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Featured Application: This work is mainly applied to the waste recycling industry, especially to
the waste plastic bottle image classification task.

Abstract: The multi-label recognition of damaged waste bottles has important significance in envi-
ronmental protection. However, most of the previous methods are known for their poor performance,
especially in regards to damaged waste bottle classification. In this paper, we propose the use of a
serial attention frame (SAF) to overcome the mentioned drawback. The proposed network archi-
tecture includes the following three parts: a residual learning block (RB), a mixed attention block
(MAB), and a self-attention block (SAB). The RB uses ResNet to pretrain the SAF to extract more
detailed information. To address the effect of the complex background of waste bottle recognition,
a serial attention mechanism containing MAB and SAB is presented. MAB is used to extract more
salient category information via the simultaneous use of spatial attention and channel attention.
SAB exploits the obtained features and its parameters to enable the diverse features to improve the
classification results of waste bottles. The experimental results demonstrate that our proposed model
exhibited good recognition performance in the collected waste bottle datasets, with eight labels of
three classifications, i.e., the color, whether the bottle was damage, and whether the wrapper had
been removed, as well as public image classification datasets.

Keywords: multi-label image classification; waste bottle; serial attention frame; mixed attention
block; self-attention block

1. Introduction

Garbage classification is important in establishing a digital society. Specifically, multi-
label waste bottle classification is one of the common tasks in garbage classification. How-
ever, due to the various damaging conditions they can be exposed to, the multi-label
classification of waste bottles has been incredibly challenging. To address this problem,
scholars are devoted to finding solutions in the following three ways: seeking label seman-
tic relationships, objecting proposals, and visual attention methods. In terms of seeking
label semantic relationships, some discriminative methods, i.e., recurrent neural network
(RNN) [1], Bayesian network [2], and graph convolution network (GCN) [3], have been
used to establish semantic relationships. Although these methods have strong learning
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abilities, they cannot define adjacent matrices and require higher computational costs. Ob-
ject proposal methods (i.e., hypotheses-CNN-pooling (HCP) [4] and random crop pooling
(RCP) [5]) generate object bounding box proposals, and then they extract useful information
from these object proposals for image classification. Although they have a faster execution
speed in comparison to traditional sliding windows, obtaining object proposals with these
methods may be time consuming. Taking these factors into account, attention methods are
presented [6,7]. For instance, multi-class attentional regions (MCAR) [6] and the spatial
regularization network (SRN) [7] used the current state to guide the previous state to
extract salient features at a lower cost, in order to improve performance. However, most of
the previous methods performed poorly, especially with regards to damaged waste bottle
classification. Inspired by that, we propose a serial attention frame (SAF) to overcome
the aforementioned drawback. This paper includes the following three parts: a residual
learning block (RB), a mixed attention block (MAB), and a self-attention block (SAB). The
RB uses 101-layer ResNet [8] to pretrain SAF to extract more detailed information. To
address the effect of the complex background of waste bottle recognition, a serial attention
mechanism, containing MAB and SAB, is presented. MAB is used to extract more salient
category information via the simultaneous use of channel attention [9] and spatial atten-
tion [9] in multi-label recognition. SAB exploits the obtained features and its parameters to
enable the diverse features to obtain scores to improve the classification results of waste
bottles. The contributions can be summarized as follows:

(1) A CNN is used to recognize waste bottles.
(2) A serial attention frame, mainly including channel attention, spatial attention, and

self-attention mechanisms, is used to extract the salient features of diverse types to
improve the multi-label classification of waste bottles.

(3) Image datasets of waste bottles are collected.

The remainder of the paper is organized as follows: Section 2 discusses the related
work. Section 3 reveals the architecture of our proposed model. The experiments are shown
in Section 4. Section 5 is the conclusion.

2. Related Work

Multi-label classifications can be divided into three patterns, i.e., label semantic rela-
tionships, object proposals, and attentive mechanisms. More details of these methods can
be found in the following sections.

2.1. Bottle Classifications

In terms of bottle recognition, Muresan et al. extracted the bottle information via
segments, identified the interested text area and converted the obtained information to
human-readable characters [10]. Fang et al. proposed a binocular inspection algorithm
to overcome impurities in ampoules and penicillin bottles [11]. Thiyagarjan et al. firstly
collected the logo of bottles via a camera, then classified the obtained logo to recognize
bottles [12]. Bottle classifications are meaningful to waste bottle classifications. We created
a waste bottle dataset, which is shown in Section 4.1.

2.2. Label Semantic Relationships

An intuitive way of solving multi-label classification problems is to train multiple in-
dependent binary classifiers [13]. These methods often refer to finding relationships among
labels, e.g., a keyboard and a mouse in a given image, to achieve a classifier [14]. Inspired
by that, to capture label semantic relationships, RNN has been presented. Wang et al. [15]
proposed an end-to-end frame, as well as CNN-RNN, to learn the dependency of semantic
labels through a combination of CNN and RNN. Although this method can identify rela-
tionships between different labels, it requires a fixed label sequence in the training process.
To address this issue, Chen et al. [16] used an attention and long–short-term memory
(LSTM) [17] to achieve an order-free label sequence to obtain a classifier. Although RNNs
have obtained remarkable results in image classification, they may rely on heavy manual
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parameter tuning to obtain optional parameters. To handle this drawback, GCNs [18] have
been developed.

Semantic-specific graph representation learning (SSGRL) [3] directly uses a GCN
to enhance the interactions among semantic regions to extract more representative fea-
tures [19]. Chen et al. [20] used a GCN to build a graph of labels to represent a set of
mutually dependent object classifiers. You et al. [21] followed in this manner, but used a
cross-modality attention mechanism instead. Additionally, there are some other works
regarding multi-label classification. For instance, Guo et al. [2] adopted a conditional de-
pendency network to exploit label co-occurrence information to improve the classification
performance. Although these methods can extract representative features via a GCN, they
still suffer from the challenge of high computational costs. To tackle this issue, object
proposals have been developed.

2.3. Object Proposals

Object proposals use two steps to conduct multi-label classification [22,23]. The first
step needs to locate the positions of the objects. The second step needs to recognize
different labels. For instance, Yang et al. [24] exploited two types of features, i.e., feature
view and label view, to predict the labels of each proposal to improve the recognition
results. However, this method referred to bounding box annotations in the training process.
To handle this problem, HCP [4] used Edgebox [25] or BING [26] algorithms to generate
hypothesis object proposals of an image, then used a CNN with a max-pooling operation to
extract salient features and recognize objects. In addition, Wang et al. [5] randomly scaled
and cropped an image to extract features, and also used a CNN. Although object proposals
are effective for multi-label classification tasks, they may lead to huge human costs in
the chosen object proposals or heavy labor for bounding box annotations. Alternatively,
attention mechanisms can extract salient features to make a tradeoff between performance
and speed, according to the context.

2.4. Attention Mechanisms

Some CNNs tend to increase the depth or width of deep CNNs to improve the
performance of image classification. However, that may lead to a higher computational
overhead [27]. To overcome this drawback, attention methods are conducted [28]. Due to
the low resource consumption, attention methods are extended to multi-label classification
tasks, such as recurrent attentional reinforcement learning (RARL) [29] and recurrently
discovering attentional regions (RDAR) [1]. Specifically, RARL adopts a recurrent attention
reinforcement learning module to recursively learn the attentional regions, and RDAR uses
a spatial transformer to efficiently find the locations of interested regions in the multi-label
classification tasks. In addition, Gao et al. [6] also tried to discover the attentional regions,
but divided the process into three sub-processes using a multi-class attentional region
module. Scholars tend to generate an attention map of each label, instead of attentional
regions. For example, Zhu et al. [7] used label-specific attention to obtain the spatial and
semantic relationships of labels. There are also other attention mechanisms, such as visual
attention consistency [30] and the attention pathway [31]. Compared to object proposals
and seeking label semantic relationships, attention-based models are good tools to balance
performance and computational costs in multi-label classification. Inspired by this, the
attention mechanism is used in a CNN for multi-label classification in this paper. Due to
the complementarity of different features from different attention mechanisms, we fuse
different attention mechanisms to identify more salient features in this paper.

3. The Proposed SAF

The proposed 104-layer SAF contains the following three parts: a residual learning
block (RB), a mixed attention block (MAB), and a self-attention block (SAB), as shown
in Figure 1, where the images collected from the cameras are not very clear, due to the
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illumination conditions of the sorting machine. More detailed information is illustrated
in Figure 1.
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Figure 1. Network architecture of SAF. The residual learning block (RB) is pretrained to learn more
context features. The mixed attention block (MAB) can extract salient category information via the
simultaneous use of channel attention and spatial attention. The self-attention block (SAB) constructs
a classifier with attention to improve performance.

RB: The RB uses a 101-layer ResNet [8] to pretrain SAF to extract more detailed
information, where its parameters are referred to in [8]. Let us denote a bottle image
with a size of 448 × 448 as the input of RB. The RB contains 1-layer Conv1 + BN + ReLU,
Layer1, Layer2, Layer3, and Layer4. Specifically, one-layer Conv1 + BN + ReLU denotes
the combination of a convolutional layer, batch normalization (BN) [32], and rectified linear
unit (ReLU) [33], where its parameters are an input channel number of 3, kernel size of
7 × 7, and output channel number of 64. Moreover, it acts as a one-layer max-pooling
layer, which acts as a 9-layer Layer1. Layer1 contains three bottlenecks, and each bottleneck
is made up of Conv + BN + ReLU, Conv + BN, and a single ReLU; their parameters are
introduced Ref. [8]. The output of Layer1 is the input of Layer2. Layer2 includes four
bottlenecks and it connects Layer3. Layer3 is composed of twenty-three bottlenecks and it
connects Layer4. Layer4 consists of three bottlenecks and it connects MAB. The process can
be represented as Equation (1), as follows:

OR = R(I) = L4(L3(L2(L1(MP(CBR(I)))))) (1)

Moreover, R expresses a function of ResNet, and is a function of the combination of a
convolutional layer, BN, ReLU, and max-pooling layer, respectively. In addition, L1, L2, L3,
and L4 denote functions of Layer1, Layer2, Layer3, and Layer4, respectively. Further, OR
denotes the output of ResNet as the input of MAB.
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MAB: MAB uses one-layer channel attention [9] and one-layer spatial attention [9] to
extract more salient category information. Specifically, mixed attention can be formulated
as Equation (2), as follows:

OMAB = MAB(OR)
= S(C(OR))

(2)

where MAB is the function of MAB, which is composed of the functions (C and S) of
channel attention and spatial attention. The channel attention block [9] aims to find out
which channels deserve attention, and its structure is shown in Figure 2a. It consists of
a max-pooling operation, an average pooling operation, a multi-layer perceptron (MLP),
and a sigmoid operation. Specifically, it firstly exerts average-pooling and max-pooling
operations to create a map with the size 14 × 14 × 2048, and then a parameter-shared
MLP aggregates the obtained feature vectors. More detailed information can be found in
Equation (3), as follows:

Oc = C(OR)×OR
= fsigmoid( fmlp( favg(x)) + fmlp( fmax(x)))×OR

(3)

where × is the multiplication operation. Let favg and fmax define the average-pooling
operation and max-pooling operation, respectively. fsigmoid is used to express the sigmoid
function and fmlp is a function of MLP, which is shown in Figure 3. Oc denotes the output
of channel attention, which acts as the spatial attention block.
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Figure 2. Network architecture of channel attention block (a) and spatial attention block (b). The chan-
nel attention block learns which channels of feature maps are important; the spatial attention block
finds out “where” feature maps are vital. Together, MAB can aggregate more effective information
regarding categories.
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Figure 3. Our waste bottle images from the collected dataset. There are 3902 images in the datasets.
We randomly picked 3224 of them as the training set and the others as the test set. These images are
classified according to three categories, i.e., color, whether the bottle is damaged, and whether the
wrapper is removed.

The spatial attention block [9] mainly locates the important spatial positions of all
the feature channels. It consists of a combination of max pooling and average pooling, as
well as a convolutional layer and a sigmoid function. Different from the channel attention
block, a convolutional layer is utilized to aggregate feature vectors. The parameters of the
convolutional layer are an input channel number of two, kernel size of 3 × 3, and output
channel number of one. The structure of the spatial attention block is shown in Figure 2b,
and in Equation (4), as follows:

Os = S(Oc)×Oc
= fsigmoid(C(Concat( favg(Oc), fmax(Oc))))×Oc

(4)

where Concat denotes the concatenation operation and C is a convolutional layer with a size
of 3 × 3. Additionally, its output channel is c1. Os expresses the output of spatial attention
and it acts the same as SAB.

SAB: SAB exploits the obtained features and its parameters to enable the diverse
features to improve the classification results of waste bottles. SAB uses the following
self-attention mechanism [34] to implement its function: Firstly, SAB utilizes convolution
with a size of 1 × 1 to refine the obtained features of MAB; its input channel is 2048 and the
output channel is c1 (c1 = 8). The obtained features are represented by f and its dimension
is c1 × 14 × 14. Secondly, we obtained the weights of a convolutional layer of 1 × 1 as
W, and its dimension is c1 × 14 × 14. Thirdly, we use 2-norm to deal with the weights of
each channel, and regard them as new weights of the attention mechanism, as shown in
Equation (5), as follows:

W j =
2

√
(wj

1)
2
+ (wj

2)
2
+ (wj

3)
2
+ . . . + (wj

d)
2

(5)

where j (j = 1, 2, 3, 4, 5, 6, 7, 8) is the order number of a channel and d (d = 1, 2, 3 . . . . . . ,
195, 196) denotes the order number corresponding to the pixel point. Fourthly, we use an
attention operation to learn these obtained features. That is, we use the obtained features
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to divide the obtained weights of each channel into new features. This process can be
formulated as Equation (6), as follows:

f j = f j/W j (6)

where fj denotes the obtained features of the jth channel in f. Finally, we calculated the
mean operation to deal with all the feature points of each channel. Its implementations can
be shown in Equation (7), as follows:

Sj =
1

196

196

∑
i=1

xj
i (7)

where xi
j denotes the i-th feature point in fi. Sj is the score of the jth category, where j ∈

{1,2,3,4,5,6,7,8}. If Sj is more than 0.5, it is regarded as the jth category.

4. Experiment
4.1. Dataset

Our bottle image dataset containing 3902 waste bottle images is captured by Guang-
dong Databeyond Technology Co., Ltd., Shenzhen, China. Figure 4 shows a few examples
of our collected dataset. We randomly choose 3224 waste bottle images as a training dataset
and other images as a test dataset to obtain a classifier of waste bottles. Specifically, the test
dataset is divided into eight categories, such as white, green, blue, wrapper removed, wrap-
per not removed, damaged and not damaged, according to color, whether it is damaged
and whether the wrapper is untagged. Additionally, to further test the classification perfor-
mance of the proposed SAF, we choose public VOC2007 [35] and WIDER Attribute [36] to
evaluate the classification results. VOC2007 has been widely used to evaluate multi-label
recognition models, as well as for object detection in image segmentation models. It con-
tains 9963 images from a total of 20 labels, which are divided into two subsets, train-val
set and test set. We adopt the train-val set to pretrain SAF and the test set for evaluation.
WIDER Attribute is a large human attribute dataset, which has 57,524 images and 14 human
attribute binary labels. It has a train-val set and test set. In this paper, we follow [7]’s
method to deal with the unspecified labels.

4.2. Loss Function

Inspired by MCAR [6] and class-specific residual attention (CSRA) [34], we choose bi-
nary cross-entropy (BCELoss) [37] as the loss function to optimize parameters in this paper.

4.3. Experimental Settings

We conduct our experiments on an NVIDIA Titan RTX GPU, an Intel(R) Core(TM)
i7 CPU, and a RAM of 32 GB. The CUDA version and cnDNN version are 11.4 and 9,
respectively. We implement our model with PyTorch of 1.8.0 and python of 3.7.6. The initial
learning rate is set as 0.01 and it varies by 0.1 for every four epochs. The batch size is 16 and
we iteratively train the model for 30 epochs in total. In addition, we utilize ResNet101
pretrained on the ImageNet set as the backbone. The Adam [38] algorithm is utilized to
optimize model parameters, with a momentum of 0.9 and weight decay of 0.0001.



Appl. Sci. 2022, 12, 1742 8 of 12
Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 
Figure 4. One bottle image (on the left) and its grad cam map of a waste bottle with the damaged 
classification on the last layer of RB (in the middle) and on the last layer of MAB (on the right). Our 
model can precisely locate the “damaged area” and the MAB makes it more focused (we mark rel-
atively unimportant pixels for classification in blue and relatively important ones in red). 

4.2. Loss Function 
Inspired by MCAR [6] and class-specific residual attention (CSRA) [34], we choose 

binary cross-entropy (BCELoss) [37] as the loss function to optimize parameters in this 
paper. 

4.3. Experimental Settings 
We conduct our experiments on an NVIDIA Titan RTX GPU, an Intel(R) Core(TM) i7 

CPU, and a RAM of 32 GB. The CUDA version and cnDNN version are 11.4 and 9, respec-
tively. We implement our model with PyTorch of 1.8.0 and python of 3.7.6. The initial 
learning rate is set as 0.01 and it varies by 0.1 for every four epochs. The batch size is 16 
and we iteratively train the model for 30 epochs in total. In addition, we utilize ResNet101 
pretrained on the ImageNet set as the backbone. The Adam [38] algorithm is utilized to 
optimize model parameters, with a momentum of 0.9 and weight decay of 0.0001. 

4.4. Ablation Experiments 

Figure 4. One bottle image (on the left) and its grad cam map of a waste bottle with the damaged
classification on the last layer of RB (in the middle) and on the last layer of MAB (on the right).
Our model can precisely locate the “damaged area” and the MAB makes it more focused (we mark
relatively unimportant pixels for classification in blue and relatively important ones in red).

4.4. Ablation Experiments

We firstly verify the effectiveness of each module. As described in Figure 4, RB and
MAB have a positive effect on SAF. As shown in Table 1, RB + SAB + classifier outperforms
RB + classifier on mean average precision (mAP) [39], overall F1 measure (CF1) [40] and
per-category F1 measure (OF1) [40], where RB + SAB + classifier denotes the combination
of RB, SAB, and classifier. This also shows the effectiveness of SAB. SAF obtains better
results than RB + SAB + classifier on three indexes, i.e., mAP, CF1, and OF1 in Table 1,
which tests the effectiveness of SAB. These materials prove that the proposed techniques
have good performance in waste bottle image classification.
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Table 1. Results of key techniques in mAP, CF1 and OF1 (%) on waste bottle dataset.

Methods mAP CF1 OF1

RB + Classifier 97.39 93.41 96.40

RB + SAB + Classifier 97.46 93.63 96.33

SAF 97.79 94.50 97.05

4.5. Comparisons with State-of-the-Art Methods

Eleven methods, i.e., RDAR [1], semantic-specific graph representation learning (SS-
GRL) [3], HCP [4], SRN [7], graph convolutional networks for multi-label classification
(ML-GCN) [20], feature view and label view (Fev + Lv) [24], RARL [29], CSRA [34], deep
hierarchical contexts (DHC) [36], visual attention (VA) [41], visual attention aggregation
(VAA) [42], ASL [43], Query2labels [44], CNN-RNN [15], VGG + SVM [45], and VeSPA [46],
are used as comparison methods on mAP, OF1, and CF1 to test the performance in waste
bottle image classification. As shown in Table 2, we can observe that our model exceeds the
combination of RB and CSRA, where its parameters are the same as SAF. Though SAF has
more parameters, the FLOPs and running time just slightly surpass CSRA. Considering
its performance improvement, this is totally negligible. As illustrated in Table 3, our SAF
outperforms the state-of-the-art methods, i.e., ML-GCN and SSGRL in mAP on VOC2007.
From Table 4, we can observe that the proposed SAF outperforms DHC, VA, SRN, and
VAA in mAP, CF1, and OF1 on WIDER Attribute. According to these illustrations, it is
known that the proposed method is very competitive on waste bottle image classification
and public image classification datasets.

Table 2. Comparison results of two methods on metrics, parameters, FLOPs, and running time on
waste bottle dataset.

Methods
Metrics (%)

Parameters (M)
Running Time
(ms per Image)mAP CF1 OF1

ASL [43] 81.03 72.10 71.41 53.576 2.30

Query2labels [44] 87.09 82.57 89.23 193.507 7.07

Resnet101 + CSRA [34] 97.25 93.55 96.48 42.516 8.42

SAF 97.79 94.50 97.05 52.129 8.62

Table 3. Classification results of different methods on VOC2007.

Methods CNN-RNN
[15]

VGG + SVM
[45]

FeV + LV
[24] HCP [4] RDAR [1] RARL

[29]
SSGRL

[3]
ML-GCN

[20] SAF

mAP
(%) 84.0 89.7 90.6 90.9 91.9 92.0 93.4 94.0 94.1

Table 4. Classification results of different methods on WIDER Attribute.

Methods DHC [36] VeSPA [46] VA [41] RARL [29] SRN [7] VAA [42] SAF

mAP (%) 81.3 82.4 82.9 82.9 86.2 86.4 87.0

CF1 (%) - - - - 75.9 - 77.2

OF1 (%) - - - - 81.3 - 82.0

5. Conclusions

To obtain a robust classifier for waste bottles, we propose a serial attention frame (SAF).
The SAF relies on a residual learning block, a mixed attention block, and a self-attention
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block. The residual learning block uses ResNet to pretrain SAF to extract more detailed
information, according to the transfer learning idea. The mixed attention block exploits
spatial attention and channel attention to extract more salient category information. In
addition, to identify diverse features, a self-attention block utilizes its obtained features
and its parameters to improve the classification performance of waste bottles. In the future,
we intend to extend SAF to deal with other waste image classifications. Additionally, we
will enhance the illumination of the sorting machine to improve the quality of the collected
waste images, in order to improve the performance of waste bottle classifications.
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