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Abstract— In recent years there have been an increasing number of
research groups that have begun to develop multi-chip address-event
systems. The communication protocol used to transmit signals between
these systems’ components is based on the Address-Event Representation
(AER). It is therefore important to have access to robust and reliable AER
communication infrastructures for streamlining the systems’ development
and prototyping stages.

We propose an AER communication infrastructure that can be easily
interfaced to workstations or laptops during a prototyping phase, and that
can be embedded into compact and low-cost systems in the application
phase. The infrastructure proposed uses a novel serial AER interface with
flow-control, overcomes many of the drawbacks observed with previous
solutions, and can achieve event rates of up to 78.125MHz for 32bit AEs.

I. INTRODUCTION

In recent years a new class of distributed multi-chip neuromorphic

systems have emerged, e.g. [1]–[4]. These systems are typically

composed of one or more neuromorphic sensors (e.g. [5], [6]),

of additional VLSI chips that implement general-purpose computa-

tional architectures, often based on networks of silicon neurons and

synapses e.g. [7], and potentially of interfaces to robotic actuators

for implementing real-time sensory-processing behaving systems.

A. The Address-Event Representation

Multiple research groups are developing a wide variety of multi-

chip neuromorphic systems in parallel. The characteristic that all

these systems have in common is the data representation and the

communication protocol used. Each component in these systems

can receive and transmit information using the Address-Event Rep-

resentation (AER) [8], [9] communication protocol. In this repre-

sentation, input and output signals are real-time digital events that

carry analog information in their temporal relationships (inter-spike

intervals). Each event is represented by a binary word encoding the

address of the sending node. Output signals of sending elements are

converted into streams of Address-Events (e.g. using pulse-frequency

modulation in the case of silicon neurons), and multiplexed onto an

asynchronous digital bus.

Fig. 1. The AEX Board

These multiplexing strategies are very efficient because only the

addresses of active elements are transmitted (as opposed to con-

ventional scanning techniques that allocate the same bandwidth for

all the pixels, independent of their activity). The source address-

events (AEs) being transmitted on the digital bus can be translated,

converted or remapped to multiple destinations using conventional

logic and memory elements. AER infrastructures therefore allow us

to construct large multi-chip networks with arbitrary connectivity, and

to seamlessly reconfigure the network topology.

As the trend to develop complex AER multi-chip experimental

setups is increasing, there is a strong need for robust and reliable

AER communication infrastructures, that can be easily interfaced

to workstations or laptops during a prototyping phase, and that can

be embedded into compact and low-cost systems in the application

phase.

B. Existing AER Infrastructure and Approaches

Conventional approaches that use general purpose hardware in

multi-chip AER systems involve logic-analyzers or general purpose

digital data acquisition systems, but these approaches usually suffer

drawbacks regarding asynchronous communication or on-line anal-

ysis of the acquired data [3]. This requires the design of special

purpose hardware for building and debugging multi-chip AER sys-

tems.

For example a generic AER interfacing solution implemented using

special purpose hardware is the PCI-AER board [3]. It consists of a

custom made PCI card and a daughter board which are connected

by a ribbon cable. The daughter board has parallel AER interface

connectors and supports up to four input channels and four output

channels. The PCI board consists of multiple FPGAs, FIFOs, SRAM

and a PCI interface controller chip. The PCI board can monitor0

incoming AE streams and then send the timestamped AEs via PCI

to a program running on the computer. It can also do the reverse:

sequence0 timestamped data provided to it over the PCI bus out on

any or all of the output channels. The FPGAs on the PCI-AER board

also implement a one to many mapper that can be reconfigured via

the PCI interface.

Recent boards for interfacing AER to PC were also implemented

using USB instead of PCI, e.g. [10].

Similarly, recent serial AER communication schemes were pro-

posed in [11].

Other groups building multi-chip AER systems tend not to use

generic AER infrastructure, but build special purpose PCBs on a per

project basis e.g. [2], [12], or analogous solutions that are not as

flexible, or powerful, as the system described here.

Here we propose a general purpose serial AER infrastructure that

can be reused in multiple projects or experimental setups.

0There are two different types of AEs. They can either have explicit
timestamps attached, or the event-time can be implicit, simply when an
address is communicated. Of course only timestamped AEs are suitable for
packetized transmission or storage. Attaching a timestamp to an event is called
monitoring, sending out an event timed according to its timestamp is called
sequencing.
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II. PARALLEL VERSUS SERIAL AER

With the speeds that AER chips and systems have recently reached,

the parallel AER approach in board to board communication has

become a limiting factor at the system level potentially causing

unreliable behavior.

With the frequencies on parallel AER in the order of tens of

megahertz, the wavelength of those frequencies has shrunk to about

the order of magnitude of the lengths involved in our experimental

setups, or only slightly larger.

One rule of thumb in electrical engineering says that if the signal

wavelength is not at least one to two orders of magnitude greater than

the physical size of the system, then the RF properties of the signals

have to be taken into account: wires can no longer be assumed to be

perfect conductances with the same potential at every point, but have

to be treated as transmission lines.

If these problems are not taken into account, issues such as RF

sensitivity, cross-talk and ground-bounce arrise, especially in parallel

AER links using ribbon cables. These issues can best be solved by

resorting to serial differential signaling.

A. General Trend towards Serial Differential Signaling

1) Single-Ended Signaling → Differential Signaling: The issues

referred to above with the parallel approach have also played a major

role in industrial and consumer electronics in general. The solution

has been to use even faster, but differential links, and to carefully

control the line impedance at every point between the sender and

receiver.

In such a differential signaling scheme there is always a pair of

wires that carry signals of opposite sense. The absolute value of the

voltages on the signal wires does not have any meaning, only the

voltage difference between the two wires of the pair has.

These so called differential pairs are then usually shielded, thus

avoiding the problems of RF sensitivity and cross-talk to other signal

wires.

Because of the differential signaling, the ground-bounce problem

is also solved. A differential driver always pushes as much charge

into one wire as it pulls from the other. Thus the net charge flow is

always zero.

2) Parallel → Serial: The data rates that can be achieved using

differential signaling are orders of magnitude higher than with

traditional single-ended signaling. Therefore less (but better) wires

are nowadays used to achieve the same or better bandwidth than

with the many parallel wires in traditional bus links.

For example IDE / parallel ATA can achieve up to 1Gbit/s using

16 single-ended data signals, but only in one direction at a time (half-

duplex) [13].

Serial ATA has 2 differential pairs (and thus four signal wires),

one pair to send, and one to receive [14]. Each pair can transmit up

to 3Gbit/s.

The AER communication infrastructure we implemented uses

serial differential signaling for inter-board communication, following

an approach similar to the one proposed in [11].

III. THE AEX BOARD

The printed circuit board that implements the serial communication

infrastructure, called the AEX board, is shown in Fig. 1. As can be

seen on the AEX block diagram (Fig. 2) the board consists of three

interface sections:

Parallel AER – for connecting the neuromorphic chips

USB2.0 – for Monitoring & Sequencing on a PC

Fig. 2. AEX – Block Diagram

Serial AER (SAER) – to interface to other AEX boards or other

boards with a Serial AER interface

and an FPGA used to route data between those interfaces.

A. Parallel AER interface

With this interface many common parallel AER devices, i.e.

neuromorphic chips, can be attached to the AEX board.

The connectors are designed in a way that allows the AEX board

to be plugged directly to a chip carrier board, without the need for

ribbon cables between the AEX and the target chip. This allows the

parallel AER interface to be used at higher speeds.

B. USB2.0 interface

The USB2.0 interface is used to transfer timestamped AE data

back and forth between the FPGA and a PC. USB2.0 was chosen for

it’s good performance and ubiquity (e.g. in laptops).

The interface uses the well known FX2 chip from Cypress. As

the firmware programmable 8051 core of this chip does not need to

manipulate the USB data-stream, the full bandwidth of the 480Mbit/s

highspeed mode of the USB2.0 specification can be achieved.

We developed the firmware for the FX2 from scratch and compiled

it using the open-source compiler [15].

We also developed a high-performance driver for Linux as part of

this project with which we achieve actual bandwidths of 40MByte/s

from AEX to software. The limiting factor here is the USB host-

controller of the computer.

C. Serial AER interface

Our serial AER approach differs from previously proposed solu-

tions (e.g. in [11]) in several aspects:

Instead of using a high-end FPGA natively supporting serial IO

standards, we are using a low cost Xilinx Spartan FPGA plus a

dedicated SerDes1 chip. The usage of such a SerDes chip allows

us to get higher event rates at significant lower silicon cost. The

FPGA and SerDes we use cost about $40, a about third of the

cost for the cheapest Xilinx Virtex-II Pro series FPGA necessary

for implementing a system as in [11]. Using this hardware we

currently achieve event rates that are about three to four times

faster than in [11].

1Such a Serializer-Deserializer locally receives data on a parallel bus and
then sends it over a serial output at a multiple of the parallel interface speed
and vice versa for the serial receive path. The parallel interface is usually
used for on-board, the serial for off-board communication.
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In the approach described in [11], the receiver simply drops

events if it is not ready to receive them. We implemented a ow-

control scheme that ensures that all events reach its destination.

In case the receiver is currently unable to receive an event

because it does not have the necessary receive buffer space

available, it can tell the sender to stop until space is available.

The FPGA package type chosen allow for in-house assembly

and repair as opposed to the ball-grid-array package used in

[11].

1) SerDes - TI TLK2501 / TLK3101: The SerDes we can use

on our system is either the TLK2501 or the TLK3101 from Texas

Instruments. The TLK2501 supports up to 2.5Gbit/s, the TLK3101

supports up to 3.125Gbit/s, and has on-chip termination resistors. As

terminating the differential traces correctly is not a trivial layout task,

it is easier to achieve working PCB layouts with the TLK3101. Our

system both supports the TLK2501 and the TLK3101 as an assembly

option. We also successfully achieved mixed setups where TLK2501

and TLK3101 are communicating with each other at 2.5Gbit/s.

On the parallel side of the SerDes these chips have a 16bit transmit

and a 16bit receive bus. They use 8bit/10bit coding and are also

otherwise very similar to the Rocket IOs used in [11]. With the 16bit

word length and the 8bit/10bit coding the SerDes parallel interfaces

run at 1/20 of the serial speed.
2) Cables & Connector Pin-Out: We are using Serial ATA con-

nectors and cables to create Serial AER connections between our

boards in multi-chip experimental setups. The connectors have seven

pins, two differential pairs and three ground pins. With a SATA cable

connecting boards A and B, we use the first differential pair of the

cable to transmit serial AER data from the SerDes on A to the SerDes

on B. The second differential pair is used to feed back a flow-control

signal from the FPGA on B to the FPGA on A.

On the connector pins 2/3 are SerialAER+/-, pins 5/6 are

FlowControl+/-. The remaining pins are the shielding, which we

simply left unconnected on both sides, thus having a floating shield.
3) AC Coupling: We decided to used AC coupled instead of the

simpler DC coupled serial links. With AC coupled links there is

no common ground reference over all the boards in a system. This

eliminates board-to-board ground-bounce problems, and also reduces

line frequency injection.
4) Flow-Control Scheme: The flow control signal has to fulfill the

following requirements:

it has to be transmitted over a differential pair;

for AC coupling it has to be DC free;

it has to represent two states, receiver busy or ready.

We chose the flow control signal to be a square-wave because it is

DC free and can easily be generated by clocked digital logic. The part

of the FPGA which interfaces to the SerDes and performs the flow

control is running at the same clock-speed as the parallel SerDes

interfaces, e.g. 125MHz for a 2.5Gbit/s link. The receiver FPGA

signals that it is ready to receive by generating a square-wave at half

its clock frequency, i.e. 62.5MHz. If the receiver is running out of

FIFO space it signals the sender to stop by generating a square-wave

at an eighth of the clock frequency.

These signals can be easily decoded by the sender FPGA even

though they are not synchronous to any of the sender FPGA’s clock

signals. It does so by counting the number of clock cycles the flow

control signal keeps the same value. If this counter is one to three

the sender keeps sending, if it counts to four or more the sender has

to stop.

We have to know at what receiver FIFO fill-level we have to signal

a stop condition to the sender. It is the sum of the forward channel

and the back channel latency. According to [16] the SerDes has a

total link latency of 38 + 107 = 145 bit times, giving 7.25 clock

cycles, plus the line delay of the cable.

The flow-control back channel has a latency equal to the line delay

plus two cycles for the synchronizer registers, plus 4 to 5 cycles to

detect the stop state. This adds up to 14.25 cycles plus two line

delays.

At a 2m maximum cable length this is 2 × 2m / 0.5c = 26.6 ns
which is 3.3 cycles.2 Thus the total delay should be less than 18

cycles. The latest time to dispatch the flow control stop signal is thus

when we have 18 words of the 16bit receiver FIFO remaining free.

5) 32bit word synchronization: When using 32bit addresses, two

16bit words have to be transferred per address. In order to detect

the 32bit word boundary we define that the two 16bit words have to

be sent back-to-back, with no IDLE characters in between. Once an

IDLE character is seen, the receiver knows the 32bit word boundary.

This allows 32bit words to also be sent back-to-back, once the

receiver has seen a single IDLE character, thus the full bandwidth

available can be used for address data.

D. FPGA implementation

We are using a Xilinx Spartan 3E series FPGA on the AEX board to

link the three interface sections together. The PQ208 package chosen

has a sufficient pin count for this system, while still allowing in-house

assembly without reflow soldering.

Fig. 3 shows the FPGA-internal block diagram. The three in-

terfaces, serial AER, parallel AER and USB are drawn in orange.

The USB interface, as opposed to the other interfaces, is handling

explicitly timestamped addresses. Thus we need monitoring and

sequencing units (green) between the two domains. The routing fabric

between the three interface blocks allows AEs to be selectively routed

between the three interfaces. It also contains simple mapping and

filtering units.

The mapping units can add a configurable offset to an AE stream,

so that different address spaces can be made non-overlapping. The

filtering units allow to select which events are routed to which

destination.

All these functional units are interconnected using FIFOs (blue,

striped).

IV. ON THE IMPORTANCE OF FLOW-CONTROL

Here we compare the statistics of a Serial AER implementation

with flow control and one that simply drops events.

With Flow-Control: Assume we have an event-consumer that can

handle event rates up to 125MHz. Thanks to the flow-control scheme,

the consumer can block the producer as necessary. In this example

we choose a fairly strict requirement that an event is delivered with

a delay of more than 1µs at probability of less than 10
6.

Given a Poisson distributed3 producer, this means that the mean

event rate of the producer can be up to 63.7% of the consumer event

rate without violating our requirements.

Without Flow-Control: For comparison we assume a consumer that

can handle event rates up to 125MHz, but if two or more events

arrive within an 8ns (= 1/125MHz) time-slot all except the first

2In this calculation the signal propagation speed for the SATA cables was
assumed to be half the speed of light, a rather conservative estimate.

3A Poisson distribution is probably an unsuitable assumption when looking
at a longer typical AE sequence. But what is critical is the performance
in event bursts. We here take the Poisson distribution for looking at such
bursts, typical for address event systems. The mean event rate should then be
interpreted as the mean event rate in event bursts.
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Fig. 3. AEX – FPGA block diagram

one are dropped. The probability that an event is dropped shall be no

more than 10
−3. Under these circumstances a Poisson producer can

then have a mean event rate of no more than 4.54% of the consumer

rate.

Thus for our practical purposes flow-control gives us about one

order of magnitude of actually usable event rate. In an experimental

setup it also allows us to handle channel congestion either at the

sender or the receiver side.

Further discussion of flow control in address event systems can be

found in [9], [17], [18].

V. RESULTS AND CONCLUSION

We have developed an AER interfacing board part of a generic

AER communication system suitable for building complex multi-chip

AE based systems.

While using common parallel AER interfaces for connecting to the

locally attached chip, we use a novel serial AER interface with flow-

control. With this interface running at a bit clock of up to 3.125GHz

we achieve event rates of up to 78.125MHz for 32bit AEs.

The parallel AER interface allows for event rates of up to 20 to

30MHz. This is in practice reduced by the signal propagation delays

induced by the PCB traces and especially when used with ribbon

cables.

For sending monitored AEs to a PC and reading AEs to be

sequenced back from it we implemented a USB2.0 interface. Here

we achieved bandwidths of 40MB/s, only limited by the USB host-

controller on the computer itself. This allows for an event rate of

5MHz with 64bit timestamped AEs.

Given the filtering capabilities of the FPGA’s routing fabric we

can easily select parts of the address space we are interested in for

monitoring, and because of the large buffers for monitored data on

the FPGA itself we can compensate for the fact that the FPGA to PC

interface is a lot slower than the parallel and serial AER interfaces.

The very high speeds of the serial AER interface allows us to have

very low latency in serial AER links, and these links allow for the

construction of very large multi-chip address event systems, e.g. by

daisy-chaining multiple AEX boards.
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