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With the popularity of mobile devices, spatial crowdsourcing is rising as a new framework that enables
human workers to solve tasks in the physical world. With spatial crowdsourcing, the goal is to crowdsource
a set of spatiotemporal tasks (i.e., tasks related to time and location) to a set of workers, which requires
the workers to physically travel to those locations in order to perform the tasks. In this article, we focus on
one class of spatial crowdsourcing, in which the workers send their locations to the server and thereafter
the server assigns to every worker tasks in proximity to the worker’s location with the aim of maximizing
the overall number of assigned tasks. We formally define this maximum task assignment (MTA) problem
in spatial crowdsourcing, and identify its challenges. We propose alternative solutions to address these
challenges by exploiting the spatial properties of the problem space, including the spatial distribution and
the travel cost of the workers. MTA is based on the assumptions that all tasks are of the same type and
all workers are equally qualified in performing the tasks. Meanwhile, different types of tasks may require
workers with various skill sets or expertise. Subsequently, we extend MTA by taking the expertise of the
workers into consideration. We refer to this problem as the maximum score assignment (MSA) problem
and show its practicality and generality. Extensive experiments with various synthetic and two real-world
datasets show the applicability of our proposed framework.
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1. INTRODUCTION

With the ubiquity of smartphones and wireless network bandwidth improvements,
every person with a mobile phone can now act as a multimodal sensor, collecting
and sharing various types of high-fidelity spatiotemporal data instantaneously (e.g.,
pictures, video, audio, location, time, speed, direction, acceleration). Exploiting this

The work was completed when the author was a PhD student at University of Southern California’s Infolab.
This research has been funded in part by National Science Foundation (NSF) grants IIS-1320149 and
CNS-1461963, the USC Integrated Media Systems Center (IMSC), and unrestricted cash gifts from Google,
Northrop Grumman, Microsoft, and Oracle. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of any of the
sponsors such as the NSF.

Authors’ addresses: H. To, InfoLab, 3710 S. McClintock Ave, RTH 323, Los Angeles, CA 90089; email:
hto@usc.edu; C. Shahabi, 3737 Watt Way, PHE 306A, Los Angeles, CA 90089; email: shahabi@usc.edu;
L. Kazemi, 1 Microsoft Way, Redmond, WA 98052; email: leylak@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 2374-0353/2015/07-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2729713

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 2, Publication date: July 2015.



http://dx.doi.org/10.1145/2729713
http://dx.doi.org/10.1145/2729713

2:2 H. To et al.

phenomenon, a new framework for efficient and scalable data collection has emerged,
namely spatial crowdsourcing [Kazemi and Shahabi 2012]. With spatial crowdsourc-
ing, the goal is to crowdsource a set of spatial tasks (i.e., tasks related to a location) to a
set of workers, which requires the workers to physically go to those locations in order to
perform the tasks. Spatial crowdsourcing has application in numerous domains such
as journalism, tourism, intelligence, disaster response, and urban planning. To illus-
trate, consider a disaster-response scenario, in which the Red Cross (i.e., requester) is
interested in collecting pictures and videos of disaster areas from various locations of a
city. With spatial crowdsourcing, the requester issues a query to a spatial crowdsourc-
ing server (SC-server). Consequently, the SC-server crowdsources the query among the
available workers in the vicinity of the event. Once the workers document the event
with their mobile phones, the results are sent back to the requester.

While crowdsourcing has largely been used by research communities, for example,
image processing (Chen et al. [2009], Sorokin and Forsyth [2008], and Whitehill et al.
[2009]) and databases (Franklin et al. [2011], Marcus et al. [2011], Parameswaran
et al. [2012], and Demartini et al. [2013]), and by industry, for example, oDesk [2005],
MTurk [Amazon 2005] and Crowdflower [2009], spatial crowdsourcing has only re-
cently received attention (To et al. [2014], Musthag and Ganesan [2013], Kazemi et al.
[2013], Kazemi and Shahabi [2012], and Alt et al. [2010]). Moreover, most existing
work on spatial crowdsourcing focuses on a particular class of spatial crowdsourcing,
called participatory sensing. With participatory sensing, the goal is to exploit the mo-
bile users for a given campaign by leveraging their sensor-equipped mobile devices to
collect and share data. Some real-world examples of participatory sensing campaigns
are described in UCB [2008], Hull et al. [2006], and Mohan et al. [2008]. For example,
the Mobile Millennium project [UCB 2008] by UC Berkeley is a state-of-the-art sys-
tem that uses GPS-enabled mobile phones to collect en route traffic information and
upload it to a server in real time. The server processes the contributed traffic data,
estimates future traffic flows, and sends traffic suggestions and predictions back to the
mobile users. Similar projects were implemented earlier by CarTel [Hull et al. 2006]
and Nericell [Mohan et al. 2008], which used mobile sensors/smartphones mounted
on vehicles to collect information about traffic, WiFi access points on the route, and
road information. All these previous studies on participatory sensing focus on a single
campaign and try to address challenges specific to that campaign. However, our focus
is on devising a generic crowdsourcing framework, similar to MTurk, in which mul-
tiple campaigns can be handled simultaneously, but spatially. Most existing studies
on participatory sensing focus on small campaigns with a limited number of workers,
and are not scalable to large spatial crowdsourcing applications. To move from single-
campaign and customized participatory sensing to multi-purpose and generic spatial
crowdsourcing, the system needs to scale, that is, it should be able to efficiently assign
tasks to workers.

In this article, we first introduce our problem focus, spatial crowdsourcing, in the
context of crowdsourcing. Next, we focus on one class of crowdsourcing, known as
server assigned, in which a set of workers send their task inquiries to an SC-server.
The task inquiry of a worker, which includes the individual’s location along with a
set of constraints (e.g., a region), is a request that the worker issues to inform the
SC-server of availability to work. Consequently, the server, which receives the location
of the workers, assigns to all workers their nearby tasks. The optimization goal is to
maximize the number of assigned tasks while conforming to the constraints of the
workers, referred to as maximum task assignment (MTA). The solution to the MTA
could be straightforward if the SC-server had a global knowledge of both the spatial
tasks and the workers. However, the server is continuously receiving spatial tasks
from requesters and task inquiries from the workers. Therefore, the server can only
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maximize the task assignment at every time instance (i.e., local optimization) with no
knowledge of the future. We proposed three alternative solutions to the MTA problem.
The first approach, Basic, follows the local optimization strategy by maximizing the
task assignment at every time instance. Our second approach, called Least Location
Entropy Priority (LLEP), improves the overall task assignment by assigning higher
priority to spatial tasks located in worker-sparse areas (i.e., places with lower location
entropy). The intuition is that spatial tasks are more likely to be performed in future
if they are located in worker-dense areas (i.e., areas with high population of workers
or high location entropy). With spatial crowdsourcing, the travel cost of the workers
becomes critical. Thus, in our third approach, Close Distance Priority (CDP), we in-
corporate the travel cost of the workers into the task assignment by assigning higher
priority to the tasks with lower travel cost.

So far, we assume that all tasks are of the same type and all workers are equally
qualified to perform the tasks. We relax these assumptions by allowing each worker
to have a set of skills and every spatial task to have a type. Subsequently, we define
expertise match as an assignment of a task to a worker for which the worker has the
required qualification to perform the task (e.g., the task of taking a high-quality picture
is assigned to a photographer). Thus, we assign higher scores to expertise matches
than to nonexpertise matches (i.e., matches that satisfy only worker’s constraints).
Consequently, we formalize a new problem named Maximum Score Assignment (MSA),
whose optimization goal is to maximize the total score assignment while conforming to
the constraints of the workers. To solve MSA, we extend the same heuristics to MTA,
including Basic, LLEP and CDP. Assuming that there is only one task type and all
workers are the same, MSA becomes MTA, that is, MSA is a generalization of MTA.
Therefore, we evaluate only the solutions to MSA in our experiments.

Our extensive experiments on both real and synthetic data show that, in comparison
with Basic, our LLEP improves the overall task assignment (i.e., total score) by up to
35%, while the CDP approach can improve the travel cost of the workers by up to 90%.
Furthermore, with our real datasets, LLEP shows its superiority in maximizing the
number of expertise matches by up to 30% when compared to the other approaches.
Moreover, an unexpected positive side effect of minimizing the travel cost in CDP is
maximizing the number of expertise matches. As a result, the CDP approach is better
than LLEP by up to 15% in maximizing the number of expertise matches with our
synthetic data. Consequently, based on the objective of the crowdsourcing application
(i.e., maximizing the assignment or minimizing travel cost), either of the LLEP or
CDP approaches can be selected. Finally, by varying the expertise match score, we can
flexibly change the optimization goal (e.g., from maximum assigned tasks to maximum
expertise matches), showing the practicality and generality of MSA when compared to
the MTA problem.

A related problem, online matching [Karp et al. 1990; Kalyanasundaram and Pruhs
2000], can be considered as a special case of our task assignment (i.e., MTA and MSA),
in which the worker set (or task set) is given in advance while items in the other set
arrive one at a time or in a batch. In Section 2, we distinguish MTA and MSA from
the online bipartite matching problems, which do not use any spatial knowledge. We
also experimentally compare our approaches, Basic and LLEP, with a typical online
bipartite matching algorithm called Ranking [Karp et al. 1990]. Experimental results
on both real and synthetic data show that our approaches outperform the Ranking
algorithm in terms of maximizing the number of assigned tasks.

In a preliminary version of this work [Kazemi and Shahabi 2012], we introduced
MTA and the three approaches: Basic, LLEP, and CDP. This article subsumes Kazemi
and Shahabi [2012] by relaxing the assumptions of identical workers and tasks as well
as solving the MSA problem, which is a generalization of MTA. We also relate our
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problem to the online bipartite matching problem and add a new set of experiments in
order to compare our heuristics with a solution to the online matching problem [Karp
et al. 1990], called the Ranking algorithm. For this comparison, we need to modify our
experimental setup so that the worker set as well as the cost of matches are known in
advance. Moreover, in this article, to evaluate the approaches, we generate synthetic
datasets in a more systematic manner. We also use new real-world data from Yelp,
which is suitable for evaluating MSA.

The remainder of this article is organized as follows. In Section 2, we review the
related work. Section 3 presents the taxonomy for crowdsourcing and introduces our
problem focus, spatial crowdsourcing. In Section 4, we discuss a set of preliminaries in
the context of spatial crowdsourcing.In Sections 5 and 6, we formally define the MTA
problem and its extension, MSA, then explain our assignment solutions. Section 7
reports on our experimental results. We present our conclusions in Section 8.

2. RELATED WORK

Crowdsourcing: Crowdsourcing has recently been attracting extensive attention in
the research community. A recent survey in this area can be found in Kittur et al.
[2013]. With a growing recognition of crowdsourcing, many crowdsourcing services,
including oDesk [2005], MTurk [Amazon 2005] and Crowdflower [2009], have emerged
that allow requesters to issue tasks that workers can perform for a certain reward.
Crowdsourcing has been largely adopted in a wide range of applications. Examples
of such applications include, but are not limited to, image search [Yan et al. 2010],
natural language annotations [Snow et al. 2008], video and image annotations [Chen
et al. 2009; Sorokin and Forsyth 2008; Whitehill et al. 2009], search relevance [Alonso
et al. 2008; Bozzon et al. 2012], social games [Von Ahn and Dabbish 2008; Guy et al.
2011] and graph search [Parameswaran et al. 2011]. Moreover, the database community
has utilized crowdsourcing in database design, query processing [Franklin et al. 2011;
Marcus et al. 2011; Parameswaran et al. 2012; Demartini et al. 2013; Zhao et al. 2013]
and data analytics [Liu et al. 2012; Wang et al. 2012]. Franklin et al. [2011] propose
a relational query processing system that uses crowdsourcing to answer queries that
cannot otherwise be answered. As part of the crowdsourced database systems, human-
powered versions of the fundamental operators, such as sort and join [Marcus et al.
2011] and filter [Parameswaran et al. 2012], were developed. Liu et al. [2012] developed
a system to improve the accuracy of data analytics jobs by exploiting crowdsourcing
techniques.

Spatial Crowdsourcing: Despite all the studies on crowdsourcing, spatial crowdsourc-
ing has only recently received attention [To et al. 2014; Deng et al. 2013; Kazemi et al.
2013; Dang et al. 2013; Kazemi and Shahabi 2012; Alt et al. 2010]. Alt et al. [2010]
propose a crowdsourcing platform that utilizes location as a parameter to distribute
tasks among workers. Kazemi and Shahabi [2012] propose a spatial crowdsourcing
platform whose goal is to maximize the number of assigned tasks. Since the workers
cannot always be trusted, another work aims to tackle the issue of trust by having tasks
performed redundantly by multiple workers [Kazemi et al. 2013]. Dang et al. [2013]
introduce the problem of complex spatial tasks (i.e., each task comprises a set of spatial
subtasks), in which the assignment of the complex task requires performing all of its
subtasks. Meanwhile, the problem of scheduling tasks for a worker that maximizes
the number of performed tasks is proposed in Deng et al. [2013]. In ul Hassan and
Curry [2014], an online spatial task assignment problem is suggested to maximize the
number of successful assignments. Recently, To et al. [2014] introduced the problem
of protecting worker location privacy in spatial crowdsourcing. This study proposes
a framework that achieves differentially-private protection guarantees. The solutions
for this problem are quite complex, and require tuning multiple parameters to obtain
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satisfactory results. Thus, the same authors propose PrivGeoCrowd [To et al. 2015], an
interactive visualization and tuning toolbox for privacy-preserving spatial crowdsourc-
ing. PrivGeoCrowd helps system designers investigate the effect of parameters such as
privacy budget and allocation strategy, task-assignment heuristics, and dataset den-
sity on the effectiveness of private task matching. At the same time, privacy-preserving
task assignment using cloaked locations is proposed in Pournajaf et al. [2014].

The problem of crowdsourcing location-based queries over Twitter has also been
studied, which employs a location-based service (e.g., Foursquare) to find the appropri-
ate people to answer a given query [Bulut et al. 2011]. Even though this work focuses
on location-based queries, it does not assign to users any spatial task for which the user
should go to that location and perform the corresponding task. Instead, it chooses users
based on their historical Foursquare check-ins. In Musthag and Ganesan [2013], spa-
tiotemporal dynamics in mobile task markets, such as Field Agent [2010] and Gigwalk
[2010], were studied.

The well-known concept of participatory sensing could be deemed as one class of
spatial crowdsourcing, in which workers form a campaign to perform sensing tasks.
Examples of works describing participatory sensing campaigns include UCB [2008],
Kazemi and Shahabi [2011], Cornelius et al. [2008], Hull et al. [2006], and Mohan et al.
[2008]. However, the major drawback of all the existing works on participatory sensing
is that they focus on a single campaign and try to address the challenges specific to
that campaign. Another drawback of most existing studies on participatory sensing
(e.g., Kazemi and Shahabi [2011]) is that they are designed for small campaigns, with
a small number of participants, and are not scalable to large spatial crowdsourcing
applications. Finally, while most existing works on participatory sensing systems focus
on a particular application, our work can be used for any type of spatial crowdsourcing
system.

Another class of spatial crowdsourcing is known as volunteered geographic infor-
mation (VGI), whose goal is to create geographic information provided voluntarily by
individuals. Examples for this class include Google Map Maker [GoogleMapMaker
2008], OpenStreetMap [2004] and Wikimapia [2006]. These projects allow the users to
generate their own geographic content and add it to a prebuilt map. For example, a user
can add the features of a location or the events occurring at that location. However,
the major difference between VGI and spatial crowdsourcing is that, in VGI, users
voluntarily participate by randomly contributing data, whereas in spatial crowdsourc-
ing, a set of spatial tasks are queried by the requesters and workers are required to
perform those tasks. Moreover, with most VGI projects (GoogleMapMaker [2008] and
Wikimapia [2006]), users are not required to physically go to a particular location in
order to generate data with respect to that location. Finally, as the name suggests, VGI
falls into the class of self-incentivized crowdsourcing.

Matching Problems: One can consider the task assignment problem in spatial crowd-
sourcing as the online bipartite matching problem (Karp et al. [1990], Kalyanadun-
daram and Pruhs [1993], Khuller et al. [1994], Kalyanasundaram and Pruhs [2000],
and Mehta et al. [2007]). The online bipartite matching problem is the most relevant
variation of spatial crowdsourcing, as it captures the dynamism of tasks arriving at
different times. However, in online bipartite matching one of the itemsets is given in
advance and items from the other set arrive (usually one at a time), while in spatial
crowdsourcing both sets, that is, workers and tasks, can come and go without our
knowledge. Thus, to some extent, online matching can be considered as a special case
of our task assignment, in which the worker set (or task set) is fixed. In addition, with
online matching, the cost/weight of any match is known in advance. However, with
spatial crowdsourcing, the cost for a worker to perform a task mainly corresponds to
the time it takes for that worker to travel to the location of the task. As the result, the
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cost of a task is not a fixed value but is dependent on the worker’s prior location. Hence,
the sequence in which the tasks are performed impacts the cost: that is, with spatial
crowdsourcing, the cost of the execution of a set of tasks is the distance of the shortest
path that starts from the worker’s current location and goes through the locations of all
the assigned tasks. On the other hand, with online matching [Kalyanasundaram and
Pruhs 2000] the overall cost for one worker would be the sum of the distances between
the worker and each assigned task. Finally, the performance of an online algorithm is
often evaluated based on competitive ratio: the ratio between its performance and the
offline algorithm’s performance. The online algorithm is competitive if its competitive
ratio is bounded under any circumstance; this is not the goal of MSA, which focuses on
the average performance.

Some recent studies in spatial matching, Wong et al. [2007] and Yiu et al. [2008],
do focus on efficiency and use the spatial features of the objects for more efficient
assignment. Spatial matching is a one-to-one (or in some cases one-to-many) assign-
ment between objects of two sets, in which the goal is to optimize over some aggregate
function (e.g., sum, max) of the distance between matched objects. For example, the
objective in Varadarajan [1998] is to pair up 2N points in the plane into N pairs such
that the sum of the Euclidean distances between the paired points is minimized. In
Wong et al. [2007], given a set of customers and a set of service providers with limited
capacities, the goal is to assign the maximum number of customers to their nearest
providers, among all the providers whose capacities have not been exhausted in serv-
ing other closer customers. These studies assume that a global knowledge about the
locations of all objects exists a priori, and the challenge comes from the complexity
of spatial matching. However, spatial crowdsourcing differs due to the dynamism of
tasks and workers (i.e., tasks and workers come and go without our knowledge), thus
the challenge is to perform the task assignment at a given instance of time with the
goal of global optimization across all times. Moreover, the fact that workers need to
travel to task locations causes the landscape of the problem to change constantly. This
adds another layer of dynamism to spatial crowdsourcing that renders it a unique
problem.

Expertise matching is the concept of assigning queries to experts that has gained
extensive interest from various research fields for its wide range of applications such
as paper—reviewer assignment (Mimno and McCallum [2007] and Hettich and Pazzani
[2006]) and project-reviewer matching (Sun et al. [2008]). In Tang et al. [2012], a
framework for expertise matching with various constraints was introduced that is
capable of rendering the optimal solution. However, none of these studies address the
problem of expertise in spatial matching. Our objective is different from these studies
as we address the problem of maximum expertise matches, while they try to find the
best individual match based on some models/methods.

Vehicle Routing Problems: Modeling the assignment cost as the shortest path visit-
ing the location of multiple tasks creates another class of problems. In this context,
the assignment problem in spatial crowdsourcing becomes similar to the Traveling
Salesman Problem (TSP) [Lawler et al. 1985] and the Vehicle Routing Problem (VRP)
[Toth and Vigo 2001]. The goal of the VRP is to minimize the cost of delivering goods
located at a central depot to customers who have placed orders for such goods with
a fleet of vehicles. The online versions of both the TSP and VRP have been studied
to some extent where new locations to visit are revealed incrementally. Since there is
only one salesman in the standard version of the TSP, here we focus on the VRP. Dif-
ferent variations of the VRP have been studied, yet there are differences between task
assignment in spatial crowdsourcing and these variations. With the VRP, all workers
start from the same depot, whereas in spatial crowdsourcing each worker can have a
different starting location. Moreover, with the VRP we have a fixed number of workers,
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Fig. 1. The focus of this article, spatial crowdsourcing, is shown in grey.

whereas in spatial crowdsourcing the same type of dynamism for tasks can apply to
the workers, that is, workers can be added/removed to/from the system at any time.

3. SPATIAL CROWDSOURCING

Spatial crowdsourcing opens up a new mechanism for spatial tasks (i.e., tasks related
to a location) to be performed by humans. Consequently, we formally define spatial
crowdsourcing as the process of crowdsourcing a set of spatial tasks to a set of hu-
man workers when performing an outsourced task is only possible if the workers are
physically at the location of the task, termed spatial task. In this section, we present a
taxonomy for crowdsourcing (Figure 1). First, we classify spatial crowdsourcing based
on worker’s motivation. Next, we define two modes of task publishing in spatial crowd-
sourcing. Finally, we classify the workers into two groups based on whether or not they
have constraints.

3.1. Worker’s Motivation

A major challenge in any crowdsourcing system is how to motivate people to participate.
Four levels of worker motivation can be found in Quinn and Bederson [2011], including
pay, altruism, fun, and implicit. To simplify, crowdsourcing can be classified based
on the motivation of the workers into two classes: reward-based and self-incentivized
(Figure 1). With reward-based spatial crowdsourcing, every spatial task has a price
(assigned by a requester) and workers will receive a certain reward for every spatial
task they perform correctly. Examples of this class include Field Agent [2010] and
Gigwalk [2010]. With self-incentivized spatial crowdsourcing, workers volunteer to
perform the tasks or usually have other incentives rather than receiving a reward,
such as documenting an event or promoting their cultural, political or religious views.
An example of this class is described in UCB [2008], in which more than 5000 users
voluntarily install traffic software onto their phones and report traffic information. Our
work focuses on self-incentivized spatial crowdsourcing.

3.2. Task Publishing Modes

Next, we define two task publishing modes in spatial crowdsourcing, Worker Selected
Tasks (WST) and Server Assigned Tasks (SAT). With the WST mode, the SC-server
publishes the spatial tasks and online workers can choose any spatial task in their
vicinity without the need to coordinate with the server. One advantage of the WST mode
is that the workers do not need to reveal their locations to the SC-server since they can
choose any arbitrary task in their vicinity autonomously. However, one drawback of this
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mode is that the server does not have any control over the allocation of spatial tasks.
This may result in some spatial tasks never being assigned, while others are assigned
redundantly. Another drawback of the WST is that workers choose tasks based on their
own objectives (e.g., choosing the % closest spatial tasks to minimize their travel cost),
which may not result in a globally optimal assignment. An example of the WST mode
is described in Alt et al. [2010], in which the workers browse for available spatial tasks
and pick the ones in their neighborhood.

With the SAT mode, the SC-server does not publish the spatial tasks to the workers.
Instead, any online worker sends one’s location to the SC-server. The SC-server, after
receiving the locations of all online workers, assigns to every worker a close-by tasks.
The advantage of the SAT is that, unlike the WST, the SC-server has the big picture,
thus can assign to every worker nearby tasks while maximizing the overall task assign-
ment. Examples of this mode of spatial crowdsourcing are described by Kazemi and
Shahabi [2012, 2011]. In Kazemi and Shahabi [2011], a framework for small campaigns
is proposed, in which workers are assigned to their close-by sensing tasks. However,
the drawback is that the workers should report their locations to the server for every
assignment, which can pose a privacy threat. Recently, To et al. [2014] proposed a
framework to sanitize workers’ locations according to differential privacy while still
using an SC-server as a broker to assign tasks to workers. A real-world example of the
SAT mode is Uber!, a mobile app that connects passengers with drivers of vehicles for
ridesharing. Our focus in this article is on this mode of spatial crowdsourcing.

3.3. Worker’s Constraints

Finally, in the case of the SAT, we divide the workers into two groups based on whether
or not they have constraints. With workers without constraints, the server has full
flexibility on how tasks should be assigned to the workers. This means that workers
send their locations only to the server, and the server assigns every spatial task to
its nearby worker [Kazemi and Shahabi 2011]. With workers with constraints, the
server needs to satisfy the constraints while assigning the tasks. An example of spatial
constraint is that every worker only accepts spatial tasks in a spatial region (i.e., one’s
working region).

4. PRELIMINARIES

In this section, we define a set of preliminaries in the context of self-incentivized SAT
spatial crowdsourcing with constraints. First, we formally define a spatial task.

Definition 4.1 (Spatial Task). A spatial task t of form </, q, s, §> is a query q to be
answered at location 1, where 1 is a point in 2D space. The query is asked at time s and
will be expired at time s + 3.

Note that the query g of a spatial task ¢ can be answered by a human only if the
human is physically located at location / by traveling to the location. An example of a
spatial task is taking a picture of a particular dish in a restaurant. This means that the
worker needs to physically go to the exact location of the restaurant in order to take
the picture. Each task has a deadline, and it can appear at several time instances until
reaching its deadline. A task expires if it has not been answered before its deadline?.
For example, if one time instance is 2 minutes long and the task deadline is within
40 minutes, the task can last for 20 time instances.

Thttps://www.uber.com/.
2We use the tasks’ deadlines to exclude them for assignment in the time instances passed their deadlines.
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Fig. 2. The spatial crowdsourcing framework.

Definition 4.2 (Spatial Crowdsourced Query). A spatial crowdsourced query (or SC-
query) of form <ty, ts, ...> asked by a requester is a set of spatial tasks # that needs to
be crowdsourced.

After receiving the SC-queries from all the requesters, the spatial crowdsourcing
server (or SC-server) assigns the spatial tasks of these SC-queries to the available
workers. We assume that all workers perform every task correctly. Thus, the SC-server
needs to assign every spatial task to one and only one worker. Figure 2 shows our
spatial crowdsourcing framework. In the following we formally define a worker.

Definition 4.3 (Worker). A worker, denoted by w, is a carrier of a mobile device who
volunteers to perform spatial tasks. A worker can be in either an online or offline mode.
A worker is online when ready to accept tasks.

We assume that all tasks are of the same type and all workers have the same set of
skills. We will relax these assumptions in Section 6. Once a worker goes online, that
individual sends a task inquiry to the SC-server (Figure 2). We now formally define the
task inquiry.

Definition 4.4 (Task Inquiry or TI). Task inquiry is a request that an online worker
w sends to the SC-server, when ready to work. The inquiry includes location of w,!,
along with two constraints: a spatial region R and the maximum number of acceptable
tasks maxT.

The spatial region R represented by a rectangle is the area in which the worker can
accept spatial tasks. The other constraint, maxT), is the maximum number of tasks that
the worker is willing to perform in one time instance. The worker can have either or
both of the constraints®. Figure 2 shows an example of task inquiry, in which worker
w1 has only one constraint (i.e., R;) and worker wg has both constraints (i.e., Re and
maxTs). Note that the task inquiry is defined for the SAT mode with the constraints
scenario (see Taxonomy in Figure 1), in which workers should send both their locations
and constraints to the SC-server for proper task assignment.

Once the workers send their task inquiries, the SC-server assigns to every worker a
set of tasks, while satisfying each worker’s constraints. However, the task assignment is

3We assume that workers’ constraints (i.e., R and maxT) will not change over time instances.
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not a one-time process. The SC-server continuously receives SC-queries from requesters
and task inquiries from workers. Therefore, we define the notion of task assignment
instance set.

Definition 4.5 (Task Assignment Instance Set). Let W; = {wq, we, ...} be the set of
online workers at time s;. Also, let T; = {t1,t2, ...} be the set of available tasks at
time s;. The task assignment instance set, denoted by I, is the set of matches of form
<w, t>, in which a spatial task ¢ is assigned to a worker w, while satisfying the workers’
constraints, Rs and maxTs. Also, |I;| denotes the number of tasks that are assigned at
time instance s;.

Consequently, the task assignment instance set must conform to the constraints of
the workers. Given a worker w with both constraints (R and maxT), this means for
every match <w, ¢> in I, the spatial task ¢ must be located inside the spatial region R
of the worker. Moreover, every worker w can be assigned to at most maxT number of
tasks (i.e., the number of matches in I; including w is at most maxT).

5. MAXIMUM TASK ASSIGNMENT
5.1. Problem Definition

Based on the preliminaries in Section 4, we now define the Maximum Task Assignment
(MTA) problem.

Definition 5.1 (Maximum Task Assignment (MTA)). Given ¢ = {s1, So, ..., S}, each
s; being a time instance, let I; be the assigned tasks at time instance s;. The maximum
task assignment problem is the process of assigning tasks to the workers during the
time interval ¢, while the total number of assigned tasks (i.e., Y ., |I;|) is maximized.

In order to solve the MTA problem, the SC-server should have a global knowledge of
all the spatial tasks and the workers. This would allow the server to optimally assign
the tasks to the workers. However, the server does not have such knowledge. At every
instance of time, the server receives a set of new tasks from the requesters and a set of
new task inquiries from the workers. Therefore, the server has only a local view of the
available tasks and workers at any instance of time. This means that a global optimal
assignment is not feasible. Instead, the server tries to optimize the task assignment
locally at every instance of time.

In the following, we propose three solutions to this problem. All the solutions follow
the local optimal assignment strategy. The first approach tries to solve MTA by maxi-
mizing the task assignment at every instance of time (Basic). The second approach tries
to improve the optimization by applying a heuristic that utilizes the location entropy
of an area to maximize the overall assignment (Least Location Entropy Priority). The
third approach tries to maximize the task assignment while taking into account the
travel cost of the workers (Close Distance Priority).

5.2. Assignment Protocol

The main challenges of spatial crowdsourcing are due to the large-scale, ad-hoc, and
dynamic nature of the workers and tasks. First, to continuously match thousands of
spatial crowdsourcing campaigns, with each campaign consisting of many spatiotem-
poral tasks and millions of workers, an SC-server must be able to run efficient task-
assignment strategies that can scale. Second, the task assignment must be performed
frequently and in real time as new tasks and workers become available or as tasks are
completed (or expired) and workers leave the system.

5.2.1. Basic Strategy. As discussed earlier, with this approach the idea is to do the
maximum assignment at every instance of time. This strategy only performs local
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Fig. 3. An example of the reduction of the MTA instance problem to the maximum flow problem at
instance s;.

optimization; therefore, it may not result in a globally optimal answer. Given a set of
online workers W; = {w1, wg, ...}, and a set of available tasks Ti = {#1, t2, ...} at time
instance s;, the goal is to assign the maximum number of tasks in 7; to workers in
W; for every instance s;, which is equivalent to maximizing |I;|. We refer to this as
the MTA instance problem. Thus, our goal in this approach is to maximize the overall
assignment by solving the MTA instance problem for every instance of time.

The idea of solving the MTA instance problem is to utilize the spatial constraints of
workers to ensure that tasks are properly assigned. Note that, without the constraints,
workers might be assigned to a spatial task far from their location. However, with
spatial crowdsourcing, since workers need to physically go to a location to perform a
spatial task, the goal is to assign only a number of tasks within a given distance to the
workers. During the task inquiry, every online worker has two constraints: the spatial
region R and the maximum number of tasks maxT. This means that every worker
is willing to perform at most maxT tasks, which should not be outside that worker’s
spatial region R. With the following theorem, we can solve the MTA instance problem
by reducing it to the maximum flow problem.

THEOREM 1. The maximum task assignment instance problem is reducible to the
maximum flow problem.

Proor. We prove this for time instance s; with W; = {w1, wo, ...} as the set of online
workers and T; = {t1,t2, ...} as the set of available spatial tasks. Let G; = (V, E) be
the flow network graph, with V as the set of vertices and E as the set of edges at time
instance s;. The set V contains |W;| +|T;| + 2 vertices. Each worker w; maps to a vertex
vj. Each spatial task ¢; maps to a vertex vw,;;. We create a new source vertex src
labeled as vy and a new destination vertex dst labeled as vy, 7;/+1.

The set E contains |W;| + |T;| + m edges. |W;| is the number of edges connecting the
new src vertex to the vertices mapped from W;, denoted by (src, vj). We set the capacity
of each of these edges, c(src, vj) = maxT'j, since every worker is capable of performing
only maxT number of tasks. There are also |T;| edges connecting the vertices mapped
from T; to the new dst vertex. We set the capacity of each of these edges to 1, since
every task is to be assigned to only one worker. Finally, for every worker w; we add an
edge from v; to all the vertices mapped from T;, which are inside the spatial region R;.
We have m edges of this kind and set their capacity to one. 0O

Figure 3 better clarifies this reduction. Figure 3(a) shows an example of a set of
workers W; and a set of available tasks T; at time instance s;. Every worker w; is
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associated with a spatial region R;. The corresponding flow network graph G; is de-
picted in Figure 3(b). As shown in the figure, worker w; can only accept tasks inside
one’s spatial region (i.e., #2). Therefore, the vertex mapped from w; can transfer flow to
only one vertex mapped from the task (i.e., vs). Moreover, w; is willing to accept only
two tasks since maxT; = 2. Therefore, the capacity of the edge (src, v1) is 2. Finally,
the capacity of all the edges connecting the vertices mapped from spatial tasks (i.e.,
v4, Us, vg, v7) to the destination vertex dst is 1, since every spatial task is to be assigned
to one worker.

By reducing to the maximum flow problem, we can now use any algorithm that
computes the maximum flow in the network to solve the MTA instance problem. One
of the well-known techniques in computing the maximum flow is the Ford-Fulkerson
algorithm [Kleinberg and Tardos 2006]. The idea behind the Ford-Fulkerson algorithm
is that it starts sending flow from the source vertex to the destination vertex as long
as there is a path between the two with available capacity. Consequently, in order to
solve the MTA problem, we repeat this step for every instance of time.

In this article, our goal is to exploit the spatial properties of the problem space.
Therefore, we introduce two spatial heuristics in our following two approaches.

5.2.2. Least Location Entropy Priority (LLEP). The problem with the Basic strategy is that,
at every instance of time, it only tries to maximize the current assignment locally. Even
though we are clairvoyant on neither the future SC-queries from the requesters nor
the future task inquiries from the workers, we can use some heuristics to maximize
the overall assignments. Our second approach, LLEP, improves the Basic approach by
exploiting the spatial characteristics of the environment during the assignment, one
of which is the distribution of the workers in that area. The observation is that a task
is more likely to be performed in the future if it is located in an area with a higher
population of workers. Therefore, the idea is to assign higher priority to tasks that are
located in worker-sparse areas, so that those tasks can be assigned before the ones in
worker-dense areas. Consequently, more tasks can be assigned.

We used location entropy, which was first introduced in Cranshaw et al. [2010], to
measure the diversity of unique visitors to a location. Location entropy takes into
account the total number of workers in the task’s location as well as the relative
proportion of their future visits to that location. A location has a high entropy if many
workers visit that location with equal proportions?*. In contrast, a location will have a
low entropy if only a few workers visit. Thus, our heuristic is to give higher priority to
tasks that are located in areas with smaller location entropy, because those tasks have
a lower chance of being completed by other workers.

We now formally define the location entropy. For a given location [, let O; be the set
of visits to location /. Thus, |O;| gives the total number of visits to [. Also, let W; be
the set of distinct workers that visited /, and O,; be the set of visits that worker w
has made to the location /. The probability that a random draw from O; belongs to O,;

is P(w) = 94l which is the fraction of total visits to / that belongs to worker w. The

101
location entrcl>py for [ is computed as follows:
Entropy(l) = — ) Pi(w) x log Pi(w) (1)
wer

By computing the entropy of every location, we can associate to every task ¢ of form
<l;, q;, si, 8;> a certain cost, which is the entropy of its location /;. Accordingly, tasks with

4The concept of visiting the same location is not of primary concern in this article but, for the sake of
completeness, we assume some sort of a discretization of space (e.g., a grid); thus a location is represented
by a grid cell, which can be visited by several workers.
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lower costs have higher priority, since they have a smaller chance of being completed.
Thus, our goal in this approach is to assign the maximum number of tasks during every
instance of time while the total cost associated to the assigned tasks is the lowest. We
refer to this problem as the minimum-cost MTA instance problem. With the following
theorem, we can solve the minimum-cost MTA instance problem by reducing it to the
minimum-cost maximum-flow problem [Kleinberg and Tardos 2006]. A minimum-cost
maximum flow of a network G = (V, E) is a maximum flow with the smallest possible
cost.

THEOREM 2. The minimum-cost MTA instance problem is reducible to the minimum-
cost maximum-flow problem.

Proor. We prove this theorem for time instance s; with W; = {w1, we, ...} as the set
of online workers and T; = {t1, fs, ...} as the set of available tasks. Let G; = (V, E) be
the flow network graph constructed in the proof of Theorem 1. For every task ¢;, let
V; be the set of all vertices mapped from workers W;, which have edges connected to
the vertex mapped from ¢; (i.e., vjw,+;). For every vertex u € V;, let (v, vyw;+;) be the
edge connected to vw,+j. We associate to (u,vw,+;) the cost of ¢; (i.e., a(u, vyw,+;) =
Entropy(l;)). Moreover, we set the cost of all other edges in E to 0. Thus, by finding the
minimum-cost maximum flow in graph G;, we have assigned the maximum number of
tasks with the minimum cost. O

In the example of Figure 3, let Entropy(l1) be the location entropy of the spatial task
t1. Since #; is located in the spatial regions of the workers wy, we set the cost of the edge
(ve, vq) to Entropy(ly).

According to this theorem, our problem becomes solving the minimum-cost
maximum-flow problem at every time instance. In order to solve the minimum-cost
maximum-flow problem, one of the well-known techniques [Kleinberg and Tardos 2006]
is to first find the maximum flow of the network using the Ford-Fulkerson or any other
algorithm that computes the maximum flow. Thereafter, the cost of the flow can be
minimized by applying linear programming.

Let G; = (V, E) be the flow network graph constructed in the proof of Theorem 2 for
time instance s;. Every edge (u, v) € E has capacity c(u, v) > 0, flow f(u,v) > 0, and
cost a(u, v) > 0, where the cost of sending the flow f(u, v)is f(u, v) x a(u, v). Let f.. be
the maximum flow sent from src to dst using the Ford-Fulkerson algorithm. The goal
is to minimize the total cost of the flow, which can be defined as follows:

min Z f(u, v) x a(u, v)

(u,v)eE

st fu,v) <clu,v); flu,v) =—fv,w)
Z f(u, w) =0, Vu # src, dst

weV
Z fsre, w) = frnax; Z f(w,dst) = frnax
weV weV

Since all constraints are linear and our goal is to optimize a linear function, we
can solve this in polynomial time by using the CPLEX solver, IloCplex [ILOG CPLEX
2007]. To summarize, our LLEP strategy solves the MTA problem by computing the
minimum-cost maximum flow for every time instance, for which the cost is defined in
terms of the location entropy of the tasks.

5.2.3. Close Distance Priority (CDP). Both Basic and LLEP approaches try to maximize
overall task assignment. However, they did not consider the travel cost (e.g., in time
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or distance) of the workers during the assignment process. This human travel cost
becomes a critical issue since workers need to physically travel to the location of the
spatial task in order to perform the task. Thus, we incorporate the travel cost of the
workers in the assignment process with an intuitive assumption that tasks that are
closer to a worker have smaller travel costs. Our goal is to maximize the task assign-
ment at every time instance while minimizing the travel cost of the workers whenever
possible. This means that we still try to maximize the overall task assignment. How-
ever, we assign higher priorities to tasks that are closer in spatial distance to the
worker.

In our specific problem, we define the travel cost between a worker w and a spa-
tial task ¢ in terms of the Euclidean distance® between the two, denoted by d(w, ¢).
Consequently, by computing the distance between every worker and the spatial tasks
inside his spatial region, we can associate higher priorities to the closer tasks. Thus,
our problem is to assign the maximum number of tasks during every time instance,
while the total travel cost of the assignment is the lowest. The problem then turns
into the minimum-cost MTA instance problem. Therefore, a similar solution to that of
Section 5.2.2 but with a different cost function (i.e., the travel cost) can be applied to
solve this problem.

6. MAXIMUM SCORE ASSIGNMENT

Thus far, we assumed that all tasks are of the same type and all workers have identical
qualifications. However, workers may have different expertise. Thus, we aim to explore
the task assignment problem considering expertise of the workers. The intuition is
that workers are more likely to provide higher-quality results when performing a task
in their expertise. For example, a chef can be a good candidate to perform the task of
rating a particular dish in a restaurant.

6.1. Formal Definitions

We focus on an expertise model for which each worker has a set of skills. Also, every
spatial task has a type with the same value domain as that of the worker expertise.
We now redefine spatial task and worker as follows:

Definition 6.1 (Spatial Task). A spatial task ¢ of form <[, q,e, s, §> is the same as
defined in Definition 4.1, except that every spatial task has a task type e.

Definition 6.2 (Worker). A worker, denoted by w, is the same as defined in Defini-
tion 4.3, except that every worker has a set of skills, denoted by E. Worker w with skill
e; € E means that the worker has the expertise to perform the task with type e;.

The task inquiry is redefined as follows.

Definition 6.3 (Task Inquiry). Task inquiry of a worker is the same as defined in
Definition 4.4, except the inquiry also includes the worker’s expertise <eq,eg, ...>.

We now define an expertise match.

Definition 6.4 (Expertise Match). An expertise match is an assignment of a worker
w to a spatial task ¢ in that worker’s spatial region R (i.e., ¢t € R), denoted by <w, ¢>,
where the worker w with the skills set E has the expertise to perform the task ¢ with
typee (i.e.,e € E).

An example of an expertise match can be assigning a photographer to take a picture.
The expertise of the photographer is photography and the type of the given task is to

50ther metrics such as network distance are also applicable.
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Fig. 4. An example of the reduction of the MSA instance problem to the maximum weighted bipartite
matching problem at instance s;.

take a high-quality picture. Note that every worker can have multiple skills, but every
task has one and only one type.

Consequently, maximizing the number of assigned tasks is no longer our optimization
goal. Instead, we introduce the concept of score and formally define the Maximum Score
Assignment (MSA) problem as follows:

Definition 6.5 (Score). For every match of form <w,t>, we define a score value,
score(w, t), which indicates how well the worker w performs the task ¢ based on the
worker expertise.

Definition 6.6 (Maximum Score Assignment (MSA)). Given a time interval ¢ =
{s1,82,...,s,}, let S; be the total score assignment at time instance s;, that is, S; =

Z‘fil scorej. The maximum score assignment problem is the process of assigning tasks
to the workers during the time interval ¢ such that the total score ", S; is maximized.

Figure 4(a) shows a set of workers, represented by circles, along with their constraints
and a set of tasks, represented by squares at time instance s;. There are two types of
tasks and two corresponding workers’ skills (i.e., each worker has one skill), which
are represented by black and white. Every worker w; is associated with a spatial
region R;, where j = 1,2, 3. As shown in Figure 4, worker wy can accept tasks only
inside his spatial region (i.e., #1, & and #3). Moreover, while ws is willing to accept only
one task (i.e., maxTe = 1), w; and ws do not limit the number of acceptable tasks (i.e.,
maxTi; = maxTs = 00). An expertise match between a task and a worker happens when
the task is inside the spatial region of the worker and they have the same color (i.e.,
<wg, to>). With MSA, a score is defined for every match. In this particular example,
the expertise match score is 3, while the scores of all nonexpertise matches are 1. Our
optimization goal is to maximize the total score assignment.

6.2. Assignment Protocol

Similar to MTA, a global solution to MSA is not feasible unless we are clairvoyant.
Instead, the SC-server tries to optimize the task assignment locally at every instance
of time. In the following, we extend three local optimal strategies—Basic, LLEP, and
CDP—to the MSA problem.

6.2.1. Basic Strategy. The basic approach uses local optimization at every time instance
rather than global optimization: that is, for each time instance s;, we have a set of online
workers W; = {wq, we, ...} and a set of available tasks T; = {¢1, ts, ...}. The goal is to
assign the tasks to the workers such that the total score is maximized. The total score
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is S; = lel‘zll score(w;, t;), where |I;| is the number of tasks that are assigned at time

instance s;. We refer to this as the MSA instance problem. Thus, our goal in this
approach is to maximize the overall score assignment by solving the MSA instance
problem.

During the task inquiry, every online worker forms two constraints: the spatial
region R and the maximum number of acceptable tasks maxT. Using the following
theorems, we first solve the MSA instance problem with the assumption of max7T = 1
for all workers by reducing it to the maximum weighted bipartite matching (MWBM)
problem. Thereafter, we solve the problem by relaxing this assumption.

LEmMA 1. The maximum score assignment instance problem, with maxT = 1 for all
workers, is reducible to the maximum weighted bipartite matching problem.

Proor. We prove the lemma for time instance s; with W; = {wy, wg, ...} as the set of
online workers and T = {#;, f2, ...} as the set of available tasks. Let G; = (V, E) be an
undirected graph whose vertices can be partitioned as V = W; U T}, where each worker
w; maps to a vertex in W; and each spatial task ¢, maps to a vertex in T;. There is an
edge e;; € E connecting a vertex w; in W; and another vertex ¢, in T; if ¢ is in the
spatial region of w;. G; is a bipartite graph since every edge e;; € E has one end in
W; and the other end in 7;. In addition, <w;, > is a valid match only if both w; and
t, appear in at most one edge in E (i.e., maxT = 1 for all workers and every task is to
be assigned to at most one worker). We set the weight of every edge e}, to score(w;, t).
Consequently, the MSA instance problem becomes finding the maximum matching in
the weighted bipartite graph G;. O

Figure 4(b) depicts the bipartite graph G; of the example in Figure 4(a). As shown
earlier, worker wsy can accept tasks only in his spatial region (i.e., t1, f2, and #3). There-
fore, there are three edges connecting wy to these tasks. Note that black and white
represent two types of tasks and the corresponding skills of workers. The following
theorem follows from Lemma 1:

TuEOREM 3. The maximum score assignment instance problem is reducible to the
maximum weighted bipartite matching problem.

Proor. This theorem extends Lemma 1 to any value of maxT. The idea is to reduce
the problem to the case in which maxT = 1, then use Lemma 1 to solve the derived
problem. For every worker w; whose maxT is larger than 1, we replace it by N logical
workers. These logical workers are identical to the original one (i.e., location, spatial
region, expertise), except its maxT is one. Let |T;| denote the number of tasks in the
spatial region of worker w;; N is computed as follows:
maxT for 1 < maxT < |T}|
N = {|TJ~| otherwise ! 2

This equation means that if maxT is infinity (i.e., maxT is not specified), the number
of logical workers is equal to the number of tasks in the spatial region of the replaced
worker: that is, the worker is willing to perform any number of tasks in one’s spatial
region. Otherwise, the number of logical workers is the smaller number between maxT
and |T|. Using Lemma 1, a corresponding bipartite graph G; is constructed on the
new set of workers. With this transformation, the original MSA instance problem is
equivalent to finding maximum weighted matching in the derived graph G;. O

This transformation is better clarified from the example in Figure 4(a). Assuming
maxTy = 2, Figure 4(c) presents the transformed bipartite graph G;. It shows that
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the worker wy whose maxT; = 2 was replaced by two identical workers w; whose
maxT = 1.

With these reductions, we can now use any algorithm for maximum weighted bipar-
tite matching to solve the MSA instance problem. One of the well-known methods to
compute weighted matching is the Hungarian algorithm [Papadimitriou and Steiglitz
1998]. The input of the Hungarian algorithm is a matrix of the costs. Thus, we need to
present the bipartite graph G as a matrix of size |W| x |T'|, in which the workers and
the tasks are represented as rows and columns, respectively. Each cost in the matrix is
negative score value of each match. Consequently, in order to solve the MSA problem,
we repeat the MSA instance problem for every instance of time.

With the Basic approach, MSA at every instance of time does not necessarily result in
a globally optimal answer due to its local optimization. To improve the Basic strategy,
we now present two spatial heuristics in turn.

6.2.2. Least Location Entropy Priority (LLEP). As mentioned in Section 6.2.1, the problem
with the Basic approach is that at every instance of time, it tries to maximize only
the current assignment without considering future optimizations. Thus, we can use
some heuristics to maximize the overall assignments. One of the heuristics is to exploit
the spatial characteristics of the environment during the assignment, one of which is
the distribution of the workers in that area. Similar to Section 5.2.2, we use location
entropy as the indicator of worker density.

Our goal in this approach is to maximize the total score during every instance of time
while the total cost associated to the assigned tasks is the lowest. With the following
theorem, we can solve the minimum-cost MSA instance problem by reducing it to the
minimum-cost MWBM, that is, finding the MWBM of minimum total cost.

THEOREM 4. The minimum-cost maximum score assignment instance problem is
reducible to the minimum-cost maximum weighted bipartite matching problem.

Proor. We prove this theorem for time instance s; with W; = {wy, we, ...} as the set
of online workers, and T; = {¢1, 2, ...} as the set of available tasks. Let G; = (V, E)
be the weighted bipartite graph constructed in the proof of Theorem 3. Note that the
weight of every edge e ; is score(w;, #). We associate to every edgee;;, € E the cost of #,
which is the entropy of location [, (i.e., Entropy(l3)). Thus, by finding the minimum-cost
maximum score in graph G/, we have assigned the maximum score with the minimum
cost. O

In the example of Figure 4(c), let Entropy(ls) be the location entropy of the spatial
task t3. Since t; is located in the spatial regions of all workers, we set the cost of all the
edges connecting to ¢, to Entropy(ls).

According to Theorem 4, solving our problem is equivalent to solving minimum-
cost MWBM at every time instance. In order to solve this problem, our approach
is to first find the maximum matching using any algorithm that computes MWBM
(e.g., Hungarian algorithm). Thereafter, the cost of the matching can be minimized by
applying an Integer Programming technique (e.g., branch and bound technique).

Let G = (V, E) be an undirected graph constructed in the proof of Theorem 3. Every
edge e;; € E, which connects a worker w; and a task #, has a cost c¢j;. This cost is
the location entropy of the task’s location /;, computed by Equation (1). Let x; be an
indicator variable for each edge e;; such that

)1 iftheedgee;jre M
Yik =10 otherwise
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where M is any matching of G. Let f,.. be the total score of M,,,. The goal is to
minimize the total cost of the matching, which can be formulated as follows:

mianj,kcj_k
Jik

s.t: ij,kwj,k = fmax; xjx € {0, 1}
Jik

Yw; € Wi, ij,k < 1;Vt, € Ty, ij,k <1
k J

This is a mixed integer programming problem. Using the branch and bound technique
offered by ILOG CPLEX [2007], in our particular experiments, we can find the optimal
solution to the MSA instance problem with thousands of workers and tasks within a
few seconds. However, finding the global optimal solution across many time instances
is a much more complex problem, as the number of variables is very large (i.e., x;,
where j, k, and ¢ represent the dimensions of worker, task, and time, respectively). The
computation challenge of this problem is beyond the scope of this work.

Finally, our LLEP strategy solves the MSA problem by computing the minimum-cost
maximum-score problem for every time instance.

6.2.3. Close Distance Priority (CDP). As presented in Section 5.2.3, with the CDP strategy,
we incorporate the travel cost of the workers in the assignment process. Our goal is
to maximize the total score at every time instance while minimizing the travel cost
of the workers whenever possible. We defined the travel cost between a worker w and
a spatial task ¢ as the Euclidean distance between the two, denoted by d(w, ). By
computing the travel cost of every match <w, >, we can associate to every pair the
corresponding cost. Similar to the LLEP approach, our goal in CDP is to maximize
the total score during every time instance, while the total cost of the selected edges
is the lowest. This means that the matches with lower costs are likely to be selected
first. Similarly, the problem turns into the minimum-cost MWBM instance problem;
therefore, a similar solution to that of Section 6.2.2 but with a different cost function
can be applied to solve this problem.

We now show that MSA is a generalized MTA with Theorem 5. Assuming the scores
of all expertise matches are equal and the scores of all nonexpertise matches are equal,
the effect of the expertise match score is as follows.

THEOREM 5. Maximum score assignment instance results in maximum expertise
matches if the expertise match score is higher than double that of the nonexpertise
match score.

Proor. We first assume that maxT = 1 for all workers. Let M, be the optimal
solution of the MSA instance problem. If there exists an unassigned expertise match
<w, t> in M,,,, whose both ends w and ¢ are not in any other assigned expertise match,
to increase the total score we can always replace at most two assigned nonexpertise
matches by <w, £>. On the other hand, if there does not exist an unassigned expertise
match in M,,,,, the number of expertise matches in M,,,, is already maximized. Thus,
MSA instance results in maximum expertise matches in the case of maxT = 1 for all
workers. If maxT is larger than 1, we can use Theorem 3 to reduce the problem to the
caseof maxT=1. O

7. PERFORMANCE EVALUATION

We conducted several experiments on both real-world and synthetic data to evaluate
the performance of our proposed approaches: Basic, LLEP, and CDP. Since the MTA
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Table |. Distribution of the Synthetic Data for W/T

SYN-UNIFORM | SYN-SKEWED
w/T Avg. SD Avg. SD
Sparse 1 1 1 4
Medium 3 1.7 3 8
Dense 5 2.2 5 12

problem is a special case of the MSA problem, we will evaluate MSA that subsumes
MTAS. Here, we discuss our experimental methodology. Next, we present our experi-
mental results.

7.1. Experimental Methodology

We performed four sets of experiments. In the first two sets, we evaluated the scalability
of our proposed approaches by varying both the average number of workers whose
spatial regions contain a given spatial task, namely, workers per task (W/T), and the
average number of spatial tasks that are inside the spatial region of a given worker,
denoted by tasks per worker (T/W). Similar results were observed for varying both
T/W and W/T since T/W grows as W/T increases. Hereafter, we present the results
for varying W/T only. In the third set of experiments, we evaluated the impacts of the
workers’ constraints on the performance of our approaches. Note that every worker has
two constraints: R and maxT. However, we evaluated the impact of only one (i.e., maxT)
on our approaches, since both constraints have similar effects. Finally, to evaluate the
impact of the expertise match score, we used three performance measures: (i) the
average total score per time instance, (ii) the average number of expertise matches per
time instance, and (iii) the average travel cost for a worker to perform a spatial task. The
travel cost is measured in terms of the Euclidean distance between the worker and the
location of the task. We conducted our experiments on various synthetic (SYN) and two
real-world (REAL) datasets. With our synthetic experiments, we used two distributions:
uniform (SYN-UNIFORM) and skewed (SYN-SKEWED). In the following, we discuss
our datasets in more detail.

With the first set of synthetic experiments, in order to evaluate the impact of W/T,
we considered three cases (Table I): sparse, medium, and dense. The average number
of W/T is 1, 3, and 5, respectively (i.e., we increased the size of spatial region R to
achieve these numbers). This means that we consider an area to be worker-dense if
the average number of workers who are eligible to perform a single spatial task is 5,
whereas in a sparse case, the average number of W/T is 1. In our experiments on SYN-
UNIFORM, the average number of W/T varies with a small standard deviation (from
1 to 2.2), whereas in our experiments on SYN-SKEWED, the average number of W/T
varies with a large standard deviation (between 4 to 12). With the uniform distribution
(SYN-UNIFORM), both workers and tasks are uniformly distributed, whereas, in order
to generate the SYN-SKEWED dataset, the workers were formed into four Gaussian
clusters (with o = 0.05 and randomly chosen centers) while the tasks were uniformly
distributed.

Since we do not have access to real-world spatial crowdsourcing data, we used real-
world data from other applications, namely Gowalla” and Yelp®, to emulate the spatial
crowdsourcing application. Hence, we used the users in these applications as workers,
the point of interests as tasks, and the check-in (for Gowalla) and review (for Yelp) as
completed tasks. A summary of these datasets is given in Table II.

6For MTA experiments, refer to Kazemi and Shahabi [2012].
“snap.stanford.edu/data/loc-gowalla.html.
8yelp.com/dataset_challenge.
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Table Il. Statistics of the Real Datasets, Gowalla and Yelp

Gowalla Yelp
Number of tasks 20,000 11,537
Number of workers 10,273 43,873
Number of task types 5 508
Grid size 50,000x50,000 | 10,000x10,000
Average Number of skills per worker 1 8
Average Number of W/T 4 44

Gowalla is a location-based social network in which users are able to check in to
different spots in their vicinity. The check-ins include the location and the time that
the users entered the spots. For our experiments, we used the check-in data over
a period of 20 days in 2010, including 10,273 spots (e.g., restaurants), covering the
state of California. Moreover, we assumed that Gowalla users are the workers of our
spatial crowdsourcing system, and checking in to a spot is equivalent to accepting a
spatial task at that location. We picked the granularity of a time instance as 1 day.
Consequently, we assumed all the users who checked in during a day as our available
workers for that day. Since users may have various check-ins during a day, for every
user w, we set maxT as the number of check-ins of the user in that day, and we set
R as the minimum bounding rectangle of those checked-in locations. Moreover, the
spatial tasks were randomly generated for the given spots in the area. In order to
compute the location entropy, we discretized the latitude and longitude space into
50,000x50,000 grid (approximately 30x30 meters per grid cell). For every grid cell,
we computed location entropy based on Equation (1). The average number of W/T of
Gowalla datasets was computed as 4. This also confirms our choices of parameters for
the synthetic datasets.

The Yelp dataset was captured in the greater Phoenix, Arizona, area including loca-
tions of 11,537 businesses (e.g., restaurants), 43,873 users, and 229,907 reviews. For
our experiments, we assumed that the businesses are the spatial tasks, Yelp users are
the workers, and reviewing a business is equivalent to accepting a spatial task at its
location. To elaborate, we assumed that business categories are task types, and skill
sets of each worker are the category lists of the businesses that the worker reviewed,
referred to as a review list. For each worker, we set R as the minimum bounding rect-
angle of the locations of that worker’s review list. Moreover, we set maxT as the size of
the worker’s review list at one instance of time. With Yelp data, we generated 20 time
instances by dividing the review time interval into 20 equal periods. Other parameters
are shown in Table II.

Finally, in all of our experiments, we fixed the time interval to 20 days and set the
duration of every spatial task to 10 days (i.e., ¢ = 20,8 = 10). Furthermore, without
loss of generality, unless mentioned otherwise, we set the scores of all expertise matches
to 3 and the scores of all nonexpertise matches to 1. With the SYN experiments, we
fixed the number of new workers and the number of new tasks at each instance time
to 500 and 1000, respectively. For all workers, the value of maxT is 20. Furthermore,
with SYN and Gowalla datasets, there are 5 values of task types. The type of each task
was chosen randomly within these values. Moreover, each worker has one and only one
skill, selected randomly from these task types. For each of our experiments, we ran 50
cases and reported the average of the results. The experiments were run on an Intel(R)
Core(TM)i7-2600 CPU at 3.40GHz with 8GB of RAM.

7.2. Experimental Results

7.2.1. Effect of Number of Workers per Task (W/T). In the first set of experiments, we eval-
uated the performance of our approaches by varying the number of workers whose
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Fig. 5. Effect of W/T on the synthetic data, per time instance.

Table Ill. Percentages of Nonassigned Tasks per Time Instance

Dataset # Tasks | Basic | LLEP | CDP | Avg # Assigned tasks | Nonassigned tasks (%)
Gowalla 1000 405 496 459 454 55.6
Yelp 577 469 500 464 478 17.1
SYN-UNIFORM 1000 750 796 753 767 23.3
SYN-SKEWED 1000 290 325 251 289 71.1

We measured the average number of assigned tasks over three heuristics: Basic, LLEP and CDP.

spatial regions contain a given spatial task. Figures 5(a), 5(b), 5(d) and 5(e) depict the
result of our experiments on both SYN-UNIFORM and SYN-SKEWED. The figures
show that the total score and the number of expertise matches increase as the number
of W/T grows. The reason is that more resources become available to perform tasks.
Moreover, Figures 5(a) and 5(d) show that LLEP is better than both Basic (GR) and
CDP in terms of the average total score (up to 35%) due to applying the location en-
tropy heuristic. However, LLEP does not necessarily maximize the number of expertise
matches. Figures 5(b) and 5(e) show that CDP is better than the others in terms of the
number of expertise matches (up to 50%). The reason is that CDP first maximizes the
total score. It then tries to minimize the total travel cost whenever possible, which
results in minimizing the number of assigned tasks (i.e., the more tasks assigned, the
more total travel cost). As a result, CDP increases the number of expertise matches.
Figure 6 depicts similar experiments using two real datasets. With Gowalla data,
Figures 6(a) and 6(b) show that LLEP improves Basic and CDP significantly both
in terms of the total score as well as the number of expertise matches (up to 25%).
Similar results are shown on Yelp data. Particularly, Figures 6(d) and 6(e) show that
LLEP outperforms Basic and CDP in task assignment (up to 25%). The superiority
of the LLEP strategy in both cases (e.g., the total score and the number of expertise
matches) can be explained by the fact that LLEP took much advantage of location
entropy of the real check-in data. Table III shows that a large number of tasks (about
56% for Gowalla, 17% for Yelp, 23% for SYN-UNIFORM, and 71% for SYN-SKEWED)
remained unassigned. This happens due to different reasons such as the constraints
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Fig. 6. Effect of W/T on the real data, per time instance.

of the workers (e.g., the covering area of the workers may overlap with only a small
number of tasks) or the expiration of the unassigned tasks.

In the next set of experiments, we measured the impact of varying the number W/T
on the average travel cost of the workers in performing a given task in each algorithm.
Figures 5(c), 5(f), 6(c), and 6(f) depict the result of our experiments on both SYN and
REAL data. As Figures 5(c) and 5(f) show, the average travel cost of the workers in-
creases in all cases because as the number of W/T grows, more tasks are assigned, in
which some tasks farther away can result in high average travel distance. In addition,
we observed that CDP improves the travel cost of the workers significantly as compared
with Basic (GR) and LLEP in both SYN and REAL data, which demonstrates the effec-
tiveness of the travel cost heuristic. Particularly, Figures 5(c) and 5(f) show 50% and
70% improvements of CDP as compared with the Basic approach in SYN-UNIFORM
and SYN-SKEWED, respectively. Moreover, Figures 6(c) and 6(f) demonstrate that
CDP improves the travel cost of the workers in Gowalla and Yelp data by 90% and
70%, respectively.

7.2.2. Effect of Worker’s Constraints. We evaluated the performance of our approaches
with respect to expanding the spatial region of every worker R. In addition, we reported
only our experiments on SYN-UNIFORM since similar trends were observed for the
skewed distribution. As Figure 7(a) shows, as we vary the size of R from [1%x1%]
to [3%x3%] of the entire area, the total score increases. The reason is that larger
spatial regions cover larger numbers of spatial tasks. Consequently, the number of
tasks per worker, that is, T/W, increases, which leads to more tasks being available to
be performed by workers. Next, Figure 7(b) shows the effect of varying R on the travel
cost. The figure illustrates that the travel cost increases with the expansion of R. This
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is because when R grows, tasks farther away could be assigned, which leads to the
increase in travel cost.

7.2.3. Effect of Expertise Match Score. Next, we evaluated the impact of varying the
expertise match score on MSA with the SYN-UNIFORM data. Figures 8(a) and 8(b)
show that as we vary the expertise match score from 1 to 3, the number of assigned
tasks decreases while the number of expertise matches grows. The reason is that
when expertise match and nonexpertise match scores are equal, MSA reduces to the
MTA problem, which maximizes the number of assigned tasks. Moreover, as proved
in Theorem 5, when the expertise match score is more than two times the score of
a nonexpertise match, the number of expertise matches is maximized. This means
that by varying the expertise match score from 1 to any value that is greater than 2,
we can flexibly change our optimization goal from maximizing the assigned tasks to
maximizing the expertise matches.

To summarize, the main observation from this set of experiments is that LLEP
outperforms both Basic and CDP in terms of the overall task assignment (i.e., the
total score), while the CDP approach is superior in terms of travel cost. The nonspatial
greedy algorithm (i.e., Basic) achieves optimal assignment per time instance, given the
local knowledge up to that time instance. However, a simple heuristic that predicts the
spatial distribution of the workers in the future using their past location entropy, that
is, LLEP, achieves 35% improvement over Basic. Meanwhile, another simple heuristic
that gives priority to the distance traveled by the workers, that is, CDP, achieves 90%
superiority over Basic in terms of travel cost. This shows the importance of considering
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Fig. 9. Comparison of our approaches with the Ranking algorithm on the synthetic datasets.

the spatial aspect of our problems, that is, MSA, when devising new solutions. Thus,
based on the objective of the spatial crowdsourcing application (i.e., maximizing the
assignment or minimizing travel cost), either of the LLEP or CDP approaches can be
selected.

7.2.4. Fixing the Worker Set (Online Matching). In the final set of experiments, we compared
the performance of Basic and LLEP with the Ranking algorithm to the online bipartite
matching problem [Karp et al. 1990]°. In order to compare our heuristics with Ranking,
we needed to modify our experimental setup so that the worker set is known in advance
(i.e., we fixed the worker set and varied the task set at every time instance). For this
comparison, each worker can only perform one task, maxT = 1. Other values of maxT
can be reducible to the case of maxT = 1, as shown in Theorem 3. With the synthetic
datasets, the worker set size is 500 while the task set size is 25 per time instance.
With real datasets, we merged 20 worker sets from the previous experiments and kept
the task sets the same. This merging results in the worker set sizes of Gowalla and
Yelp being 25,000 and 10,000, respectively. Other parameters—the number of time
instances and the task duration—are the same as before.

Figure 9 presents the results for the synthetic datasets. Figure 9(a) shows that the
number of assigned tasks increases for all algorithms as the sizes of the spatial regions
of the workers increase. The reason is that as the spatial regions expand, a task can
be performed by many workers. Particularly, LLEP and Basic approaches outperform
the Ranking algorithm by up to 60%. Figure 9(b) shows a similar trend, except that
a higher number of assigned tasks is observed in SYN-UNIFORM. This difference is
because most of the tasks are covered by many workers in SYN-UNIFORM while in
SYN-SKEWED, a few tasks are covered by a large number of workers, yet the others
may not be covered by any worker.

Figure 10 depicts the comparison for the real datasets. First, the number of assigned
tasks in Gowalla (2500-3000) is smaller than that in Yelp (6000-10,000). The reason
is that W/T in Yelp is much higher than that in Gowalla. As a result, one task can be
assigned to many workers, which means that the derived bipartite graph in Figure 4(b)
is denser and its search space is larger. Another observation is that the Ranking
algorithm performs as well as Basic and LLEP in Gowalla data (Figure 10(a)) while
it does not perform as well in Yelp data (Figure 10(b)). LLEP improves Rank by 46%.
This result suggests that our heuristics result in much better assignments than the
Ranking algorithm in the large search space.

9This randomized solution does not use any spatial knowledge and has a competitive ratio of 0.63.
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Fig. 10. Comparison of our approaches with the Ranking algorithm on the real datasets.

To summarize, the solutions to online bipartite matching, such as Ranking, are
simplistic (e.g., assuming the arrival of one item at a time) as the goal is to find
a performance bounded by computing competitive ratio, which is different from our
objective to devise practical heuristics for a real-world problem.

8. CONCLUSION

In this article, we introduced spatial crowdsourcing as the process of crowdsourcing a
set of spatial tasks to a set of workers. We formally defined the MTA problem and its
extension, MSA, which considers worker expertise. Subsequently, we proposed three
solutions to MTA and MSA: Basic, LLEP, and CDP. In our experiments on both real
and synthetic data, we show the superiority of our heuristics LLEP and CDP in maxi-
mizing the overall task assignment and minimizing the travel cost, respectively, when
compared to the Basic approach. We also compared our approaches with the Ranking
algorithm for solving a variant of the online bipartite matching problem in which each
task has a deadline. Experimental results show that our solutions outperform Ranking
in maximizing the number of assigned tasks.

The main contribution of this article is on the formulation of the MTA and MSA
problems, their formalization, and the heuristics proposed to solve them. The main
lesson learned is that a greedy algorithm that achieves optimal assignment per time
instance without any spatial consideration, that is, Basic, is not the best approach to
solve the spatial crowdsourcing problem. Instead, a heuristic that predicts the spatial
distribution of the workers in future, using their past location entropy (i.e., LLEP), or
a heuristic that gives priority to the distances traveled by the workers, that is, CDP,
outperforms the nonspatial greedy approach.
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