we get

(3.40a)

(3.40b)

F K - F I = (X K - xlfgI + O(llxI - x K I1
2

),

CK - CI = AI(XK - XI) + O(llxI - xKI12).

From Lemma 3.9 we have

(3.41)

As PI was obtained as the solution of the QP, condition (2.5a) must hold with mul
tiplier vector 'TrI ::::: O. This condition together with (3.40aa), (3.40ab), and (3.41)
implies

(3.42)

Using again (2.5),

Since P is increased at iteration 1, we must have that condition (2.11) cannot hold at
that iteration, implying

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 615

The previous two results imply

pTrTcx < -px-p Hp + p s

and this, together with the positive-definiteness ofH (condition HC2), the bound-
edness of the multipliers (condition MC1 and Lemma 2.2) and Lemma 3.10, gives

(3.43) flcTi < p(2A,-)T(c- 81) M2,

for some M2 > 0.
Consider now the termcT in (3.42). om 0 we must have

T
--pCg pcT

and from (2.9) we have c; c -s]. Using p < p and Lemma 3.10, we
conclude that there exists a constant M3 such that

(3.44) pcT, < M3.

Finally, consider the third term on the right-hand side of (3.42). It follows om
Lemma 3.10 and the relation p < p that there exists Ma and M5 such that

p[p]2 < M4 and p]p]2 < Ms,

and hence for some constant M6

(3.45) p,O(max(llp, IIp l)) < M6.

Combining (3.43), (3.44), and (3.45), we obtain the bound

p(F Fr) < M2 + M3 + M6,

which, together with (3.39) and (3.38) implies the desired result.
LEMMA 3.12. There exists a constant M such that, for all k,

(3.46) Pk]]c Sk M.

Proof. As in the preceding Lemma, let I k and K kt+. om Lemma 3.10,
(3.46) is immediate for k I and k K.

To verify a bound for k I+ 1,...,K- 1 we analyze some intermediate iterations
k nd k + 1. We drop the iteration subscript; also let quantities evaluated at Xk+ be
denoted with a tilde.
om (2.8), p() min(p,). Consider the following two cses:
(i) Ifp-, then

(3.47) p, le - IX I.
(ii) Assume now that p,j < -Ij I Expanding the jth constraint function around

xk gives

cj + aafp + o(ll pll).

Rewriting the previous expression, we obtain:

(3.48) j (1 a)cj + a(ap + cj) +

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 615

The previous two results imply

Pr'TrrT Cr < -Pr~PrT HrPr + Pr(2Ar - J.Lr)T(cr - Sr) - PrPr-lllcr - s¡11 2 ,

and this, together with the positive-definiteness of H¡ (condition HC2), the bound
edness of the multipliers (condition MC1 and Lemma 2.2) and Lemma 3.10, gives

(3.43)

for some M 2 > O.
Consider now the term CKT 'Tr¡ in (3.42). From 'Tr r ;::: O we must have

T < -T -p¡CK 'Trr _ p¡cK 'Tr¡

and from (2.9) we have IIc;;:1I :::; IICK - sKII. Using p¡ < PK and Lemma 3.10, we
conclude that there exists a constant M3 such that

(3.44)

Finally, consider the third term on the right-hand side of (3.42). It follows from
Lemma 3.10 and the relation p¡ < PK that there exists M4 and M5 such that

and hence for some constant M6

(3.45)

Combining (3.43), (3.44), and (3.45), we obtain the bound

p¡(F¡ - F K) < M 2 + M3 + M6 ,

which, together with (3.39) and (3.38) implies the desired resulto O

LEMMA 3.12. There exists a constant M such that, lor all k,

(3.46)

Proo! As in the preceding Lemma, let 1 = k¡ and K = k¡+l' From Lemma 3.10,
(3.46) is immediate for k = 1 and k = K.

To verify a bound for k = 1 + 1, ... ,K -1 we analyze some intermediate iterations
k and k + 1. We drop the iteration subscript; also let quantities evaluated at Xk+l be
denoted with a tilde.

From (2.8), Pr(Cj - Sj) = min(p¡cj, >.j). Consider the following two cases:
(i) If p¡Cj ;::: -I>.jl, then

(3.47)

(ii) Assume now that p¡Cj < -I>.jl. Expanding the jth constraint function around
Xk gives

Rewriting the previous expression, we obtain:

(3.48)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 615

The previous two results imply

Pr'Trr T Cr < -Pr~PrT HrPr + Pr(2Ar - Mr)T(cr - sr) - PrPr-lllcr - Sr 11
2

,

and this, together with the positive-definiteness of Hr (condition HC2), the bound
edness of the multipliers (condition MC1 and Lemma 2.2) and Lemma 3.10, gives

(3.43)

for sorne M 2 > O.
Consider now the term CK

T 'Tr r in (3.42). From 'Tr r ~ O we must have

T < -T -PrCK 'Trr _ PrCK 'Trr

and from (2.9) we have lic;1! ~ licK - SKI!. Using Pr < PK and Lemma 3.10, we
conclude that there exists a constant M3 such that

(3.44)

Finally, consider the third term on the right-hand side of (3.42). It follows from
Lemma 3.10 and the relation Pr < PK that there exists M4 and M5 such that

and hence for sorne constant M6

(3.45)

Combining (3.43), (3.44), and (3.45), we obtain the bound

Pr(Fr - F K) < M 2 + M3 + M 6 ,

which, together with (3.39) and (3.38) implies the desired resulto O

LEMMA 3.12. There exists a constant M such that, for all k,

(3.46)

Proo! As in the preceding Lemma, let 1 = k¡ and K = k¡+l. From Lemma 3.10,
(3.46) is immediate for k = 1 and k = K.

To verify a bound for k = 1 + 1, ... , K -1 we analyze sorne intermediate iterations
k and k + 1. We drop the iteration subscript; also let quantities evaluated at Xk+l be
denoted with a tilde.

From (2.8), Pr(Cj - Sj) = min(Prcj, Aj). Consider the following two cases:
(i) If PrCj ~ -IAjl, then

(3.47)

(ii) Assume now that PrCj < -IAjl. Expanding the jth constraint function around
Xk gives

Rewriting the previous expression, we obtain:

(3.48)

616 WALTER MURRAY AND FRANCISCO J. PRIETO

Adding and subtracting (1 -a)sy on the right-hand side of (3.48) gives

(3.49) (x)(aj) + (x c)y + (ap +) + O(llpl12).

Since sy, ap + cy, a and 1 -a are all nonnegative, we get

(1 a)sy + a(ayp + cy) >_ O,

and using this bound in (3.49) we obtain

Since we assume pxSj < -lAy[we have 5y y -gy < 0.
1- a < 1 in (3.50) we get the following inequality:

Using this bound and

-y Iyl Iy jl -(1 a)(cy sy) + O(llPll 2) Icj- jl + O(IIPlI2)

Multiplying both sides by pl gives

For a given iteration k < K- 1 and constraint j we have one of the following two
situations.

(i) For some iteration l, I < < k, pi(ct)y >_ -[(At)j]. If we add (3.51) for
iterations r =/,..., k- 1, and use (3.47), we get

Pl(ck)j (sk)Jl <- Pz[(Cl)j (Sl)Jl W PzO(

The boundedness of p,l(ck)y -(sk)yl then follows from Lemmas 2.2 and 3.11.
(ii) For all iterations l, I < <_ k we have p(ct)y < -I(At)yl. We add (3.51) for

r I to k- 1, to obtain

Pz[(Ck)j (Sk)jl <-- Pz[(Ct)j (8t)J[q- PxO(
and now the desired result follows from Lemmas 3.10 and 3.11.

3.6. Boundedness of ak. Given the result of Lemma 3.11, all that is left to
establish the global convergence of the algorithm is to show that the steplength is
bounded away from zero. As a consequence of the weak assumptions imposed on the
multiplier estimate #k, it is not possible to show that such a bound exists. However,
it can be proved that the bound does exist if there is no subsequence along which

IlPk II-- O. This is enough to prove convergence.
We first derive a bound on the norm of the second derivative along the linesearch.
LEMMA 3.13. For 0 <_ 0 <_, there exists a positive constant N such that

(0) _< N.

616 WALTER MURRAY AND FRANCISCO J. PRIETO

Adding and subtracting (1 - a)sj on the right-hand side of (3.48) gives

(3.49) Cj = (1 - a)(cj - Sj) + (1 - a)sj + a(aJp + Cj) + O(lIaPIl2).

Since Sj, aJ p + Cj, a and 1 - a are aH nonnegative, we get

(1 - a)sj + a(aJp + Cj) ~ O,

ap.d using this bound in (3.49) we obtain

(3.50)

Since we assume p¡Cj < -15.j l we have Cj = Cj - Sj :::; O. Using this bound and
1 - a :::; 1 in (3.50) we get the foHowing inequality:

Multiplying both sides by PI gives

(3.51)

For a given iteration k :::; K - 1 and constraint j we have one of the foHowing two
situations.

(i) For sorne iteration l, 1 < l :::; k, p¡(C¡)j ~ -1(A¡)jl. If we add (3.51) for
iterations r = l, . .. , k - 1, and use (3.47), we get

The boundedness of p¡I(Ck)j - (sk)jl then foHows from Lemmas 2.2 and 3.11.
(ii) For aH iterations l, 1 < l :::; k we have PI(C¡)j < -1(A¡)jl. We add (3.51) for

r = 1 to k - 1, to obtain

and now the desired result foHows from Lemmas 3.10 and 3.11. O

3.6. Boundedness of ak. Given the result of Lemma 3.11, all that is left to
establish the global convergence of the algorithm is to show that the steplength is
bounded away from zero. As a consequence of the weak assumptions imposed on the
multiplier estimate J..Lk, it is not possible to show that such a bound exists. However,
it can be proved that the bound does exist if there is no subsequence along which
IIpkll ---+ O. This is enough to prove convergence.

We first derive a bound on the norm of the second derivative along the linesearch.
LEMMA 3.13. For O:::; () :::; ak, there exists a positive constant N such that

<fJ%(()) :::; N.

616 WALTER MURRAY AND FRANCISCO J. PRIETO

Adding and subtracting (1 - a)sj on the right-hand side of (3.48) gives

(3.49)

Since Sj, aJ p + Cj, a and 1 - a are aH nonnegative, we get

and using this bound in (3.49) we obtain

(3.50)

Since we assume p1Cj < -15.j l we have Cj = Cj - Sj ~ O. Using this bound and
1 - a ~ 1 in (3.50) we get the foHowing inequality:

Multiplying both sides by PI gives

(3.51)

For a given iteration k ~ K - 1 and constraint j we have one of the foHowing two
situations.

(i) For sorne iteration l, 1 < l ~ k, PI(C¡)j ~ -1(A¡)jl. If we add (3.51) for
iterations r = l, ... , k - 1, and use (3.47), we get

The boundedness of PII(Ck)j - (sk)jl then foHows from Lemmas 2.2 and 3.11.
(ii) For aH iterations l, 1 < l ~ k we have PI(C¡)j < -1(A¡)jl. We add (3.51) for

r = 1 to k - 1, to obtain

and now the desired result foHows from Lemmas 3.10 and 3.11. O

3.6. Boundedness of ak. Given the result of Lemma 3.11, aH that is left to
establish the global convergence of the algorithm is to show that the steplength is
bounded away from zero. As a consequence of the weak assumptions imposed on the
multiplier estimate J-Lk, it is not possible to show that such a bound exists. However,
it can be proved that the bound do es exist if there is no subsequence along which
Ilpk 11 --+ O. This is enough to prove convergence.

We first derive a bound on the norm of the second derivative along the linesearch.
LEMMA 3.13. For O ~ () ~ ak, there exists a positive constant N such that

cfJ%(()) ~ N.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 617

Proof. We again drop the subscript k. From (3.2),

V2F- -j(Aj p(cj si))V2cy + pATA -AT

V2LA -A 0
-pA I

--pAT
I
pI

From the definition of , given in (2.2), we get

"(0) w + E((0)- (0))p v (o)p

(3.52) + p(A(O)p- q)T(A(O)p- q) 2T(A(O)p q),

where the argument 0 denotes quantities evaluated at x + Op, except for s(O) =_ s + Oq
and

w vF(0)-E(+ 0)v(0).
We now derive bounds on the terms on the right-hand side of (3.52). For the first

term we can write

(3.53) pTWp < NIlIP M1,

for some constant M1, using Assumption A3, the boundedness of I111 and I111 (con-
dition MC1 and Lemma 2.2), and the boundedness of IlPll (Lemma 3.5).

Expanding cj in a Taylor series about x gives

(o) () + o,(x)p +

where 0 < Oj < 0. Using (2.10) and multiplying both sides by p gives

p(cj(O) (sj(O)) p(1 O)(cj(x) sj) + p 1/202pTV2cj(Oj)p.

Lemma 3.12 implies that plcj(x)- sjl is bounded, Lemma 3.11 implies that pllOpll 2
is bounded for 0 < c, and Assumption A3 implies that IIV2cj(Oj)ll is also bounded.
Consequently,

p l(cj(O) sj(O)) < N,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.52)
is also bounded, that is,

(3.5a) Ip(cy(O) sy(O))pTVcy(O)pl <_ N:llPll _< M,

where N2 and M2 are constants.
Consider now pllA(O)p- qll 2, the third term on the right-hand side of (3.52).

Using Taylor series, we have

(.) (+ op)p + OpV()p,

where 0 < 0j < 0. From (2.10) and Lemmas 3.11 and 3.12, we obtain

(3.56) plIA(O)p- qll < Ma,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 617

Proof. We again drop the subscript k. From (3.2),

2 (\J2F-¿lAj-P(Cj-Sj))\J2Cj+PATA
\J LA = -A

-pA

_pAT)
I .
pI

From the definition of cjJ, given in (2.2), we get

cjJ" (8) = pTW P + ¿jP(Cj (8) - Sj (8))pT\J2Cj (8)p

(3.52) + p(A(8)p - q{(A(8)p - q) - 2e(A(8)p - q),

where the argument 8 denotes quantities evaluated at x + 8p, except for s(8) == s + 8q
and

We now derive bounds on the terms on the right-hand side of (3.52). For the first
term we can write

(3.53)

for some constant MI, using Assumption A3, the boundedness of 11>.11 and II~II (con
dition MC1 and Lemma 2.2), and the boundedness of Ilpll (Lemma 3.5).

Expanding Cj in a Taylor series about x gives

Cj(8) = Cj(x) + 8aj(x)Tp + ~82pT\J2Cj(8j)p,

where O < 8j < 8. Using (2.10) and multiplying both sides by p gives

Lemma 3.12 implies that pICj(x) - Sjl is bounded, Lemma 3.11 implies that pl18pl12
is bounded for 8 S 0:, and Assumption A3 implies that 11\J2cj(8j)11 is also bounded.
Consequently,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.52)
is also bounded, that is,

(3.54) L Ip(cj(8) - Sj (8))pT\J2Cj (8)pl S N 211pl12 S M2,
j

where N 2 and M 2 are constants.
Consider now pIlA(8)p - q112, the third term on the right-hand side of (3.52).

Using Taylor series, we have

(3.55)

where O < (Jj < 8. From (2.10) and Lemmas 3.11 and 3.12, we obtain

(3.56)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 617

Proof. We again drop the subscript k. From (3.2),

2 (\J2F-¿j(Aj-P(Cj-Sj))\J2Cj+PATA
\J LA = -A

-pA

_pAT)
I .
pI

From the definition of cp, given in (2.2), we get

cp" ((J) = pTW P + ¿jP(Cj ((J) - Sj ((J))pT\J2Cj ((J)p

(3.52) + p(A((J)p - q) T(A((J)p - q) - 2e(A((J)p - q),

where the argument (J denotes quantities evaluated at x + (Jp, except for s((J) == s + (Jq
and

We now derive bounds on the terms on the right-hand side of (3.52). For the first
term we can write

(3.53)

for some constant MI, using Assumption A3, the boundedness of IIAII and II~II (con
dition MC1 and Lemma 2.2), and the boundedness of Ilpll (Lemma 3.5).

Expanding Cj in a Taylor series about x gives

where O < (Jj < (J. Using (2.10) and multiplying both sides by p gives

Lemma 3.12 implies that pICj(x) - Sjl is bounded, Lemma 3.11 implies that pll(Jpl12
is bounded for (J S 0:, and Assumption A3 implies that 11\J2 Cj ((Jj) II is also bounded.
Consequently,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.52)
is also bounded, that is,

(3.54) L Ip(Cj((J) - Sj ((J))pT\J2Cj ((J)pl S N211pl12 S M 2,
j

where N 2 and M 2 are constants.
Consider now pIlA((J)p - q112, the third term on the right-hand side of (3.52).

Using Taylor series, we have

(3.55)

where O < (Jj < (J. From (2.10) and Lemmas 3.11 and 3.12, we obtain

(3.56)

618 WALTER MURRAY AND FRANCISCO J. PRIETO

where M3 is a constant.
From (3.55), (2.10), Assumption A3, and the boundedness of I111 (Lemma 2.2),

the final term on the right-hand side of (3.52) is also bounded,

(3.57)

2T(A(O)p q) --2T(Ap q) + iOpTV2ci(j)P

< 2T(c- s) + X4llpll z < M4,

where N4 and M4 are constants.
The desired bound follows from (3.52), (3.53), (3.54), (3.56), and (3.57). [3

LEMMA 3.14. For any > O, if IlPk[I > there exists a value () such that
ck > (e) > O, where is the steplength computed by the algorithm.

Proof. We drop the subscript k corresponding to the iteration number. We start
by proving that & (as defined in (2.14) and (2.15)) is bounded away from zero if

IlPll > e. If condition (2..14)is satisfied at a given iteration, then & 1, trivially
bounded away from zero. We assume therefore that & is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well
defined, and in particular, that there exists a value C) E (0, 1] satisfying (2.15) and
such that condition (2.15b) is not satisfied for any value of a e [0, C)); see (3.6), (3.8),
and (3.7).

From the Taylor series expansion of i at C) we have

’() ’(0) + "(0),

where 0 < 0 < C). Therefore, using (3.6) and noting that r/ < 1 and b’(0) < 0, we
obtain

(z.s) ,,(0) () ,,(0---S

(Since C) > 0, 0 must be such that "(0) > 0.)
If IlPll > e, then from (3.4) we have that I’(0)1 > 1/2svHe2, and from Lemma 3.13

we also have 1/(0) < N, implying

If condition (2.16) is satisfied for C), then the previous bound holds for c. Oth-
erwise, for some constraint j we must have hi(c)) ci(x + c)p) + tic < 0 (using the
notation introduced in Lemma 3.1). If hi(0 > 1/2tic > 0, from the continuity of h
there exists a value C) < & such that hi(c) 0 and hi(a > 0 for all c [0, 6]. From
the mean-value theorem

hi(&)-hi(O) hi(O)
h(O) Ih(0)l’

for some /9 e [0,6]. But as Ih(0)l laj(x + Op)Tpl K for some K > 0 (from
Assumption A3 and the boundedness of IIPlI, Lemma 3.5), we have

(3.59) c) > fie
2K"

618 WALTER MURRAY AND FRANCISCO J. PRIETO

where M3 is a constant.
From (3.55), (2.10), Assumption A3, and the boundedness of II~II (Lemma 2.2),

the final term on the right-hand side of (3.52) is also bounded,

(3.57)

- 2e(A(O)p - q) = -2~T(Ap - q) + L~jOprv2Cj(¡jj)p
j

::; 2e(c - s) + N4 11pll2 ::; M4 ,

where N4 and M4 are constants.
The desired bound follows from (3.52), (3.53), (3.54), (3.56), and (3.57). O

LEMMA 3.14. For any € > O, if IIpkll 2: € there exists a value a(€) such that
ak 2: a(€) > O, where ak is the steplength computed by the algorithm.

Proof. We drop the subscript k corresponding to the iteration number. We start
by proving that O: (as defined in (2.14) and (2.15)) is bounded away from zero if
Ilpll > €. If condition (2.14) is satisfied at a given iteration, then O: = 1, trivially
bounded away from zero.We assume therefore that O: is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well
defined, and in particular, that there exists a value O: E (0,1] satisfying (2.15) and
such that condition (2.15b) is not satisfied for any value of a E [O, O:)j see (3.6), (3.8),
and (3.7).

From the Taylor series expansion of 4J' at O: we have

4J'(a) = 4J'(0) + a4J"(O) ,

where O < O < 0:. Therefore, using (3.6) and noting that 11 < 1 and 4J' (O) < O, we
obtain

(3.58) , = 4J'(a) - 4J'(0) = (1-) 14J'(0)1
a 4J" (O) 11 4J" (O) .

(Since a > O, O must be such that 4J"(O) > O.)
If Ilpll 2: E, then from (3.4) we have that 14J'(0) I 2: !f3svHE2, and from Lemma 3.13

we also have 4J" (O) ::; N, implying

If condition (2.16) is satisfied for a, then the previous bound holds for a. Oth
erwise, for some constraint j we must have hj(a) == Cj(x + ap) + f3c < O (using the
notation introduced in Lemma 3.1). If hj(O) 2: !f3c > O, from the continuity of h
there exists a value O: < a such that hj(a) = O and hj(a) 2: O for all a E [O, a]. From
the mean-value theorem

_ h·(a) - h·(O) h·(O) a- J J _ J

- hj(O) - Ihj(O)I'

for some O E [0,0.]. But as Ihj(O)1 = laj(x + Op)Tpl ::; K for some K > O (from
Assumption A3 and the boundedness of IIpll, Lemma 3.5), we have

(3.59) - > f3c
a_ 2K'

618 WALTER MURRAY AND FRANCISCO J. PRIETO

where M3 is a eonstant.
From (3.55), (2.10), Assumption A3, and the boundedness of II~II (Lemma 2.2),

the final term on the right-hand side of (3.52) is also bounded,

j

(3.57)

where N 4 and M4 are eonstants.
The desired bound follows from (3.52), (3.53), (3.54), (3.56), and (3.57). O

LEMMA 3.14. For any E > O, if Ilpkll ~ E there exists a value a(E) such that
ak ~ a(E) > O, where ak is the steplength computed by the algorithm.

Proo! We drop the subseript k eorresponding to the iteration number. We start
by proving that ó: (as defined in (2.14) and (2.15)) is bounded away from zero if
Ilpll > E. If eondition (2.14) is satisfied at a given iteration, then ó: = 1, trivially
bounded away from zero. We as sume therefore that ó: is ehosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the lineseareh proeedure was well
defined, and in particular, that there exists a value ó: E (0,1] satisfying (2.15) and
sueh that eondition (2.15b) is not satisfied for any value of a E [O, Ó:)i see (3.6), (3.8),
and (3.7).

From the Taylor series expansion of (j/ at ó: we have

1/(a) = cp'(O) + acp"(B) ,

where O < B < a. Therefore, using (3.6) and noting that TI < 1 and cp'(O) < O, we
obtain

(3.58) • = cp'(a) - cp'(O) = (1 _) W(O)I.
a cp"(B) TI cp"(B)

(Sinee a > O, B must be sueh that cp" (B) > O.)
If Ilpl! ~ E, then from (3.4) we have that Icp'(O)1 ~ ~/38vHE2, and from Lemma 3.13

we also have cp"(B) :::; N, implying

If eondition (2.16) is satisfied for a, then the previous bound holds for a. Oth
erwise, for some eonstraint j we must have hj (a) == ej (x + ap) + /3c < O (using the
notation introdueed in Lemma 3.1). If hj(O) ~ ~/3c > O, from the eontinuity of h
there exists a value a < a sueh that hj(a) = O and hj(a) ~ O for all a E [O, a]. From
the mean-value theorem

for some B E [O, a]. But as Ihj(B)1 = laj(x + Bp)T pi :::; K for some K > O (from
Assumption A3 and the boundedness of Ilpll, Lemma 3.5), we have

(3.59)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 619

If hi(0) < 1/2c, we must have from (2.4b),

ap> 2hj(O) -cj c hy(O) > -.
From hy(0) > 0 and hi(d) < 0 there must exist a value & < d such that hi(&) < 0,
implying the existence of & < & such that h() 0 and h(c) _> 0 for all c E [0, &]
(also, h() > 0 for all e [0, &]). From the mean-value theorem,

for some 0 e [0, 0]. But h(0) _> 1/2/c, and Ih(0)l IpTV2c(x + OP)Pl < [(for some
K > 0, from Assumption A3 and the boundedness of IIPlI, Lemma 3.5, implying again

(3.60) 0 > 2R"

The procedure to construct a will ensure that a >_ 1/2, and so the result presented
in the lemma will hold.

We can now prove the global convergence theorem for the algorithm.
THEOREM 3.15. The sequence {Xk} generated by the algorithm converges to a

unique KKT point for NP.
Proof. It follows from Lemma 3.9 that to prove Ilxk x* O, it is sufficient to

show

(3.61) lim IlPkll -+ O.

If (3.61) is true then there exists K such that IlXk --x*ll < (*/2 and IlPkll < * for
all k > K, where 2(* is the minimum distance between two KKT points. It follows
that x* is unique for k > K (the sequence converges to the unique KKT point nearest
to xK), otherwise it implies that for some k > K that either Ilxk --x*ll > (*/2 or

IlPkll > (*- Consequently, to prove the theorem it is sufficient to show (3.61) is true.
If IlPk 0 for any k, the algorithm terminates and the theorem is true. Hence

we assume that IlPk # 0 for any k. If Pk L 0, there must exist a subsequence {Pl},
and a positive constant (, such that IlPlll > (for all 1. In this case, from Lemma 3.14
there will exist a uniform lower bound on hi, al > > 0, but then

contradicting the fact that pllapll is bounded (Lemma 3.11).
In the bounded case, we know that there exists a value t5 and an iteration index

K such that p- for all k > K. Again, the proof is by_ contradiction. Consider only
indices such that >/. Every such iteration after K must yield a strict decrease
in the merit function because the termination condition for the linesearch (2.15a),
together with the boundedness of the steplength (from Lemma 3.14 and IlPtll > ()
and (3.4) imply

_< _< --1/2aaZ .HIIP ll = < 0.

The adjustment of the slack variables s in (2.7) can only lead to a further reduction
in the merit function, as LA is quadratic in s and the minimizer with respect to sj

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 619

If hj(O) :s: ~.Be, we must have from (2.4b),

hj(O) = aJp 2= -Cj =.Be - hj(O) 2= ~.Be.

From hj(O) 2= O and hj(ó.) < O there must exist a value ó: < ó. such that hj(ó:) < O,
implying the existence of a < ó: such that hj(a) = O and hj(O'.) 2= O for all O'. E [O, aJ
(also, hj(O'.) 2= O for all O'. E [O, aJ). From the mean-value theorem,

_ hj(a) - hj(O) hj(O)
O'. = h'j(B) = Ih'j(B)1

for sorne B E [O, ajo But hj(O) 2= ~.Be, and Ih'j(B) 1 = IpT V'2cj (x + Bp)pl :s: k for sorne
k > O, from Assumption A3 and the boundedness of Ilpll, Lemma 3.5, implying again

(3.60) a> .Be:...
-2K

The procedure to construct O'. will ensure that O'. 2= ~a, and so the result presented
in the lemma will hold. O

We can now prove the global convergence theorem for the algorithm.
THEOREM 3.15. The sequence {Xk} generated by the algorithm converges to a

unique KKT point for NP.

Proo! It follows from Lemma 3.9 that to prove Ilxk - x* 11 -- O, it is sufficient to
show

(3.61) lim Ilpk 11 -- o.
k->oo

If (3.61) is true then ilhere exists K such that IIXk - x* 11 < / /2 and Ilpk 11 < l" fDr
all k > K, where 2/ is the minimum distance between two KKT points. It follows
that x* is unique for k > K (the sequence converges to the unique KKT point nearest
to x K), otherwise it implies that for sorne k > K that either Ilxk - x* 11 > E* /2 or
Ilpk 11 > /. Consequently, to prove the theorem it is sufficient to show (3.61) is true.

If Ilpk 11 = O for any k, the algorithm terminates and the theorem is true. Hence
we assume that Ilpkll i:- O for any k. If Pk f+ O, there must exist a subsequence {PI},
and a positive constant E, such that IIpzll > E for alll. In this case, from Lemma 3.14
there will exist a uniform lower bound on al, al 2= a > O, but then

contradicting the fact that PkII000kPk 11 is bounded (Lemma 3.11).
In the bounded case, we know that there exists a value p and an iteration index

K such that P = P for all k 2= K. Again, the proof is by contradiction. Consider only
indices 1 such that 1 > K. Every such iteration after K must yield a strict decrease
in the merit function because the termination condition for the linesearch (2.15a),
together with the boundedness of the steplength (from Lemma 3.14 and IIpllI > E)
and (3.4) imply

The adjustment of the slack variables s in (2.7) can only lead to a further reduction
in the merit function, as LA is quadratic in s and the minimizer with respect to Sj

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 619

If hj(O) S; ~.Be, we must have from (2.4b),

hj(O) = aJp ~ -Cj =.Be - hj(O) ~ ~.Be.

From hj(O) ~ O and hj(&) < O there must exist a value ó: < & such that hj(ó:) < O,
implying the existence of a < ó: such that hj(a) = O and hj(a) ~ O for all a E [O, aJ
(also, hj(a) ~ O for all a E [O, aJ). From the mean-value theorem,

_ hj(a) - hj(O) hj(O)
a = h'j(B) = Ih'j(B)1

for sorne B E [O, ajo But hj(O) ~ ~.Be, and Ih'j(B) 1 = IpTV'2Cj (X + Bp)pl S; 1< for sorne
1< > O, from Assumption A3 and the boundedness of IIpll, Lemma 3.5, implying again

(3.60) a> .B<:...
-2K

The procedure to construct a will ensure that a ~ ~a, and so the result presented
in the lemma will hold. O

We can now prove the global convergence theorem for the algorithm.
THEOREM 3.15. The sequence {Xk} generated by the algorithm converges to a

unique KKT point for NP.

Proo! It follows from Lemma 3.9 that to prove Ilxk - x* 11 ---- O, it is sufficient to
show

(3.61) lim Ilpk 11 ---- o.
k->oo

If (3.61) is true then ihere exists K such that Ilxk - x* 11 < / /2 and Ilpk 11 < l for
all k > K, where 2/ is the minimum distance between two KKT points. It follows
that x* is unique for k > K (the sequence converges to the unique KKT point nearest
to x K), otherwise it implies that for sorne k > K that either Ilxk - x*11 > E* /2 or
Ilpk 11 > l. Consequently, to prove the theorem it is sufficient to show (3.61) is true.

If Ilpk 11 = O for any k, the algorithm terminates and the theorem is true. Hence
we assume that Ilpkll i:- O for any k. If Pk f+ O, there must exist a subsequence {PI},
and a positive constant E, such that IIpdl > E for alll. In this case, from Lemma 3.14
there will exist a uniform lower bound on al, al ~ a > O, but then

contradicting the fact that PkllakPkl1 is bounded (Lemma 3.11).
In the bounded case, we know that there exists a value p and an iteration index

K such that P = P for all k ~ K. Again, the proof is by contradiction. Consider only
indices 1 such that 1 > K. Every such iteration after K must yield a strict decrease
in the merit function because the termination condition for the linesearch (2.15a),
together with the boundedness of the steplength (from Lemma 3.14 and IIpdl > E)
and (3.4) imply

The adjustment of the slack variables s in (2.7) can only lead to a further reduction
in the merit function, as LA is quadratic in s and the minimizer with respect to Sj

620 WALTER MURRAY AND FRANCISCO J. PI:tIETO

is given by cj Aj/p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

(x+) () < -1/2o.
Therefore, since the merit function with p t5 decreases by at least a fixed quantity
at every step in the subsequence, it must be unbounded below, contradicting (3.19).
It follows that (3.61) must hold.

Having established the global convergence of the algorithm, the next step is to
show that the multiplier estimate Ak A*. In order to prove this result, we need to
strengthen our conditions on the multiplier estimate #k (if #k does not converge then
A will not converge either). Following is the additional condition.

MC3. II#k--,k*ll- O(llxk--x*ll), where * denotes any multiplier vector associated
with a KKT point closest to xk.

This condition requires that in condition MC1 be chosen so that

(3.62)

Estimates satisfying MC1, MC2, and MC3 may be obtained by computing a mul-
tiplier for the "active" constraints (say, least-squares estimates of least length), and
expanding to the full multiplier space by augmenting this vector with zeros corre-
sponding to the inactive constraints. If such an estimate does not satisfy MC1, then
a suitable estimate may be determined by appropriate scaling. The multipliers at the
stationary point of the QP also satisfy the three conditions. Note that if x* is not
unique then from Lemma 3.6, Ilxk -x* > e for some e > 0, and MC3 holds for any
vector #k that is bounded.

We first show that under the stronger conditions on # the steplength ak is
uniformly bounded away from zero.

LEMMn 3.16. Under MC3 and all earlier assumptions and conditions,
O.

Proof. We again drop the subscript k. We first tighten the bound on b"() given
in Lemma 3.13. From (3.53) and (3.54), we have that the first two terms on the
right-hand side of (3.52) are bounded by a multiple of Ilpll 2. For the remaining terms,
from (3.55) and (2.10)we obtain

(p(A(t?)p-q)-2)T(A(O)p-q) E(OpTVcy(y)p--cy+sy--2j)(0pTVcy(y)p--cy+sy).
J

Expanding this expression, and using Lemmas 3.11 and 3.12 to bound the terms
p(cj sj)OpTVcj(j)p and p82(pTVc(j)p)2, we obtain

(.6) IIA() 11 2(A(0)p
for some constant M.

Observe that from (3.3) and MC2,

p (c-)r(_) + 2(c_
(3.64) -b’ (0) + pT(g_ AT.) #Ts.
Using Taylor expansions and Lemma 3.9 it follows that

pT(g AT#) pT(g* A.T#)

620 WALTER MURRAY AND FRANCISCO J. PRIETO

is given by Cj - >'j / p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

Therefore, since the merit function with p = p decreases by at least a fixed quantity
at every step in the subsequence, it must be unbounded below, contradicting (3.19).
It follows that (3.61) must hold. O

Having established the global convergence of the algorithm, the next step is to
show that the multiplier estimate >'k -t >.*. In order to prove this result, we need to
strengthen our conditions on the multiplier estimate J.Lk (if J.Lk does not converge then
>'k will not converge either). Following is the additional condition.

MC3. IIJ.Lk->'* 11 = O(IIXk-X* 11), where >.* denotes any multiplier vector associated
with a KKT point closest to Xk.

This condition requires that j3,.. in condition MCl be chosen so that

(3.62)

Estimates satisfying MC1, MC2, and MC3 may be obtained by computing a mul
tiplier for the "active" constraints (say, least-squares estimates of least length), and
expanding to the full multiplier space by augmenting this vector with zeros corre
sponding to the inactive constraints. If such an estimate does not satisfy MC1, then
a suitable estimate may be determined by appropriate scaling. The multipliers at the
stationary point of the QP also satisfy the three conditions. Note that if x* is nót
unique then from Lemma 3.6, IIXk - x*1I > € for some € > O, and MC3 holds for any
vector J.Lk that is bounded.

We first show that under the stronger conditions on J.Lk the steplength CXk is
uniformly bounded away from zero.

LEMMA 3.16. Under MC3 and all earlier assumptions and conditions, CXk ;::: a >
O.

Proof. We again drop the subscript k. We first tighten the bound on fjJ"(()) given
in Lemma 3.13. From (3.53) and (3.54), we have that the first two terms on the
right-hand side of (3.52) are bounded by a multiple of IIp112. For the remaining terms,
from (3.55) and (2.10) we obtain

T "T - T -(p(A(())p-q)-2e) (A(())p-q) = ~(()p 'VCj(()j)p-Cj+Sj-2ej)(()p 'VCj(()j)p-Cj+Sj).
j

Expanding this expression, and using Lemmas 3.11 and 3.12 to bound the terms
p(Cj - Sj)()pT'VCj(Oj)p and p()2(PT'VCj(Oj)p)2, we obtain

(3.63) p IIA(())p - qll2 - 2eT(A(())p - q) ::; p IIc - sII2 + 2eT(c - s) + Mllpll2,

for some constant M.
Observe that from (3.3) and MC2,

p (c - s)T(c - s) + 2eT(c - s) = -4/(0) + pTg + J.LT(c - s)

(3.64) = -fjJ'(O) + pT(g - ATJ.L) - J.LTs.

Using Taylor expansions and Lemma 3.9 it follows that

620 WALTER MURRAY AND FRANCISCO J. PRIETO

is given by ej -)...j / p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

Therefore, since the merit function with p = p decreases by at least a fixed quantity
at every step in the subsequence, it must be unbounded below, contradicting (3.19).
It follows that (3.61) must hold. D

Having established the global convergence of the algorithm, the next step is to
show that the multiplier estimate)...k -->)...*. In order to prove this result, we need to
strengthen our conditions on the multiplier estimate f.Lk (if f.Lk do es not converge then
)...k will not converge either). Following is the additional condition.

MC3. IIf.Lk-)...* 11 = O(llxk-X* 11), where)...* denotes any multiplier vector associated
with a KKT point closest to Xk.

This condition requires that (3/1- in condition MC1 be chosen so that

(3.62)

Estimates satisfying MC1, MC2, and MC3 may be obtained by computing a mul
tiplier for the "active" constraints (say, least-squares estimates of least length), and
expanding to the full multiplier space by augmenting this vector with zeros corre
sponding to the inactive constraints. If such an estimate do es not satisfy MC1, then
a suitable estimate may be determined by appropriate scaling. The multipliers at the
stationary point of the QP also satisfy the three conditions. Note that if x* is not
unique then from Lemma 3.6, Ilxk - x* 11 > E for sorne E > O, and MC3 holds for any
vector f.Lk that is bounded.

We first show that under the stronger conditions on f.Lk the steplength Ok is
uniformly bounded away from zero.

LEMMA 3.16. Under MC3 and all earlier assumptions and conditions, Ok ;::: a >
O.

Prooj. We again drop the subscript k. We first tighten the bound on 4>"(B) given
in Lemma 3.13. From (3.53) and (3.54), we have that the first two terms on the
right-hand side of (3.52) are bounded by a multiple of Ilp112. For the remaining terms,
from (3.55) and (2.10) we obtain

T "T - T -
(p(A(B)p-q)-2~) (A(B)p-q) = ~(Bp V'ej(Bj)p-cj+sj-2~j)(Bp V'cj(Bj)p-cj+Sj).

j

Expanding this expression, and using Lemmas 3.11 and 3.12 to bound the terms
p(ej - sj)BpTV'cj(iJj)p and pB2(pTV'Cj(iJj)p)2, we obtain

(3.63) p IIA(B)p - qll2 - 2~T(A(B)p - q) ::; p Ilc - sI12 + 2e(c - s) + Mllpl12,

for sorne constant M.
Observe that from (3.3) and MC2,

p (e - sf(c - s) + 2e(e - s) = -4>'(0) + pTg + f.LT(c - s)

(3.64) = -4>'(0) + pT(g - ATf.L) - f.LTs.

Using Taylor expansions and Lemma 3.9 it follows that

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 621

From this result and MC3 there exists a constant such that

(3.65) pT(g_ AT#)<_

From #k --* A*, strict complementarity at a KKT point (Assumption A6), and
the fact that the correct active set is identified for]JpJJ small enough (Lemma 3.8),
we eventually have # >_ 0 and #Ts >_ 0. Consequently, it follows from (3.52), (3.53),
(3.54), (3.63), (3.64), and (3.65)that

(9)

_
-k (0) + Yllpk 2

for some constant N > 0. This result and (3.4) can be used with (3.58) to imply that
there exists a value & satisfying (2.15) such that

>_ (1 + i)ll .ll + > 0.

The desired result then follows from an argument identical to that given in the final
part of Lemma 3.14.

This lemma also implies that the effort needed to compute the value for the
steplength is uniformly bounded in the algorithm. We now establish the convergence
of the multiplier estimate.

THEOREM 3.17. Under MC3 and all other assumptions and conditions,

lim Ak A*.

(3.66)

where

Proof. From (2.29),
k

j=O

k

(3.67) /kk a, ’tk a H (1 a), < k,
r--l+l

with a 1 and a at, 1. (This convention is used because of the speciM initial
condition that A0 0.) From Lemma 3.16 and (3.67), we observe that

(3.68a) 0 < a 1 for all l,
k

(3.68b) , tk 1,
/=0

(3.68c) tk (1-)k-t, < k.

From condition MC3 we have

(3.69) k * + Mkhtk,

with]Mk M, 5k]]Xk X*] and]]tk]] 1. om Theorem 3.15, for any e > 0 we
can choose a value K1 so that, for k K,

(3.70) M5k] .

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 621

From this result and MC3 there exists a constant M such that

(3.65)

From f.1k -+ A*, strict complementarity at a KKT point (Assumption A6), and
the fact that the correct active set is identified for IIplI small enough (Lemma 3.8),
we eventually have f.1 ~ O and f.1TS ~ O. Consequently, it follows from (3.52), (3.53),
(3.54), (3.63), (3.64), and (3.65) that

4JZ((}) :::; -4J~(0) + Nllpkll 2

for some constant N > o. This result and (3.4) can be used with (3.58) to imply that
there exists a value a satisfying (2.15) such that

A (1) f3svH IIp2 11 () f3svH
a ~ - TI (f3svH + 2N) IIp211 = 1 - TI (f3svH + 2N) > O.

The desired result then follows from an argument identical to that given in the final
part of Lemma 3.14. O

This lemma also implies that the effort needed to compute the value for the
steplength is uniformly bounded in the algorithm. We now establish the convergence
of the multiplier estimate.

THEOREM 3.17. Under MC3 and all other assumptions and conditions,

Proo! From (2.29),

(3.66)

where

lim Ak = A*.
k-+oo

k

Ak+1 = L 'Yj k f.1j ,
j=O

k

(3.67) 'Ykk = a~, 'Ylk = a¡ II (1 - a~), l < k,
r=I+1

with a~ = 1 and a¡ = al' l ~ 1. (This convention is used because of the special initial
condition that AO = f.10.) From Lemma 3.16 and (3.67), we observe that

(3.68a) O < a:::; a¡ :::; 1 for alll,
k

(3.68b) L'Ylk = 1,
1=0

(3.68c) 'Ylk :::; (1 - a)k-l, l < k.

From condition MC3 we have

(3.69)

with IMk I :::; M, 6k = Ilxk - x* 11 and Iltk 11 = 1. From Theorem 3.15, for any € > O we
can choose a value K 1 so that, for k ~ K¡,

(3.70)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 621

From this result and MC3 there exists a constant M such that

(3.65)

From ¡.Lk --->)..*, strict complementarity at a KKT point (Assumption A6), and
the fact that the correct active set is identified for Ilpll small enough (Lemma 3.8),
we eventually have ¡.L ~ O and ¡.LTS ~ O. Consequently, it follows from (3.52), (3.53),
(3.54), (3.63), (3.64), and (3.65) that

4>%(()) :::; -4>~(0) + Nllpkl12

for sorne constant N > O. This result and (3.4) can be used with (3.58) to imply that
there exists a value a satisfying (2.15) such that

, > (1) ,6svHllp
2

11 () ,6svH
o: - - r¡ (,6svH + 2N) IIp211 = 1 - r¡ (,6svH + 2N) > O.

The desired result then follows from an argument identical to that given in the final
part of Lemma 3.14. O

This lemma also implies that the effort needed to compute the value for the
steplength is uniformly bounded in the algorithm. We now establish the convergence
of the multiplier estimate.

THEOREM 3.17. Under MC3 and all other assumptions and conditions,

Proof. From (2.29),

(3.66)

where

lim)..k =)..*.
k->oo

k

)..k+l = ¿ Ijk¡.Lj,

j=O

k

(3.67) Ikk = o:~, Ilk = 0:; rr (1 - o:~), l < k,
r=l+l

with o:~ = 1 and 0:; = 0:1, l ~ 1. (This convention is used beca use of the special initial
condition that)..0 = ¡.Lo.) From Lemma 3.16 and (3.67), we observe that

(3.68a)

(3.68b)

(3.68c)

O < a :::; 0:; :::; 1 for all l,
k

¿Ilk = 1,
1=0

Ilk :::; (1 - a)k-l, l < k.

From condition MC3 we have

(3.69)

with IMkl :::; M, 8k = Ilxk - x*11 and Iltkll = 1. From Theorem 3.15, for any E > O we
can choose a value K 1 so that, for k ~ K 1 ,

(3.70)

622 WALTER MURRAY AND FRANCISCO J. PRIETO

Given any e > 0, we can also define an iteration index K2 with the following
property:

(3.71) (i- ()k _<
2(k + i)(i + 2)

for k _> K2 + I. Let K max(Kt,K2). Then, from (3.66) and (3.69), we have for
k_> 2K,

K k

/=0 l=K+l

Hence it follows from (3.68b) that

K k

/=0 l=K+l

From the bounds on IIll (condition MC1), IIll, and (3.62), we obtain

K k

l=O l=K+l

Since we assume k _> 2K, it follows from (3o68a) and (3.68c) that

K K K

0’k _< (1-)k- _< -(1-)2K-I <_ (K + 1)(1-)g.
/=o /=o

Using (3.71), we thus obtain the following bound for the first term on the right-hand
side of (3.72)"

K

(3.73) 2/g
/=o

To bound the second term in (3.72), we use (3.6Sb) and (3.70)"
k k

(3.74) klM 61 <_ <_
/=K+I /=K+I

Combining (3.72)-(3.74), we obtain the following result: given any e > 0, we can find
K such that

<_ for k _> 2K + 1,

which implies the desired result. [:3

4. Rate of convergence. In this section we shall show under additional as-
sumptions on the multiplier estimate that the algorithm converges at a superlinear
rate, independently of the asymptotic behavior of the penalty parameter.

Since Pk -+ 0, we may assume without loss of generality that Pk has been obtained
as the minimizer for the QP subproblem, and that the correct active set has been
identified.

We again start by presenting an outline of the steps taken.
(i) Bounds on the rate of growth of the penalty parameter introduced in
Lemmas 3.10, 3.11, and 3.12 are tightened.

622 WALTER MURRAY AND FRANCISCO J. PRIETO

Given any € > 0, we can also define an iteration index K 2 with the following
property:

(3.71) (1 -)k < €
- a - 2(k + 1)(1 + 2{3,.)

for k 2: K 2 + 1. Let K = max(K¡, K 2). Then, from (3.66) and (3.69), we have for
k 2: 2K,

K k

>'k+1 = L 'YlkJ.L1 + L 'Ylk(>'* + MI8ztI)'
1=0 I=K+l

Hence it follows from (3.68b) that

K k

>'k+1 - >.* = L 'Ylk(J.L1 - >.*) + L 'YlkM I8ztI.

1=0 I=K+l

From the bounds on IIJ.Lzll (condition MC1), IItzll, and (3.62), we obtain

K k

(3.72) lI>'k+1 - >'*11 ~ 2{3,. L 'Ylk + L 'YlkIMI0zl·
1=0 I=K+l

Since we assume k 2: 2K, it follows from (3.68a) and (3.68c) that

K K K

L 'Ylk ~ L(1- a)k-I ~ L(1- a)2K-I ~ (K + 1)(1- a)K.

1=0 1=0 1=0

Using (3.71), we thus obtain the following bound for the first term on the right-hand
side of (3.72):

K

(3.73) 2{3,. L 'Ylk ~ !€.
1=0

To bound the second term in (3.72), we use (3.68b) and (3.70):

k k

(3.74) L 'YlklMIOII ~ !€ L 'Ylk ~ !€.
I=K+l I=K+l

Combining (3.72)-(3.74), we obtain the following result: given any € > 0, we can find
K such that

lI>'k - >.* 11 ~ € for k 2: 2K + 1,

which implies the desired resulto O

4. Rate of convergence. In this section we shall show under additional as
sumptions on the multiplier estimate that the algorithm converges at a superlinear
rate, independently of the asymptotic behavior of the penalty parameter.

Since Pk - 0, we may assume without loss of generality that Pk has been obtained
as the minimizer for the QP subproblem, and that the correct active set has been
identified.

We again start by presenting an outline of the steps taken.
(i) Bounds on the rate of growth of the penalty parameter introduced in
Lemmas 3.10, 3.11, and 3.12 are tightened.

622 WALTER MURRAY AND FRANCISCO J. PRIETO

Given any f > 0, we can also define an iteration index K 2 with the following
property:

(3.71) (1 -)k < f

- a - 2(k + 1)(1 + 2,81-')

for k ~ K 2 + 1. Let K = max(Kl, K 2). Then, from (3.66) and (3.69), we have for
k ~ 2K,

K k

Ak+l = L 'Ylk/Ll + L 'Ylk(A* + M1Ó¡tl).

1=0 I=K+l

Hence it follows from (3.68b) that

K k

Ak+l - A* = L 'Ylk(/Ll - A*) + L 'Ylk M I81t l.

1=0 I=K+l

From the bounds on 11/L111 (condition MC1), Iltzll, and (3.62), we obtain

K k

(3.72) IIAk+l - A*II S; 2,81-' L 'Ylk + L 'YlkI M I8z1.
1=0 I=K+l

Since we assume k ~ 2K, it follows from (3.68a) and (3.68c) that

K K K

L 'Ylk S; L(1- a)k-l S; L(1- a)2K-l S; (K + 1)(1 - a)K.

1=0 1=0 1=0

Using (3.71), we thus obtain the following bound for the first term on the right-hand
side of (3.72):

K

(3.73) 2,81-' L 'Ylk S; ~f.
1=0

To bound the second term in (3.72), we use (3.68b) and (3.70):

k k

(3.74) L 'YlkI M I8z1 S; ~f L 'Ylk S; ~f.
I=K+l I=K+l

Combining (3.72)-(3.74), we obtain the following result: given any f > 0, we can find
K such that

IIAk - A*II S; f for k ~ 2K + 1,

which implies the desired resulto O

4. Rate of convergence. In this section we shall show under additional as
sumptions on the multiplier estimate that the algorithm converges at a super linear
rate, independently of the asymptotic behavior of the penalty parameter.

Since Pk --'> 0, we may assume without los s of generality that Pk has been obtained
as the minimizer for the QP subproblem, and that the correct active set has been
identified.

We again start by presenting an outline of the steps taken.
(i) Bounds on the rate of growth of the penalty parameter introduced in
Lemmas 3.10, 3.11, and 3.12 are tightened.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 623

In Lemma 4.1 we prove that at all iterations at which Pk is increased (if we
have an infinite sequence of such iterations)

Pllck skll 0 and pkllPkll 2 --, O.

In Lemmas 4.2 and 4.3 these results are extended to all iterations.

(ii) In Lemma 4.4 it is shown that #Tsk 0 for sufficiently large k.
(iii) Lemma 4.5 proves the superlinear convergence of the sequence {xk +Pk-x*},

under certain assumptions on Hk.
(iv) For k sufficiently large, ak 1.

Lemma 4.6 gives the relationship between the descent in one iteration Ck(1)-
Ck(0) and the initial derivative in the linesearch (0).
Theorem 4.7 shows that ak 1 for all sufficiently large k, implying superlin-
ear convergence.

(v) Finally, Theorem 4.8 shows that under an additional condition on the multi-
pliers, the penalty parameter remains bounded.

The first two lemmas introduce refinements on the results presented in Lem-
mas 3.10, 3.11, and 3.12, and their proofs are based on the corresponding proofs for
these lemmas.

LEMMA 4.1. If kl --* x3, where kl denotes an iteration at which the penalty
parameter is increased, then

lim p Ilck Sk 0 and lim p IIP 2 0.

Proof. We drop the subscript kt in what follows.
Since p is the minimizer of QP, condition (2.5a) holds for a nonnegative vector

From (2.4b) and (2.5a) we have gTp / 1/2pTHp _rTc and using this result in the
definition of 5, (2.13),

From (2.12) we have p _< 2, and using Theorem 3.17, MC3, and Lemma 3.7 we obtain

From (3.36) and (4.1) we have lim__, Pk IIPk 2-. O, completing the proof. l

LEMMA 4.2. For general iterations k, limk-.o pkllPkll 2 -O.
Proof. Define I _-- kt and K kg+l.
If p is bounded, the result follows from Theorem 3.15. If p is increased in an

infinite number of iterations, from (3.38) and Lemma 3.14 we only need to show that, --+ O.
From the boundedness of]lAkll (Lemma 2.2), Lemma 4.1 and the fact that p1 <

PK we have

We also have from Lemma 4.1,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 623

- In Lemma 4.1 we prove that at all iterations at which Pk is increased (if we
have an infinite sequence of such iterations)

- In Lemmas 4.2 and 4.3 these results are extended to all iterations.
(ii) In Lemma 4.4 it is shown that J.Lf Sk = O for sufficiently large k.
(iii) Lemma 4.5 proves the superlinear convergence ofthe sequence {Xk+Pk -x*},

under certain assumptions on Hk.
(iv) For k sufficiently large, ak = 1.

- Lemma 4.6 gives the relationship between the descent in one iteration 4>k(l)-
4>k(O) and the initial derivative in the linesearch 4>k(O).

- Theorem 4.7 shows that ak = 1 for aH sufficiently large k, implying superlin
ear convergence.

(v) FinaHy, Theorem 4.8 shows that under an additional condition on the multi
pliers, the penalty parameter remains bounded.

The first two lemmas introduce refinements on the results presented in Lem
mas 3.10, 3.11, and 3.12, and their proofs are based on the corresponding proofs for
these lemmas.

LEMMA 4.1. JI k¡ -+ 00, where k¡ denotes an itemtion at which the penalty
pammeter is increased, then

lim pk,lIck, - sk,1I = O and lim pk,lIpk, 11 2 = O.
1-+00 ¡-+oo

Proo! We drop the subscript k¡ in what follows.
Since pis the minimizer of QP, condition (2.5a) holds for a nonnegative vector 1r.

From (2.4b) and (2.5a) we have gT p + !pT Hp = _1rT C and using this result in the
definition of p, (2.13),

From (2.12) we have P::; 2p, and using Theorem 3.17, MC3, and Lemma 3.7we obtain

(4.1)

From (3.36) and (4.1) we have lim¡-+oo pk,lIpk,1I 2 = O, completing the proof. O

LEMMA 4.2. For geneml itemtions k, limk-+oo Pkllpkl1 2 = O.
Proo! Define J == k¡ and K == k¡+l.
If P is bounded, the result follows from Theorem 3.15. If P is increased in an

infinite number of iterations, from (3.38) and Lemma 3.14 we only need to show that
4>1 - 4>K -+ O.

From the boundedness of IIAkl1 (Lemma 2.2), Lemma 4.1 and the fact that PI <
PK, we have

PIIAIT(CI - sI)1 ::; 2PIIIAIllllcI - sIII-+ O,

PIIAKT(CK - sK)1 ::; 2PKIIAKllllcK - sKII-+ O.

We also have from Lemma 4.1,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 623

- In Lemma 4.1 we prove that at aH iterations at which Pk is increased (if we
have an infinite sequence of such iterations)

- In Lemmas 4.2 and 4.3 these results are extended to aH iterations.
(ii) In Lemma 4.4 it is shown that I-lk Sk = O for sufficiently large k.
(iii) Lemma 4.5 proves the superlinear convergence of the sequence {Xk +Pk - x*},

under certain assumptions on Hk.
(iv) For k sufficiently large, O'.k = 1.

- Lemma 4.6 gives the relationship between the descent in one iteration 4>k(l)-
4>k(O) and the initial derivative in the linesearch 4>UO).

- Theorem 4.7 shows that O'.k = 1 for all sufficiently large k, implying superlin
ear convergence.

(v) Finally, Theorem 4.8 shows that under an additional condition on the multi
pliers, the penalty parameter remains bounded.

The first two lemmas introduce refinements on the results presented in Lem
mas 3.10, 3.11, and 3.12, and their proofs are based on the corresponding proofs for
these lemmas.

LEMMA 4.1. Jf k1 --+ 00, where k1 denotes an iteration at which the penalty
parameter is increased, then

lim Pklllckl - sklll = O and lim Pklllpkll1 2 = O.
1---+00 1---+00

Proo! We drop the subscript k1 in what follows.
Since pis the minimizer of QP, condition (2.5a) holds for a nonnegative vector 7r.

From (2.4b) and (2.5a) we have gT P + ~pT Hp = -7r
T

C and using this result in the
definition of p, (2.13),

From (2.12) we have P:::; 2p, and using Theorem 3.17, MC3, and Lemma 3.7 we obtain

(4.1) lim Pklllckl - sklll :::; 2 lim 112Akl - I-lkl - 7rklll = o.
1---+00 1---+00

From (3.36) and (4.1) we have liml---+oo Pkl Ilpkl 11 2 = O, completing the proof. D

LEMMA 4.2. For general iterations k, limk---+oo Pkllpkl1 2 = o.
Proo! Define J == k1 and K == k1+1'

If P is bounded, the result follows from Theorem 3.15. If P is increased in an
infinite number of iterations, from (3.38) and Lemma 3.14 we only need to show that
4>1 - 4>K --+ O.

From the boundedness of IIAkl1 (Lemma 2.2), Lemma 4.1 and the fact that PI <
PK, we have

PIIAIT(CI - sI)1 :::; 2PIllAIllllcI - sI11 --+ O,

PIIAKT(cK - sK)1 :::; 2PKIIAKllllcK - sK11 --+ o.

We also have from Lemma 4.1,

624 WALTER MURRAY AND FRANCISCO J. PRIETO

These results and the definition of , (2.2), imply

p,(,- CK)- px(Fx--FK) 40.

We now analyze the asymptotic behavior of the term px(Fx F). We have

F F (c, c)T, + O(max([Ip, 2,

Using the same arguments as in the proof of Lemma 3.11, inequality (3.43) also holds
in this case, and from (3.15),

A second bound for this term can be obtained from r, >_ 0 and s, >_ 0, implying

Since I1,11 is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that

(4.5) pTrTcx ----+ O.

From (2.9), the boundedness of I111 and Lemma 4.1,

(4.6)

We can again use Lemma 4.1 to obtain

(4.7) p,O(m x(llp, IIp, ll)) 0.

From (3.42), (4.5), (4.6), and (4.7) we have that the sequence {p,(F F)} is
bounded above by a sequence that converges to zero. It then follows from
0 and (4.2) that p(x-) --+ 0 and the desired result follows from (3.38) and
Lemma 3.16.

LEMMA 4.3. For general iterations k, limk_. Pk lick Sk O.

Proof. If p is bounded the result follows from c* >_ 0, A* _> 0, A’Tc* 0, Theo-
rems 3.15 and 3.17 and (2.8).

We assume therefore that p is increased an infinite number of times. Consider
two cases.

Case 1. If constraint j is such that c. > 0, then j 0 and from (2.8),

but from Theorem 3.17 and Assumptions A3 and A6, eventually ,j < pcj, implying

Case 2. For those j such that c. -0, implying)j > 0, consider iteration indices
large enough that the correct active set is identified (Lemma 3.8), implying ap+ cj
0. From the Taylor series expansion for cj and the boundedness of the steplengh,

C:i(Xk + okPk) Cj(Xk) + ak(ak)pk + o(ll p, ll (1 Ok)Cj(Xk) + O(llp ll).

624 WALTER MURRAY AND FRANCISCO J. PRIETO

These results and the definition of <P, (2.2), imply

(4.2)

We now analyze the asymptotic behavior of the term PI(FI - F K)' We have

Using the same arguments as in the proof of Lemma 3.11, inequality (3.43) also holds
in this case, and from (3.15),

(4.3)

A second bound for this term can be obtained from 'Ir 1 ~ ° and s I ~ 0, implying

(4.4)

Since 11 'Ir I 11 is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that

(4.5)

From (2.9), the boundedness of 11 'Ir 1 11 and Lemma 4.1,

(4.6)

We can again use Lemma 4.1 to obtain

(4.7)

From (3.42), (4.5), (4.6), and (4.7) we have that the sequence {PI(F1 - F K)} is
bounded aboye by a sequence that converges to zero. It then follows from <PI - <PK ~
° and (4.2) that PI(<PI - <PK) -+ ° and the desired result follows from (3.38) and
Lemma 3.16. O

LEMMA 4.3. For general iterations k, limk-+oo Pkllck - skll = O.
Proof. If pis bounded the result follows from c* ~ 0, >..* ~ 0, >..*Tc* = 0, Theo

rems 3.15 and 3.17 and (2.8).
We assume therefore that P is increased an infinite number of times. Consider

two cases.
Case 1. If constraint j is such that c; > 0, then >..; = ° and from (2.8),

but from Theorem 3.17 and Assumptions A3 and A6, eventually >"j < pCj, implying

Case 2. For those j such that c; = 0, implying >..; > 0, consider iteration indices
large enough that the correct active set is identified (Lemma 3.8), implying aJp+cj =
O. From the Taylor series expansion for Cj and the boundedness of the steplength,

624 WALTER MURRAY AND FRANCISCO J. PRIETO

These results and the definition of C!>, (2.2), imply

(4.2)

We now analyze the asymptotic behavior of the term PI(FI - F K). We have

Using the same arguments as in the proof of Lemma 3.11, inequality (3.43) also holds
in this case, and from (3.15),

(4.3)

A second bound for this term can be obtained from TrI :2: ° and SI :2: 0, implying

(4.4)

Since IITrIII is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that

(4.5)

From (2.9), the boundedness of IITrIII and Lemma 4.1,

(4.6)

We can again use Lemma 4.1 to obtain

(4.7)

From (3.42), (4.5), (4.6), and (4.7) we have that the sequence {PI(FI - F K)} is
bounded aboye by a sequence that converges to zero. It then follows from c!>I - c!>K :2: ° and (4.2) that PI(c!>I - c!>K) -> ° and the desired result follows from (3.38) and
Lemma 3.16. D

LEMMA 4.3. For general iterations k, 1imk->oo Pkllck - skll = O.

Proo! If pis bounded the result follows from c* :2: 0, A* :2: 0, A*Tc* = 0, Theo
rems 3.15 and 3.17 and (2.8).

We assume therefore that P is increased an infinite number of times. Consider
two cases.

Case 1. If constraint j is such that c; > 0, then A; = ° and from (2.8),

but from Theorem 3.17 and Assumptions A3 and A6, eventually Aj < pCj, implying

Case 2. For those j such that c; = 0, implying A; > 0, consider iteration indices
large enough that the correct active set is identified (Lemma 3.8), implying aJp+cj =
O. From the Taylor series expansion for Cj and the boundedness of the steplength,

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 625

Recurring this relationship for k, I < k < K, we get

but as 0 < at _< 1 we must have

(4.8) P I(c) I <- p’I(a’) I / P’ IIp II)
From c. 0, Assumptions A3 and A6, and (2.8), eventually it must hold that

pl(cx)j -(s)j pxlc()jl, and using Lemma 4.1, (4.8), and Lemma 4.2,

From this result, definition (2.8), Assumptions A3 and A6, and Theorem 3.17, for k
large enough

pal(oa)]min(pk(ck), (Ak))l Ip (oa) l 0.

This completes the proof.

LEMMA 4.4. For k large enough #Sk O.
Proof. If constraint j is such that c. > 0, then for k large enough (ck)j _> e > 0,

and (ak)Pk + (Ck) >_ 1/2e > 0. It therefore follows from MC2 that (#k) 0.
If j is such that c. 0, then from Assumption A6, . > 0. Also, from Lemma 4.3,

pk((Ck)j --(Sk)j) min(pa(ck)j, (Ak)j) -- O, and for large enough k Theorem 3.17
will imply pk(Ck)d <_ (Ak)j; these two results and definition (2.7) imply

(sk)d max(0, (ck)j

completing the result.

To prove that the algorithm converges superlinearly it is necessary to assume
that Hk converges to an approximation of V2xL(x*, *) in some sense, where L(x,
denotes the Lagrangian function for problem NP.

Define Wk as

(4.9) 2Wk =-- V2=L(xk, Ak) V2xF(xk)- y(Ak)VC(Xk).
J

We impose the following additional condition on Hk.
HC3. Following Boggs, Tolle, and Wang [3], we assume

Z[(H o(IIp II),

where Zk is a basis for the null space of k, the Jacobian of xk of those constraints
active at x*, that is bounded in norm and has its smallest singular value bounded
away from 0.

The proof proceeds by first showing that the sequence (xk + Pk x* } converges
superlinearly, and then proving that a steplength of one is eventually attained.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 625

Recurring this relationship for k, 1 < k < K, we get

but as O < al ~ 1 we must have

(4.8)

From c; = O, Assumptions A3 and A6, and (2.8), eventually it must hold that
Prl(cr)j - (sr)jl = Prlc(r)jl, and using Lemma 4.1, (4.8), and Lemma 4.2,

From this result, definition (2.8), Assumptions A3 and A6, and Theorem 3.17, for k
large enough

This completes the proof. O

LEMMA 4.4. For k large enough I-L[Sk = O.
Proof. If constraint j is such that c; > O, then for k large enough (Ck)j ~ f > O,

and (ak)Jpk + (Ck)j ~ ~f > O. It therefore follows from MC2 that (I-Lk)j = o.
If j is such that c; = O, then from Assumption A6, A; > O. AIso, from Lemma 4.3,

Pk((Ck)j - (Sk)j) = min(Pk(ck)j, (Ak)j) O, and for large enough k Theorem 3.17
will imply Pk(Ck)j ~ (Ak)j; these two results and definition (2.7) imply

() (Ak)j) (Sk)j = max O, (Ck j - ---¡;;;- = O,

completing the resulto O

To prove that the algorithm converges superlinearly it is necessary to assume
that Hk converges to an approximation of V';xL(x*, A*) in sorne sense, where L(x, A)
denotes the Lagrangian function for problem NP.

Define Wk as

(4.9) Wk == V';xL(Xk, Ak) = V';xF(Xk) - L(Ak)jV';xCj(Xk).
j

We impose the following additional condition on Hk.
HC3. Following Boggs, Tolle, and Wang [3], we assume

where Zk is a basis for the null space of ih, the Jacobian of Xk of those constraints
active at x*, that is bounded in norm and has its smallest singular value bounded
away from O.

The proof proceeds by first showing that the sequence {Xk + Pk - x*} converges
superlinearly, and then proving that a steplength of one is eventually attained.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 625

Recurring this relationship for k, 1 < k < K, we get

but as ° < al ~ 1 we must have

(4.8)

From c; = 0, Assumptions A3 and A6, and (2.8), eventually it must hold that
PII(c1)j - (sI)jl = Pllc(I)jl, and using Lemma 4.1, (4.8), and Lemma 4.2,

From this result, definition (2.8), Assumptions A3 and A6, and Theorem 3.17, for k
large enough

This completes the proof. O

LEMMA 4.4. For k large enough I-LkSk = O.
Proof. If constraint j is such that c; > 0, then for k large enough (Ck)j ~ f > 0,

and (ak)Jpk + (Ck)j ~ ~f > O. It therefore follows from MC2 that (I-Lk)j = O.
If j is such that c; = 0, then from Assumption A6, A; > O. AIso, from Lemma 4.3,

Pk((Ck)j - (Sk)j) = min(pk(ck)j, (Ak)j) 0, and for large enough k Theorem 3.17
will imply Pk(Ck)j ~ (Ak)j; these two results and definition (2.7) imply

() (Ak)j) (Sk)j = max 0, (Ck j - ---¡;;;- = 0,

completing the resulto O

To prove that the algorithm converges superlinearly it is necessary to assume
that Hk converges to an approximation of V';xL(x*, A*) in sorne sense, where L(x, A)
denotes the Lagrangian function for problem NP.

Define Wk as

(4.9) Wk == V';xL(Xk, Ak) = V';xF(Xk) - ~)Ak)jV';xCj(Xk).
j

We impose the following additional condition on Hk.
HC3. Following Boggs, Tolle, and Wang [3], we assume

where Zk is a basis for the null space of ih, the Jacobian of Xk of those constraints
active at x*, that is bounded in norm and has its smallest singular value bounded
away from O.

The proof proceeds by first showing that the sequence {Xk + Pk - x*} converges
superlinearly, and then proving that a steplength of one is eventually attained.

626 WALTER MURRAY AND FRANCISCO J. PRIETO

The following lemma corresponds to Theorem 3.1 in [3].
LEMMA 4.5. Under Assumptions A1-A7, and conditions MC1-MC3, HC1-HC3,

(4.10)

The results presented on bounds for the growth rate of the penalty parameter
allow us to obtain an asymptotic expansion for the quantities involved in the line-
search termination criterion. We want to prove that condition (2.14) is satisfied for k
sufficiently large. It is shown in the following lemma that the satisfaction of (2.14) is
directly related to the asymptotic properties ofT =_ P(gk ATk#k) + pkTwkp.

LEMMA 4.6. The following relationship holds:

Ck(1) Ck(0) 1/2(0) + 1/2Tk / o(llPkll2).

Proof. In the proof we drop the subscript k, and we denote quantities associated
with Xk + Pk by a tilde, that is,/ F(xk + pk) while F =_ F(xk).

From the definition of the merit function (2.2) and (2.1) we have

(1) (0) f #T(5- s q) + AT(c- s)
p
(,_

,o(4.11) +
From the Taylor series expansion of c around x and (2.10) we have

5j sj qj j cj ayp pT,-,2

and using this result with the Taylor expansions for c and F in (4.11) we obtain

T 2 ,T(c 8)(1) (0) gTp + p V Fp -j#j pTV2cjp +
-(P P (c- s)r(c- s)+ o(llpll =)(4.12) + 8,...,j ,pTV2cjp,2- -From (2.6), condition MC3 and Theorem 3.17 we have

(4.13) # , + , + o(1).

Also, from Lemma 4.2 and Assumption A3 we have

ppTV2cjp 0(1) and p(pTV2cjp)2 o(llpl12).

Replacing these results in (4.12) and reordering the terms we obtain

(i) (o) 9 + v e- rV +
P(,)T(,) / o(llPll)+ 1/2,(- ,)-

Using (4.9) and (3.3) to simplify this expression,

(4.14) (1) (0) 1/2’(0) + 1/2 (gTp + pTWp + #T(c s)) +
Finally, from condition MC2 we have #Tc --#TAp, and from Lemma 4.4 we know
that eventually #Ts 0, implying in particular that #Ts o(llpl12), and replacing
these bounds in (4.14) we have

(1) 0(0) 1/2’(0) + 1/2 (pTWp + pT(g AT,)) + o(llPl12),

626 WALTER MURRAY AND FRANCISCO J. PRIETO

The following lemma corresponds to Theorem 3.1 in [3].
LEMMA 4.5. Under Assumptions A1-A7, and conditions MC1-MC3, HC1-HC3,

(4.10) Ilxk + Pk - x*11 = o(llxk - x*ll)·

The results presented on bounds for the growth rate of the penalty parameter
allow us to obtain an asymptotic expansion for the quantities involved in the Hne
search termination criterion. We want to prove that condition (2.14) is satisfied for k
sufficiently large. It is shown in the following lemma that the satisfaction of (2.14) is
directly related to the asymptotic properties of Tk == pr(9k - Arf..lk) + p'fWkPk.

LEMMA 4.6. The following relationship holds:

1>k(l) -1>k(O) = ~1>~(0) + ~Tk + o(llpkI1 2).

Proo! In the proof we drop the subscript k, and we denote quantities associated
with Xk + Pk by a tilde, that is, P == F(Xk + Pk) while F == F(Xk)'

From the definition of the merit function (2.2) and (2.1) we have

(4.11)

1>(1) -1>(0) = P - F - f..lT(c - S - q) + >.T(c - s)

+~(c - s - qf(c - s - q) - ~(c - sf(c - s)
22'

From the Taylor series expansion of c around x and (2.10) we have

Cj - Sj - qj = Cj - Cj - af P = ~pTV'2Cjp + o(lIpII2),

and using this result with the Taylor expansions for C and F in (4.11) we obtain

1>(1) -1>(0) = gTp + ~pTV'2Fp - n::jf..lj pT,¡2CjP + ,\T(C - s)

(4.12) +~¿j(pTV'2Cjp)2 - ~(c - sf(c - s) + o(lIpII2).

From (2.6), condition MC3 and Theorem 3.17 we have

(4.13)

AIso, from Lemma 4.2 and Assumption A3 we have

Replacing these results in (4.12) and reordering the terms we obtain

1>(1) -1>(0) = gTp + ~pTV'2 Fp - ~¿j'\j pTV'2 Cjp + ~(2'\ - f..lf(c - s)

+ ~f..lT(C - s) - ~(c - s)T(c - s) + o(llpI12).

Using (4.9) and (3.3) to simplify this expression,

(4.14) 1>(1) -1>(0) = ~1>' (O) + ~ (gTp + pTWp + f..lT(c - s)) + o(lIpIl2).

Finally, from condition MC2 we have f..lTC = -f..lTAp, and from Lemma 4.4 we know
that eventually f..lTS = O, implying in particular that f..lTS = o(llpIl2), and replacing
these bounds in (4.14) we have

1>(1) -1>(0) = !1>'(0) + ! (pTWp + pT(g - ATf..l)) + o(lIpIl2),

626 WALTER MURRAY AND FRANCISCO J. PRIETO

The following lemma corresponds to Theorem 3.1 in [3].
LEMMA 4.5. Under Assumptions A1-A7, and conditions MC1-MC3, HC1-HC3,

(4.10)

The results presented on bounds for the growth rate of the penalty parameter
allow us to obtain an asymptotic expansion for the quantities involved in the line
search termination criterion. We want to prove that condition (2.14) is satisfied for k
sufficiently large. It is shown in the following lemma that the satisfaction of (2.14) is
directly related to the asymptotic properties of Tk == pn9k - Aff..lk) + pfWkPk.

LEMMA 4.6. The following relationship holds:

Proo! In the proof we drop the subscript k, and we denote quantities associated
with Xk + Pk by a tilde, that is, P == F(Xk + Pk) while F == F(Xk)'

From the definition of the merit function (2.2) and (2.1) we have

(4.11)

4>(1) - 4>(0) = P - F - f..lT(c - S - q) + >.T(c - s)

+~(c - s - qf(c - s - q) - ~(c - sf(c - s)
22'

From the Taylor series expansion of c around x and (2.10) we have

Cj - Sj - Qj = Cj - Cj - af P = ~pTV'2Cjp + o(IIpII 2),

and using this result with the Taylor expansions for C and F in (4.11) we obtain

4>(1) - 4>(0) = gTp + ~pTV'2Fp - n::jf..lj pTV'2 Cjp + ,\T(C - s)

(4.12) +~¿j(pTV'2Cjp)2 - ~(c - sf(c - s) + o(IIpI12).

From (2.6), condition MC3 and Theorem 3.17 we have

(4.13)

AIso, from Lemma 4.2 and Assumption A3 we have

Replacing these results in (4.12) and reordering the terms we obtain

4>(1) - 4>(0) = gTp + ~pTV'2 Fp - ~¿j'\j pTV'2 Cjp + ~(2'\ - f..lf(c - s)

+ ~f..lT(C - s) - ~(c - s)T(c - s) + o(llpI12).

Using (4.9) and (3.3) to simplify this expression,

(4.14) 4>(1) - 4>(0) = ~4>' (O) + ~ (gTp + pTWp + f..lT(c - s)) + o(IIpI12).

Finally, from condition MC2 we have f..lTC = -f..lTAp, and from Lemma 4.4 we know
that eventually f..lTS = O, implying in particular that f..lTS = o(llpll2), and replacing
these bounds in (4.14) we have

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 627

completing the result.

The main result of this section is given in the next theorem. It is shown that,
if condition MC3 is replaced by a stronger condition, then after a finite number of
iterations a steplength of one is taken for all iterations thereafter, implying that the
algorithm achieves superlinear convergence. The new condition is

MC3’. I1 *11 o(11 *11).
It is possible to prove superlinear convergence without the need to strengthen the

conditions on the multipliers. It is shown in [29] that there exists a constant M such
that if Pk > M, condition MC3 is sufficient.

THEOREM 4.7. If MC3’ and all other assumptions and conditions hold then
eventually a unit step is always taken and the algorithm converges superlinearly.

Proof. As in Powell and Yuan [28], observe that the continuity of second deriva-
tives gives the following relationships:

(4.15) 1(F(xk + Pk) F(xk) + - g(xk) + g(xk + Pk) Pk + o(llPkll2),

C(Xk + Pk) C(Xk) + 1/2 (Z(xk) + Z(xk + Pk))Pk + o(llPkll2).

From the Taylor series expansions we have

ITV2FxF(z + p) F(x) + (x)rp + -,,)p + o(llr,ll),
lpTV2(x +) (x) +(x)r + () + o(1111),

and since (4.10) and Lemma 3.9 imply g(xk + Pk) g* + o(llPkll), ay(xk + Pk)
a.i + o(llPkll), we get from (4.15) and (4.16) that (we drop the subscript k)

(4.17a)
(4.17b)

pTV2Fp (g* g)Tp + o(llPl12),
pTV2cjp (a aj)Tp -t- O(llPl12),

Condition MC3, Theorem 3.17, and (4.13) give -:j Aj pTW2cjp - # pTW2cjp +
o(llpl12), and ifwe apply this bound to the result of adding (4.17a) to (4.17b) multiplied
by ,j, we have

(4.18) pTWp pT(g* A,T#) pT(g AT#) + o(llplle).

Condition MC3’, (1.1), and Lemma 3.9 imply

pT(g* A,T#) pTA*T (A* #) o(llplle),

and from (4.18),

(4.19) T pTWp + pT(g AT#) pT(g* A,T#) + o(llpil 2) o(llpl12).

From Lemma 4.6 and (4.19) we get

(1) (0) 1/2’(0) + o(llpll).

Since ’(0) < 0, the above relationship and Theorem 3.15 imply that condition (2.14)
is eventually satisfied for k sufficiently large.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 627

completing the resulto O

The main result of this section is given in the next theorem. It is shown that,
if condition MC3 is replaced by a stronger condition, then after a finite number of
iterations a steplength of one is taken for all iterations thereafter, implying that the
algorithm achieves superlinear convergence. The new condition is

MC3'. IIJLk - A*II = o(llxk - x*II)·
It is possible to prove superlinear convergence without the need to strengthen the

conditions on the multipliers. It is shown in [29] that there exists a constant M such
that if Pk > M, condition MC3 is sufficient.

THEOREM 4.7. Jf MC3' and all other assumptions and conditions hold then
eventually a unit step is always taken and the algorithm converges superlinearly.

Proof. As in Powell and Yuan [28], observe that the continuity of second deriva
tives gives the following relationships:

(4.15) F(Xk + Pk) = F(Xk) + ~ (9(Xk) + g(Xk + Pk)) Tpk + o(llpkI12),

C(Xk + Pk) = C(Xk) + ~ (A(Xk) + A(Xk + Pk))Pk + o(llpkI12).

From the Taylor series expansions we have

(4.16) F(Xk + Pk) = F(Xk) + g(Xk)Tpk + ~prV2 F(Xk)Pk + o(llpkI12),
Cj(Xk + Pk) = Cj(Xk) + aj(xk)Tpk + ~prV2Cj(Xk)Pk + o(llpkI12),

and since (4.10) and Lemma 3.9 imply g(Xk + Pk) = g* + o(llpkID, aj(xk + Pk) = a; + O(IIPkID, we get from (4.15) and (4.16) that (we drop the subscript k)

(4.17a)

(4.17b)

pTV 2 Fp = (g* _ g)Tp + o(lIpII2),
pTV 2Cjp = (a; - aj)Tp + o(llpI12).

Condition MC3, Theorem 3.17, and (4.13) give Lj Aj pT<¡¡2CjP = Lj JLj pT<¡¡2CjP +
o(llpI12), and ifwe apply this bound to the result of adding (4.17a) to (4.17b) multiplied
by Aj, we have

(4.18)

Condition MC3', (1.1), and Lemma 3.9 imply

T * *T T *T * 2 P (g - A JL) = P A (A - JL) = o(llpll),

and from (4.18),

(4.19) T = pTWp + pT(g - ATJL) = pT(g* - A*T JL) + o(lIpII2) = o(lIpII2).

From Lemma 4.6 and (4.19) we get

Since cjJ'(O) < O, the aboye relationship and Theorem 3.15 imply that condition (2.14)
is eventually satisfied for k sufficiently large.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 627

completing the resulto O

The main result of this section is given in the next theorem. It is shown that,
if condition MC3 is replaced by a stronger condition, then after a finite number of
iterations a steplength of one is taken for aH iterations thereafter, implying that the
algorithm achieves super linear convergence. The new condition is

MC3'. lI¡tk - A*II = o(llxk - x*II)·
It is possible to prove superlinear convergence without the need to strengthen the

conditions on the multipliers. It is shown in [29] that there exists a constant M such
that if Pk > M, condition MC3 is sufficient.

THEOREM 4.7. Jf MC3' and all other assumptions and conditions hold then
eventually a unit step is always taken and the algorithm converges superlinearly.

Proof. As in PoweH and Yuan [28], observe that the continuity of second deriva
tives gives the foHowing relationships:

(4.15) F(Xk + Pk) = F(Xk) + ~ (9(Xk) + g(Xk + Pk)) Tpk + o(llpkI12),

C(Xk + Pk) = C(Xk) + ~ (A(Xk) + A(Xk + Pk))Pk + o(llpkI12).

From the Taylor series expansions we have

(4.16) F(Xk + Pk) = F(Xk) + g(Xk)Tpk + ~prV'2 F(Xk)Pk + o(llpkI12),

Cj(Xk + Pk) = Cj(Xk) + aj(xkfpk + ~prV'2Cj(Xk)Pk + o(llpkI12),

and since (4.10) and Lemma 3.9 imply g(Xk + Pk) = g* + o(llpkll), aj(xk + Pk) =
a; + O(lIpkll), we get from (4.15) and (4.16) that (we drop the subscript k)

(4.17a)

(4.17b)

pTV'2 Fp = (g* _ g)Tp + o(lIpII2),
pTV'2Cjp = (a; - aj)Tp + o(llpI12).

Condition MC3, Theorem 3.17, and (4.13) give Lj Aj pT<¡¡2CjP = Lj ¡tj pT<¡¡2CjP +
o(llpI12), and ifwe apply this bound to the result of adding (4.17a) to (4.17b) multiplied
by Aj, we have

(4.18)

Condition MC3', (1.1), and Lemma 3.9 imply

T * *T T *T * 2 P (g - A ¡t) = P A (A - ¡t) = o(llpll),

and from (4.18),

(4.19) T = pTWp + pT(g - AT¡t) = pT(g* - A*T ¡t) + o(lIpII2) = o(lIpII2).

From Lemma 4.6 and (4.19) we get

Since 4>'(0) < 0, the aboye relationship and Theorem 3.15 imply that condition (2.14)
is eventually satisfied for k sufficiently large.

628 WALTER MURRAY AND FRANCISCO J. PRIETO

Regarding condition (2.16), we can use Taylor series expansions for cj to write

(4.20) cj(xk q- Pk) Cj(Xk) q- aj(x} q- OjPk)Tpk
for some Oj E [0, 1], and

(4.21) aj(xk - OjPk)Tpk aj(xk)Tpk + pV2cj(xk -}- jPk)Pk,
o e [0,].

Using Theorem 3.15 and the boundedness of IIV2cj(xk /jPk)ll (from Assumption
A3 and Lemma 3.4) in (4.21), for k large enough

aj(xk q-Ojpk)Tpk
_

aj(xk)Tpk 1/2c,
and from (2.4b),

1 > _()_ 1/2.aj(xk + Oypk)Tpk > aj(xk)Tpk 2

Replacing this bound in (4.20), we obtain for all k large enough c(xk + Pk) >_ --1/2ce,
and condition (2.16) will also be satisfied, giving Xk+l xk + Pk. The required result
then follows from Lemma 4.5.

4.1. Boundedness of the penalty parameter. The last result in this section
shows that, if condition MC3’ is replaced by a slightly stronger condition, the penalty
parameter needs to be modified in at most a finite number of iterations (and conse-
quently it remains bounded). The criterion presented will be satisfied, for example,
by the least-squares multipliers computed at xk + Pk.

THEOREM 4.8. If the multiplier estimates #k in the algorithm satisfy

(a.) I1 *11 o(llx +
and all other assumptions and conditions hold then there exists a constant M such
that Pk

_
M for all k.

Proof. We may assume k large enough so that ck 1. From (2.5), (2.4b), and

rk,-Tsk_> 0, we have

gkPk + PkHkPk pAkTrk --cTrk <_ --(ci 8k)TTrk,
where rk denotes the QP multipliers at iteration k. From (3.3), (4.23), and the fact
that a unit steplength is accepted, it follows that

(4.24) (0) <_ --pkgkpkT / tl2,- , , I1 11 pll 11.
From (4.22), HC2, and Lemmas 3.9, 3.8, and 3.7 we must have

112#k-1- #k rkll <_ M1 IlPkll <-- M2pHkpk
for some positive constants M1, M2. It then follows using a2 -F b2

_
2ab that

V/p I_.TH 2I]2#-1 # llll 11 < M2 HpII 11 < v w /M I1 11,
implying from (4.24) that

//I(0) < -, , +(M
From this inequality it follows that if p >_ 1/2M22, condition (2.11) will be satisfied,
and the penalty parameter will not be increased. Given that we are using the rule
(2.12) for updating Pk, it must hold that Pk

628 WALTER MURRAY AND FRANCISCO J. PRIETO

Regarding condition (2.16), we can use Taylor series expansions for Cj to write

(4.20) Cj(Xk + Pk) = Cj(Xk) + aj(xk + (JjPkf Pk

for some (Jj E [0,1], and

(4.21) aj(xk + (JjPk)T Pk = aj(xk)T Pk + pIV2cj(Xk + OjPk)Pk,

for Oj E [O, (Jj]'
Using Theorem 3.15 and the boundedness of I!V2Cj(Xk+OjPk)11 (from Assumption

A3 and Lemma 3.4) in (4.21), for k large enough

aj(xk + (JjPk)T Pk ~ aj(xk)T Pk - !.Bc,

and from (2.4b),

aj(xk + (JjPk)T Pk ~ aj(xkf Pk - !.Bc ~ -Cj(Xk) - !.Bc'

Replacing this bound in (4.20), we obtain for aH k large enough C(Xk + Pk) ~ -!.Bce,
and condition (2.16) will also be satisfied, giving Xk+1 = Xk + Pk. The required result
then foHows from Lemma 4.5. O

4.1. Boundedness of the penalty parameter. The last result in this section
shows that, if condition MC3' is replaced by a slightly stronger condition, the penalty
parameter needs to be modified in at most a finite number of iterations (and conse
quently it remains bounded). The criterion presented will be satisfied, for example,
by the least-squares multipliers computed at Xk + Pk.

THEOREM 4.8. JI the multiplier estimates J.Lk in the algorithm satisfy

(4.22) IIJ.Lk - -*11 = O(llxk + Pk - x*ll),

and all other assumptions and conditions hold then there exists a constant M such
that Pk ~ M lor all k.

Proo! We may assume k large enough so that ak = 1. From (2.5), (2.4b) , and
7rISk ~ O, we have

(4.23) gIPk + pIHkPk = pIAk7rk = -CI7rk ~ -(Ck - skf7rk,

where 7rk denotes the QP multipliers at iteration k. From (3.3), (4.23), and the fact
that a unit steplength is accepted, it follows that

(4.24) 4>~(0) ~ -pIHkPk + 1!2J.Lk-l - J.Lk -7rkl!l!ck - skl!- Pkl!ck - skl!2.

From (4.22), HC2, and Lemmas 3.9, 3.8, and 3.7 we must have

1!2J.Lk-l - J.Lk - 7rkl! ~ M1llpkl! ~ M2VpIHkPk

for some positive constants Mb M 2 • It then follows using a2 + b2 ~ 2ab that

1!2J.Lk-l - J.Lk - 7rkl!lick - SkI! ~ M2VpIHkPklick - SkI! ~ !pIHkPk + !Mil!Ck - skl!2,

implying from (4.24) that

4>~(0) ~ -!pIHkPk + (!Mi - Pk)l!ck - skl!2.

From this inequality it follows that if Pk ~ !Mi, condition (2.11) will be satisfied,
and the penalty parameter will not be increased. Given that we are using the rule
(2.12) for updating Pk, it must hold that Pk ~ Mi. O

628 WALTER MURRAY AND FRANCISCO J. PRIETO

Regarding condition (2.16), we can use Taylor series expansions for Cj to write

(4.20) Cj(Xk + Pk) = Cj(Xk) + aj(xk + ()jPkf Pk

for sorne ()j E [0,1]' and

(4.21) aj(xk + ()jPkf Pk = aj(xk)T Pk + prV2Cj(Xk + (jjPk)Pk,

for (jj E [O, ()j].
Using Theorem 3.15 and the boundedness of IIV2cj(xk+(jjPk)1I (from Assumption

A3 and Lemma 3.4) in (4.21), for k large enough

aj(xk + ()jPkf Pk 2: aj(xkf Pk - ~,8c,

and from (2.4b),

aj(xk + ()jPkf Pk 2: aj(xkf Pk - ~,8c 2: -Cj(Xk) - ~,8c'

Replacing this bound in (4.20), we obtain for all k large enough C(Xk + Pk) 2: -~,8ce,
and condition (2.16) will also be satisfied, giving Xk+1 = Xk + Pk. The required result
then follows from Lemma 4.5. O

4.1. Boundedness of the penalty parameter. The last result in this section
shows that, if condition MC3' is replaced by a slightly stronger condition, the penalty
parameter needs to be modified in at most a finite number of iterations (and conse
quently it remains bounded). The criterion presented will be satisfied, for example,
by the least-squares multipliers computed at Xk + Pk.

THEOREM 4.8. Jf the multiplier estimates J-Lk in the algorithm satisfy

(4.22) IIJ-Lk - A*II = O(llxk + Pk - x*ID,

and all other assumptions and conditions hold then there exists a constant M such
that Pk ::; M for all k.

Proo! We may assume k large enough so that ak = 1. From (2.5), (2.4b), and
7rrSk 2: O, we have

(4.23) g[Pk + p[HkPk = p[Ak7rk = -C[7rk ::; -(Ck - skf7rk,

where 7rk denotes the QP multipliers at iteration k. From (3.3), (4.23), and the fact
that a unit steplength is accepted, it follows that

(4.24) <I>~(O) ::; -p[Hkpk + 112J-Lk-l - J-Lk - 7rkllll ck - skll- Pklick - sk11 2
.

From (4.22), HC2, and Lemmas 3.9, 3.8, and 3.7 we must have

112J-Lk-l - J-Lk - 7rkll ::; Ml Ilpkll ::; M 2 Vp[HkPk

for sorne positive constants M!, M 2 . It then follows using a2 + b2 2: 2ab that

112J-Lk-l - J-Lk - 7rkllllck - skll ::; M2 Vp[HkPkll ck - skll ::; ~P[HkPk + ~Milick - sk11
2

,

implying from (4.24) that

<I>~(O) ::; -~P[HkPk + (~Mi - Pk)lick - sk11 2
.

From this inequality it follows that if Pk 2: ~ Mi, condition (2.11) will be satisfied,
and the penalty parameter will not be increased. Given that we are using the rule
(2.12) for updating Pk, it must hold that Pk ::; Mi. O

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 629

5. Other merit functions. Several merit functions have been proposed and
analyzed in the literature (a review can be found in Powell [27]). The question arises
if the convergence results using early termination in the solution of the QP subproblem
depend on our specific merit function, or if they are fairly independent of this choice.
We shall show in this section that the choice of merit function is not critical. What we
present is how to adapt our SQP algorithm to the use of other merit functions rather
than examine other methods explicitly to see if the particular QP subproblem posed
and the manner the search is performed can be adapted to the use of an incomplete
solution. For example, we still perform a search in the x and A spaces. Slack variables
do not appear in the merit functions we shall consider, consequently the search in the
space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The
first one corresponds to a class of merit functions that includes among others the
merit function analyzed in Han [21], Byrd and Nocedal [5], and Burke and Han [4].
This general merit function takes the form:

(5.1) (x, A) F(x)

where an gp-norm (1 _< p _< cx)) is used, and c-(x) =_ max(0,-cj(x)). Again, we
will omit the subscript if we refer to the g2-norm, and we will explicitly include it
whenever we refer to a general gp-norm.

The second merit function we consider is

(5.2) (x,

where we use the 2-norm. This merit function has been studied among others by
Powell and Yuan [28] (applied to the equality-constrained problems only) and Schit-
tkowski [32]. Unlike either of these algorithms, where the multiplier estimate was
treated as a function of the iterate A.(x), we do not explicitly define the form of the
multiplier estimates although the ones used in both methods satisfy the criteria MC1,
MC2, and MC3. Indeed the one used in [28] also satisfies MC3’.

We still assume A1-A7 hold for the problem. However, when the merit function
(5.1) is used, the multiplier estimate #k is only required to satisfy MC1. This condition
is trivial to satisfy. For example, we may choose 0 0 and #k 0 making the search
in the multiplier space void. Such a choice reduces (5.1) to the well-known gl merit
function and our algorithm becomes very similar to that analyzed in [21]. When (5.2)
is used, we assume conditions MC1 and MC2 hold. We have also assumed in the
proofs that A0 _> 0 and #k _> 0. We omit the proofs that the iterates lie on a compact
set. For the first merit function (5.1) this proof is relatively straightforward, since it
will be shown that the penalty parameter is bounded. The proof for the second merit
function (5.2) is very similar to that for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength ak assume the merit function has
continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining
a value

Define

(5.3) Ak =-- [Pk + (k Xk)Tc-(Xk) PkllC-(Xk)llp.

We start by selecting a value &k satisfying

(5.4) Ck(&k) --= (Xk + &kPk,)k +

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 629

5. Other merit functions. Several merit functions have been proposed and
analyzed in the literature (a review can be found in Powell [27]). The question arises
if the convergence results using early termination in the solution of the QP subproblem
depend on our specific merit function, or if they are fairIy independent of this choice.
We shall show in this section that the choice of merit function is not critical. What we
present is how to adapt our SQP algorithm to the use of other merit functions rather
than examine other methods explicitly to see if the particular QP subproblem posed
and the manner the search is performed can be adapted to the use of an incomplete
solution. For example, we still perform a search in the x and A spaces. Slack variables
do not appear in the merit functions we shall consider, consequently the search in the
space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The
first one corresponds to a class of merit functions that includes among others the i l

merit function analyzed in Han [21]' Byrd and Nocedal [5], and Burke and Han [4].
This general merit function takes the form:

(5.1)

where an ip-norm (1 ::; p ::; 00) is used, and cj(x) == max(O, -Cj(x)). Again, we
will omit the subscript if we refer to the i 2-norm, and we will explicitIy include it
whenever we refer to a general ip-norm.

The second merit function we consider is

(5.2)

where we use the i 2-norm. This merit function has been studied among others by
Powell and Yuan [28] (applied to the equality-constrained problems only) and Schit
tkowski [32]. Unlike either of these algorithms, where the multiplier estimate A was
treated as a function of the iterate A(x), we do not explicitly define the form of the
multiplier estimates although the ones used in both methods satisfy the criteria MC1,
MC2, and MC3. Indeed the one used in [28] also satisfies MC3'.

We still assume AI-A7 hold for the problem. However, when the merit function
(5.1) is used, the multiplier estimate J.Lk is only required to satisfy MC!. This condition
is trivial to satisfy. For example, we may choose AO = O and J.Lk = O making the search
in the multiplier space void. Such a choice reduces (5.1) to the well-known i l merit
function and our algorithm becomes very similar to that analyzed in [21]. When (5.2)
is used, we assume conditions MCl and MC2 hold. We have also assumed in the
proofs that AO ~ O and J.Lk ~ O. We omit the proofs that the iterates lie on a compact
seto For the first merit function (5.1) this proof is relatively straightforward, since it
will be shown that the penalty parameter is bounded. The proof for the second merit
function (5.2) is very similar to that for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength Cl!k assume the merit function has
continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining
a value Cl!k.

Define

(5.3)

We start by selecting a value ak satisfying

(5.4)

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 629

5. Other merit functions. Several merit functions have been proposed and
analyzed in the literature (a review can be found in Powell [27]). The question arises
if the convergence results using early termination in the solution of the QP subproblem
depend on our specific merit function, or if they are fairly independent of this choice.
We shall show in this section that the choice of merit function is not critica!. What we
present is how to adapt our SQP algorithm to the use of other merit functions rather
than examine other methods explicitly to see if the particular QP subproblem posed
and the manner the search is performed can be adapted to the use of an incomplete
solution. For example, we still perform a search in the x and A spaces. Slack variables
do not appear in the merit functions we shall consider, consequently the search in the
space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The
first one corresponds to a class of merit functions that includes among others the i l

merit function analyzed in Han [21], Byrd and Nocedal [5], and Burke and Han [4].
This general merit function takes the form:

(5.1)

where an ip-norm (1 ::; p ::; (0) is used, and cj(x) == max(O, -Cj(x)). Again, we
will omit the subscript if we refer to the i 2-norm, and we will explicitly include it
whenever we refer to a general ip-norm.

The second merit function we consider is

(5.2)

where we use the i 2-norm. This merit function has been studied among others by
Powell and Yuan [28] (applied to the equality-constrained problems only) and Schit
tkowski [32]. Unlike either of these algorithms, where the multiplier estimate A was
treated as a function of the iterate A(x), we do not explicitly define the form of the
multiplier estimates although the ones used in both methods satisfy the criteria MC1,
MC2, and MC3. Indeed the one used in [28] also satisfies MC3'.

We still assume A1-A7 hold for the problem. However, when the merit function
(5.1) is used, the multiplier estimate Il-k is only required to satisfy MCl. This condition
is trivial to satisfy. For example, we may choose Ao = O and Il-k = O making the search
in the multiplier space void. Such a choice reduces (5.1) to the well-known i l merit
function and our algorithm becomes very similar to that analyzed in [21]. When (5.2)
is used, we assume conditions MC1 and MC2 hold. We have also assumed in the
proofs that Ao 2:: O and Il-k 2:: O. We omit the proofs that the iterates lie on a compact
seto For the first merit function (5.1) this proof is relatively straightforward, since it
will be shown that the penalty parameter is bounded. The proof for the second merit
function (5.2) is very similar to that for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength Ü'.k assume the merit function has
continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining
a value Ü'.k.

Define

(5.3)

We start by selecting a value ak satisfying

(5.4)

630 WALTER MURRAY AND FRANCISCO J. PRIETO

and either

(5.5) & >_ 7 > 0

or

(5.6) & > 7k and

where 0 < 7t < 7u < 1, 0 < a < 1 and k > 0. For a discussion of these criteria
and the estence of see Calamai and Mor [6].

In addition to these conditions, we also also want to limit the size of the infei-
bilities. If 5k satisfies condition (2.16), then we let ak k. Otherwise, we compute
ak by performing a backtracking linesearch om k until conditions (5.4) and (2.16)
are both satisfied.

Our preference for the criteria given in 2 is bed on our belief that in practice
they lead to a better choice of a. In the definition of our algorithm we could have
used other steplength criteria without impacting the convergence properties.

The following basic relationships will be used to establish the convergence results,

(5.7a) c (x + ap) c(x + p) c(x) aap nin(O, c(x) + aap)
(5.7b) min(0, cj(x) + aap) (1 a)c (x),
(5.7c) --wTAp --]]c- (x)],
(5.7d) -Ap -c- (x).

In these inequalities A Vc(x). Also, is a diagonal matrix such that -Ap is
an element of the subdifferential of c-(x +
take values in [0, 1], are zero whenever cj(x) > 0 and take the value one whenever
cj(z) < 0. Finally, wTAp represents an element of 0(0), the subdifferential of
c-(x + ap)p at 0. The elements of w are given by

and have the property that wTc(x) -]c-(x)]p.
Consider now the case when has been defined from (5.1). om our assumption

that Ak 0 and (2.4b),

Ak(Akpk + ck) 0

for all k. It follows from this inequality and the relationships given in (5.7) that

(0) g[Pk + [c-(Xk) AkAp pkw[AkPk

We select Pk such that

T(5.8)

This rule is analogous to the ones used in Byrd and Nocedal [5], and Burke and Han

The first step is to establish that such a value of p exists. om (3.14) and (5.3)
we have

g + +

630 WALTER MURRAY AND FRANCISCO J. PRIETO

and either

(5.5)

or

(5.6) and

where O < "tI < "tu < 1, O < 7J ::; q < 1 and ak > O. For a discussion of these criteria
and the existence of ak see Calamai and Moré [6].

In addition to these conditions, we also also want to limit the size of the infeasj
bilities. If ak satisfies condition (2.16), then we let O'.k = ak. Otherwise, we compute
O'.k by performing a backtracking linesearch from ak until conditions (5.4) and (2.16)
are both satisfied.

Our preference for the criteria given in §2 is based on our belief that in practice
they lead to a better choice of O'.k. In the definition of our algorithm we could have
used other steplength criteria without impacting the convergence properties.

The foHowing basic relationships will be used to establish the convergence results,

(5.7a) cj(x + O'.p) ::; ICj(x + O'.p) - Cj(x) - O'.aJpl- min(O, Cj(x) + O'.aJp)

(5.7b) -min(O,cj(x) +O'.aJp)::; (1-0'.)cj(x),

(5.7c) -wTAp::; -lIc-(x)llp,

(5.7d) -OAp::; -c-(x).

In these inequalities A == Vc(x). Also, O is a diagonal matrix such that -OAp is
an element of the subdifferential of C- (x + O'.p) at O'. = O. The diagonal entries of O
take values in [0,1], are zero whenever Cj(x) > O and take the value one whenever
Cj(x) < O. Finally, wT Ap represents an element of ocp(O) , the subdifferential of cp(O'.) ==
IIc-(x + O'.p)lIp at O. The elements of w are given by

w¡ ~ (11);; (11:[11.) P-1,

and have the property that wT c(x) = -lIc-(x)llp'
Consider now the case when 4> has been defined from (5.1). Prom our assumption

that >'k ~ O and (2.4b),

>.rOk(AkPk + Ck) ~ O

for aH k. It foHows from this inequality and the relationships given in (5.7) that

4>~(0) = 9rPk + ~Z'C-(Xk) - >.rOkAkPk - PkwZ'AkPk ::; f}.k.

We select Pk such that

(5.8)

This rule is analogous to the ones used in Byrd and Nocedal [5], and Burke and Han
[4].

The first step is to establish that such a value of P exists. Prom (3.14) and (5.3)
we have

630 WALTER MURRAY AND FRANCISCO J. PRIETO

and either

(5.5)

or

(5.6) and

where O < "tl < "tu < 1, O < r¡ :::; (J" < 1 and Q:k > O. For a discussion of these criteria
and the existence of O:k see Calamai and Moré [6].

In addition to these conditions, we also also want to limit the size of the infeasi
bilities. If O:k satisfies condition (2.16), then we let O:k = O:k. Otherwise, we compute
O:k by performing a backtracking linesearch from O:k until conditions (5.4) and (2.16)
are both satisfied.

Our preference for the criteria given in §2 is based on our belief that in practice
they lead to a better choice of O:k. In the definition of our algorithm we could have
used other steplength criteria without impacting the convergence properties.

The following basic relationships will be used to establish the convergence results,

(5.7a)

(5.7b)

(5.7c)

(5.7d)

ej (x + o:p) :::; lej (x + o:p) - ej (x) - o:afpl - min(O, ej (x) + o:aJp)

- min(O, ej(x) + o:aJp) :::; (1 - o:)ej(x),

-wTAp:::; -lfc-(x)llp,
-OAp:::; -e-(x).

In these inequalities A == Vc(x). Also, O is a diagonal matrix such that -OAp is
an element of the subdifferential of c- (x + o:p) at o: = O. The diagonal entries of O
take values in [0,1], are zero whenever Cj(x) > O and take the value one whenever
Cj(x) < O. Finally, wT Ap represents an element of 8<p(0), the subdifferential of <p(0:) ==
Ilc-(x + o:p)llp at O. The elements of w are given by

(
_)P-l

Wj = (O)jj II:~ IIp ,

and have the property that wT c(x) =-llc(x)llp'
Consider now the case when cP has been defined from (5.1). From our assumption

that >"k 2: O and (2.4b),

T >"kOk(AkPk + Ck) 2: O

for all k. It follows from this inequality and the relationships given in (5.7) that

<p~(0) = g[pk + ~[c- (Xk) - >"[OkAkPk - Pkw[AkPk :::; llk·

We select Pk such that

(5.8)

This rule is analogous to the ones used in Byrd and Nocedal [5], and Burke and Han
[4].

The first step is to establish that such a value of P exists. From (3.14) and (5.3)
we have

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 631

If we now use (2.6), property MC1, and Lemma 2.2 to bound the multiplier term

h h ud I1i1 1111,, w obtain in (5.9)

)PkHkPk +(2 +3, p)IIZiI.

Defining Pu (2 + 3), for any value p p condition (5.8) is satisfied for any
k. This result also shows that the value of p will remain bounded in the algorithm.

THEOREM 5.1. The algoHthm modified to use the merit function (5.1) converges
globally.

Proof. Given the bound in Lemma 3.9, it suffices to show that]Pk O.
As p cannot grow without bound, any strategy for increing p by a finite quantity

whenever it is required to increase p implies that there exists an iteration value K
such that Pk PK for all k K. We consider only iterations of this form. For k K,
from (5.4), (5.8) and condition MC2,

(a)- (a-l) av -uZ..allpll.
om the boundedness of (Assumption A3), it follows that

(5.10) -1 I 0.

If []p 0, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
]]Pk]] > e, from (5.10) we must have ak 0 along the subsequence, and from the
termination conditions for the linesearch (5.4), (5.5), and (5.6), k 0, as the step
required to satis condition (2.16) is uniformly bounded away from zero (see (3.59)
and (3.60)). Finally, from (5.6) we must also have 0.

In the following relationships we drop the subscript k corresponding to the itera-
tion number, and we denote by a tilde the value of functions evaluated at x+p (i.e.,
e (z + p)).
om the definition of the merit function (5.1),

() (0) a + r(e- c-) + re- llc-I,
+ (F) + (lle- I1 (1)llc- II,).

For the last term, from (5.7a) and (5.7b), it follows that

(,) (o) < (gTp + AT(e- c-) + CT- cwlIc-
+ (F CgTp) + pile c AplI,,.

If we use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates
(given that by assumption A4- >_ 0), and the Taylor series expansions for F and c,
we obtain

() (0)

_
gTp / Ej(j / bj)lj cj ap 4- (1 ()ATc

ATc + (1 C)Tc ’PlI- II,, + O(II’PlI).

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 631

If we now use (2.6), property MC1, and Lemma 2.2 to bound the multiplier term

(ek - 'xk? ck ~ lI¡.tk - 2'xkll IIck 11 ~ 3v'ffif3l'lIckllp,

where we have used lIull2 ~ J1ñllullp , we obtain in (5.9)

t::.k ~ -(! + f31)pIHkPk + (v'ffif32 + 3v'ffif31' - P)lIckllp·

Defining Pu == J1ñ({32 + 3{31') , for any value p ~ Pu condition (5.8) is satisfied for any
k. This result also shows that the value of p will remain bounded in the algorithm.

THEOREM 5.1. The algorithm modífied to use the merit function (5.1) converges
globally.

Proo! Given the bound in Lemma 3.9, it suffices to show that IIpkll-+ o.
As p cannot grow without bound, any strategy for increasing p by a finite quantity

whenever it is required to increase p implies that there exists an iteration value K
such that Pk = PK for all k ~ K. We consider only iterations ofthis formo For k ~ K,
from (5.4), (5.8) and condition MC2,

4J(ak) - 4J(ak-l) ~ akr¡t::.k ~ -r¡{3svHakllpkIl2.

From the boundedness of 4J (Assumption A3), it follows that

(5.10)

If IIpk 11 -+ O, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
IIpkll > lO, from (5.10) we must have ak -+ O along the subsequence, and from the
termination conditions for the linesearch (5.4), (5.5), and (5.6), ak -+ O, as the step
required to satisfy condition (2.16) is uniformly bounded away from zero (see (3.59)
and (3.60)). Finally, from (5.6) we must also have O:k -+ o.

In the following relationships we drop the subscript k corresponding to the itera
tion number, and we denote by a tilde the value of functions evaluated at x+ap (i.e.,
e == c(x + ap)).

From the definition of the merit function (5.1),

4J(a) - 4J(0) = agTp + ,XT(c- - c-) + a ec- - apllc-I!p

+ (P - F - agTp) + p(l!c-l!p - (1- a)l!c-l!p).

For the last term, from (5.7a) and (5.7b), it follows that

and

4J(a) - 4J(0) ~ agTp + ,XT(c- - c-) + a ec- - apl!c-I!p

+ (P - F - agTp) + pl!c - c - aApl!p.

Ifwe use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates
(given that by assumption ,X + ae ~ O), and the Taylor series expansions for F and c,
we obtain

4J(a) - 4J(0) ~ agTp + I:/'xj + aej)lcj - Cj - aaJpl + (1- a),XTc-

- ,XTc- + a(l- a)ec- - apl!c-I!p + O(l!apI!2).

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 631

If we now use (2.6), property MC1, and Lemma 2.2 to bound the multiplier term

where we have used lIul12 ~ vrnllullp, we obtain in (5.9)

Ó-k ~ -(~ + {J¡)pfHkPk + (vm{J2 + 3vm{J11 - p)lIek"lIp·

Defining Pu == vrn({J2 + 3{J11)' for any value p ~ Pu condition (5.8) is satisfied for any
k. This result also shows that the value of p will remain bounded in the algorithm.

THEOREM 5.1. The algorithm modified to use the merit funetion (5.1) converges
globally.

Proo! Given the bound in Lemma 3.9, it suffices to show that IIpkll -+ o.
As p cannot grow without bound, any strategy for increasing p by a finite quantity

whenever it is required to increase p implies that there exists an iteration value K
such that Pk = PK for all k ~ K. We consider only iterations of this formo For k ~ K,
from (5.4), (5.8) and condition MC2,

1;(ak) - 1;(ak-l) ~ akr¡Ó-k ~ -r¡{JsvHa kllpkIl 2.

From the boundedness of 1; (Assumption A3), it follows that

(5.10)

If IIpkll -+ O, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
IIpkll > E, from (5.10) we must have ak -+ O along the subsequence, and from the
termination conditions for the linesearch (5.4), (5.5), and (5.6), ak -+ O, as the step
required to satisfy condition (2.16) is uniformly bounded away from zero (see (3.59)
and (3.60)). Finally, from (5.6) we must also have ak -+ O.

In the following relationships we drop the subscript k corresponding to the itera
tion number, and we denote by a tilde the value of functions evaluated at x + ap (i.e.,
e == e(x + ap)).

From the definition of the merit function (5.1),

1;(a) - 1;(0) = agTp + ,\T(e- - e-) + a ee-- - apl\e-lIp

+ (P - F - agTp) + p(IIe-lIp - (1- a)IIe-IIp)'

For the last term, from (5.7a) and (5.7b), it follows that

and

1;(a) - 1;(0) ~ agTp + ,\T(e- - e-) + aee- - aplle-lIp

+ (P - F - agTp) + plle - e - aApllw

Ifwe use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates
(given that by assumption ,\ + a~ ~ O), and the Taylor series expansions for F and e,
we obtain

1;(a) - 1;(0) ~ agTp + ¿j ('\j + a~j) lej -- ej - a aJpl + (1 - a),\Te-

- ,\Te- + a(l - a)ee- - aplle- I\p + O(I\apll2).

632 WALTER MURRAY AND FRANCISCO J. PRIETO

After simplifying this expression we have

() (0) <(r + ()%- llc-iI) + vllllll- ii +
Replacing this bound in (5.6) implies

0 < (1 a)A + 2l[[c-[p + O(l[p2).

Since from (5.8) and condition HC2, A --svU]p]l 2, and we have sumed that
lipS] > e, it follows by taking limits along the subsequence that

0 -(1 a)He2.

However, this is not possible, implying]Pk 0 for the whole sequence.

Consider now the second merit function (5.2). The subgradient along the search
direction at (Xk, Ak) is given by

g}Pk + [c-(x}) ADkA}pk pkc-(xk)TAkpk

where

=_ g[p + A)Tc- p ll -(x)ll

Note that Ak >_ 0 implies

(kik + pkc-)T(Akpk + C) O.

In this case it is not immediately evident that Pk remains bounded. The conver-
gence proof we give is similar to the one introduced in 3. The definition of p given
in that section will be preserved, except c- s is replaced by c-.

THEOREM 5.2. The algothm modified to use the merit function (5.2) converges
globally.

Proof. Again, from Lemma 3.9 it is enough to show that Pk O.
First sume that p is bounded. The argument used is similar to the one in

Theorem 5.1. om (5.4), (5.8), condition MC2 and the boundedness of , (5.10)
must hold also for this case.

If]]pk O, convergence followsom Lemma 3.9. Otherwise, if for a subsequence
Pk > e, from (5.10) we must have ak 0, and from condition (5.6) and the
boundedness of the step to satis (2.16), Gk 0.
om (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the

following relationships, and use a tilde to indicate values at x + p)

+

and again using (5.7a) and (5.7b) on the terms associated with the multiplier esti-
mates, we obtain

(a) (0) a(gTp + ()Tc- pllc-II 2)
+ 211c-II (11511 + pll -II) + O(ll pll)

632 WALTER MURRAY AND FRANCISCO J. PRIETO

After simplifying this expression we have

Replacing this bound in (5.6) implies

Since from (5.8) and condition HC2, tl. ~ -,8svHllpII2 , and we have assumed that
IIpll > e, it follows by taking limits along the subsequence that

O ~ -(1 - o')f3lvHe2.

However, this is not possible, implying IIpk 11 -+ O for the whole sequence. O

Consider now the second merit function (5.2). The subgradient along the search
direction at (Xk, >'k) is given by

4>~(0) = gkPk + ekC-(Xk) - >.fnkAkPk - PkC-(Xk)TAkPk ~ tl.k,

where

Note that >'k ~ O implies

In this case it is not immediately evident that Pk remains bounded. The conver
gence proof we give is similar to the one introduced in §3. The definition of P given
in that section will be preserved, except C - s is replaced by c- .

THEOREM 5.2. The algorithm modified to use the merit function (5.2) converges
globally.

Proof. Again, from Lemma 3.9 it is enough to show that IIpk 11 -+ o.
First assume that P is bounded. The argument used is similar to the one in

Theorem 5.1. From (5.4), (5.8), condition MC2 and the boundedness of 4>, (5.10)
must hold also for this case.

If IIpk 11 -+ O, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
IIpkll > e, from (5.10) we must have ak -+ O, and from condition (5.6) and the
boundedness of the step to satisfy (2.16), O:k -+ O.

From (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the
following relationships, and use a tilde to indicate values at x + iip)

4>(ii) - 4>(0) ~ iigTp + >.T(c- - c-) + iiec- - p(ii - !ii2)lIc-1I2

+ pllc - C - iiAPII(!lIc - C - iiAplI + II(c + iiAp)-II)

+ (F - F - iigTp) ,

and again using (5.7a) and (5.7b) on the terms associated with the multiplier esti
mates, we obtain

4>(ii) - 4>(0) ~ ii(gTp + (e - >.)Tc- - pllc-1I2)

+ ii2l1c-1I (lIell + !pllc-II) + O(lIiiPIl2).

632 WALTER MURRAY AND FRANCISCO J. PRIETO

After simplifying this expression we have

Replacing this bound in (5.6) implies

Since from (5.8) and condition HC2, ~ ::; -¡3svH Ilp112, and we have assumed that
Ilpll > E, it follows by taking limits along the subsequence that

O::; -(1- a)¡3¡vHE2.

However, this is not possible, implying Ilpkll --> O for the whole sequence. O

Consider now the second merit function (5.2). The subgradient along the search
direction at (Xk, Ak) is given by

4>~(0) = g[pk +~[C-(Xk) - A[OkAkPk - PkC-(Xk)TAkPk ::; ~k,

where

Note that Ak ~ O implies

In this case it is not immediately evident that Pk remains bounded. The conver
gence proof we give is similar to the one introduced in §3. The definition of P given
in that section will be preserved, except C - s is replaced by c-.

THEOREM 5.2. The algorithm modified to use the merit function (5.2) converges
globally.

Proof. Again, from Lemma 3.9 it is enough to show that Ilpkll --> O.
First assume that P is bounded. The argument used is similar to the one in

Theorem 5.1. From (5.4), (5.8), condition MC2 and the boundedness of 4>, (5.10)
must hold also for this case.

If Ilpk II --> O, convergence follows froro Lemma 3.9. Otherwise, if for a subsequence
Ilpk II > E, from (5.10) we must have ak --> O, and from condition (5.6) and the
boundedness of the step to satisfy (2.16), ak --> O.

From (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the
following relationships, and use a tilde to indicate values at x + ap)

4>(a) - 4>(0) ::; agTp + AT(e- - c-) + aee- - p(a - ~(2)llc-112

+ plle - c - aApl1 (~lle - c - aApl1 + II(c + aAp)-II)

+ (P-F-agTp),

and again using (5.7a) and (5.7b) on the terms associated with the multiplier esti
mates, we obtain

4>(a) - 4>(0) ::; a (gTp + (~- A)Tc- - pllc-112)

+ a211c-11 (II~II + ~pllc-II) + O(llapI12).

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 633

Replacing this bound in (5.6) implies

0 < (1 --o’)&A 4" =ll-II (ll :ll + 1/2pll -II) + o(ll p[l=).

Since from (5.8) and condition HC2, z _< --/.gllpll, and we have assumed that

IlPll > e and p is bounded, it follows by taking limits along the subsequence that

0 <_ -(1 a)/l,He.2.

However, this is not possible, which implies Ilpa II 0 for the whole sequence.
Assume now that pk grows without bound. In this case we have that for all

iterations where the value of the penalty parameter is increased

The proof of this result is basically that of Lemma 3.10.
possible to show that we must also have

From these bounds it is

for all k (the proof is similar to the one for Lemma 3.11), implying p --+ 0 and the
convergence of the algorithm. D

6. Numerical results. In this section we present numerical results obtained
from an implementation of our algorithm. As a first step we have modified the code
NPSOLo We have called the modified routine INPSOL. Apart from the definition of
the search direction all other aspects of INPSOL are identical to those of NPSOL. A
detailed description of NPSOL is given in Gill et al. [15]. It should be noted that
NPSOL does not incorporate linear constraints into the merit function. An initial
point is obtained that is feasible with respect to the linear constraints and thereafter
feasibility is retained (by incorporating the linear constraints in the QP subproblem).
On many practical problems the feasible region with respect to the linear constraints
is compact. On such problems this approach ensures Assumption A2 is satisfied, and
Assumption A1 is implied by Assumption A3.

The purpose of the testing reported is to demonstrate that the efficiency and
robustness of the modified algorithm are comparable to those of NPSOL. Naturally,
we can only test the hypothesis on the domain of problems NPSOL is designed to
solve, namely, problems having a small number of variables and constraints, although
on these problems the opportunities for improvement are limited, as we discuss later.
What this implementation really tests is whether the introduction of flexibility in the
determination of the search direction has a significant cost. The parameter/c was
set to infinity to avoid differences with NPSOL arising due entirely to the linesearch.

6.1. The search direction. The algorithm described in 2 allows for consider-
able flexibility of design. We describe here the specific choices made in our implemen-
tation. The search direction pk is computed according to the following steps. (The
subscript k is dropped from now on.)

1. An initial feasible point for each QP subproblem, P0, is obtained following the
same procedure as NPSOL. No special effort was made to satisfy conditions (2.18)
since on the problems tested no failure was detected that could be attributed to the
size of

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 633

Replacing this bound in (5.6) implies

Since from (5.8) and condition HC2, A :::; -f3svH IIp1I2 , and we have assumed that
IIplI > € and p is bounded, it follows by taking limits along the subsequence that

O:::; -(1- a)f3lvH€2.

However, this is not possible, which implies IIpkll --+ O for the whole sequence.
Assume now that Pk grows without bound. In this case we have that for all

iterations where the value of the penalty parameter is increased

The proof of this result is basically that of Lemma 3.10. Prom these bounds it is
possible to show that we must also have

for all k (the proof is similar to the one for Lemma 3.11), implying Pk --+ O and the
convergence of the algorithm. O

6. Numerical results. In this section we present numerical results obtained
from an implementation of our algorithm. As a first step we have modified the code
NPSOL. We have called the modified routine INPSOL. Apart from the definition of
the search direction aH other aspects of INPSOL are identical to those of NPSOL. A
detailed description of NPSOL is given in Gill et al. [15]. It should be noted that
NPSOL does not incorporate linear constraints into the merit function. An initial
point is obtained that is feasible with respect to the linear constraints and thereafter
feasibility is retained (by incorporating the linear constraints in the QP subproblem).
On many practical problems the feasible region with respect to the linear constraints
is compacto On such problems this approach ensures Assumption A2 is satisfied, and
Assumption Al is implied by Assumption A3.

The purpose of the testing reported is to demonstrate that the efficiency and
robustness of the modified algorithm are comparable to those of NPSOL. Naturally,
we can only test the hypothesis on the domain of problems NPSOL is designed to
solve, namely, problems having a small number of variables and constraints, although
on these problems the opportunities for improvement are limited, as we discuss latero
What this implementation really tests is whether the introduction of flexibility in the
determination of the search direction has a significant costo The parameter f3c was
set to infinity to avoid differences with NPSOL arising due entirely to the linesearch.

6.1. The search direction. The algorithm described in §2 allows for consider
able flexibility of designo We describe here the specific choices made in our implemen
tation. The search direction Pk is computed according to the following steps. (The
subscript k is dropped from now on.)

1. An initial feasible point for each QP subproblem, Po, is obtained following the
same procedure as NPSOL. No special effort was made to satisfy conditions (2.18)
since on the problems tested no failure was detected that could be attributed to the
size of IlPo 11·

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 633

Replacing this bound in (5.6) implies

Since from (5.8) and condition HC2, ~ ::; -,BsvHllpI1 2 , and we have assumed that
IIplI > lO and pis bounded, it foHows by taking limits along the subsequence that

However, this is not possible, which implies IIpkll -+ O for the whole sequence.
Assume now that Pk grows without bound. In this case we have that for aH

iterations where the value of the penalty parameter is increased

The proof of this result is basicaHy that of Lemma 3.10. From these bounds it is
possible to show that we must also have

for aH k (the proof is similar to the one for Lemma 3.11), implying Pk -+ O and the
convergence of the algorithm. O

6. N umerical results. In this section we present numerical results obtained
from an implementation of our algorithm. As a first step we have modified the code
NPSOL. We have called the modified routine INPSOL. Apart from the definition of
the search direction all other aspects of INPSOL are identical to those of NPSOL. A
detailed description of NPSOL is given in Gill et al. [15]. It should be noted that
NPSOL does not incorporate linear constraints into the merit function. An initial
point is obtained that is feasible with respect to the linear constraints and thereafter
feasibility is retained (by incorporating the linear constraints in the QP subproblem).
On many practical problems the feasible region with respect to the linear constraints
is compacto On such problems this approach ensures Assumption A2 is satisfied, and
Assumption Al is implied by Assumption A3.

The purpose of the testing reported is to demonstrate that the efficiency and
robustness of the modified algorithm are comparable to those of NPSOL. Naturally,
we can only test the hypothesis on the domain of problems NPSOL is designed to
solve, namely, problems having a small number of variables and constraints, although
on these problems the opportunities for improvement are limited, as we discuss latero
What this implementation really tests is whether the introduction of flexibility in the
determination of the search direction has a significant costo The parameter ,Be was
set to infinity to avoid differences with NPSOL arising due entirely to the linesearch.

6.1. The search direction. The algorithm described in §2 allows for consider
able flexibility of designo We describe here the specific choices made in our implemen
tation. The search direction Pk is computed according to the following steps. (The
subscript k is dropped from now on.)

1. An initial feasible point for each QP subproblem, Po, is obtained following the
same procedure as NPSOL. No special effort was made to satisfy conditions (2.18)
since on the problems tested no failure was detected that could be attributed to the
size of IIpo 11·

634 WALTER MURRAY AND FRANCISCO J. PRIETO

2. The active-set method used in NPSOL was terminated at i5, the first stationary
point. The multipliers r at 15 are then computed. Define {r as #j rj Ilaj II.

3. Let {M denote machine precision. If

(6.1) V j, j >_--V/M,

then/5 is taken as the search direction.
4. If (6.1) does not hold a step that moves off a subset of the active constraints

is computed. To identify the set of active constraints to be deleted, define 71"min

min #, and introduce a vector e, as

(6.2) (ex)j -= { Ilaj[10 otherwise.ifj _< 10-37rmin,

5. There is also a limit of 50 on the maximum number of constraints to be
deleted. If (6.2) is satisfied by more than 50 active constraints, only the ones having
the smallest multipliers are deleted. For most problems this limit has no effect, since
the total number of constraints is less than 50. This limit was introduced to limit the
cost of refactorization for the Jacobian matrix.

6. The direction d that moves off the selected constraints is obtained as the
least-length solution of the system Au e that is, we define

d Y(AY) -lex,

where Y denotes a basis for the range-space of AT.
7. We obtain the search direction p from (2.21), as

P 5 otherwise,

where was defined as in (2.26) with /M 101 and slp 100 (with this value the
step/5 +d is accepted in nearly all cases).

8. Finally, the multiplier estimate used to define the linesearch is taken to be r
if p =/5. Otherwise, it is taken to be the least-squares estimate #L obtained from

AAT#L Ag.

6.2. Test problems. The two algorithms, NPSOL and INPSOL, have been
compared by solving a collection of 114 problems from the literature. The problems
have been obtained from the following sources.

(i) Problem 1 is the example problem distributed with NPSOL; its description
can be found in [15]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds -1 _< x3 _< 1 have been replaced by.the constraint x _< 1. Problem
3 uses the starting point

(1 2 11 2 2 I)3 3 I0 3’ 3 3 3 3 3

(ii) Descriptions for problems 6 and 12-15 can be found in [25]. The version of
problem 6 considered is the one corresponding to a value T I0. Problems 12 and
13 start from point (d) for Wright No. 4 as indicated in the reference, while problems
14 and 15 start from points (a) and (b) for Wright No. 9, respectively.

(iii) A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can
be found in Fraley [14].

634 WALTER MURRAY AND FRANCISCO J. PRIETO

2. The active-set method used in NPSOL was terminated at p, the first stationary
point. The multipliers 'Tr at pare then computed. Define ir as irj = 'Trjllajll.

3. Let EM denote machine precision. If

(6.1)

then p is taken as the search direction.
4. If (6.1) do es not hold a step that moves off a subset of the active constraints

is computed. To identify the set of active constraints to be deleted, define 'Trmin =
minj irj , and introduce a vector el as

(6.2)
if irj ::; 1O-3 'Trm in,

otherwise.

5. There is also a limit of 50 on the maximum number of constraints to be
deleted. If (6.2) is satisfied by more than 50 active constraints, only the ones having
the smallest multipliers are deleted. For most problems this limit has no effect, since
the total number of constraints is less than 50. This limit was introduced to limit the
cost of refactorization for the Jacobian matrix.

6. The direction d that moves off the selected constraints is obtained as the
least-Iength solution of the system Au = el j that is, we define

where Y denotes a basis for the range-space of AT.
7. We obtain the search direction p from (2.21), as

if Ilpll < (Jslp IIp + ;Ydll,
otherwise,

where;Y was defined as in (2.26) with 'YM = 1010 and (Jslp = 100 (with this value the
step p + ;Yd is accepted in nearly all cases).

8. Finally, the multiplier estimate used to define the linesearch is taken to be 'Tr

if p = p. Otherwise, it is taken to be the least-squares estimate J.LL obtained from

6.2. Test problems. The two algorithms, NPSOL and INPSOL, have been
compared by solving a collection of 114 problems from the literature. The problems
have been obtained from the following sources.

(i) Problem 1 is the example problem distributed with NPSOLj its description
can be found in [15]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds -1 ::; X3 ::; 1 have been replaced by the constraint x5 ::; 1. Problem
3 uses the starting point

(ii) Descriptions for problems 6 and 12-15 can be found in (25). The version of
problem 6 considered is the one corresponding to a value T = 10. Problems 12 and
13 start from point (d) for Wright No. 4 as indicated in the reference, while problems
14 and 15 start from points (a) and (b) for Wright No. 9, respectively.

(iii) A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can
be found in Fraley [14).

634 WALTER MURRAY AND FRANCISCO J. PRIETO

2. The active-set method used in NPSOL was terminated at p, the first stationary
point. The multipliers 7C' at pare then computed. Define ir as irj == 7C'jllajll.

3. Let EM denote machine precision. If

(6.1)

then p is taken as the search direction.
4. If (6.1) do es not hold a step that moves off a subset of the active constraints

is computed. To identify the set of active constraints to be deleted, define 7C'min

minj irj , and introduce a vector el as

(6.2)
if irj :$ 1O-3 7C'min,

otherwise.

5. There is also a limit of 50 on the maximum number of constraints to be
deleted. If (6.2) is satisfied by more than 50 active constraints, only the ones having
the smallest multipliers are deleted. For most problems this limit has no effect, since
the total number of constraints is less than 50. This limit was introduced to limit the
cost of refactorization for the Jacobian matrix.

6. The direction d that moves off the selected constraints is obtained as the
least-Iength solution of the system Au = el ; that is, we define

where Y denotes a basis for the range-space of AT .

7. We obtain the search direction p from (2.21), as

if Ilpll < (3slp IIp + idll,
otherwise,

where i was defined as in (2.26) with 'YM = 1010 and (3slp = 100 (with this value the
step p + id is accepted in nearly all cases).

8. Finally, the multiplier estimate used to define the linesearch is taken to be 7C'

if p = p. Otherwise, it is taken to be the least-squares estimate J-LL obtained from

6.2. Test problems. The two algorithms, NPSOL and INPSOL, have been
compared by solving a collection of 114 problems from the literature. The problems
have been obtained from the following sources.

(i) Problem 1 is the example problem distributed with NPSOL; its description
can be found in [15]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds -1 :$ X3 :$ 1 have been replaced by the constraint x5 :$ 1. Problem
3 uses the starting point

(ii) Descriptions for problems 6 and 12-15 can be found in [25]. The version of
problem 6 considered is the one corresponding to a value T = 10. Problems 12 and
13 start from point (d) for Wright No. 4 as indicated in the reference, while problems
14 and 15 start from points (a) and (b) for Wright No. 9, respectively.

(iii) A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can
be found in Fraley [14].

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 635

(iv) Problems 21-30 were obtained from Boggs and Tolle [2].
(v) All problems having names starting with HS are from Hock and Schittkowski

(vi) Problems 85-95 can be found in Dembo [8].
All the above problems have been used in the past to test NPSOL. It should be

noted that the problems in this group are small; the average number of variables is
10, and the average number of constraints is 6. Nevertheless, many of these problems
are considered hard to solve. Moreover, for some of these problems the assumptions
made to establish the convergence results fail to hold; for example, in some cases the
Jacobian of the active NP constraints at x* is singular, or no feasible points exist for
some QP subproblems. In problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.
(vii) The structural optimization problems 99-114 are from Ringertz [30]. The

letters I and E in the problem name indicate if the formulation used included explicitly
the displacement variables (E) or eliminated them in advance. Also, the following
number (10, 25, 36, or 63) denotes the number of bars in the truss considered. Finally,
whenever a number is included at the end of the name (006, 040, or 060), the initial
point taken has been modified to be xj 6, 40, or 60, respectively.

These problems have been introduced due to the atypical behavior of quasi-
Newton SQP algorithms on them. For this group, the ratio of QP to nonlinear
iterations is large when compared to the size of the problem; on the first test set
(problems 1-98) the average ratio for NPSOL is 2 QP iterations per nonlinear itera-
tion, while on problems 99-114 the average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a

relatively large number of QP iterations in the first few nonlinear iterations. Typically,
the number of QP iterations declines exponentially until near a KKT point, when
only one iteration is required. The STRUC problems depart from this "standard"
behavior, in the sense that the number of QP iterations declines much more gradually.
(Although only one QP iteration is required in the end, most nonlinear iterations
require more.) This offers the possibility of observing the reductions that can be
achieved by using the early-termination criterion, with limited distortion from the
asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented
above; the average number of variables is now 55, and the average number of con-
straints is 100. For all the reasons mentioned, this set of problems provides a better
environment in which to test the ability of the proposed early-termination criterion
to reduce the number of QP iterations.

6.3. Computing environment. Version 4.02 ofNPSOL was used in these com-
parisons. For this test set, all parameters used in the code have been fixed at their
default values (see [15]). No attempt was made to improve the results by selecting
a different set of parameters. It would be difficult to compare the relative effort to
adjust input parameters for the two algorithms. The runs were performed as batch
jobs on a DE(:] VAXstation II with 5 Mb main memory. The operating system was

VAX/VMS version 4.5, and the compiler used was VAX FORTRAN version 4.6 with
default options.

6.4. Results. The results obtained from running both algorithms on the test set
are presented in Tables 4 and 2.

The parameters chosen to characterize the relative performance of both algo-
rithms have been: the number of outer (nonlinear) iterations for each. problem; the

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 635

(iv) Problems 21-30 were obtained from Boggs and Tolle [2].
(v) AH problems having names starting with HS are from Hock and Schittkowski

[22].
(vi) Problems 85-95 can be found in Dembo [8].
AH the aboye problems have been used in the past to test NPSOL. It should be

noted that the problems in this group are small; the average number of variables is
10, and the average number of constraints is 6. Nevertheless, many of these problems
are considered hard to solve. Moreover, for some of these problems the assumptions
made to establish the convergence results fail to hold; for example, in some cases the
Jacobian of the active NP constraints at x* is singular, or no feasible points exist for
some QP subproblems. In problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.
(vii) The structural optimization problems 99-114 are from Ringertz [30]. The

letters 1 and E in the problem name indicate if the formulation used included explicitly
the displacement variables (E) or eliminated them in advance. AIso, the following
number (10, 25, 36, or 63) denotes the number of bars in the truss considered. FinaHy,
whenever a number is included at the end of the name (006, 040, or 060), the initial
point taken has been modified to be Xj = 6, 40, or 60, respectively.

These problems have been introduced due to the atypical behavior of quasi
Newton SQP algorithms on them. For this group, the ratio of QP to nonlinear
iterations is large when compared to the size of the problem; on the first test set
(problems 1-98) the average ratio for NPSOL is 2 QP iterations per nonlinear itera
tion, while on problems 99-114 the average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a
relatively large number of QP iterations in the first few nonlinear iterations. Typically,
the number of QP iterations declines exponentially until near a KKT point, when
only one iteration is required. The STRUC problems depart from this "standard"
behavior, in the sense that the number of QP iterations declines much more graduaHy.
(Although only one QP iteration is required in the end, most nonlinear iterations
require more.) This offers the possibility of observing the reductions that can be
achieved by using the early-termination criterion, with limited distortion from the
asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented
aboye; the average number of variables is now 55, and the average number of con
straints is 100. For aH the reasons mentioned, this set of problems provides a better
environment in which to test the ability of the proposed early-termination criterion
to reduce the number of QP iterations.

6.3. Computing environment. Version 4.02 of NPSOL was used in these com
parisons. For this test set, aH parameters used in the cüde have been fixed at their
default values (see [15]). No attempt was made to improve the results by selecting
a different set of parameters. It would be difficult to compare the relative effort to
adjust input parameters for the two algorithms. The runs were performed as batch
jobs on a DEC VAXstation II with 5 Mb main memory. The operating system was
VAXjVMS version 4.5, and the compiler used was VAX FORTRAN version 4.6 with
default options.

6.4. Results. The results obtained from running both algorithms on the test set
are presented in Tables 4 and 2.

The parameters chosen to characterize the relative performance of both algo
rithms have been: the number of outer (nonlinear) iterations for each problem; the

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 635

(iv) Problems 21-30 were obtained from Boggs and Tolle [2].
(v) All problems having names starting with RS are from Rock and Schittkowski

[22].
(vi) Problems 85-95 can be found in Dembo [8].
All the aboye problems have been used in the past to test NPSOL. It should be

noted that the problems in this group are small; the average number of variables is
10, and the average number of constraints is 6. Nevertheless, many of these problems
are considered hard to solve. Moreover, for sorne of these problems the assumptions
made to establish the convergence results fail to hold; for example, in sorne cases the
Jacobian of the active NP constraints at x* is singular, or no feasible points exist for
sorne QP subproblems. In problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.
(vii) The structural optimization problems 99-114 are from Ringertz [30]. The

letters 1 and E in the problem name indicate ifthe formulation used included explicitly
the displacement variables (E) or eliminated them in advance. Also, the following
number (10, 25, 36, or 63) denotes the number of bars in the truss considered. Finally,
whenever a number is included at the end of the name (006, 040, or 060), the initial
point taken has been modified to be Xj = 6, 40, or 60, respectively.

These problems have been introduced due to the atypical behavior of quasi
Newton SQP algorithms on them. For this group, the ratio of QP to nonlinear
iterations is large when compared to the size of the problem; on the first test set
(problems 1-98) the average ratio for NPSOL is 2 QP iterations per nonlinear itera
tion, while on problems 99-114 the average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a
relatively large number of QP iterations in the first few nonlinear iterations. Typically,
the number of QP iterations declines exponentially until near a KKT point, when
only one iteration is required. The STRUC problems depart from this "standard"
behavior, in the sense that the number of QP iterations declines much more gradually.
(Although only one QP iteration is required in the end, most nonlinear iterations
require more.) This offers the possibility of observing the reductions that can be
achieved by using the early-termination criterion, with limited distortion from the
asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented
aboye; the average number of variables is now 55, and the average number of con
straints is 100. For all the reasons mentioned, this set of problems provides a better
environment in which to test the ability of the proposed early-termination criterion
to reduce the number of QP iterations.

6.3. Computing environment. Version 4.02 of NPSOL was used in these com
parisons. For this test set, all parameters used in the code have been fixed at their
default values (see [15]). No attempt was made to improve the results by selecting
a different set of parameters. It would be difficult to compare the relative effort to
adjust input parameters for the two algorithms. The runs were performed as batch
jobs on a DEC VAXstation II with 5 Mb main memory. The operating system was
VAXjVMS version 4.5, and the compiler used was VAX FORTRAN version 4.6 with
default options.

6.4. Results. The results obtained from running both algorithms on the test set
are presented in Tables 4 and 2.

The parameters chosen to characterize the relative performance of both algo
rithms have been: the nllmber of outer (nonlinear) iterations for each problem; the

636 WALTER MURRAY AND FRANCISCO J. PRIETO

TABLE

Average behavior: NPSOL vs. INPSOL.

Problems

All 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

number of calls to the routine computing the values of the objective function, the
constraint functions and their derivatives (function evaluations); the total number of
inner (QP) iterations for the problem (this includes the number of iterations nec-
essary to compute a feasible point); and the running (CPU) time needed to solve
the problem. The results corresponding to both algorithms are given as a single en-
try in the tables, with the figures separated by a slash / symbol, in the form
NPSOL result/INPSOL result.

Given that most of the problems are not convex, the algorithms may converge
to different KKT points. Three such events occurred. Another possible outcome
is failure---that is, the algorithm terminates without finding a solution, because the
iteration limit has been exceeded, because no significant progress can be made at the
current point with respect to the merit function, or because the objective or constraint
functions need to be evaluated at a point for which they are not defined in the code.
Such failures are indicated by a long dash (--).

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases,
while INPSOL was able to solve 105 problems. We should emphasize that only the
default value of the input parameters were used. Undoubtedly adjustment of the
input parameters on the problems that failed would have led to more successes. The
figures illustrate the reliability of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in
Table 2. The average values have been computed as the geometric means for the ratios
of the values for NPSOL and for INPSOL; that is, averages larger than one indicate
that the corresponding value for NPSOL is larger than the value for INPSOL. Also, the
averages exclude those problems where one of the algorithms failed. Separate entries
have been provided for problems 1-98 (the smaller problems), and for problems 99-114
(the structural optimization problems).

We now comment briefly on the implications of these results.

(i) The early-termination rule seems to behave very well regarding the numbers
of nonlinear iterations and function evaluations; even if we are now using a search
direction of "worse quality" than in NPSOL, the numbers are very close for both
algorithms.

636 WALTER MURRAY AND FRANCISCO J. PRIETO

TABLE 1

Average behavior: NPSOL vs. INPSOL.

Problems

AH 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

number of calls to the routine computing the values of the objective function, the
constraint functions and their derivatives (function evaluations)j the total number of
inner (QP) iterations for the problem (this ineludes the number of iterations nec
essary to compute a feasible point)j and the running (CPU) time needed to solve
the problem. The results corresponding to both algorithms are given as a single en
try in the tables, with the figures separated by a slash (/) symbol, in the form
NPSOL result/INPSOL resulto

Given that most of the problems are not convex, the algorithms may converge
to different KKT points. Three such events occurred. Another possible outcome
is failure--that is, the algorithm terminates without finding a solution, because the
iteration limit has been exceeded, because no significant progress can be made at the
current point with respect to the merit function, or because the objective or constraint
functions need to be evaluated at a point for which they are not defined in the codeo
Such failures are indicated by a long dash (-).

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases,
while INPSOL was able to solve 105 problems. We should emphasize that only the
default value of the input parameters were used. Undoubtedly adjustment of the
input parameters on the problems that failed would have led to more successes. The
figures illustrate the reliability of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in
Table 2. The average values have been computed as the geometric means for the ratios
of the values for NPSOL and for INPSOLj that is, averages larger than one indicate
that the corresponding value for NPSOL is larger than the value for INPSOL. AIso, the
averages exelude those problems where one of the algorithms failed. Separate entries
have been provided for problems 1-98 (the smaller problems), and for problems 99-114
(the structural optimization problems).

We now comment briefly on the implications of these results.

(i) The early-termination rule seems to behave very well regarding the numbers
of nonlinear iterations and function evaluationsj even if we are now using a search
direction of "worse quality" than in NPSOL, the numbers are very elose for both
algorithms.

636 WALTER MURRAY AND FRANCISCO J. PRIETO

TABLE 1

Average behavior: NPSOL vs. INPSOL.

Problems

AH 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

number of calls to the routine computing the values of the objective function, the
constraint functions and their derivatives (function evaluations)j the total number of
inner (QP) iterations for the problem (this ineludes the number of iterations nec
essary to compute a feasible point)j and the running (CPU) time needed to solve
the problem. The results corresponding to both algorithms are given as a single en
try in the tables, with the figures separated by a slash (/) symbol, in the form
NPSOL result/INPSOL resulto

Given that most of the problems are not convex, the algorithms may converge
to different KKT points. Three such events occurred. Another possible outcome
is failure-that is, the algorithm terminates without finding a solution, because the
iteration limit has been exceeded, because no significant progress can be made at the
current point with respect to the merit function, or because the objective or constraint
functions need to be evaluated at a point for which they are not defined in the codeo
Such failures are indicated by a long dash (-).

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases,
while INPSOL was able to solve 105 problems. We should emphasize that only the
default value of the input parameters were used. Undoubtedly adjustment of the
input parameters on the problems that failed would have led to more successes. The
figures illustrate the reliability of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in
Table 2. The average values have been computed as the geometric means for the ratios
of the values for NPSOL and for INPSOLj that is, averages larger than one indicate
that the corresponding value for NPSOL is larger than the value for INPSOL. AIso, the
averages exelude those problems where one of the algorithms failed. Separate entries
have been provided for problems 1-98 (the smaller problems), and for problems 99-114
(the structural optimization problems).

We now comment briefly on the implications of these results.

(i) The early-termination rule seems to behave very well regarding the numbers
of nonlinear iterations and function evaluationsj even if we are now using a search
direction of "worse quality" than in NPSOL, the numbers are very elose for both
algorithms.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 637

(ii) The number of QP iterations is reduced by 20% for the complete set. When
judging this figure we must take into account that the problems are small, implying
that the number of QP iterations required per nonlinear iteration is also small. (In
fact, the average value for the test set is 5.6 QP iterations per nonlinear iteration.)
The opportunity for improvement is correspondingly limited. Moreover, both codes
use the active set at the solution of the previous QP subproblem as a prediction
for the correct active set in the current subproblem, resulting in a small number
of QP iterations close to a KKT point. As a result, significant savings achieved
by incomplete solution of QP subproblems in the early iterations are masked by a
large number of subproblems requiring only a few QP iterations. As an example, for
problem 98 the largest number of QP iterations needed in any nonlinear iteration is
reduced from 57 for NPSOL to 15 for INPSOL. This effect is much less clear when we
look at total numbers of QP iterations (244 for NPSOL vs. 170 for INPSOL). Recall
that it is necessary in any implementation to limit the number of iterations taken to
solve the subproblem. This large reduction in the maximum number of iterations is
encouraging. Moreover, it indicates that INPSOL and NPSOL took quite different
paths to obtain a solution on many of the problems. In the light of this fact the
similarity of performance is quite remarkable. Finally, the early-termination rule still
requires a feasible point, and the feasibility phase is the same as in NPSOL. When
this phase accounts for most of the total number of iterations, as with the STRUC
problems, the possibility of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement ob-
tained is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when
we look only at the larger problems, the relative performance of INPSOL improves
markedly. This offers the promise that for even larger problems the results obtained
may be substantially better than the values shown above.

(iii) The CPU time required by INPSOL is lower than the time for NPSOL, but
by a factor that is much smaller than for the number of QP iterations. This is due
not only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

7. Acknowledgments. We are grateful to the referees for their effort at ref-
ereeing a long and difficult paper. Their care and attention to detail resulted in a
substantial improvement over the first version of this paper. The prodding of one
referee in particular led to our weakening our assumptions and including considerable
new material in the paper.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 637

(ii) The number of QP iterations is reduced by 20% for the complete seto When
judging this figure we must take into account that the problems are small, implying
that the number of QP iterations required per nonlinear iteration is also small. (In
fact, the average value for the test set is 5.6 QP iterations per nonlinear iteration.)
The opportunity for improvement is correspondingly limited. Moreover, both codes
use the active set at the solution of the previous QP subproblem as a prediction
for the correct active set in the current subproblem, resulting in a small number
of QP iterations close to a KKT point. As a result, significant savings achieved
by incomplete solution of QP subproblems in the early iterations are masked by a
large number of subproblems requiring only a few QP iterations. As an example, for
problem 98 the largest number of QP iterations needed in any nonlinear iteration is
réduced from 57 for NPSOL to 15 for INPSOL. This effect is much less clear when we
look at total numbers of QP iterations (244 for NPSOL vs. 170 for INPSOL). Recall
that it is necessary in any implementation to limit the number of iterations taken to
solve the subproblem. This large reduction in the maximum number of iterations is
encouraging. Moreover, it indicates that INPSOL and NPSOL took quite different
paths to obtain a solution on many of the problems. In the light of this fact the
similarity of performance is quite remarkable. Finally, the early-termination rule still
requires a feasible point, and the feasibility phase is the same as in NPSOL. When
this phase accounts for most of the total number of iterations, as with the STRUC
problems, the possibility of improvement is further diminished.

Nonetheless, it should be noted that for problems 99--114 the improvement oh
tained is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when
we look only at the larger problems, the relative performance of INPSOL improves
markedly. This offers the promise that for even larger problems the results obtained
may be substantially better than the values shown above.

(iii) The CPU time required by INPSOL is lower than the time for NPSOL, but
by a factor that is much smaller than for the number of QP iterations. This is due
not only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

7. Acknowledgments. We are grateful to the referees for their effort at ref
ereeing a long and difficult paper. Their care and attention to detail resulted in a
substantial improvement over the first version of this papero The prodding of one
referee in particular led to our weakening our assumptions and including considerable
new material in the paper.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 637

(ii) The number of QP iterations is reduced by 20% for the complete seto When
judging this figure we must take into account that the problems are small, implying
that the number of QP iterations required per nonlinear iteration is also small. (In
fact, the average value for the test set is 5.6 QP iterations per nonlinear iteration.)
The opportunity for improvement is correspondingly limited. Moreover, both codes
use the active set at the solution of the previous QP subproblem as a prediction
for the correct active set in the current subproblem, resulting in a small number
of QP iterations close to a KKT point. As a result, significant savings achieved
by incomplete solution of QP subproblems in the early iterations are masked by a
large number of subproblems requiring only a few QP iterations. As an example, for
problem 98 the largest number of QP iterations needed in any nonlinear iteration is
n~duced from 57 for NPSOL to 15 for INPSOL. This effect is much less clear when we
look at total numbers of QP iterations (244 for NPSOL vs. 170 for INPSOL). Recall
that it is necessary in any implementation to limit the number of iterations taken to
solve the subproblem. This large reduction in the maximum number of iterations is
encouraging. Moreover, it indicates that INPSOL and NPSOL took quite different
paths to obtain a solution on many of the problems. In the light of this fact the
similarity of performance is quite remarkable. Finally, the early-termination rule still
requires a feasible point, and the feasibility phase is the same as in NPSOL. When
this phase accounts for most of the total number of iterations, as with the STRUC
problems, the possibility of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement ob
tained is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when
we look only at the larger problems, the relative performance of INPSOL improves
markedly. This offers the promise that for even larger problems the results obtained
may be substantially better than the values shown aboye.

(iii) The CPU time required by INPSOL is lower than the time for NPSOL, but
by a factor that is much smaller than for the number of QP iterations. This is due
not only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to sorne details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

7. Acknowledgments. We are grateful to the referees for their effort at ref
ereeing a long and difficult papero Their care and attention to detail resulted in a
substantial improvement over the first version of this paper. The prodding of one
referee in particular led to our weakening our assumptions and including considerable
new material in the paper.

638 WALTER MURRAY AND FRANCISCO J. PRIETO

No. Problem name

TABLE 2
Numerical results.

Nonlinear Function QP
iterations evaluations iterations

CPU
time (s)

NPSOL SAMPLE PROBLEM
2 SINGULAR
3 HEXAGON
4 HEXAGON (ALT. START)
5 LC7
6 ALAN MANNE’S PROBLEM
7 ROSEN-SUZUKI
8 QP PROBLEM
9 EXP6
10 STEINKE2
11 NORWAY
12 MHW4
13 MHW9
14 MHW9 INEQUALITY
15 MHW9 INEQUALITY 2
16 WOPLANT
17 SQUARE ROOT
18 SQUARE ROOT 2
19 SQUARE ROOT 3
20 SQUARE ROOT 4
21 BT1
22 BT2
23 BT3
24 BT4
25 BT5-HS63
26 BT6--HS77
27 BT7
28 BT8
29 BT9-HS39
30 BT10
31 BT11-HS79
32 BT12
33 BT13
34 POWELL TRIANGLES
35 POWELL BADLY SCALED
36 POWELL WRIGGLE
37 POWELL-MARATOS
38 HS72
39 HS73 (CATTLE FEED)
40 HS107
41 MUKAI-POLAK
42 INFEASIBLE SUBPROBLEM
43 HS26
44 HS32
45 HS46
46 HS51
47 HS52
48 HS53
49 PENALTY1 A
50 PENALTY1 B
51 PENALTY1 C
52 HS13
53 HS64
54 HS65
55 HST0
56 HS71
57 HS74
58 HS75
59 HS78
60 HSS0
61 HS81
62 HS84
63 HS85
64 HS86 (COLVILLE 1)
65 HS87 (COLVILLE 6)
66 HS93
67 HS95
68 HS96
69 HS97
70 HS98
71 HS99
72 HS100
73 HS104
74 HS105
75 HS108 (HEXAGON)
76 HS109
77 HSll0
78 HSlll

Failed to solve the problem.
Converged to a different minimizer.

12/13
15/15
15/16
11/11
79
17/17
8/8
8/10

416
10/10
3o/19t
28/23
41/14
/o.

9/9
2/2
12/12
6/6
15/15
31/31
17/17
13/13
s/8
9/9
27/27
32/32
23/15
12/12
34/32
6/6
7/7
4/4
11/11
19/0.

2/4
55/55
2/2
2/2
2/2
16/16
6/7
29/15
22/19
29/43
8/9

lO/26
6/8
lO/lO
8/8
/4
74
_6/7
11/8
12/12
1/1
1/1
3/3

14/14
18/18
43/--*
24/32
11/lO
6/6
41/49

16/18
16/16
21/23
16/14
9/11
18/18
11/11
9/11
35/57
--/6
5/7
18/15
56/28
38’28
58/27
2933
36/36
9’9

19 ’19
14’14
5’5
18’18
9 ’9

21 ’21
56 ’56
19’19
1616
11’11
12 ’12
57’57
44’44
37 ’16
15 ’15
69 ’55
7’7

45/34
4/4

32/29
35/26
13/16
40/37
9/9

23/15
38/57
---/14
34/13
14/12
42/24
59/40
80/24
44/35

1111
13/13
8/8
16/16
32/32
17/17
14/14
0/0
10/10
28/28
34/34
36/23
13/1
60/40
6/6
8/8
4/4

27/18
13/13

67/32
152/65
13/10
47/60
16/16

14/25
7/9
11/11

15/15

11/11
18/14
14/14
1/1
1/1
3/3

18/18
23/23
971--
57/87
25/29
24/15
44/52

3.69/3.61
1.03/1.05
4.41/4.41
3.56/3.26
.76/.95

21.13/21.92
.81/.81

1.10/1.04
1.96/3.08
--/.87

1.23/.65
1.31/1.25
3.71/2.31
3.41/2.73
4.83/1.77
6.85/7.17

.81.83

.71/.70

.19/.19

.92/.92

.58/.58
1.52/1.54
3.36/3.43
1.25 1.44
.95/1.19
.48/.52

1.05 1.06
3.04 ’3.04
2.61 ’2.62
3.27 ’2.28
.85/.85

2.77/2.39
.44/.44

2.77/2.56
1.08/1.11

.25/.38
5.26/4.98
.1S/.14
.19/.16
.19/.16

20.01/16.49
14.77/11.77
24.35/11.65
1.29/1.22
2.34/3.33
.70/.78

3.33/--
.53/.67

1.17/2.68
.72/.90

1.15/1.15
.92/.92

1.57/1.60

.62/.64
1.63/1.23
1.36/1.38
.15/.15
.17/.15
,40/.41
.43/.44

3.99/--
2.07/2.02
3.36/3.37

27.14/
6.78/9.36
3.23/3.26
.78/.69

8.08/9.05

638 WALTER MURRAY AND FRANCISCO J. PRIETO

TABLE 2
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time {sl

1 NP80L 8AMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 8INGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. 8TART) 11/11 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE'8 PROBLEM 17/17 18/18 40/37 21.13/21.92
7 R08EN-8UZUKI 8/8 11/11 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04
9 EXP6 33/53 35/57 38/57 1.96/3.08

10 8TEINKE2 -*/5 -/6 -/14 -/.87
11 NORWAY 4/6t 5/7 34/13 1.23/.65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13 MHW9 30/19t 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14t 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 8QUARE ROOT 1 -*/-* -/- --/- -/-
18 8QUARE ROOT 2 23/23 36/36 O/O 5.01/5.32
19 8QUARE ROOT 3 6/6 9/9 7/7 .95;'94
20 8QUARE ROOT 4 -*/-* -/- -/- -/-
21 BT1 11/11 19/19 11/11 .81/.83
22 BT2 9/9 14/14 9/9 .71/.70
23 BT3 2/2 5/5 2/2 .19/.19
24 BT4 12/12 18/18 13/13 .92/.92
25 BT5-H863 6/6 9/9 8/8 .58/.58
26 BT6--H877 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BT8 17/17 19/19 17/17 1.25/1.44
29 BT9-H839 13/13 16/16 14/14 .95/1.19
30 BTlO 8/8 11/11 O/O .48/.52
31 BT11-H879 9/9 12/12 lO/lO 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BT13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLE8 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY 8CALED 12/12 15/15 13/1.3 .85;'85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARAT08 6/6 7/7 6/6 .44/.44
38 H872 7/7 8/8 8/8 .69/.67
39 H873 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 H8107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK lO/lO 16/16 13/13 1.08/1.11
42 INFEA8IBLE 8UBPROBLEM -*/-* -/- -1- -/-
43 H826 47/47 64/64 48/48 3.39/3.41
44 H832 2/4 3/5 3/5 .25/.38
45 H846 55/55 58/58 56/56 5.26/4.98
46 H851 2/2 5/5 2/2 .18;'14
47 H852 2/2 5/5 2/2 .19/.16
48 H853 2/2 5/5 2/2 .19/.16
49 PENALTY1 A 16/16 18/19 77/41 20.01/16.49
50 PENALTY1 B 6/7 14/19 67/32 14.77/11. 77
51 PENALTY1 C 29/15 85/40 152/65 24.35/11.65
52 H813 22/19 23/20 13/10 1.29/1.22
53 H864 29/43 39/62 47/60 2.34/3.33
54 H865 8/9 10/11 16/16 .70/.78
55 H870 36/--* 39/- 39/- - 3.33/-
56 H871 5/7 6/9 9/9 .53;'67
57 H874 10/26 15/48 14/28 1.17/2.68
58 H875 6/8 10/11 7/9 .72/.90
59 H878 lO/lO 14/14 11/11 1.15/1.15
60 H880 8/8 lO/lO 8/8 .92/.92
61 H881 14/14 20/20 15/15 1.57/1.60
62 H884 -*/4 -/5 -/9 -/.51
63 H885 17/14 18/15 33/20 4.00/3.12
64 H886 ~COLVILLE 1~ 6/7 8/8 11/11 .62/.64
65 H887 COLVILLE 6 11/8 18/9 18/14 1.63/1.23
66 H893 12/12 15/15 14/14 1.36/1.38
67 H895 1/1 2/2 1/1 .15/.15
68 H896 1/1 2/2 1/1 .17/.15
69 H897 3/3 6/6 3/3 .40/.41
70 H898 3/3 6/6 8/8 .43/.44
71 H899 23/-* 44/- 74/- 3.99/-
72 H8100 14/14 29/29 18/18 2.07/2.02
73 H8104 18/18 20/20 23/23 3.36/3.37
74 H8105 43/-* 61/- 97/- 27.14/-
75 H8108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36
76 H8109 11/10 13/11 25/29 3.23/3.26
77 H8110 6/6 9/9 24/15 .78/.69
78 H8111 41/49 64/75 44/52 8.08/9.05

* Failed to solve the problem.
t Converged to a different minimizer.

638 WALTER MURRAY AND FRANCISCO J. PRIETO

TABLE 2
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (8)

1 NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/ .95
6 ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7 ROSEN-SUZUKI 8/8 11/11 9/9 .81/ .81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04
9 EXP6 33/53 35/57 38/57 1.96/3.08

10 STEINKE2 -* /5 -/6 /14 -/.87
11 NO RWAY 4/6 t 5/7 34/13 1.23/ .65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13 MHW9 30/19t 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14t 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 SQUARE ROOT 1 ._*/- . .* --/-- --/ -- -/--
18 SQUARE ROOT 2 23/23 36/36 O/O 5.01/5.32
19 SQUARE ROOT 3 6/6 9/9 7/7 .95/.94
20 SQUARE ROOT 4 _ .. '/_ .. .* -/- --/ -/-
21 BT1 11/11 19/19 11/11 .81;'83
22 BT2 9/9 14/14 9/9 .71;'70
23 BT3 2/2 5/5 2/2 .19/.19
24 BT4 12/12 18/18 13/13 .92/ .92
:25 BT5--HS63 6/6 9/9 8/8 .58/ .58
26 BT6HS77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BT8 17/17 19/19 17/17 1.25/1.44
29 BT9-HS39 13/13 16/16 14/14 .95/1.19
30 BTlO 8/8 11/11 O/O .48/ .52
31 BT11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BT13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85;'85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 7/7 6/6 .44/ .44
38 HS72 7/7 8/8 8/8 .69;'67
39 HS73 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INFEASIBLE SUBPROBLEM -* /-' --/_. -/- - / .

43 HS26 47/47 64/64 48/48 3.39/3.41
44 HS32 2/4 3/5 3/5 .25;'38
45 HS46 55/55 58/58 56/56 5.26/4.98
46 HS51 2/2 5/5 2/2 .18/.14
47 HS52 2/2 5/5 2/2 .19/.16
48 HS53 2/2 5/5 2/2 .19;'16
49 PENALTY1 A 16/16 18/19 77/41 20.01/16.49
50 PENALTY1 B 6/7 14/19 67/32 14.77/11.77
51 PENALTY1 C 29/15 85/40 152/65 24.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53 HS64 29/43 39/62 47/60 2.34/3.33
54 HS65 8/9 10/11 16/16 .70;'78
55 HS70 36/-' 39/- 39/- .. 3.33/-
56 HS71 5/7 6/9 9/9 .53/ .67
57 HS74 10/26 15/48 14/28 1.17/2.68
58 HS75 6/8 10/11 7/9 .72;'90
59 HS78 10/10 14/14 11/11 1.15/1.15
60 HS80 8/8 lO/lO 8/8 .92/.92
61 HS81 14/14 20/20 15/15 1.57/1.60
62 HS84 -*/4 --/5 -/9 -/.51
63 HS85 17/14 18/15 33/20 4.00/3.12
64 HS86 ¡COLVILLE 1j 6/7 8/8 11/11 .62/.64
65 HS87 COLVILLE 6 11/8 18/9 18/14 1.63/1.23
66 HS93 12/12 15/15 14/14 1.36/1.38
67 HS95 1/1 2/2 1/1 .15/.15
68 HS96 1/1 2/2 1/1 .17;'15
69 HS97 3/3 6/6 3/3 .40/.41
70 HS98 3/3 6/6 8/8 .43/ .44
71 HS99 23/---' 44/- 74/-- 3.99/-
72 HS100 14/14 29/29 18/18 2.07/2.02
73 HS104 18/18 20/20 23/23 3.36/3.37
74 HS105 43/--' 61/- 97/- 27.14/-
75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36
76 HS109 11/10 13/11 25/29 3.23/3.26
77 HS110 6/6 9/9 24/15 .78/.69
78 HS111 41/49 64/75 44/52 8.08/9.05

• Failed to solve the problem.
t Converged to a different minimizer.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 639

TABLE 2 (cont.)
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time

79 HSll2 (CHEMICAL EQ.) 19
80 HSll3 14
81 HSll4 18
82 HSll7 (COLVILLE 2) 17
83 HSll8 (LC PROBLEM) 4
84 HSll9 (COLVILLE 7) 12
85 DEMBO 1B 281
86 DEMBO 2-HS83 4
87 DEMBO 3 9
88 DEMBO 4A 19
89 DEMBO 4C 13
90 DEMBO 5-HS106 17
91 DEMBO 6-HSl16 36
92 DEMBO 7 19
93 DEMBO 8A 33
94 DEMBO 8B 29
95 DEMBO 8C 25
96 OPF 18
97 GBD EQUILIBRIUM MOD. 5
98 WEAPON ASSIGNMENT 96
99 STRUCI10KON 18
100 STRUCE10KON 26
101 STRUCI10VAN 2.3j
102 STRUCE10VAN
103 STRUCI25006 42
104 STRUCE25006 20
105 STRUCI25DAT 11
106 STRUCE25DAT 52
107 STRUCI36DAT 23
108 STRUCE36DAT 29
109 STRUCI63040 117
110 STRUCE63040 375j
111 STRUCI63060 --*
112 STRUCE63060 63
113 STRUCI63DAT 246
114 STRUCE63DAT 52

Failed to solve the problem.
Converged to a different minimizer.

54/-- 2.78/--
38/36 3.12/3.41
36/33 3.81/3.60
96/39 6.75/5.34
20/20 1.35/1.40
41/47 4.25/5.60
296/--

4/4 .54/.54
37/20 2.01/1.78
24/24 3.53/3.31
20/23 3.10/3.20
30/31 2.90/3.04
144/248 21.84/29.65
126/68 15.54/9.82

7.52/9.17
6.51/6.45

105/99
88/73
89/65 6.19/6.o6
53/51 468.12/456.1o
37/26 6.22/6.10

244/170 120.78/114.93
65/42 13.67/11.73
87/84 17.68/20.75
54/51 16.30/13.85
--/91 /19.44
147/85 92.44/80.99
178/95 357.83/260.79
24/22 24.75/27.11

687/65 647.13/.191.44
59/46 120.79/108.02
87/90 971.16/1021.9

6116/3091 8182.1/7159.0
3545/-- 77286.6/--

/3899 /8281.0
6675/3407 25090.2/33228.4
9043/2060 12591.6/11424.5
8049/2858 41793.8/22740.7

REFERENCES

[1] M. C. BIGGS (1972), Constrained minimization using recursive equality quadratic programming,
in Numerical Methods for Nonlinear Optimization, F.A. Lootsma, ed., Academic Press,
London, New York.

[2] P. T. BOGGS AND J. W. TOLLE (1984), A family of descent functions for constrained optimiza-
tion, SIAM J. Numer. Anal., 21, pp. 1146-1161.

[3] P. T. BOGGS, J. W. TOLLE, AND P. WANG (1982), On the local convergence of quasi-Newton
methods for constrained optimization, SIAM J. Control Optim., 20, pp. 161-171.

[4] J. V. BURKE AND S.-P. HAN (1989), A robust sequential quadratic programming algorithm,
Math. Programming, 43, pp. 277-303.

[5] R. H. BYRD AND J. NOCEDAL (1988), An analysis of reduced Hessian methods for constrained
Optimization, Report CU-CS-398-88, Department of Computer Science, University of Col-
orado, Boulder.

[6] P. H. CALAMAI AND J. J. MOP] (1987), Projected gradient methods for linearly constrained
problems, Math. Programming, 39, pp. 93-116.

[7] M. R. CELIS, J. E. DENNIS, Jt., AND R. A. TAPIA (1985), A trust region strategy for nonlinear
equality constrained optimization, in Numerical Optimization, P. T. Boggs, R. H. Byrd,
and R. B. Schnabel, eds., Society for Industrial and Applied Mathematics, Philadelphia.

[8] R.S. DEMBO (1976), A set of geometric programming test problems and their solutions, Math.
Programming, 10, pp. 192-213.

[9] R.S. DEMBO AND V. TULOWITZKI (1985), Sequential truncated quadratic programming methods,
in Numerical Optimization, P.T. Boggs, R.H. Byrd, and R.B. Schnabel, eds., Society for
Industrial and Applied Mathematics, Philadelphia.

[10] S.K. ELDEISVELD (1991), Large-scale sequential quadratic programming algorithms, Ph. D.
thesis, Stanford University, Stanford, CA.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 639

TABLE 2 (cont.)
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)

79 HS112 (CHEMICAL EQ.) 19/-* 39/- 54/- 2.78/-
80 HS113 14/16 19/23 38/36 3.12/3.41
81 HS114 18/16 19/24 36/33 3.81/3.60
82 HS117 ~COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
83 HS118 LC PROBLEM) 4/4 6/6 20/20 1.35/1.40
84 HS119 COLVILLE 7) 12/l7 16/19 41/47 4.25/5.60
85 DEMB lB 281/-* 437/- 296/- 75.46/-
86 DEMBO 2-HS83 4/4 6/6 4/4 .54/.54
87 DEMBO 3 9/8 11/9 37/20 2.01/1.78
88 DEMBO 4A 19/19 23/23 24/24 3.53/3.31
89 DEMBO 4C 13/13 15/15 20/23 3.10/3.20
90 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMBO 8A 33/42 85/118 105/99 7.52/9.17
94 DEMBO 8B 29/29 69/71 88/73 6.51/6.45
95 DEMBO 8C 25/27 60/68 89/65 6.19/6.06
96 OPF 18/17 19/18 53/51 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93
99 STRUCIlOKON 18/17 34/30 65/42 13.67/11. 73

100 STRUCElOKON 26/29 49/67 87/84 17.68/20.75
101 STRUCIlOVAN 23/19 41/34 54/51 16.30/13.85
102 STRUCElOVAN -*/24 -/48 -/91 -/19.44
103 STRUCI25006 42/37 68/62 147/85 92.44/80.99
104 STRUCE25006 20/28 32/36 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687/65 647.131.191.44
107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.9
109 STRUCI63040 117/112 211/202 6116/3091 8182.1/7159.0
110 STRUCE63040 375/-* 794/- 3545/- 77286.6/-
111 STRUCI63060 -*/98 -/244 -/3899 -/8281.0
112 STRUCE63060 63/115 150/316 6675/3407 25090.2/33228.4
113 STRUCI63DAT 246/136 354/412 9043/2060 12591.6/11424.5
114 STRUCE63DAT 52/72 86/145 8049/2858 41793.8/22740.7

• Failed to solve the problem.
t Converged to a different minimizer.

REFERENCES

[1) M. C. BIGGS (1972), Constrained minimization using recursive equality quadratic programming,
in Numerical Methods for Nonlinear Optimization, F.A. Lootsma, ed., Academic Press,
London, New York.

[2) P. T. BOGGS ANO J. W. TaLLE (1984), A lamily 01 descent functions lor constrained optimiza
tion, SIAM J. Numer. Anal., 21, pp. 1146-1161.

[3] P. T. BOGGs, J. W. TaLLE, ANO P. WANG (1982), On the local convergence 01 quasi-Newton
methods lor constrained optimization, SIAM J. Control Optim., 20, pp. 161-171.

[4] J. V. BURKE ANO S.-P. HAN (1989), A robust sequential quadratic programming algorithm,
Math. Programming, 43, pp. 277-303.

[5] R. H. BVRO ANO J. NOCEDAL (1988), An analysis olreduced Hessian methods lor constrained
optimization, Report CU-CS-398-88, Department of Computer Science, University of Col
orado, Boulder.

[6) P. H. CALAMAI ANO J. J. MORÉ (1987), Projected gradient methods lor linearly constrained
problems, Math. Programming, 39, pp. 93-116.

[7) M. R. CELIS, J. E. DENNIS, JR., ANO R. A. TAPIA (1985), A trust regíon strategy lor nonlinear
equality constrained optimization, in Numerical Optimization, P. T. Boggs, R. H. Byrd,
and R. B. Schnabel, eds., Society for Industrial and Applied Mathematics, Philadelphia.

[8] R.S. DEMBO (1976), A set of geometric programming test problema and their solutions, Math.
Programming, 10, pp. 192-213.

[9) R.S. DEMBO ANO U. TULOWITZKI (1985), Sequential truncated quadratic programming methods,
in Numerical Optimization, P.T. Boggs, R.H. Byrd, and R.B. Schnabel, eds., Society for
Industrial and Applied Mathematics, Philadelphia.

[10) S.K. ELOERSVELO (1991), Large-scale sequential quadratic programming algorithms, Ph. D.
thesis, Stanford University, Stanford, CA.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 639

TABLE 2 (cont.)
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (8)

79 HS112 (CHEMICAL EQ.) 19/-" 39/- 54/- 2.78/ --
80 HS113 14/16 19/23 38/36 3.12/3.41
81 HS114 18/16 19/24 36/33 3.81/3.60
82 HS117 ~COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
83 HS118 LC PROBLEM) 4/4 6/6 20/20 1.35/1.40
84 HS119 COLVILLE 7) 12/F 16/19 41/47 4.25/5.60
85 DEMB lB 281/--" 437/- 296/- 75.46/-
86 DEMBO 2-HS83 4/4 6/6 4/4 .54;'54
87 DEMBO 3 9/8 11/9 37/20 2.01/1.78
88 DEMB04A 19/19 23/23 24/24 3.53/3.31
89 DEMBO 4C 13/13 15/15 20/23 3.10/3.20
90 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMB08A 33/42 85/118 105/99 7.52/9.17
94 DEMBO 8B 29/29 69/71 88/73 6.51/6.45
95 DEMBO 8C 25/27 60/68 89/65 6.19/6.06
96 OPF 18/17 19/18 53/51 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93
99 STRUCIlOKON 18/17 34/30 65/42 13.67/11.73

100 STRUCElOKON 26/29 49/67 87/84 17.68/20.75
101 STRUCIlOVAN 23/19 41/34 54/51 16.30/13.85
102 STRUCElOVAN -"/24 -/48 -/91 -/19.44
103 STRUCI25006 42/37 68/62 147/85 92.44/80.99
104 STRUCE25006 20/28 32/36 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687/65 647.13/.191.44
107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.9
109 STRUCI63040 117/112 211/202 6116/3091 8182.1/7159.0
110 STRUCE63040 375/-" 794/- 3545/--- 77286.6/--
111 STRUCI63060 --" /98 -/244 -/3899 -/8281.0
112 STRUCE63060 63/115 150/316 6675/3407 25090.2/33228.4
113 STRUCI63DAT 246/136 354/412 9043/2060 12591.6/11424.5
114 STRUCE63DAT 52/72 86/145 8049/2858 41793.8/22740.7

" Failed to solve the problem.
t Converged to a different minimizer.

REFERENCES

[1] M. C. BIGGS (1972), Constrained minimization using recursive equality quadratic programming,
in Numerical Methods for Nonlinear Optimization, F.A. Lootsma, ed., Academic Press,
London, New York.

[2] P. T. BOGGS AND J. W. TOLLE (1984), A family of descent functions for constrained optimiza
tion, SIAM J. Numer. Anal., 21, pp. 1146-1161.

[3] P. T. BOGGs, J. W. TOLLE, AND P. WANG (1982), On the local convergence of quasi-Newton
methods for constrained optimization, SIAM J. Control Optim., 20, pp. 161-171.

[4] J. V. BURKE AND S.-P. HAN (1989), A robust sequential quadratic programming algorithm,
Math. Programming, 43, pp. 277-303.

[5J R. H. BYRD AND J. NOCEDAL (1988), An analysis of reduced Hessian methods for constrained
optimization, Report CU-CS-398-88, Department of Computer Science, University of Col
orado, Boulder.

[6J P. H. CALAMAI AND J. J. MORÉ (1987), Projected gradient methods for linearly constrained
problems, Math. Programming, 39, pp. 93-116.

[7] M. R. CELIS, J. E. DENNIS, JR., AND R A. TAPIA (1985), A trust region strategy for nonlinear
equality constrained optimization, in Numerical Optimization, P. T. Boggs, R H. Byrd,
and R. B. Schnabel, eds., Society for Industrial and Applied Mathematics, Philadelphia.

[8] RS. DEMBO (1976), A set of geometric programming test problems and their solutions, Math.
Programming, 10, pp. 192-213.

[9J R.S. DEMBO AND U. TULOWITZKI (1985), Sequential truncated quadratic programming methods,
in Numerical Optimization, P.T. Boggs, R.H. Byrd, and RB. Schnabel, eds., Society for
Industrial and Applied Mathematics, Philadelphia.

[10] S.K. ELDERSVELD (1991), Large-scale sequential quadratic programming algorithms, Ph. D.
thesis, Stanford University, Stanford, CA.

640 WALTER MURRAY AND FRANCISCO J. PRIETO

[11] R. FLETCHER (1970), A class of methods for nonlinear programming with termination and con-
vergence properties, in Integer and Nonlinear Programming, J. Abadie, ed., North Holland,
Amsterdam.

[12] (1985), An ll penalty method for nonlinear constraints, in Numerical Optimization, P.T.
Boggs, R.H. Byrd, and R.B. Schnabel, eds., Society for Industrial and Applied Mathemat-
ics, Philadelphia.

[13] (1987), Practical Methods of Optimization, John Wiley and Sons, Chichester, New York,
Brisbane, Toronto, Singapore.

[14] C. FRALEY (198S), Software performance on nonlinear least-squares problems, SOL Report
88-17, Department of Operations Research, Stanford University, Stanford, CA.

[15] P.E. GILL, W. MURRAY, M.A. SAUNDERS, AND M.H. WRIGHT (1986), User’s guide for NPSOL
(Version 4.0): a FORTRAN package for nonlinear programming, Report SOL 86-2, De-
partment of Operations Research, Stanford University, Stanford, CA.

[16] (1986), Some theoretical properties of an augmented Lagrangian merit function, Report
SOL 86-6R, Department of Operations Research, Stanford University, Stanford, CA.

[17] (1988), Inertia-controlling methods for quadratic programming, SIAM Rev., 33, pp. 1-33.
[18] P.E. GILL, W. MURRAY, AND M.H. WRIGHT (1981), Practical Optimization, Academic Press,

London, New York.
[19] J. GOODMAN (1985), Newton’s method for constrained optimization, Math. Programming, 33,

pp. 162-171.
[20] C.B. GUIWITZ AND M.L. OVERTON (1989), Sequential quadratic programming methods based on

approximating a projected Hessian matrix, SIAM J. Sci. Statist. Comput., 10, pp. 631-653.
[21] S.-P. HAN (1976), Superlinearly convergent variable metric algorithms for general nonlinear

programming problems, Math. Programming, 11, pp. 263-282.
[22] W. HOCK AND K. SCHITTKOWSKI, (1981), Test examples for nonlinear programming, Lecture

Notes in Economics and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, Hei-
delberg, New York.

[23] J.J. Mott AND D.C. SORENSEN (1984), Newton’s method, in Studies in Numerical Analysis,
G.H. Golub, ed., Mathematical Association of America, pp. 29-82.

[24] W. MURRAY (1969), An algorithm for constrained minimization, in Optimization, R. Fletcher,
ed., Academic Press, London, New York.

[25] B.A. MURTAGH AND M.A. SAUNDERS (1982), A projected Lagrangian algorithm and its imple-
mentation for sparse nonlinear constraints, Math. Programming Stud., 16, pp. 84-117.

[26] M.J.D. POWELL (1978), A fast algorithm for nonlinearly constrained calculations, in Nonlinear
Programming 3, O.L. Mangasarian, R.R. Meyer, and S,M. Robinson, eds., Academic Press,
New York.

[27] (1987), Methods for nonlinear constraints in optimization calculations, in Proceedings
of the 1986 IMA/SIAM Conference, Clarendon Press, Oxford.

[28] M.J.D. POWELL AND Y: YUAN (1986), A recursive quadratic programming algorithm that uses
dijCferentiable exact penalty functions, Math. Programming, 35, pp. 265-278.

[29] F.J. PRIETO (1989), Sequential quadratic programming algorithms for optimization, Report
SOL 89-7, Department of Operations Research, Stanford University, Stanford, CA.

[30] U.T. RINGERTZ (1988), A mathematical programming approach to structural optimization, Re-
port No. 88-24, Dept. of Aeronautical Structures and Materials, The Royal Institute of
Technology, Stockholm.

[31] S.M. ROBINSON (1974), Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms, Math. Programming, 7, pp. 1-16.

[32] K. SCHITTKOWSKI (1981), The nonlinear programming method of Wilson, Han and Powell with
an augmented Lagrangian line search function, Numer. Math., 38, pp. 83-114.

[33] R.B. WILSON (1963), A Simplicial Algorithm.for Concave Programming, Ph.D. thesis, Harvard
University, Cambridge, MA.

[34] M.H. WRIGHT (1976), Numerical methods for nonlinearly constrained optimization, Ph.D. the-
sis, Stanford University, Stanford, CA.

640 WALTER MURRAY AND FRANCISCO J. PRIETO

[11] R. FLETCHER (1970), A class of methods for nonlinear programming with termination and con
vergence properties, in Integer and Nonlinear Programming, J. Abadie, ed., North Holland,
Amsterdam.

[12] --- (1985), An 1!1 penalty methodfor nonlinear constmints, in Numerical Optimization, P.T.
Boggs, R.H. Byrd, and R.B. Schnabel, eds., Society for Industrial and Applied Mathemat
ics, Philadelphia.

[13] --- (1987), Practical Methods of Optimization, John Wiley and Sons, Chichester, New York,
Brisbane, Toronto, Singapore.

[14] C. FRALEY (1988), Software performance on nonlinear least-squares problems, SOL Report
88-17, Department of Operations Research, Stanford University, Stanford, CA.

[15] P.E. GILL, W. MURRAY, M.A. SAUNDERS, AND M.H. WRIGHT (1986), User's guide for NPSOL
(Version 4.0): a FORTRAN package for nonlinear progmmming, Report SOL 86-2, De
partment of Operations Research, Stanford University, Stanford, CA.

[16] ---(1986), Some theoretical properties of an augmented Lagmngian merit function, Report
SOL 86-6R, Department of Operations Research, Stanford University, Stanford, CA.

[17] --(1988), Inertia-controlling methods for quadratic programming, SIAM Rev., 33, pp. 1-33.
[18] P.E. GILL, W. M URRAY , AND M.H. WRIGHT (1981), Practical Optimization, Academic Press,

London, New York.
[19] J. GOODMAN (1985), Newton's method for constrained optimization, Math. Programming, 33,

pp. 162-171.
[20] C.B. GURWITZ AND M.L. OVERTON (1989), Sequential quadratic programming methods based on

approximating a projected Hessian matrix, SIAM J. ScL Statist. Comput., 10, pp. 631-653.
[21] S.-P. HAN (1976), Superlinearly convergent variable metric algorithms for general nonlinear

programming problems, Math. Programming, 11, pp. 263-282.
[22] W. HOCK AND K. SCHITTKOWSKI, (1981), Test examples for nonlinear progmmming, Lecture

Notes in Economics and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, Hei
delberg, New York.

[23] J.J. MORÉ AND D.C. SORENSEN (1984), Newton's method, in Studies in Numerical Analysis,
G.H. Golub, ed., Mathematical Association of America, pp. 29-82.

[24] W. MURRAY (1969), An algorithm for constrained minimization, in Optimization, R. Fletcher,
ed., Academic Press, London, New York.

[25] B.A. MURTAGH AND M.A. SAUNDERS (1982), A projected Lagrangian algorithm and its imple
mentation for sparse nonlinear constmints, Math. Programming Stud., 16, pp. 84-117.

[26] M.J .D. POWELL (1978), A fast algorithm for nonlinearly constrained calculations, in Nonlinear
Programming 3, O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds., Academic Press,
New York.

[27] --- (1987), Methods for nonlinear constraints in optimization calculations, in Proceedings
of the 1986 IMA/SIAM Conference, Clarendon Press, Oxford.

[28] M.J.D. POWELL AND Y. YUAN (1986), A recursive quadratic programming algorithm that uses
differentiable exact penalty functions, Math. Programming, 35, pp. 265-278.

[29] F.J. PRIETO (1989), Sequential quadratic programming algorithms for optimization, Report
SOL 89-7, Department of Operations Research, Stanford University, Stanford, CA.

[30] U.T. RINGERTZ (1988), A mathematical programming approach to structural optimization, Re
port No. 88-24, Dept. of Aeronautical Structures and Materials, The Royal Institute of
Technology, Stockholm.

[31] S.M. ROBINSON (1974), Perlurbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms, Math. Programming, 7, pp. 1-16.

[32] K. SCHITTKOWSKI (1981), The nonlinear programming method of Wilson, Han and Powell with
an augmented Lagrangian line search function, Numer. Math., 38, pp. 83-114.

[33] R.B. WILSON (1963), A Simplicial Algorithm for Concave Programming, Ph.D. thesis, Harvard
University, Cambridge, MA.

[34] M.H. WRIGHT (1976), Numerical methods for nonlinearly constrained optimization, Ph.D. the
sis, Stanford University, Stanford, CA.

640 WALTER MURRAY AND FRANCISCO J. PRIETO

[l1J R. FLETCHER (1970), A class of methods for nonlinear programming with termination and con
vergence properties, in Integer and Nonlinear Programming, J. Abadie, ed., North Holland,
Amsterdam.

[12J --- (1985), An fI penalty methodfor nonlinear constmints, in Numerical Optimization, P.T.
Boggs, R.H. Byrd, and R.B. Sehnabel, eds., Soeiety for Industrial and Applied Mathemat
ies, Philadelphia.

[13J --- (1987), Pmctical Methods of Optimization, John Wiley and Sons, Chiehester, New York,
Brisbane, Toronto, Singapore.

[14J C. FRALEY (1988), Software performance on nonlinear least-squares problems, SOL Report
88-17, Department of Operations Researeh, Stanford University, Stanford, CA.

[15J P.E. GILL, W. MURRAY, M.A. SAUNDERS, AND M.H. WRIGHT (1986), User's guide for NPSOL
(Version 4.0): a FORTRAN package for nonlinear progmmming, Report SOL 86-2, De
partment of Operations Researeh, Stanford University, Stanford, CA.

[16J ---(1986), Some theoretical properties of an augmented Lagmngian merit funetion, Report
SOL 86-6R, Department of Operations Researeh, Stanford University, Stanford, CA.

[17J --(1988), Inertia-controlling methods for quadmtic programming, SIAM Rev., 33, pp. 1-33.
[18J P.E. GILL, W. MURRAY, AND M.H. WRIGHT (1981), Practical Optimization, Aeademic Press,

London, New York.
[19J J. GOODMAN (1985), Newton's method for constrained optimization, Math. Programming, 33,

pp. 162-171.
[20J C.B. GURWITZ AND M.L. OVERTON (1989), Sequential quadratic programming methods based on

approximating a projected Hessian matrix, SIAM J. Sei. Statist. Comput., 10, pp. 631-653.
[21J S.-P. HAN (1976), Superlinearly convergent variable metric algorithms for general nonlinear

programming problems, Math. Programming, 11, pp. 263-282.
[22J W. HOCK AND K. SCHITTKOWSKI, (1981), Test examples for nonlinear progmmming, Leeture

Notes in Eeonomies and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, Hei
delberg, New York.

[23J J.J. MORÉ AND D.C. SORENSEN (1984), Newton's method, in Studies in Numerical Analysis,
G.H. Golub, ed., Mathematieal Association of America, pp. 29-82.

[24J W. MURRAY (1969), An algorithm for constmined minimization, in Optimization, R. Fleteher,
ed., Aeademie Press, London, New York.

[25J B.A. MURTAGH AND M.A. SAUNDERS (1982), A projected Lagrangian algorithm and its imple
mentation for sparse nonlinear constmints, Math. Programming Stud., 16, pp. 84-117.

[26J M.J .D. POWELL (1978), A fast algorithm for nonlinearly constrained calculations, in Nonlinear
Programming 3, O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds., Aeademie Press,
New York.

[27J --- (1987), Methods for nonlinear constraints in optimization calculations, in Proeeedings
of the 1986 IMA/SIAM Conferenee, Clarendon Press, Oxford.

[28J M.J.D. POWELL AND Y. YUAN (1986), A reeursive quadratic programming algorithm that uses
differentiable exact penalty functions, Math. Programming, 35, pp. 265-278.

[29J F.J. PRIETO (1989), Sequential quadmtic programming algorithms for optimization, Report
SOL 89-7, Department of Operations Researeh, Stanford University, Stanford, CA.

[30J U.T. RINGERTZ (1988), A mathematical programming approach to structural optimization, Re
port No. 88-24, Dept. of Aeronautieal Struetures and Materials, The Royal Institute of
Teehnology, Stoekholm.

[31J S.M. ROBINSON (1974), Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms, Math. Programming, 7, pp. 1-16.

[32J K. SCHITTKOWSKI (1981), The nonlinear progmmming method of Wilson, Han and Powell with
an augmented Lagrangian line search function, Numer. Math., 38, pp. 83-114.

[33J R.B. WILSON (1963), A Simplicial Algorithm for Concave Programming, Ph.D. thesis, Harvard
University, Cambridge, MA.

[34J M.H. WRIGHT (1976), Numerical methods for nonlinearly constrained optimization, Ph.D. the
sis, Stanford University, Stanford, CA.

