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Abstract

In cloud-computing services, using the SSL/TLS protocol is not enough to ensure data confi-
dentiality. For instance, cloud service providers can see the plaintext after the decryption at the end
point of a secure channel. It is wise to introduce an encryption layer between the service client and
the communication channel so the data will not be seen by the cloud service provider. The encryp-
tion/decryption process should be light for cases where a cloud-service user has a low-power device
such as a smart phone. We pay attention to server-aided computation as an approach of speeding up
cryptographic processing. On the other hand, for future cloud services, homomorphic encryption is
a useful primitive for cryptographic protocols. In this paper, we propose a server-aided computation
protocol using ElGamal encryption, which is homomorphic. The proposed protocol is secure under
the discrete logarithm assumption for passive and active attacks. Furthermore, we present experimen-
tal results suggesting that the processing time of the proposed protocol is shorter than the original
ElGamal encryption.

1 Introduction

The cloud-computing environment, a large-scale distributed system, has been realized and is spreading
rapidly. However, one of the biggest problems faced by cloud computing is security [1]. In particular,
among the ten disincentives in cloud computing [2], data confidentiality is listed as a major security
issue.

Data encryption with proper key management is a typical approach for a cloud user to keep data
confidential. In general Web services, the SSL/TLS protocol is a measure used to ensure confidentiality
from attackers on a communication channel. On the service server, however, the encryption channel is
terminated, so the service provider can read the plaintext freely. In the client/server model, because there
is a one-to-one mapping between a service provider and the user to whom he/she wants to send data,
this situation does not arise. In cloud computing, since the front-end service server is different from the
data-store server and the user cannot know which server keeps his/her data in the cloud, confidentiality
must be secured in a higher layer than SSL/TLS communication.

However, we must consider what should be used for terminals with lower performance than desktop
PCs, such as smart-phones. There are several encryption algorithms used in layers higher than SSL/TLS;
however, it is impractical to perform these functions in a script language on a Web browser, and encryp-
tion generally requires dedicated hardware.

This paper proposes a server-aided computation protocol with ElGamal encryption, which is light
enough to use on a Web browser in a layer higher than SSL/TLS. In future high-level cloud services,
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homomorphic cryptosystems such as ElGamal encryption play an important role as they can use a sta-
tistical process on ciphertexts. This paper shows that the proposed protocol is secure under the discrete
logarithm assumption for passive and active attacks. Finally, we show through experimental results that
the processing time of the proposed protocol is shorter than original ElGamal encryption.

2 Securing Cloud Service Confidentiality Using Conventional Techniques

In cloud computing, there are three entities: First is the “cloud service-user”; second is the “cloud infras-
tructure provider,” which runs the data center; and last is the “cloud service-provider,” which provides
various (compound) services in the cloud. The cloud infrastructure provider and service provider together
are called the “cloud provider” [3].

It is common in current Web services to secure data on a communication channel to prevent eaves-
dropping or falsification. SSL/TLS is widely used as the prevention method, but it is not sufficient in the
case of cloud services.

In the case that a cloud service-user sends data to the cloud provider who processes it and replies to
the request, as shown in Figure 1, if the data is protected by SSL/TLS, it cannot be eavesdropped upon
or falsified. However, the cloud provider can view the decrypted content at the terminal point of the
channel. It is better to store encrypted data in a cloud because a cloud-service user cannot know whether
the infrastructure is a threat or how to counter it. Considering the above, to secure confidentiality in
cloud services, it is important that the encryption be applied not to the communication channel but by
the cloud-service user.

Comm.
Channel

Comm.
Channel

Service
Client

Service
Server

Cloud-service ProviderCloud-service User

Figure 1: Data encryption by SSL/TLS protocol.

3 Revisiting Server-Aided Computation for Cloud-Service Confidential-
ity

3.1 Encryption Process on a Web Browser

As shown in Figure 2, an encryption layer is inserted between the communication channel and the service
client so that users send and receive data, which cannot be seen by the cloud service provider (i.e.,
maintaining data confidentiality from the cloud-service provider). Many cloud services are provided
through a Web interface; users may access it from PCs with different specifications, that is, low memory,
poor CPU, and so on. Therefore, encryption and decryption are required after the data are inputted on
the Web browser and after the data are received through the channel, respectively. In [4], an evaluation of
several encryption/decryption libraries for Web browsers has been presented, namely, JavaScrypt [5], a
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hash algorithm of JavaScript [6], the JavaScript Crypt Library [7], RSA encryption using the jsbn library
by Wu et.al [8], and jCryption [9]. In this evaluation, the encryption processing speeds are shown for
three different browsers (Google Chrome, Internet Explorer, and Firefox) on a high-spec PC (2.66GHz
Intel Xeon 5150). The results of mobile computers or smart-phones (iPod touch, etc.) are only shown as
scalar multiplication on an elliptic curve.

Comm.
Channel

Comm.
Channel

Encryption

Comm.
Channel

Decryption

Service
Client

Service
Client

Service
Server

Cloud-service ProviderCloud-service User Cloud-service User

Figure 2: Data encryption on service clients.

In Table 1, for example, we compare the processing speed of ElGamal encryption / decryption [10]
on a desktop PC and a smart-phone under the same conditions, that is, the same cloud service servers are
used. The desktop PC has a 2.33GHz Core2 DuoCPU, 2GB of RAM, and is running the 32-bit Windows
Vista Business operating system; the Web browser is Google Chrome 3.0.195.33. The smart-phone has
a 624MHz Marvell Monahans PXA310 CPU with 128MB of RAM, running AndroidOS1.5; the Web
browser is Chrome Lite. The server has a 3.2GHz Pentium4 with 2GB of RAM, running CentOS5.4.
The key length of the ElGamal encryption is 1,024 bits, and it is implemented using Baird’s BigInt
library [11]. The results listed in Table 1, show that the smartphone encryption/decryption-speed is very
low.

Table 1: Processing time of ElGamal encryption/decryption (key length 1,024bits) by desktop PC and
smart phone (ms).

Desktop PC Smart-phone
Encryption 788 265,020 (4.4 min)
Decryption 424 135,820 (2.3 min)

3.2 Approach for Maintaining Confidentiality on Cloud Services

It is desirable that same encryption method be used on the mobile phone as on the desktop PC to improve
the convinience for cloud users and expand the viability of cloud-service providers. As shown in Table1,
in the case of a low-spec computer such as a smartphone, the time needed for encryption/decryption must
be reduced. Methods to improve the encryption/decryption speed are as follows: 1) using a high-spec
CPU; 2) improving the speed by software programming techniques, and 3) using a server-aided compu-
tation method–part fo the encryption/decryption processing is done by the server. However, regarding
1), it is not feasible to achieve a CPU speedup of more than 100 times; and 2), future architectures will
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require custom software. In this paper, we focus on a server-aided computation technique to speed up
encryption processing on a universal platform.

3.3 Conventional Methods of Server-Aided Computation

When low-spec computer A encrypts its secret to send it to another computer, it needs a lot of processing
time. It is possible to shorten A’s processing time by asking high-spec computer B (server) to do a part of
its calculation without showing A’s secret. This method is called server-aided computing. A server-aided
computing protocol using RSA encryption has been shown in [12].

Attacks against server-aided computing are classified as passive attacks [13], [14] and active attacks
[13], [14], [15], [16], [17]. In a passive attack, the attacker tries to compute the client’s secret by obtaining
information sent from the client to a server, and the public key, via the regular protocols of server-aided
computation. In an active attack, the server is assumed to be an attacker; that is, it’s a malicious server
that does not follow the protocol. It sends the client invalid data to presuade it to provide convenient data
for the malicious server.

Several server-aided computation protocols which can prevent passive attacks [18], [19] and many
protocols which have a check function to prevent active attacks [15], [19], [20], [21], [22], [23] have
been shown.

3.4 Protocols using homomorphism

Homomorphic encryption is used as the basic encryption technique in future services such as e-voting
/ questionnaires [24], [25], [26], electronic cash [27], and electronic auctions [28], [29]. We anticipate
that many cloud services will appear, which can use the user’s encrypted data stored on a cloud server
without decryption. In such cases, it is better to have a Web browser compute the encryption process
using homomorphism. However, as shown in Sec.3.3, although there are several studies of server-aided
computation using RSA encryption, we have never come across a study of it using homomorphism. We
propose a protocol for server-aided computation using ElGamal encryption, which is a class of homo-
morphic encryption.

4 Proposed Protocol: Server-Aided ElGamal Encryption

Modular exponentiation is the arithmetic operation, which has the highest cost in the ElGamal encryp-
tion/decryption algorithm. ElGamal encryption, classified as probabilistic encryption, calculates the
modular exponentiation for random numbers per session. If somebody (an attacker) can determine the
random number for a modular exponentiation, he/she can decrypt the ciphertext without the private key.
Therefore, we propose a new server-aided computation protocol. Using this protocol, users can encrypt
and decrypt in a short processing time without losing the confidentiality of data (random number) to the
cloud service server.

U1 and U2 denote cloud-service users. Here, U1 (U2) is a sender (receiver). S is the server for server-
aided computation and T is a storage server. The proposed protocol is as follows:

[Preprocess]
U2 generates a secret key/public key pair (sk, pk) = (x,(p,g,y = gx)), where p is prime and g denotes a
generator element of Z∗

p = {1,2, · · · , p−1}.
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[Encryption process] (Figure.3)

Step1) m ∈ Zp denotes U1’s message. U1 generates two small random numbers r(U1,1), r(U1,2). Here,
r(U1,1) denotes a power value of modular exponentiation, which is used by U1 in the encryption
process. r(U1,2) denotes a power value of modular exponentiation used by U1 for checking the
result. Calculate r(U1,3) such that p−1 = r(U1,2) + r(U1,3) from r(U1,2) and p. Then using r(U1,1) and
r(U1,3), calculate r = r(U1,1)r(U1,3) mod p− 1, where, r(U1,3) is a power value that is sent to S for
server-aided computation. U1 sends r(U1,3) to S.

Step2) After receiving r(U1,3) from U1, S calculates the temporary cipher text (Z(U1,1),Z(U1,2)) using
r(U1,3), p, g, and y, (Z(U1,1),Z(U1,2)) = (gr(U1 ,3) mod p,yr(U1,3) mod p). S sends (Z(U1,1),Z(U1,2)) to U1.

Step3) After receiving temporary cipher text (Z(U1,1),Z(U1,2)) from S, U1 checks following equations for
Z(U1,1), Z(U1,2), r(U1,2), p, g, and y.

Z(U1,1)g
r(U1,2) = gr(U1,3)gr(U1,2) = gp−1 ≡ 1(mod p)

Z(U1,2)y
r(U1,2) = yr(U1,3)yr(U1,2) = yp−1 ≡ 1(mod p)

From the above results, if the pair of temporary cipher values (Z(U1,1),Z(U1,2)) are invalid, then U1

stops the encryption process.

Step4) For Z(U1,1), Z(U1,2), r(U1,1), m, and p, U1 calculates the cipher text (c1,c2) using the following
equations.

c1 = Z
r(U1,1)

(U1,1)
mod p

= (gr(U1,3) )r(U1,1) mod p

= gr mod p

c2 = mZ
r(U1,1)

(U1,2)
mod p

= m(yr(U1,3))r
(U1,3) mod p

= myr mod p

U1 sends the cipher text (c1,c2) to T .

Step5) T receives cipher text (c1,c2) from U1, and stores it. When U2 requests U1’s cipher text from T .
T sends (c1,c2) to U2.

We can easily execute the calculation checking process in Step3) by using Fermat’s theorem.

[Fermat’s Theorem] For any a ∈ Z∗
p, the following equation is satisfied:

ap−1 ≡ 1(mod p),

where p is a prime number.

[Decryption process] (Figure. 4)

Step1) U2 receives cipher text (c1,c2). Then, having calculated x′ = p− 1− x for sk(= x) and p, U2

generates two random numbers, r(U2,1) and r(U2,2). r(U2,1) and r(U2,2) are exponents and used by U2,
in the decryption and calculation checking process, respectively. For r(U2,1), x′ and p, U2 calculates
r(U2,3) such that x′ = r(U2,1)r(U2,3) mod p−1. For r(U2,2), r(U2,3) and p, U2 calculates r(U2,4) such that
p−1 = r(U2,2) +r(U2,3) +r(U2,4), where r(U2,3) and r(U2,4) are exponents and aided with calculation
by S. U2 sends r(U2,3), r(U2,4) and a part of the ciphertext to S.
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Message pZm
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r )3,()2,( 11

1 UU rrp

1mod)3,()1,( 11
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),( 21 cc

Store a cipher text ),( 21 cc

Figure 3: Encryption process of the proposed server-aided computation protocol with server S and sender
U1.

Step2) After r(U2,3), r(U2,4), c1 and p are received, S calculates the temporary ciphertext as follows:

(Z(U2,1),Z(U2,2)) = (c
r(U2,3)

1 mod p,c
r(U2 ,4)

1 mod p).

Step3) After the temporary cipher (Z(U2,1),Z(U2,2)) is received from S, U2 tries to check the following
equation.

Z(U2,1)Z(U2,2)c
r(U2,2)

1 = c
r(U2,3)

1 c
r(U2,2)

1 c
r(U2,2)

1 = cp−1 ≡ 1(mod p)

From the above results, if the temporary cipher values (Z(U2,1),Z(U2,2)) are invalid, then U2 stops
the decryption process.

Step4) For Z(U2,1), (U2,1), c2 and p, U2 obtains the message m using the following equations:

c2Z
r(U2,1)

(U2,1)
mod p = c2(c

r(U2,3)

1 )r(U2,1) mod p

= c2cx′
1 = c2cp−1−x

1 = myrgr(p−1−x) = mgrxgr(p−1)−rx

= mgr(p−1) mod p

= m mod p.
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crr UUSend to

Generate two small random numbers )2,()1,( 22
, UU rr

1mod)3,()1,( 22
prrx UU
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Calculate a temporary cipher text :

Send to),( )2,()1,( 22 UU ZZ 2U

S

Figure 4: Decryption process of the proposed server-aided computation protocol with server S and re-
ceiver U2.

5 Security

5.1 Definitions of Adversary and Security

The goal of adversary A is to know the secrets of sender U1 or receiver U2 or to falsify message m.
We evaluate the proposed protocol against passive and active attacks as same as related works shown in
Sec.3.3.

A passive attack is where an adversary obtains a secret from public information and transmitted data.
The secrets in the proposed protocol are r and sk(= x) in encryption and decryption, respectively.

An active attack is where S, who is adversary A, does not work according to the protocol, and sends
falsified values to U1 and U2; then S obtains the secret or falsifies message m.

The protocol is secure if it is difficult for passive or active adversary A to successfully complete the
above attack on U1 or U2.

5.2 Assumption

The security of the proposed protocol is based on the following discrete logarithm assumption.

[Discrete logarithm assumption] The discrete logarithm problem is to obtain x from the following
equation:

a = gx(mod p),
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when a prime number p, a generator g of Z∗p, and a ∈ Z∗
p are given. The problem is difficult to resolve, if

p is large.

5.3 Results for a Passive Attack

Adversary A cannot obtain r generated by U1 in the following two cases: 1) for a one-round attack, p is
large and r(U1,1) is appropriately generated; and, 2) for a multi-round attack, p is large and r(U1,1), r(U1,2)

are appropriately re-generated. So, A cannot get message m in the encryption process.
Adversary A cannot obtain sk(= x) of U2 in the following two cases: 1) for a one-round attack, p is

large and r(U2,1) is appropriately generated; and, 2) a for multi-round attack, p is large, and r(U2,1), r(U2,2)

are appropriately re-generated. Thus, the decryption process is also secure against passive attack.

5.4 Results for an Active Attack

The goal of adversary A in the encryption process is to obtain r by using (c′1,c
′
2) generated from (Z′

(U1,1)
,

Z′
(U1,2)

) by U1, where (Z′
(U1,1)

,Z′
(U1,2)

) is sent by A. However, U1 checks whether (Z′
(U1,1)

,Z′
(U1,2)

) is correct
or not in Step3. Therefore, A cannot obtain the necessary data to compute r. In a multi-round attack,
what A can or cannot do is the same. Therefore, the encryption process is secure against active attacks.

The goal of adversary A in the decryption process is to falsify m, that is, U2 accepts falsified message
m′ computed from (Z′

(U2,1)
,Z′

(U2,2)
), where (Z′

(U2,1)
,Z′

(U2,2)
) is sent by A. However, U1 checks whether

(Z′
(U1,1)

,Z′
(U1,2)

) is correct in Step3. Therefore, the decryption process is also secure against passive
attacks.

6 Efficiency of the Proposed Protocol

As shown in Table 1, the processing time of ElGamal encryption/decryption on a smart-phone is over
several hundred seconds.

6.1 Efficiency

Table 2 shows the efficiency of ElGamal encryption/decryption during conventional browser use. The
number of modular exponentiations of encryption and decryption are two and one, respectively. Since
the processes are contained in the user-side, there is no process on a server.

In contrast, the efficiency of the proposed protocol is shown in Table3. The numbers of modular
exponentiation in encryption and decryption are four and two for the user, respectively. Two and one
modular exponentiations are added to the server process in encryption and decryption, respectively. The
communication costs are 3|p| and 2|p| bits in each process.

The proposed protocol increases the apparent cost in comparison with the original encryption and
decryption. However, from the following three points, the proposed protocol completes in a shorter time
than the original processing: first is that the performance of a server and JavaServlet are higher than a
client and JavaScript; second is that the communication time is negligible if a user connects to the server
through a high speed channel; last is that the processing time is shorter than in the original one because
the exponent size of the proposed protocol is smaller.

6.2 Implementation

The proposed protocol and simple ElGamal encryption/decryption is implemented and measured from
the view of processing and communication time. The measured environment is the same as Sec.3.3.
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Table 2: Efficiency of ElGamal encryption on user’s browser.

Modular exponentiation Communication
User Server cost

Encryption 2 — —
Decryption 1 — —

Table 3: Efficiency of the proposed protocol.

Modular exponentiation Communication
User Server cost

Encryption 4 (verify: 2) 2 3|p| bit
Decryption 2 (verify: 1) 1 2|p| bit

The result of a simple ElGamal encryption / decryption on the user’s browser with the key length
|p| = 1,024 bits is shown in Table 4. Using the same key length, the results of the proposed protocol
with modular exponent sizes |r(U,1)| and |r(U,2)| = 128, 256, and 512 are shown in Table5.

From Tables 4 and 5, the proposed protocol is about 4.1, 2.4, and 1.4 times faster at encryption and
3.2, 2.2, and 1.2 times faster at decryption than the original protocol, respectively.

Table 4: Processing time of ElGamal encryption on user’s browser. (key length |p|= 1,024 bits)

Processing time(ms)
User Server Comm. Total

Encryption 265,020 — — 265,020
Decryption 135,820 — — 135,820

7 Conclusion

This paper proposes a server-aided ElGamal encryption/decryption protocol for providing encryption in
a higher layer than SSL/TLS. The ElGamal cryptosystem is a basic and important primitive for future
useful cloud services because it is homomorphic. The proposed protocol is secure against passive and
active attacks under the discrete logarithm assumption. This paper shows by implementation the result
that the protocol can take less time than the original one.

The processing time of the protocol depends on the exponent size of the modulas. Because the size
relates to security, there is a trade-off between the processing time and security. This paper refers to a
basic security analysis, but a more strict security evaluation and its relation between processing time and
security are given as future work.
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Table 5: Processing time of the proposed protocol. (key length |p|= 1,024 bits)

Exponent size Processing time(ms)
|r(U,1)|, |r(U,2)| User Server Comm. Total

Encryption 128 bit 57,827 (verify: 28,238) 65 7,185 65,077
256 bit 105,338 (verify: 52,896) 65 2,594 108,245
512 bit 192,036 (verify: 92,618) 65 3,011 195,112

Decryption 128 bit 35,291 (verify: 17,463) 66 6,500 41,857
256 bit 59,179 (verify: 28,689) 66 2,594 61,839
512 bit 109,041 (verify: 58,018) 66 2,518 111,625
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