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Abstract

We develop a specification test of predictive densities based on that the generalized

residuals of correctly specified predictive density models are i.i.d. uniform. The pro-

posed sequential test examines the hypotheses of serial independence and uniformity

in two stages, wherein the first stage test of serial independence is robust to violation

of uniformity. The approach of data driven smooth test is employed to construct the

test statistics. The asymptotic independence between the two stages facilitates proper

control of the overall type I error of the sequential test. We derive the asymptotic null

distribution of the test, which is nuisance parameter free, and establish its consistency.

Monte Carlo simulations demonstrate excellent finite sample performance of the test.

We apply this test to evaluate some commonly used models of stock returns.
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1 Introduction

Density forecast is of fundamental importance for decision making under uncertainty, wherein

good point estimates might not be adequate. Accurate density forecasts of key macroeco-

nomic and financial variables, such as inflation, unemployment rate, stock returns and ex-

change rate, facilitate informed decision making of policy makers and financial managers,

particularly when a forecaster’s loss function is asymmetric and the underlying process is

non-Gaussian. Given the importance of density forecast, great caution should be exercised

in judging the quality of density forecast models.

In a seminal paper, Diebold et al. (1998) introduced the method of dynamic probability

integral transformation to evaluate out-of-sample density forecasts. The transformed data

are often called the generalized residuals of a forecast model. Given a time series {Yt}, de-

note by {Zt} the generalized residuals associated with some density forecast model, which

is defined in the next section. They showed that if a forecast model is correctly speci-

fied, {Zt} is i.i.d. uniformly distributed on [0, 1]. The serial independence signifies correct

dynamic structure while uniformity characterizes correct specification of the unconditional

distribution. Subsequently, many formal tests have been developed based on this approach,

extending their original method to accommodate issues such as the influence of nuisance

parameters, dynamic misspecification errors, multiple-step-ahead forecasts, etc. For general

overviews of this literature see Corradi and Swanson (2006c, 2012) and references therein.

Suppose that {Zt} is a strictly stationary process with an invariant marginal distribution

G0. Let P0 be the joint distribution of Zt−j and Zt, where j is a positive integer. According

to Sklar’s (1959) Theorem, there exists a copula function C0 : [0, 1]2 → [0, 1] such that

P0(Zt−j, Zt) = C0(G0(Zt−j), G0(Zt)), (1)

where C0 completely characterizes the dependence structure between Zt−j and Zt. Most of

the existing work evaluate density forecasts by simultaneously testing the serial independence

and uniformity hypotheses based on the LHS of (1), comparing the density of P0 with the

product of two standard uniform densities. However, if the joint null hypothesis is rejected,

the simultaneous test “generally provides no guidance as to why ”(Diebold et al., 1998). Is

the rejection attributable to a violation of the uniformity of the unconditional distribution

of {Zt}, a violation of the serial independence of {Zt}, or both?

To address this issue, we propose a sequential test for the i.i.d. uniformity of the general-

ized residuals. This sequential test, based on the copula representation of a joint distribution

as in the RHS of (1), examines firstly whether C0 is the independent copula and then whether
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G0 is the uniform distribution. Rejection of the independence hypothesis effectively termi-

nates the test; otherwise, a subsequent uniformity test for the unconditional distribution is

conducted. We establish the large sample properties of the proposed tests, which are dis-

tribution free asymptotically. An appealing feature of our sequential test is that the first

stage test of independent copula is constructed to be robust to misspecification of marginal

distributions. Therefore it remains valid even if {Zt} is not uniformly distributed (because of

misspecified marginal distributions). On the other hand, since the first stage independence

test is consistent with asymptotic power equal to 1, the uniformity test (if necessary) is not

affected by violation of independence asymptotically. Generally the overall type I error of

sequential tests can be difficult to control. Nonetheless, we establish that the two stages of

the proposed sequential test are asymptotically independent and suggest a simple method

to properly control the overall type I error of our test.

Compared with simultaneous tests, the proposed sequential test enjoys certain advan-

tages. The first stage robust test for serial independence can be easily constructed since

parameter estimation uncertainty does not affect its limiting distribution. Upon the rejec-

tion of serial independence, the testing procedure terminates. The testing task is simplified

in such cases. More importantly, it facilitates the diagnosis of the source of misspecification.

Tay et al. (2000) show that serial dependence in {Zt} may signal poorly captured dynamics,

whereas non-uniformity may indicate improper distributional assumptions, or poorly cap-

tured dynamics, or both. If the serial independence test is not rejected and the uniformity

test is rejected, we may improve deficient density forecast by calibration, see Diebold et al.

(1999). On the other hand, if the serial independence of the generalized residuals is rejected,

we can further apply uniformity tests that are robust to violations of independence to ex-

amine the specification of the marginal distributions.1 In addition, our serial independence

test is based on copulas, which are invariant to strictly monotone transformations of random

variables. Therefore, the rich information captured by the copula of {Zt} can be used to

diagnose the dynamic structure of the forecast model, in case the serial independence is

rejected (see e.g., Chen et al. (2004)).

Below we first briefly review the relevant literature on the specification test of predictive

densities and Neyman’s smooth tests. We present in Section 3 the sequential test of correct

density forecasts and its theoretical properties. In Section 4, we use a series of Monte Carlo

simulations to demonstrate the excellent finite sample performance of the proposed tests

1Several uniformity tests for dependent data have been proposed in the literature. For example, Munk
et al. (2011) extended the data-driven smooth test by Ledwina (1994) to time series, adjusting for the
estimation of cumulative autocovariance. Corradi and Swanson (2006a) and Rossi and Sekhposyan (2015)
proposed tests for uniformity robust to violations of independence that allow for dynamic misspecification
under the null.
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under a variety of circumstances. We then apply these tests to evaluate a host of commonly

used models of stock market returns in Section 5. The last section concludes. Technical

assumptions and proofs of theorems are relegated to Appendix.

2 Background

2.1 Specification Test of Predictive Densities

For simplicity, consider the one-step-ahead forecast of the conditional density f0t(·|Ωt−1) of

Yt,
2 where Ωt−1 represents the information set available at time t − 1. We split a sample

of N observations {Yt}Nt=1 into an in-sample subset of size R for model estimation and an

out-of-sample subset of size n = N − R for forecast performance evaluation. Denote by

Ft(·|Ωt−1, θ) and ft(·|Ωt−1, θ) some conditional distribution and density functions of Yt given

Ωt−1, where θ ∈ Θ ⊂ Rq. The dynamic Probability Integral Transformation (PIT) of the

data {Yt}Nt=R+1, with respect to the density forecast ft(·|Ωt−1, θ), is defined as

Zt(θ) = Ft(Yt|Ωt−1, θ) =

∫ Yt

−∞
ft(v|Ωt−1, θ)dv, t = R + 1, ..., N. (2)

The transformed data, Zt(θ), are often called the generalized residuals of a forecast model.

Suppose that the density forecast model is correctly specified in the sense that there exists

some θ0 such that f0t(y|Ωt−1) = ft(y|Ωt−1, θ0) almost surely (a.s.) and for all ts. Under this

condition, Diebold et al. (1998) showed that the generalized residuals {Zt(θ0)} should be i.i.d.

uniform on [0, 1]. Therefore, the test of a generic conditional density function ft(·|Ωt−1, θ) is

equivalent to a test of the joint hypothesis

H0 : {Zt(θ0)} is a sequence of i.i.d. uniform random variables for some θ0 ∈ Θ ⊂ Rq. (3)

The alternative hypothesis is the negation of the null (3). Hereafter we shall write Zt(θ) as Zt

for simplicity whenever there is no ambiguity. Since the generalized residuals are constructed

using out-of-sample predictions, tests based on generalized residuals are out-of-sample tests.

Diebold et al. (1998) used some intuitive graphical methods to separately examine the

serial independence and uniformity of the generalized residuals. Subsequently, many au-

thors have adopted the approach of PIT to develop formal specification tests of predictive

densities. Diebold et al. (1999) extend the method to bi-variate data. Berkowitz (2001)

2Following Diebold et al. (1998), our approach may be extended to handle h-step-ahead density forecasts
by partitioning the generalized residuals into groups that are h-periods apart and using Bonferroni bounds.
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further transformed the generalized residuals to Φ−1(Zt), where Φ−1(·) is the inverse of the

standard normal distribution function, and proposed tests of serial independence under the

assumption of linear autoregressive dependence. Chen et al. (2004) suggested copula based

tests of serial independence of the generalized residuals against alternative parametric cop-

ulas. These tests do not consider the effect of parameter estimation in their test statistics.

By explicitly accounting for the impact of parameter estimation uncertainty, Bai (2003)

proposed Kolmogorov type tests. Hong et al. (2007) constructed nonparametric tests by

comparing kernel estimate of the joint density of (Zt−j, Zt) with the product of two uniform

densities. Park and Zhang (2010) proposed data-driven smooth tests, which simultaneously

test the uniformity and independence. Chen (2011) considered a family of moment based

tests. Recently, Corradi and Swanson (2006a,c,b) proposed Kolmogorov type tests that al-

low for dynamic misspecification. Rossi and Sekhposyan (2015) proposed a new test wherein

parameter estimation error is preserved under the null hypothesis.

2.2 Neyman’s Smooth Test

Omnibus tests are desirable in goodness-of-fit testing, wherein the alternative hypotheses are

often vague. Some classic omnibus tests, such as the Kolmogorov-Smirnov test or Cramér-

von Mises test, are known to be consistent but only have good powers to detect a few

deviations from the null hypothesis under moderate sample sizes; see e.g, Fan (1996). In this

study we adopt Neyman’s smooth test, which enjoys attractive theoretical and finite sample

properties and can be tailored to adapt to unknown underlying distributions (see Rayner

and Best (1990) for a general review). Here we briefly review the smooth test. For simplicity,

suppose for now that {Zt}nt=1 is an i.i.d. sample from a distribution G0 defined on the unit

interval. To test the uniformity hypothesis, Neyman (1937) considered an alternative family

of smooth distributions given by

g(z) = exp

(
k∑
i=1

biψi(z) + b0

)
, z ∈ [0, 1], (4)

where b0 is a normalization constant such that g integrates to unity and ψi’s are shifted

Legendre polynomials, given by

ψi(z) =

√
2i+ 1

i!

di

dzi
(z2 − z)i, i = 1, . . . , k, (5)
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which are orthonormal with respect to the standard uniform distribution. Consequently,

E[ψi(z)] = 0 for all i’s and E[ψi(z)ψj(z)] = 0, i 6= j if z follows the standard uniform

distribution.

Under the assumption that G0 is a member of (4), testing uniformity amounts to testing

the hypothesis B ≡ (b1, . . . , bk)
′ = 0, to which the likelihood ratio test can be readily applied.

Alternatively, one can construct a score test, which is asymptotically locally optimal and

also computationally easy. Define ψ̂i = n−1
∑n

t=1 ψi(Zt) and ψ̂(k) = (ψ̂1, ..., ψ̂k)
′. Neyman’s

smooth test for uniformity is constructed as

Nk = nψ̂′(k)ψ̂(k). (6)

Under uniformity, Nk converges in distribution to the χ2 distribution with k degrees of

freedom as n → ∞. The performance of smooth test depends on the choice of k. Ledwina

(1994) proposed a data-driven approach to select a proper k. Various aspects of this adaptive

smooth test are studied by Kallenberg and Ledwina (1995, 1997), Inglot et al. (1997) and

Claeskens and Hjort (2004). For applications of smooth tests in econometrics, see for example

Bera and Ghosh (2002), Bera et al. (2013), Lin and Wu (2015) and references therein.

3 Sequential Test of Correct Density Forecasts

In this study we propose a sequential procedure for evaluating density forecasts, taking

advantage of the copula representation of a joint distribution. A copula is a multivariate

probability distribution with standard uniform margins. Copulas provide a natural way to

separately examine the marginal behavior of {Zt} and its serial dependence structure. This

separation permits us to test the serial independence and uniformity of {Zt} sequentially.

Rejection of serial independence effectively terminates the procedure; otherwise, a subse-

quent test on uniformity is conducted. Below we start with the copula-based test of serial

independence, followed by the uniformity test of the univariate marginal distributions. We

shall then explain the rationale of this sequential test, why we place the independence test

in the first stage, and lastly how to obtain desired overall type I error of the test.

3.1 Robust Test of Serial Independence

Copula completely characterizes the dependence structure among random variables. Thus

testing for serial independence between Zt−j and Zt can be based on their copula function.

In particular, testing their independence is equivalent to testing the hypothesis that their
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copula density is constant at unity.3

Given a density forecast model ft(·|Ωt−1, θ), define the generalized residuals

Ẑt ≡ Zt(θ̂t) =

∫ Yt

−∞
ft(v|Ωt−1, θ̂t)dv, t = R + 1, ..., N, (7)

where θ̂t is the maximum likelihood estimate (MLE) of θ given by

θ̂t ≡ θ̂[t0:t1] = arg max
θ

t1∑
t=t0

ln ft(yt|Ωt−1, θ), 1 ≤ t0 < t1 ≤ N.

We allow for three different estimation schemes for density forecast. Under the fixed, recur-

sive and rolling schemes, θ̂[t0:t1] = θ̂[1:R], θ̂[1:t−1] and θ̂[t−R:t−1], respectively.

Let Z0t = Zt(θ0). The arguments of the copula distribution function C0(G0(Z0,t−j), G0(Z0t)),

as defined in (1), are the marginal distribution G0 of Z0,t−j and Z0t. Given {Ẑt}, we can

estimate G0 using parametric or nonparametric methods. Lacking a priori information on

the marginal distributions, we choose to estimate G0 nonparametrically using their rescaled

empirical distribution:

Ĝn(z) =
1

n+ 1

N∑
t=R+1

I(Zt(θ̂t) ≤ z), z ∈ [0, 1], (8)

where I(·) is the indicator function and we divide the summation by n + 1 rather than the

usual n to avoid possibly unbounded copula densities at the boundary. Unlike parametric

estimates, the empirical distribution is free of possible misspecification errors.

To fix the idea, we first present the smooth test of serial independence for a given lag

j, 1 ≤ j ≤ n − 1. To ease exposition, whenever there is no confusion, we suppress j in the

notation. Denote by ψi : [0, 1]→ R, i = 1, 2, . . . , a series of basis functions orthonormal with

respect to the standard uniform distribution. Define ψi1i2(u1, u2) = ψi1(u1)ψi2(u2).4 Let ΨC

be a non-empty subset of ψC = {ψi1i2 : 1 ≤ i1, i2 ≤ M}, where M is a given upper bound.5

Let KC = |ΨC | be the cardinality of ΨC and we write ΨC = {ΨC,1, . . . ,ΨC,KC
}.

3Although the independence test developed here is similar to that of Kallenberg and Ledwina (1999), the
purposes of these two tests are rather different: Our test is designed to detect temporal dependence of a
univariate time series, while theirs is for contemporaneous dependence between two univariate variables.

4Kallenberg and Ledwina (1999) considered two configurations: the ‘diagonal’ test includes only terms of
the form ψii, i = 1, 2, . . . , while the ‘mixed’ test allows both diagonal and off-diagonal entries. In this study
we focus on the latter, which is more general.

5Note that Escanciano and Lobato (2009) and Escanciano et al. (2013) also considered a given upper
bound in the selection criterion.
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Define Ut = G0(Z0t). We consider the following alternative bivariate density of (Ut−j, Ut),

c(u1, u2) = exp

{
KC∑
i=1

bC,iΨC,i(u1, u2) + bC,0

}
, (u1, u2) ∈ [0, 1]2. (9)

Let c0 be the density function of C0 and BC = (bC,1, . . . , bC,KC
)′. Note that if BC = 0,

c(u1, u2) = exp(0) = 1, yielding the independent copula. Thus under the assumption that the

underlying copula density c0 is a member of (9), testing for independent copula is equivalent

to testing the following hypothesis:

H0C : BC = 0. (10)

Define Ût = Ĝn(Ẑt) and Ψ̂C,i(j) = (n− j)−1
∑N

t=R+j+1 ΨC,i(Ût−j, Ût) for i = 1, ..., KC . A

test on the hypothesis (10) is readily constructed as

Q̂C(j) = (n− j)Ψ̂′C(j)Ψ̂C(j), (11)

where Ψ̂C(j) = (Ψ̂C,1(j), . . . , Ψ̂C,KC
(j))′. This test is a rank-based test constructed using

the empirical CDF’s of the generalized residuals. It is particularly appealing as parameter

estimation uncertainty in θ̂t does not affect the asymptotic distribution of Q̂C(j). This result

is established by the following theorem.

Theorem 1. Suppose that C1-C5 and C7 given in Appendix hold. Under the null hypothesis

of independence, Q̂C(j)
d→ χ2

KC
as n→∞.

A critical component of data driven smooth tests is the selection of suitable basis functions

ΨC from the candidate set ψC . In the spirit of Kallenberg and Ledwina (1999), we rearrange

the candidate set to Ψc such that Ψc,1 = ψ11 and the rest of its elements correspond to

{ψi1i2 : 1 ≤ i1, i2 ≤ M, (i1, i2) 6= (1, 1)} arranged in the descending order according to

|ψ̂i1i2 | = |(n− j)−1
∑N

t=R+j+1 ψi1i2(Ût−j, Ût)|.6 Fixing Ψc,1 = ψ11 ensures that under the null

the data driven ΨC converges in probability to one fixed element, ψ11, rather than a random

element of {ψi1i2 : 1 ≤ i1, i2 ≤ M} associated with the maximum of their sample analogs.

Consequently, the asymptotic distribution of Q̂C(j) is approximately χ2
1, which simplifies the

theoretical analysis.

Given the ordered candidate set Ψc, we proceed to use an information criterion to select

ΨC . Denote the cardinality of Ψc by |Ψc| and let Ψc,(k) = {Ψc,1, ...,Ψc,k}, k = 1, . . . , |Ψc|.
6When Ψc contains only ψ11, the corresponding test statistic is proportional to the square of Spearman’s

rank correlation coefficient.
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Further define Ψ̂c,(k)(j) = (Ψ̂c,1(j), ..., Ψ̂c,k(j))
′ and Q̂c,(k)(j) = (n− j)Ψ̂′c,(k)(j)Ψ̂c,(k)(j). Fol-

lowing Inglot and Ledwina (2006), we use the following criterion to select a suitable ΨC ,

whose cardinality is denoted by KC(j):

KC(j) = min{k : Q̂c,(k)(j)−Γ1(k, n−j, ζ) ≥ Q̂c,(s)(j)−Γ1(s, n−j, ζ), 1 ≤ k, s ≤ |Ψc|}. (12)

The penalty Γ1(s, n, ζ) of this information criterion is given by

Γ1(s, n, ζ) =


s log n, if max

1≤k≤|Ψc|
|
√
nΨ̂c,k(j)| ≤

√
ζ log n;

2s, if max
1≤k≤|Ψc|

|
√
nΨ̂c,k(j)| >

√
ζ log n,

(13)

where Ψ̂c,k(j) is the kth element of Ψ̂c,(k)(j) and ζ = 2.4. Note that this penalty is ‘adaptive’

in the sense that either the AIC or BIC is adopted in a data driven manner, depending on

the empirical evidence pertinent to the magnitude of deviation from independence.7

Next we present the asymptotic properties of the proposed test Q̂C(j) based on a set of

basis functions ΨC selected according to the procedure described above. The first part of

the theorem below provides the asymptotic distribution of the test statistic under the null

hypothesis and the second part establishes its consistency.

Theorem 2. Let KC(j) be selected according to (12). Suppose that the conditions of Theorem

1 hold. (a) Suppose that C0(·, ·) is the independent copula. Then limn→∞ Pr(KC(j) = 1) = 1

and Q̂C(j)
d→ χ2

1 as n→∞. (b) Let P be an alternative and G0 be the marginal distribution

of Zt under P. Suppose that EP [ψi1i2(G0(Zt−j), G0(Zt))] 6= 0 for some i1, i2 in 1, . . . ,M .

Then Q̂C(j)→∞ as n→∞.

The test Q̂C(j) is designed to detect serial dependence between the residuals j periods

apart. In practice, it is desirable to test the independence hypothesis jointly at a number of

lags. Therefore, we consider the following portmanteau test

ŴQ(p) =

p∑
j=1

Q̂C(j), (14)

where p is the longest prediction horizon of interest. One limitation of this test is that the

selection of p can be arbitrary. In order to address this limitation, Escanciano and Lobato

(2009) proposed an adaptive portmanteau Box-Pierce test for serial correlation, which selects

7Given its asymptotic equivalence to the AIC, the method of cross-validation can also be used for moment
selection. We opt for AIC/BIC in this study mainly because of their ease of implementation.
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the unknown order of autocorrelation in a data-driven manner. This strategy has been

employed to test the correct specification of a vector autoregression model by Escanciano

et al. (2013). In a similar spirit, we further consider an adaptive portmanteau test and select

the optimal number of lags p according to the following criterion

p̃ = min{k : ŴQ(k)− Γ2(k, n, ζ) ≥ ŴQ(s)− Γ2(s, n, ζ), 1 ≤ k, s ≤ p}, (15)

where the complexity penalty Γ2(k, n, ζ) is the same as (13) with max
1≤j≤p

max
1≤i≤K(j)

|
√
nΨ̂C,i(j)|

taking the place of max
1≤k≤|Ψc|

|
√
nΨ̂c,k(j)|.

The asymptotic properties of ŴQ(p̃) follow readily from Theorem 2.

Theorem 3. Let p̃ be selected according to (15). (a) Suppose that the conditions for Theorem

2(a) hold for j = 1, . . . , p. Then limn→∞ Pr(p̃ = 1) = 1 and ŴQ(p̃)
d→ χ2

1 as n → ∞. (b)

Suppose instead that the conditions for Theorem 2(b) hold for at least one j in j = 1, . . . , p.

Then ŴQ(p̃)→∞ as n→∞.

We conclude this section by noting that when the serial independence of the generalized

residuals is rejected, it is often of interest to explore whether the serial dependence comes

primarily through the conditional mean or higher conditional moments (see Diebold et al.,

1998). In order to address this issue, Hong et al. (2007) proposed separate out-of-sample

inference procedures that can detect serial dependence of {Yt} in terms of the level, volatility,

skewness, kurtosis, and leverage effect, etc. Similarly, we also propose a simple separate test

for this purpose.

Let µk = E[(U−1/2)k] and σ2
k = var[(U−1/2)k], where U is a standard uniform random

variable. Denote

Φ̂k,l(j) =
1

n− j

N∑
t=R+j+1

[
(Ût−j − 1/2)k − µk

σk

][
(Ût − 1/2)l − µl

σl

]

We further consider the following test

R̂k,l(j) = (n− j)Φ̂k,l(j)
2. (16)

Although similar to the independence test of Diebold et al. (1998), the current test uses

Ût = Ĝn(Ẑt), rather than Ẑt, to construct the test statistic (16). This assures that the

asymptotic distribution of R̂k,l(j) is not affected by the estimation of θ0, which is needed to

obtain Ẑt (see also Chen, 2011).
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Following Hong et al. (2007), we consider (k, l) = (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)

in (16) in order to detect possible autocorrelations in level, volatility, skewness, kurtosis,

ARCH-in-mean and leverage effects of {Yt}, respectively. For example, we can use R̂2,2(j) to

test autocorrelation in the volatility of {Yt} . Similarly to ŴQ(p̃), we can further construct

a data driven portmanteau test Ŵ
(k,l)
R (p̃) based on R̂k,l(j). Using Theorems 2 and 3, it is

straightforward to show that under the null hypothesis, R̂k,l(j)
d→ χ2

1 and Ŵ
(k,l)
R (p̃)

d→ χ2
1

as n → ∞. The critical value of R̂k,l(j) can be tabulated and that of Ŵ
(k,l)
R (p̃) can be

calculated following the simulation approach proposed for ŴQ(p̃), which is given below. The

consistency of these tests can also be established in a similar manner.

3.2 Test of Uniformity

Testing correct unconditional distribution of the forecast model is equivalent to testing the

hypothesis that the generalized residuals {Ẑt} are uniformly distributed. Since Zt−j and

Zt share the same marginal distribution G0(·) under (1), testing the uniformity of {Ẑt} is

equivalent to testing the uniformity of {Ẑt−j}. However, conducting the test on {Ẑt−j} is

advantageous as it allows us to construct a test in the second stage that is independent to

the first stage test in the presence of estimated parameter uncertainty. Therefore, in this

section, we shall conduct the uniformity test on {Ẑt−j}.
Let ΨU = {ΨU,1, . . . ,ΨU,KU

} be a non-empty subset of a candidate set ψU = {ψ1, . . . , ψM},
where KU ≡ |ΨU |. We consider a smooth alternative distribution given by

g(z) = exp

(
KU∑
i=1

bU,iΨU,i(z) + bU,0

)
, z ∈ [0, 1], (17)

where bU,0 is a normalization constant. Let BU = (bU,1, . . . , bU,KU
)′. Clearly, BU = 0 yields

g(z) = 1, coinciding with the uniform density. Under the assumption that {Ẑt−j} are

distributed according to (17), testing for uniformity is equivalent to testing the following

hypothesis:

H0U : BU = 0.

Correspondingly, one can construct a smooth test based on the sample moments Ψ̂U(j) =

(Ψ̂U,1(j), ..., Ψ̂U,KU
(j))′, where Ψ̂U,i(j) = (n− j)−1

∑N
t=R+j+1 ΨU,i(Ẑt−j) for i = 1, . . . , KU .

Compared with test (6) derived under a simple hypothesis, the present test is complicated

by the presence of nuisance parameters θ̂t and depends on the estimation scheme used in

the density forecast. Proper adjustments are required to account for their influences. Let

10



st = ∂
∂θ

ln ft(Yt|Ωt−1, θ) be the gradient of the predictive density. Define

s0,t−j = st−j|θ=θ0 , Z0,t−j = Zt−j(θ0),

A = E[s0,t−js
′
0,t−j], D = E[ΨU(Z0,t−j)s

′
0,t−j]. (18)

We assume that R, n → ∞ as N → ∞ and limN→∞ n/R = τ , for some fixed number

0 ≤ τ <∞. Also define

η =


τ, fixed,

0, recursive,

− τ2

3
, rolling (τ ≤ 1),

−1 + 2
3τ
, rolling (τ > 1).

(19)

Below we show that the asymptotic variance of Ψ̂U(j) is given by

VU = IKU
+ ηDA−1D′,

where IKU
is a KU -dimensional identity matrix. Next define

η̂ = η|τ=n/R, ŝt =
∂

∂θ
ln ft(Yt|Ωt−1, θ)|θ=θ̂t

Â =
1

n− j

N∑
t=R+j+1

ŝt−j ŝ
′
t−j, D̂ =

1

n− j

N∑
t=R+j+1

ΨU(Ẑt−j)ŝ
′
t−j. (20)

We can estimate VU consistently using its sample counterpart:

V̂U = IKU
+ η̂D̂Â−1D̂′. (21)

We then construct a smooth test of uniformity as follows

N̂U(j) = (n− j)Ψ̂U(j)′V̂ −1
U Ψ̂U(j). (22)

Note here the dependence on j is made explicit in the notations to emphasize that N̂U(j) is

constructed based on {Ẑt−j}.
Applying the results of West and McCracken (1998) to this test and following the argu-

ments of Chen (2011), we establish the following results.

Theorem 4. Suppose that C1-C6 given in Appendix hold. Under H0U as n → ∞, (a)

Ψ̂U(j)
p→ 0 and

√
n− jΨ̂U(j)

d→ N(0, VU); (b) the test statistic N̂U(j)
d→ χ2

KU
.

11



Remark 1. When the parameter θ in the forecast density model ft(·|Ωt−1, θ) is known, VU is

reduced to IKU
, the variance obtained under the simple hypothesis. The adjustment DA−1D′

for nuisance parameters is multiplied by a factor η that reflects the estimation scheme of the

density forecast.

Remark 2. West and McCracken (1998) required the moment functions ψi’s to be continu-

ously differentiable. McCracken (2000) extended the results of West and McCracken (1998)

to allow for non-differentiable moment functions, but their expectations are still required to

be continuously differentiable with respect to θ. We note that the basis functions consid-

ered in this study, such as the Legendre polynomials and cosine series, satisfy the regularity

conditions given in West and McCracken (1998).

Like the copula test of independence presented above, the test of uniformity (22) depends

crucially on the configuration of ΨU to capture potential deviations from uniformity. In the

spirit of Kallenberg and Ledwina (1999), we start with a candidate set Ψu such that Ψu,1 = ψ1

and the rest of the set correspond to the elements of {ψ2, ..., ψM} arranged in the descending

order according to their corresponding entries in the vector V̂
−1/2
u |

√
n− jΨ̂u|, where V̂u is

the estimated covariance matrix of
√
n− jΨ̂u.

8

Given the ordered candidate set Ψu, we proceed to use an information criterion to select

ΨU . Denote the subset of Ψu with its first k elements by Ψu,(k) = {Ψu,1, ...,Ψu,k}, k = 1, ...,M

and the corresponding Vu,(k) and Nu,(k)(j), as given in (21) and (22), are similarly defined;

their sample analogs are denoted by Ψ̂u,(k)(j), V̂u,(k) and N̂u,(k)(j) respectively. For each k,

let Ψ̂∗u,(k)(j) = V̂
−1/2
u,(k) Ψ̂u,(k)(j). Following Inglot and Ledwina (2006), we use the following

criterion to select a suitable ΨU , whose cardinality is denoted by KU(j):

KU(j) = min{k : N̂u,(k)(j)− Γ(k, n− j, ζ) ≥ N̂u,(s)(j)− Γ(s, n− j, ζ), 1 ≤ k, s ≤M}, (23)

where the penalty Γ(k, n, ζ) is the same as (13) with max
1≤k≤M

|
√
nΨ̂∗u,k(j)| taking the place of

max1≤k≤|Ψc| |
√
nΨ̂c,k(j)|.

The following theorem characterizes the asymptotic behavior of N̂U(j) under the null

hypothesis and its consistency.

Theorem 5. Let KU(j) be selected according to (23). Suppose that C1-C6 given in Ap-

pendix hold. (a) Suppose that Z0,t−j given by (18) follows a uniform distribution. Then

8Note that standardization of the moments is necessary for our tests as the elements of Ψ̂u are generally
correlated and differ in variance. In contrast, the test in Kallenberg and Ledwina (1999) utilizes rank-
based sample moments that are free of nuisance parameters and asymptotically orthonormal under the null
hypothesis. Therefore, their procedure does not require standardization of the moments.

12



limn→∞ Pr(KU(j) = 1) = 1 and N̂U(j)
d→ χ2

1 as n → ∞. (b) Suppose instead that Zt−j is

distributed according to an alternative distribution P such that EP [ψS(Zt−j)] 6= 0 for some

S ∈ {1, 2, . . . ,M}. Then N̂U(j)→∞ as n→∞.

3.3 Construction of Sequential Test and Inference

We have presented two separate smooth tests for the serial independence and uniformity

of the generalized residuals {Zt}. Here we proceed to construct a sequential test for the

hypothesis of correct density forecast, which is equivalent to the i.i.d. uniformity of {Zt}.
As is indicated in Introduction, our sequential test facilitates the diagnostics of misspec-

ification in density forecast. Under the null hypothesis of i.i.d. uniformity, a sequential test

is valid regardless whether the independence test or the uniformity test comes in first. How-

ever, this invariance may be compromised if either serial independence or uniformity does

not hold. The test for uniformity is constructed under the assumption of serial independence.

In the presence of dynamic misspecification, serial independence of {Zt} is violated and the

uniformity test suffers size distortion. In contrast, the robust test of independent copula is

asymptotically invariant to possible deviations from uniformity due to misspecified marginal

distributions. Therefore, we choose to place the independence test in the first stage of the se-

quential test. The test is terminated if the independence hypothesis is rejected; a subsequent

test on uniformity is conducted only when the independence hypothesis is not rejected. This

arrangement assures that the uniformity test (if necessary) is not compromised by possible

violation of serial independence.

The sequential nature of the proposed test complicates its inference: ignoring the two-

stage nature of the design can sometimes inflate the type I error. Suppose that the signifi-

cance levels for the first and second stage of a sequential test are set at α1 and α2 respectively.

Denote by p2|1 the probability of rejecting the second stage hypothesis, conditional on not

rejecting the first stage hypothesis. The overall type I error of the two-stage test, denoted

by α, is given by

α = α1 + p2|1(1− α1). (24)

If the tests from the first and second stage are independent, (24) is simplified to

α = α1 + α2(1− α1). (25)

Next we show that the proposed tests on serial independence and uniformity are asymp-

totically independent under the null hypothesis.
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Theorem 6. Under the null hypothesis of correct specification of density forecast, the test

statistics Q̂C(j) and N̂U(j) are asymptotically independent for j = 1, . . . , p; similarly, ŴQ(p)

(ŴQ(p̃)) and N̂U(p) are asymptotically independent.

The asymptotic independence suggested by this theorem facilitates the control of type I

error α via proper choice of α1 and α2 based on (25). Qiu and Sheng (2008) suggest that, in

the absence of a priori guidance on the significance levels of the two stages, a natural choice

is to set α1 = α2. It follows that

α1 = α2 = 1−
√

1− α.

For instance, setting α = 5% yields α1 = α2 ≈ 2.53%. After α1 and α2 have been determined,

the overall p-value is given by

p-value =

{
p1, if p1 ≤ α1;

α1 + p2(1− α1), otherwise,
(26)

where p1 and p2 are p-values of the first and second stage. A two-stage test using the p-value

(26) rejects the overall null hypothesis when either of the following occurs: (i) the first stage

null hypothesis is rejected (i.e. p1 ≤ α1); (ii) the first stage null hypothesis is not rejected

and the second stage null hypothesis is rejected (i.e. p1 > α1 and p2 ≤ α2).

We conclude this section with a procedure to calculate the critical values for our sequen-

tial tests. Since the proposed independence test and uniformity test are constructed in a

data driven fashion, the number of functions selected is random even under the null hypoth-

esis. Consequently, the χ2
1 distribution does not provide an adequate approximation to the

distribution of the test statistics under moderate sample sizes. To deal with this problem, we

propose a simple simulation procedure to obtain the critical values. Since both tests derived

in the previous sections are asymptotically distribution free, their limiting distributions can

be approximated via simple simulations by drawing repeatedly from the standard uniform

distribution. The procedures are described below.

Serial Independence Test

• For l = 1 : L

– Generate an i.i.d. random sample {Zl,t}nt=1 from the standard uniform distribu-

tion.

– Calculate the empirical distribution of {Zl,t}nt=1, denoted by {Ûl,t}nt=1.

14



– For j = 1, . . . , p, select a set of basis functions ΨC according to (12); calculate

Q̂
(l)
C (j) according to (11).

– Select the optimal number of lags p̃ according to (15); calculate the adaptive

portmanteau test Ŵ
(l)
Q (p̃) =

∑p̃
j=1 Q̂

(l)
C (j).

• Use the (1 − α1)th percentile of {Q̂(l)
C (j)}Ll=1 as the (1 − α1)th percent critical value of

Q̂C(j) for j = 1, . . . , p; use the (1 − α1)th percentile of {Ŵ (l)
Q (p̃)}Ll=1 as the (1 − α1)th

percent critical value of ŴQ(p̃).

Uniformity Test (if necessary)

• For l = 1 : L

– Generate an i.i.d. random sample {Zl,t}nt=1 from the standard uniform distribu-

tion.

– Select a set of basis functions ΨU according to the selection rule given in (23);

Compute the corresponding test statistic N̂
(l)
U (j).

• Use the (1 − α2)th percentile of {N̂ (l)
U (j)}Ll=1 to approximate the (1 − α2)th percent

critical value of N̂U(j).

Note that the approximated critical values are obtained via simple simulations based on

the uniform distribution. These procedures do not require sampling from the data; nor do

they entail any estimation based on the data. Numerical experiments reported in Section 4

suggest that the simulated critical values provide good size performance under small sample

sizes.

4 Monte Carlo Simulations

In this section, we use numerical simulations to examine the finite sample performance of the

proposed sequential test. To facilitate comparison with the existent literature, we closely

follow the experiment design of Hong et al. (2007) in our simulations. In particular, we

generate random samples of length N = R + n and split the samples into R in-sample

observations for estimation and n out-of-sample observations for density forecast evaluation.

We consider three out-of-sample sizes : n = 250, 500 and 1, 000; for each n, we consider four

estimation-evaluation ratios: R/n = 1, 2 and 3.9 We repeat each experiment 3, 000 times.

9As suggested by a referee, we also examine the case of R/n = 1/2. No comparable results are available
from Hong et al. (2007) nor Park and Zhang (2010). To save space, the results are reported in the Appendix.
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We set the confidence level at α = 5% and for each n, calculate the critical values using the

simulation procedures described above, with 10, 000 repetitions under the null hypothesis of

i.i.d. uniformity of {Zt}.
Following Hong et al. (2007), we use the following two commonly used models to assess

the size of the proposed tests:

• Random-Walk-Normal model (RW-N):

Yt = 2.77εt, εt ∼ i.i.d. N(0,1) (27)

• GARCH(1,1)-Normal Model(GARCH-N):

Yt =
√
htεt, εt ∼ i.i.d. N(0,1), ht = 0.76 + 0.14Y 2

t−1 + 0.77ht−1 (28)

We also focus on testing the correctness of RW-N model against the following alternative

DGP’s:

• DGP1: Random-Walk-T model (RW-T )10

Yt = 2.78εt, εt ∼ i.i.d.

√
ν − 2

ν
t(ν), ν = 3.39. (29)

• DGP2: GARCH-N model defined in (28).

• DGP3: Regime-Switching-T model (RS-T )

Yt = σ(st)εt, εt ∼ m.d.s.

√
ν(st)− 2

ν(st)
t(ν(st)),

where st = 1 or 2, and m.d.s. stands for martingale difference sequence. The transition

probability between the two regimes is defined as

P (st = l|st−1 = l) =
1

1 + exp(−cl)
, l = 1, 2,

where (σ(1), σ(2), ν(1), ν(2)) = (1.81, 3.67, 6.92, 3.88) and (c1, c2) = (3.12, 2.76).

10We also experimented with the RW-T DGP with the degrees of freedom being 4,5 or 6. The power of
our tests is good in general. To save the space, these results are not reported; they are available from the
authors upon request.
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The construction of a data driven smooth test starts with a candidate set of basis func-

tions. As is shown by Ledwina (1994) and Kallenberg and Ledwina (1995), the type of

orthogonal basis functions makes little difference; e.g., the shifted Legendre polynomials

defined on [0, 1] and the cosine series, given by
√

2 cos(iπz), i = 1, 2, . . . , provide largely

identical results. Moreover, the test statistics are not sensitive to the size of the candidate

set ψU or ψC as defined in Section 3. We use the shifted Legendre polynomials in our simu-

lations. Following Kallenberg and Ledwina (1999), we set M = 2 and KC(j) ≤ 2 in the first

stage copula test of serial independence. In the second stage test on uniformity (if necessary),

we set M = 10, following Ledwina (1994). In either test, we then apply its corresponding

information criterion prescribed in the previous sections to select a suitable set of basis func-

tions, based on which the test statistic is calculated. In the copula test of independence, we

consider the single-lag test Q̂C(j) with j = 1, 5 and 10, the portmanteau tests ŴQ(p) with

p = 5, 10 and 20 and the automatic portmanteau test ŴQ(p̃). In the uniformity test, we use

N̂U(20), which is constructed based on Ẑt−20. All tests provide satisfactory results. Since

the single-lag tests with j = 5 or 10 are generally dominated by those with j = 1 and the

portmanteau tests, we choose not to report them to save space.

Table 1 reports the empirical sizes of the sequential test (hereafter “SQT”). For com-

parison, we also report the results of the nonparametric omnibus test by Hong et al. (2007)

(hereafter “HLZ”) and of the simultaneous data-driven smooth test by Park and Zhang

(2010) (hereafter “PZ”). Hong et al. (2007) constructed nonparametric tests that jointly

test the uniformity and serial independence of {Zt} by comparing kernel estimator of the

joint density of (Zt−j, Zt) with the product of two uniform densities. Because the nuisance

parameters converge at a root-n rate while the test statistics converge at nonparametric

rates, the effects of nuisance parameter estimation are asymptotically negligible. The conve-

nience of not having to directly account for parameter estimation error is gained at the prices

of bandwidth selection for kernel densities and slower convergence rates. Park and Zhang

(2010) adopted the data driven smooth test to evaluate the accuracy of the conditional den-

sity function. Unlike the proposed test, theirs is a simultaneous test of the uniformity and

independence that relies on bootstrap critical values. This test is found to have low power

against misspecification of the marginal distributions, which will be discussed in more details

below.

All three tests use the fixed estimation scheme in their estimation. Both the SQT and

PZ tests use the approach of data driven smooth test; their sizes are generally close to the

5% theoretical value and do not seem to vary across the R/n ratios. The sizes of HLZ test

vary noticeably with the R/n ratio. With R/n = 1, their sizes average around 8% and 10%
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for the RW-N and GARCH-N models respectively. This oversize problem improves with the

R/n ratio but seems to persist as sample size increases.

The empirical powers of the SQT test, together with those of the HLZ and PZ tests,

are reported in Table 2. The SQT test generally outperforms the HLZ and PZ tests. In

particular, under the RW-T DGP, the SQT test dominates the other two tests by substantial

margins; under the GARCH-N DGP, the SQT and PZ tests are comparable and dominate

the HLZ test; under the RS-T DGP, the SQT and HLZ tests are comparable and dominate

the PZ test.

Some remarks are in order. (i) The PZ test essentially focuses on testing the copula

density, implicitly assuming that the marginal distributions are uniform. Consequently, it

has good power against misspecification in the serial dependence (GARCH-N vs RW-N in

our simulations). On the other hand, it has weak power against misspecification in the

marginal distributions: In the presence of misspecified marginal distributions, the PZ test

is dominated by the other two tests, especially so when the misspecification only occurs in

the marginal distributions (RW-T vs RW-N). (ii) The HLZ test, based on the joint density

of (Ẑt−j, Ẑt), is seen to provide good powers against the RS-T alternative, which deviates

from the null in both the marginal distributions and serial dependence. On the other hand,

it has relatively low power when the violation only occurs in one aspect, as in the RW-

T or GARCH-N case. (iii) The proposed SQT tests Q̂C(1), ŴQ(5), ŴQ(10), ŴQ(20) and

ŴQ(p̃) provide largely similar performance, with slight variations in a few cases. Since the

adaptive portmanteau test ŴQ(p̃) performs well across all alternatives, it is recommended

unless there are strong reasons to focus on a specific lag or time horizon in the testing. We

shall therefore focus on this test in the following discussion of independence test and the

empirical investigations.

As is discussed above, the first stage robust test can serve as stand-alone test for serial

independence of the generalized residuals. Table 3 reports simulation results of the robust

test ŴQ(p̃) of independent copula, focusing on the hypothesis of RW-N model. The first three

columns reflect the empirical sizes, which are centered about the nominal 5% significance

level. The middle three columns show the substantial powers of the proposed tests against

the alternative of GARCH-N model. The last three columns report the results against the

RW-T model, which are correctly centered about the 5% level despite the misspecification of

the unconditional distribution under the null hypothesis of RW-N model. This experiment

confirms our theoretical analysis that the rank-based copula test of serial independence is

robust to misspecification in the unconditional distribution.
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Table 3: Simulation results of robust tests for serial independence (fixed estimation scheme)

DGP RW-N GARCH-N RW-T

R/n = 1 R/n = 2 R/n = 3 R/n = 1 R/n = 2 R/n = 3 R/n = 1 R/n = 2 R/n = 3

n=250 4.7 4.9 5.5 39.8 39.7 40.1 4.9 5 5

n=500 5.1 5.4 5.3 73.1 73.5 72.6 4.4 5.3 5.3

n=1000 4.8 5.1 5.9 95.8 96 95.6 5.2 5.8 5.0

Note: This table reports the empirical sizes and powers of the data driven portmanteau test statistic ŴQ(p̃)
for serial independence. The null hypothesis is that the data are generated from the RW-N model. The
nominal size is 0.05. R/n denotes the estimation-evaluation ratio. Results are based on 3, 000 replications.

5 Empirical Application

In this section, we apply the proposed smooth tests to evaluate various forecast models

of stock returns. In particular, we study the daily value-weighted S&P500 returns, with

dividends, from July 3, 1962 to December 29, 1995. These data have been analyzed by

Diebold et al. (1998) and Chen (2011), among others. Diebold et al. (1998) proposed some

intuitive graphical methods to assess separately the serial independence and uniformity of

the generalized residuals. Although simple, their graphical approach does not account for the

influence of nuisance parameters. Chen (2011) proposes a generalized PIT-based moment

test to unify the existing uniformity tests and serial independence tests. In particular,

he considered tests based on some pre-determined moment functions and accounted for the

parameter estimation uncertainty using the West-McCracken method for out-of-sample tests.

Following Diebold et al. (1998), we divide the sample roughly into two halves: Observations

from July 3 1962 through December 29, 1978 (with a total of 4,133 observations) are used

for estimation, while those from January 2, 1979 through December 29, 1995 (with a total

of 4,298 observations) are used for evaluation.

Diebold et al. (1998) considered three models: i.i.d. normal, MA(1)-GARCH(1,1)-N , and

MA(1)-GARCH(1,1)-T . They found that the GARCH models significantly outperform the

i.i.d. normal model. Their results lend support to the MA(1)-GARCH(1,1)-T model. In

addition to the three models studied in Diebold et al. (1998), Chen (2011) also considered

the MA(1)-EGARCH(1,1)-N and MA(1)-EGARCH(1,1)-T models. His results suggest that

the GARCH-T model outperforms the GARCH-N model in the uniformity test; however,

both the GARCH and EGARCH models fail to correctly predict the dynamics of the return

series in the forecast period.

We revisit this empirical study and consider the following eight models: RW-N , RW-

T , GARCH(1,1)-N , GARCH(1,1)-T , EGARCH(1,1)-N , EGARCH(1,1)-T , RiskMetrics-N
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(RM-N) and RiskMetrics-T (RM-T ). This particular set of competitors is considered in this

empirical investigation because they facilitate comparison with Diebold et al. (1999) and

Chen (2011) and represent the most commonly used models for stock returns. Note that the

last two RiskMetrics models were also considered in Hong et al. (2007). In accordance with

Diebold et al. (1998) and Chen (2011), we use the fixed estimation scheme and adopt an

MA(1) specification in the conditional mean for all GARCH-type and RiskMetrics models.

After calculating the generalized residuals according to density forecast models, we test

their i.i.d. uniformity using the proposed sequential tests. To save space, we focus on the

sequential test with the automatic portmanteau test ŴQ(p̃) in the first stage. Recall that

the significance levels of both stages are set at 2.53% to obtain a 5% overall significance level

of the sequential test. The simulated critical value of ŴQ(p̃) at the 2.53% significance level is

9.12. The test results are reported in Table 4. In order to provide useful information about

the specification of marginal distributions, the results for the stand-alone uniformity test

N̂U(20) are also reported.11 The simulated critical value of N̂U(20) at the 5% significance

level is 5.64. It transpires that the hypothesis of correct density forecast is rejected for all

models.

Table 4: Test results for estimated density forecast models

RW-N RW-T GARCH-N GARCH-T EGARCH-N EGARCH-T RM-N RM-T

ŴQ(p̃) 838.5 838.5 186.5 189.5 179.9 194.5 182.5 211

N̂U (20) 370.8 241.6 79.9 11.6 70.8 32.5 116.7 47

Note: The parameters of the models are estimated from the estimation sample (from July 3, 1962 through

December 29, 1978 with a total of 4133 observations). The generalized residuals are obtained using the

evaluation sample (from January 2, 1979 through December 29, 1995 with a total of 4298 observations.) The

hypothesis of independent copula is rejected for all models, effectively terminating the tests.

Examination of the test results provides the following insights.

• The first stage of the robust test decisively rejects the hypothesis of serial indepen-

dence, indicating that none of the models in consideration can adequately describe the

dynamics of the daily S&P500 returns. Similar findings are reported in Chen (2011).

• Comparison among the models suggests that the GARCH-type and RiskMetrics models

generally outperform random walk models, underscoring the importance of account-

ing for volatility clustering. Allowing asymmetric behavior in volatility through the

11Note that here we conduct the uniformity test under the null hypotheses of uniformity and independence
of {Zt}. Therefore, the test results can not be interpreted solely as the deviation from the uniformity of
{Zt}. Nonetheless, it may provide useful insights.
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Figure 1: Histogram of Ẑt from the MA(1)-GARCH(1,1)-T model

EGARCH model or applying the exponential smoothing technique through the Risk-

Metrics model does not seem to improve the specification of the dynamic structure.

• The rejection of serial independence in the first stage of the sequential test effectively

terminates the test. Nonetheless, we report the results of stand-alone uniformity test as

they may provide useful information regarding the goodness-of-fit of the unconditional

distributions. All models with a normal innovation are rejected decisively, while those

with a t innovation are marginally rejected. This finding is consistent with the general

consensus that the distributions of stock returns are fat-tailed.

• Both the robust test and stand-alone uniformity test seem to favor the GARCH-T

model among all models under consideration, which agrees with the findings of Diebold

et al. (1998). We plot the histograms of Ẑt and the correlograms of (Ẑt − Z̄)i with

Z̄ = n−1
∑N

t=R+1 Ẑt and i = 1, 2, 3, 4 for the MA(1)-GARCH(1,1)-T model in Figures

1 and 2. Consistent with the test on uniformity, the histogram of Ẑt is nearly uniform.

On the other hand, the sample autocorrelations of (Ẑt − Z̄) and (Ẑt − Z̄)3 are signif-

icantly different from zero at lag one, indicating that the GARCH(1,1) model fails to

adequately characterize the dynamic structure of stock returns.

Lastly, we conduct the out-of-sample separate inference tests, as described at the end

of Section 3.1, for {Ẑt} derived from MA(1)-GARCH(1,1)-T model. At the 5% significance

level, the critical values of R̂k,l(1) at lag one and Ŵ
(k,l)
R (p̃) are 3.84 and 3.97, respectively.

The test statistics R̂k,k(1) with k = 1, 2, 3, 4 are 153.9, 3.2, 59.2 and 5.3, respectively and the

corresponding data driven portmanteau test statistics Ŵ
(k,k)
R (p̃) are 170.9, 18.6, 70.6 and 21.1,
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Figure 2: Correlograms of the powers of Ẑt from the MA(1)-GARCH(1,1)-T
model
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respectively. These results are consistent with the correlograms reported in Figure 2. Those

figures show that at lag one, there are strong autocorrelations in level and skewness, minor

autocorrelation in kurtosis and no autocorrelation in variance of {Ẑt}. Jointly considering

the first 20 lags, there exists strong autocorrelations in the level and skewness of {Ẑt} and

small autocorrelations in variance and kurtosis of {Ẑt}.

6 Concluding remarks

We have proposed a sequential test for the specification of predictive density models. The

proposed test is shown to have a nuisance-parameter-free asymptotic distribution under the

null hypothesis of correct specification of predictive density. One attractive feature of the test

is that it facilitates the diagnosis of the potential sources of misspecification by separating the

independence test and uniformity test of the generalized residuals. Monte Carlo simulations

demonstrate excellent performances of the test.

We have focused on testing correct density forecast models in the present study. All

models of stock returns considered in the previous section are rejected by our tests. Although

an MA-GARCH-T model is preferred, it is not clear if this model is significantly better than

some of its competitors. For this purpose, formal model selection procedure is needed. In

fact, another equally important subject of the predictive density literature is how to select

a best model from a set of competing models that might all be misspecified. We conjecture

that the methods proposed in the present study can be extended to formal model comparison

and model selection. We leave these topics for future study.
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Appendix A. Proof of Theorems

We first introduce some notations. For a vector a = (a1, ..., ak)
′ and r > 0, define |a|r =

(
∑k

i=1 |ai|r)1/r, |a| = |a|2 and |a|∞ = max1≤i≤k |ai|. For a matrix A = (aij)1≤i≤m,1≤j≤n, let

‖A‖ denote the Euclidean norm and ‖A‖∞ = max1≤i≤m,1≤j≤n |aij|. For convenience, define

nj = n− j.
Some conditions are required to establish the asymptotic properties of the proposed

selection rule and test statistics. These conditions should hold in an arbitrary neighbourhood

of θ0 ∈ Θ. This region will then be called Θ0. We use C to denote a generic constant, which

might vary from one place to another.

C1 {Yt}Nt=1 is generated from an unknown conditional probability density function f0t(v|Ωt−1),

where Ωt−1 is the information set available at time t− 1.

C2 The generalized residuals {Zt}Nt=R+1 of the density forecast model f0t(v|Ωt−1) is a sam-

ple of strictly stationary and ergodic process.

C3 Let Θ be a finite-dimensional parameter space. (i) For each θ ∈ Θ, ft(v|Ωt−1, θ) is a

conditional density model for {Yt}Nt=1, and is a measurable function of (v,Ωt−1); (ii)

ft(v|Ωt−1, θ) is twice-continuously differentiable with respect to θ in Θ0 with probability

one.

C4 The expected moment function E[ψi(G0(Zt(θ)))] is differentiable with respect to θ.

C5 θ̂t is a
√
t-consistent estimator for θ0. Moreover, θ̂t satisfies θ̂t−θ0 = Ξ(t)−1S(t), where

(a) Ξ(t) → Ξ, a matrix of rank q; (b) Depending on the forecasting scheme, S(t) is a

q × 1 vector such that S(t) = (t − 1)−1
∑t−1

k=1 s0k (recursive), S(t) = R−1
∑t−1

k=t−R s0k

(rolling) or S(t) = R−1
∑R

k=1 s0k (fixed), where s0t is defined in (18); (c) E[s0k] = 0

a.s..

C6 VU = IKU
+ ηDA−1D′ is finite and positive definite, where D, A and η are defined in

(18) and (19).

C7 Denote Gt(θ, z) = Pr(Zt(θ) ≤ z|Ωt−1). Gt(θ, z) is continuously differentiable in θ and

z (a.s.). Moreover,

E

[
sup

θ∈Θ0,z∈R

∣∣∣∣∂Gt(θ, z)

∂z

∣∣∣∣] < C, E

[
sup

θ∈Θ0,z∈R

∣∣∣∣∂Gt(θ, z)

∂θ

∣∣∣∣] < C,
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Condition C1 describes the data generating process of {Yt}Nt=1. We allow the conditional

density function f0t(·|Ωt−1) to be time-varying. Condition C2 imposes regularity conditions

on the generalized residuals {Zt}. We allow but do not require {Zt} to be a stationary

Markov process. We need this assumption to prove the convergence results. Condition C3

prescribes regularity conditions on the conditional density function ft(v|Ωt−1, θ). Condition

C4 is discussed in details in remark 2. Condition C5 is satisfied by most estimators used in

the literature, including the maximum likelihood estimators and standard GMM estimators.

Under this assumption, we have maxR+1≤t≤N
√
t(θ̂t− θ0) = Op(1). Condition C7 is required

for the asymptotic equicontinuity of certain empirical processes and the uniform law of large

numbers.

Below we shall start with the proof of Theorems 4 and 5 for the univariate uniformity

test. Some results in their proofs are used to prove Theorems 1-3 on copula tests of serial

independence.

Proof of Theorem 4

We introduce some additional notation: Υ = ∂
∂θ′
E[ΨU(Zt−j)]|θ=θ0 , Ξ = E[ ∂

∂θ′
st−j]|θ=θ0 ,

V0 =
∑∞

k=−∞E[ΨU(Z0,t−j)ΨU(Z0,t−j−k)
′], D0 =

∑∞
k=−∞E[ΨU(Z0,t−j)s

′
0,t−j−k] and A0 =∑∞

k=−∞E[s0,t−js
′
0,t−j−k]. Note that the gradient function s0,t−j is defined in (18) and the

matrix Ξ is defined in C5. Recall that Ψ̂U is a KU -dimensional vector of sample moments.

By applying Lemma 4.1 and Lemma 4.2 of West and McCracken (1998), under Condition

C2 and C5, we can obtain the asymptotic normality of Ψ̂U(j),

√
njΨ̂U(j)

d→ N(0,Ω),

where

Ω = V0 − η1(D0Ξ−1Υ′ + ΥΞ−1D′0) + η2ΥΞ−1A0Ξ−1Υ′,

in which η1 and η2 depend on the estimation scheme as follows

η1 =



0, fixed,

1− 1
τ ln(1 + τ), recursive,

τ
2 , rolling (τ ≤ 1),

1− 1
2τ , rolling (τ > 1)

η2 =



τ, fixed,

2(1− 1
τ ln(1 + τ)), recursive,

τ − τ2

3 , rolling (τ ≤ 1),

1− 1
3τ , rolling (τ > 1)

(A.1)

Under the null hypothesis of i.i.d. and uniformity of Zt, following the proofs of Chen

(2011) on page 423, by the law of iterated expectations and the martingale-difference condi-
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tions: E[ΨU(Z0,t−j)|Ωt−j−1] = 0 and E[s0,t−j|Ωt−j−1] = 0 for all (t − j)’s, we can show that

∀k 6= 0, E[ΨU(Z0,t−j)ΨU(Z0,t−j−k)
′] = 0, E[ΨU(Z0,t−j)s

′
0,t−j−k] = 0 and E[s0,t−js

′
0,t−j−k] = 0.

Accordingly, we can obtain the simplified results V0 = IKU
, D0 = D and A0 = A, and hence

Ω = IKU
− η1(DΞ−1Υ′ + ΥΞ−1D′) + η2ΥΞ−1AΞ−1Υ′, where D and A are defined in (18).

Furthermore, we can use the generalized information matrix equality to write Ξ+A = 0 and

Υ +D = 0 under H0. Therefore, we can further simplify Ω to VU := IKU
+ ηDA−1D, where

η are defined in (19). Furthermore, due to the consistency of n/R for τ and the MLE θ̂t for

θ0 under H0, we can show that Ψ̂U
p→ ΨU and V̂U

p→ VU by the uniform law of large number

theorem (ULLN) of Jennrich (1969, Theorem 2). Under C6, it follows that N̂U(j)
d→ χ2

KU
.

Proof of Theorem 5 Define the simplified BIC as follows

SKU = min{k : N̂u,(k)(j)− k log nj ≥ N̂u,(s)(j)− s log nj, 1 ≤ k, s ≤M},

where M is a given number that is sufficiently large.

In order to prove Theorem 5(a), we need to establish that, under the null hypothesis,

lim
n→∞

Pr(KU(j) = SKU) = 1, (A.2)

and

lim
n→∞

Pr(SKU = 1) = 1. (A.3)

We start by proving (A.2). Recall that Ψ̂∗u,(k)(j) = V̂
−1/2
u,(k) Ψ̂u,(k)(j), which is a k×1 vector.

Define the event

An(ζ) =
{√

nj|Ψ̂∗u,(k)(j)|∞ >
√
ζ log nj

}
.

By the definition of Γ(k, n, ζ) defined in (23), in order to prove (A.2), it suffices to prove

P (An(ζ)) = o(1). Define Ψ̃∗u,(k)(j) = V
−1/2
u,(k) [n−1

j

∑N
t=R+j+1 Ψu,(k)(Z0,t−j)]. We can rewrite

Ψ̂∗u,(k)(j) as,
√
njΨ̂

∗
u,(k)(j) =

√
njV̂

−1/2
u,(k) V

1/2
u,(k)Ψ̃

∗
u,(k)(j) +Rn(k),

where

Rn(k) =
√
njV̂

−1/2
u,(k)

{
Ψ̂u,(k)(j)−

1

nj

N∑
t=R+j+1

Ψu,(k)(Z0,t−j)

}
. (A.4)

Since |θ̂t−θ0| = Op(t
−1/2) by Condition C5, we have Ψ̂u,(k)(j) = n−1

j

∑N
t=R+1 Ψu,(k)(Z0,t−j)+

Op(n
−1/2). By (A.4), we obtain |Rn(k)|∞ = Op(1). Therefore, for any ε > 0, we have

P (|Rn(k)|∞ > 2−1
√
ζ log nj) ≤ ε/2 for a sufficiently large n.
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Next define the event

AJ =
{
‖V̂ −1/2

u,(k) V
1/2
u,(k)‖ ≤ J

}
,

where J is a positive constant to be defined later. Under C2, by the consistency of θ̂t and

the ULLN, we have ‖V̂u,(k) − Vu,(k)‖ = op(1). Under Condition C6, it’s straightforward to

show that there exists a positive constant J such that P (AcJ) < ε/2 for all ε > 0, where AcJ
is the complementary set of AJ .

Notice that

P (An(ζ)) ≤ P (An(ζ) ∩ AJ) + P (AcJ)

≤ P
(√

nj|V̂ −1/2
u,(k) V

1/2
u,(k)Ψ̃

∗
u,(k)(j)|∞ > 2−1

√
ζ log nj, AJ

)
+ P

(
|Rn(k)|∞ > 2−1

√
ζ log nj

)
+ ε/2

≤ P
(√

nj‖V̂ −1/2
u,(k) V

1/2
u,(k)‖|Ψ̃

∗
u,(k)(j)| > 2−1

√
ζ log nj, AJ

)
+ ε

≤ P
(√

nj|Ψ̃∗u,(k)(j)| > (2J)−1
√
ζ log nj

)
+ ε.

Since
√
nj|Ψ̃∗u,(k)(j)| = Op(1), it follows that

P
(√

nj|Ψ̃∗u,(k)(j)| > (2J)−1
√
ζ log nj

)
→ 0

as n→∞. We then have P (An(ζ)) ≤ ε for an arbitrary ε, from which (A.2) follows.

We shall next prove (A.3). Note that Pr(SKU = 1) = 1−
∑M

k=2 Pr(SKU = k). Because

SKU = k implies that dimension k “beats ”dimension 1 and N̂u,(1)(j) ≥ 0, we obtain by the

definition of SKU the following

Pr(SKU = k) ≤ Pr(N̂u,(k)(j)− k log nj ≥ N̂u,(1)(j)− log nj) = Pr(N̂u,(k)(j) ≥ (k − 1) log nj).

It follows that

Pr(N̂u,(k)(j) ≥ (k − 1) log nj) ≤ Q1n +Q2n,

where Q1n = Pr(Nu,(k)(j) ≥ (k − 1) log nj/2) and Q2n = Pr(nj|Ψ̂∗u,(k)(j) − Ψ̃∗u,(k)(j)|2 ≥
(k − 1) log nj/2).

Since under the null, Nu,(k)(j) converges to a non-degenerate (χ2
k-distributed) random

variable for any k, it’s straightforward to show that Q1n → 0 as n → ∞. Because
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√
nj|Ψ̂∗u,(k)(j) − Ψ̃∗u,(k)(j)| = Op(1), Q2n → 0 as n → ∞. It follows immediately that

limn→∞ Pr(SKU = 1) = 1.

Further note that

Pr(N̂U(j) ≤ x) = Pr(N̂u,(1)(j) ≤ x)− Pr(N̂u,(1)(j) ≤ x, SKU ≥ 2) + Pr(N̂U(j) ≤ x, SKU ≥ 2).

Because under the null N̂u,(1)(j)
d→ χ2

1 and Pr(SKU ≥ 2)
p→ 0 as n → ∞, it follows

immediately that N̂U(j)
d→ χ2

1.

We now proceed to Theorem 5(b). Define the simplified AIC as follows,

AKU = min{k : N̂u,(k)(j)− 2k ≥ N̂u,(s)(j)− 2s, 1 ≤ k, s ≤M}.

In order to prove Theorem 5(b), we need to establish that under the alternative distribution

P,

lim
n→∞

Pr(KU(j) = AKU) = 1, (A.5)

and

Pr(AKU ≥ S)→ 1. (A.6)

We denote by An(ζ)c the complementary set of An(ζ). Under the alternative distribution

P, there exists an S ≤ M such that EP [ψS(Zt−j)] 6= 0. Denote by S ′ the corresponding

index of ψS in the ordered set Ψu, where S ′ ≤ M . It follows that EP [Ψ̃∗u,(S′)(j)] 6= 0. We

then have

P (An(ζ)c) ≤ P
(√

nj|Ψ̂∗u,(S′)(j)| <
√
ζ log nj

)
→ 0,

since Ψ̂∗u,(S′)(j) = Ψ̃∗u,(S′)(j) + op(1) by the ULLN. Hence, (A.5) holds.

Now, according to the ULLN, for k = 1, ..., S ′ − 1, |Ψ̂∗u,(k)(j)|2 → 0 and |Ψ̂∗u,(S′)(j)|2 →
|Ψ̃∗u,(S′)(j)|2 > 0. We obtain

P (AKU = k) ≤ P (N̂u,(k)(j)− 2k ≥ N̂u,(S′)(j)− 2S ′)

≤ P (nj|Ψ̂∗u,(k)(j)|2 ≥ 2(k − S ′) + nj|Ψ̂∗u,(S′)(j)|2)→ 0.

Therefore, (A.6) also holds.

For a generic constant C > 0, we have

Pr(N̂U(j) ≤ C) = Pr(N̂U(j) ≤ C,AKU ≥ S ′) + o(1) ≤ P (nj|Ψ̂∗u,(S′)|2 ≤ C) + o(1) = o(1),
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where the last equality follows the ULLN. Then, N̂U(j)→∞ as n→∞.

Proof of Theorem 1

Recall that Z0t = Zt(θ0), Ẑt = Zt(θ̂t), Ut = G0(Z0t) , Ĝn(z) = (n+1)−1
∑N

t=R+1 I(Zt(θ̂t) ≤
z) and Gt(θ, z) = E[I(Zt(θ) ≤ z)|Ωt−1]. Let Gn(z) = (n + 1)−1

∑N
t=R+1 I(Zt(θ0) ≤ z). We

first develop some preliminary results that will be used in the proof of Theorem 1.

Lemma A.1. Under C2, C5 and C7, we have, uniformly over z ∈ R

Ĝn(z)−G0(z) = Gn(z)−G0(z) + h(θ0, z)

[
1

n

N∑
t=R+1

(θ̂t − θ0)

]
+ op(n

−1/2),

where

h(θ0, z) = E

[
∂Gt(θ0, z)

∂θ

]
Proof of Lemma A.1: Define the process

Kn(c, z) =
1√
n

N∑
t=R+1

(
I

(
Zt

(
θ0 +

c√
N

)
≤ z

)
− E

[
I

(
Zt

(
θ0 +

c√
N

)
≤ z

) ∣∣∣∣Ωt−1

])
,

indexed by (c, z) ∈ CK × R, where CK = {c ∈ Rq : |c| ≤ C}, and C > 0 is an arbitrary but

fixed constant. By (A.1) of Escanciano and Olmo (2010), we can show supz∈R |Kn(ĉ, z) −
Kn(0, z)| = op(1) for any ĉ = Op(1). Set ĉ = maxR+1≤t≤N

√
t(θ̂t − θ0). It follows that,

√
n sup

z
|Ĝn(z)−Gn(z)| = sup

z

∣∣∣∣∣ 1√
n

N∑
t=R+1

{I(Ẑt ≤ z)− I(Z0t ≤ z)}

∣∣∣∣∣
= sup

z

∣∣∣∣∣ 1√
n

N∑
t=R+1

{Gt(θ̂t, z)−Gt(θ0, z)}

∣∣∣∣∣+ op(1) (A.7)

Next by the mean value theorem and interchanging expectation and differentiation, we have

Dn := sup
z

∣∣∣∣∣ 1√
n

N∑
t=R+1

{
Gt(θ̂t, z)− E[Gt(θ̂t, z)]−Gt(θ0, z) + E[Gt(θ0, z)]

}∣∣∣∣∣
= sup

z

∣∣∣∣∣ 1√
n

N∑
t=R+1

(
∂Gt(θ̃t, z)

∂θ
− E

[
∂Gt(θ̃t, z)

∂θ

])
(θ̂t − θ0)

∣∣∣∣∣ ,
where θ̃t is between θ̂t and θ0. Note that under C5 and C7, by the uniform law of large
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numbers (ULLN) of Jennrich (1969, Theorem 2), we can show that Dn = op(1). Hence, by

(A.7), we have,

√
n sup

z
|Ĝn(z)−Gn(z)| = sup

z

∣∣∣∣∣E
[
∂Gt(θ0, z)

∂θ

]
1√
n

N∑
t=R+1

(θ̂t − θ0)

∣∣∣∣∣+ op(1)

This completes the proof of Lemma A.1.

By the mean-value theorem, we expand Ψ̂C(j) to obtain,

√
njΨ̂C(j) =

1
√
nj

N∑
t=R+j+1

{
ΨC(Ut−j, Ut) + Ψ

(1)
C (Ũt−j, Ũt)[Ĝn(Ẑt−j)−G0(Z0,t−j)],

+ Ψ
(2)
C (Ũt−j, Ũt)[Ĝn(Ẑt)−G0(Z0,t)]

}
= A1n + A2n + A3n, (A.8)

where Ũt = G̃n(Zt(θ̃)) is some random value between Ĝn(Ẑt) and G0(Z0t), Ψ
(l)
C (u1, u2) =

∂ΨC(u1, u2)/∂ul, l = 1, 2, and

A1n =
1
√
nj

N∑
t=R+j+1

ΨC(Ut−j, Ut), (A.9)

A2n =
1
√
nj

N∑
t=R+j+1

{
Ψ

(1)
C (Ut−j, Ut)[Ĝn(Ẑt−j)−G0(Z0,t−j)]

}
+

1
√
nj

N∑
t=R+j+1

{
Ψ

(2)
C (Ut−j, Ut)[Ĝn(Ẑt)−G0(Z0t)]

}
= B1n +B2n (A.10)

A3n =
1
√
nj

N∑
t=R+j+1

{
[Ψ

(1)
C (Ũt−j, Ũt)−Ψ

(1)
C (Ut−j, Ut)][Ĝn(Ẑt−j)−G0(Z0,t−j)]

+ [Ψ
(2)
C (Ũt−j, Ũt)−Ψ

(2)
C (Ut−j, Ut)][Ĝn(Ẑt)−G0(Z0t)]

}
, (A.11)

where B1n and B2n are implicitly defined.

In order to show that
√
njΨ̂C(j) = n

−1/2
j

∑N
t=R+j+1 ΨC(Ut−j, Ut) + op(1), it suffices to

show that A2n = op(1) and A3n = op(1).
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We first consider A2n. By applying Lemma A.1 to B1n defined in (A.10), we have

B1n =
1
√
nj

N∑
t=R+j+1

Ψ
(1)
C (Ut−j, Ut)[Gn(Z0,t−j)−G0(Z0,t−j)]

+
1

nj

N∑
t=R+j+1

Ψ
(1)
C (Ut−j, Ut)h(θ0, Z0,t−j)

[
1
√
nj

N∑
s=R+j+1

(θ̂s−j − θ0)

]
+ op(1)

= C1n + C2n + op(1), (A.12)

where C1n and C2n are implicitly defined.

Under H0C , following the proof of proposition 2.1 of Genest et al. (1995), we can show

that

C1n =

∫ 1

0

∫ 1

0

Ψ
(1)
C (u1, u2)[I(Ut−j ≤ u1)− u1]du1du2 + op(1). (A.13)

Recall that ΨC is the tensor product of basis functions, which are orthonormal with respect

to uniform distribution. We can rewrite

Ψ
(1)
C (u1, u2) = Ψ′1(u1) ◦Ψ2(u2) (A.14)

where Ψ1 and Ψ2 are vectors of basis functions, Ψ′1(u) = ∂Ψ1(u)/∂u and ◦ denotes the

Hadamard product. We then have

C1n =

[∫ 1

0

Ψ′1(u1)[I(Ut−j ≤ u1)− u1]du1

]
◦
[∫ 1

0

Ψ2(u2)du2

]
+ op(1) = 0 + op(1), (A.15)

where the last equality holds due to the orthogonality of Ψ2 with respect to the standard

uniform distribution.

Under C5 and C7, by the law of large numbers, we have,

C2n = EZ [Ψ
(1)
C (Ut−j, Ut)h(θ0, Z0,t−j)]

[
1
√
nj

N∑
s=R+j+1

(θ̂s−j − θ0)

]
+ op(1) (A.16)

By the same proof as that for (A.15), we have EZ [Ψ
(1)
C (Ut−j, Ut)h(θ0, Z0,t−j)] = 0 since

E[Ψ2(U)] = 0, where U is uniformly distributed on [0, 1]. Thus, C2n = op(1). We note here

the estimation effect of θ is ignorable because the Ut’s are defined based on the ranks of the

generalized residuals and therefore are exactly uniformly distributed. For general treatments

of rank-based tests with nuisance parameters, see Randles (1984) and de Wet and Randles
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(1987). By (A.12), it follows that B1n = op(1). Similarly, we can show B2n = op(1). Then

by (A.10), we have A2n = op(1).

Now turn to A3n. By (A.7), it’s straightforward to show that A3n = op(1).

Therefore, we have
√
njΨ̂C(j) = n

−1/2
j

∑N
t=R+j+1 ΨC(Ut−j, Ut) + op(1). Under H0C , it’s

easy to show that n
−1/2
j

∑N
t=R+j+1 ΨC(Ut−j, Ut)

d→ N(0, IKC
). It follows that

√
njΨ̂C(j)

d→
N(0, IKC

). This completes the proof of Theorem 1.

Proof of Theorems 2 and 3

The proof of Theorems 2 and 3 are similar to that of Theorem 5 and therefore omitted.

Proof of Theorem 6

We first establish the asymptotic independence between Q̂C(j) and N̂U(j) for a given

j. Recall that Ψ̂C(j) = (Ψ̂C,1(j), ..., Ψ̂C,KC
(j))′ and Ψ̂U(j) = (Ψ̂U,1(j), ..., Ψ̂U,KU

(j))′. We

shall show that (
√
njΨ̂C(j)′,

√
njΨ̂U(j)′)′ has a multivariate normal distribution and they

are uncorrelated. Let

X(N) =
N∑

t=R+j+1

ΨC(Ut−j, Ut)

Y (N) =
N∑

t=R+j+1

{
ΨU(Z0,t−j) + E

[
∂ΨU(Z0,t−j)

∂θ

]
Ξ−1S(t− j)

}

Following reasoning analogous to that for Theorem 1 and for Theorem 4, under C5, we can

show that
√
njΨ̂C(j) = n

−1/2
j X(N) + op(1),

√
njΨ̂U(j) = n

−1/2
j Y (N) + op(1) and[

n
−1/2
j X(N)

n
−1/2
j Y (N)

]
d→ N

([
0KC×1

0KU×1

]
,

[
IKC

Σ12

Σ21 VU

])
.

where 0k×l is a k-by-l matrix of zeros, Ik is the identity matrix of size k, IKC
, VU are covariance

matrices of n
−1/2
j X(N) and n

−1/2
j Y (N), whereas Σ12 = Σ′21 is the cross-covariance matrix of

n
−1/2
j X(N) and n

−1/2
j Y (N).

Now we compute Σ12. By applying the results from Lemma 4.1 and Lemma 4.2 of West

and McCracken (1998), following the proof of Theorem 4, we can show,

Σ12 = lim
n→∞

Cov(n
−1/2
j X(N), n

−1/2
j Y (N))

= E{ΨC(Ut−j, Ut)ΨU(Z0,t−j)
′} − η1Π0Ξ−1Υ′,
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where η1 is defined in (A.1) and

Π0 =
∞∑

k=−∞

E
{

ΨC(Ut−j, Ut)s
′
0,t−j−k

}
By using the same notation as (A.14), we rewrite ΨC(Ut−j, Ut) = Ψ1(Ut−j) ◦Ψ2(Ut). There-

fore, under the null hypothesis that {Zt(θ0)} is i.i.d. uniform, by applying the law of iterative

expectation and using the fact E[Ψ2(Ut)] = 0, we can show that

E{ΨC(Ut−j, Ut)ΨU(Z0,t−j)
′} = 0. (A.17)

Define Π = E{ΨC(Ut−j, Ut)s
′
0,t−j}. Following the same argument as the proof in Theo-

rem 4, we can show that Π0 = Π. Note that s0,t−j is a function of Ωt−j. Following the

same arguments used to derive (A.17), we can show that Π = 0. Combining with (A.17),

we have shown that Σ21 = 0KC×KU
. Similarly, we can show that Σ21 = 0KU×KC

. So,

(n
−1/2
j X(N)′, n

−1/2
j Y (N)′)′ has a multivariate normal distribution and they are uncorrelated.

It follows that (
√
njΨ̂C(j)′,

√
njΨ̂U(j)′)′ converges in distribution to a multivariate normal

distribution and they are uncorrelated. Therefore,
√
njΨ̂C(j) and

√
njΨ̂U(j) are asymptot-

ically independent of each other. So are Q̂C(j) and N̂U(j).

Since this result holds for an arbitrary j, the asymptotic independence between the

(automatic) portmanteau test ŴQ(p) (ŴQ(p̃)) and N̂U(p) follows immediately. The proof is

now finished.

Appendix B. Additional Simulation Results

In this appendix, we report results of some additional simulations suggested by a referee.

First we consider the case of R/n = 1/2. The results under the fixed estimation scheme

are reported in Table B.1. We set the out-of-sample evaluation period n = 100, 250, 500 and

1000. The overall size and power performances are satisfactory and improve with sample

size.
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Table B.1: Empirical sizes and powers for R/n = 1/2 (fixed estimation scheme)

DGP RW-N GARCH-N RW-T GARCH-N RS-T

NULL RW-N GARCH-N RW-N RW-N RW-N

n = 100 Q(1) 4.1 8.5 34.2 16.1 31.1

W(5) 3.5 7.5 34.1 19.8 32.2

W(10) 4.3 6.5 34 18.4 31.8

W(20) 4.2 6.1 34.2 17.2 31.3

WQ(p̃) 4.1 6 34 16.2 30.5

n = 250 Q(1) 4 8.5 75.9 40.2 72.9

W(5) 4.5 8.4 76.2 46.9 73.5

W(10) 4.6 8 75.9 45.4 73.4

W(20) 4.5 7.6 76.1 41.3 73.1

WQ(p̃) 4.7 7.6 75.9 43.6 73

n = 500 Q(1) 4.8 8.1 96.2 66.2 95.8

W(5) 4.7 8.1 96.2 75.9 95.9

W(10) 4.8 9 96.1 74 95.8

W(20) 4.8 7.6 96.1 67.4 95.6

WQ(p̃) 4.4 8.7 96.2 73.8 95.8

n = 1000 Q(1) 5 8.9 99.97 92 99.97

W(5) 4.5 9.3 99.97 96.5 99.97

W(10) 5 9 99.97 96.1 99.97

W(20) 4.3 7.9 99.97 93.6 99.97

WQ(p̃) 4.3 8.7 99.97 95.5 99.97

Note: This table reports the empirical sizes and powers of the sequential tests (SQT) with Q̂C(1), ŴQ(p),

p = 5, 10, 20 or ŴQ(p̃) in the first stage. The nominal size is 0.05. R/n denotes the estimation-evaluation

ratio. Results are based on 3, 000 replications.

Second, we examine the empirical sizes of SQT under the rolling scheme. As shown in

Table B.2, the tests have better overall size under the rolling scheme compared with those

under the fixed scheme.
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