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Abstract

Service-oriented approach for model coupling is gradually gaining momentum. By leveraging the World

Wide Web, the service-oriented approach lowers the interoperability barrier of integrating models in terms of

programming languague and operating system. While such paradigm has been applied to integrate models

wrapped with some standard interfaces, this paper considers the Basic Model Interface (BMI) as model

interface. The advantages of BMI are that it (1) enrich the semantics of variable names, and (2) is framework-

agnostic. We exposed the BMI-enabled models through web services. Then, a smart modeling framework,

the Experimental Modeling Environment for Linking and Interoperability (EMELI), was enhanced into a

web application (i.e., EMELI-Web) to integrate the BMI-enabled web service models. By implementing the

whole orchestration in coupling TopoFlow components, we demonstrate that BMI helps connect web service

models by reducing the heterogeneity of variable names, and EMELI-Web makes it convenient to couple

BMI-enabled web service models.
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Software availability1

• The code for the BMI-enabled web service TopoFlow components is available at: https://opensource.2

ncsa.illinois.edu/bitbucket/projects/ECGS/repos/bmi-flask/browse3

• The code for EMELI-Web is available at: https://opensource.ncsa.illinois.edu/bitbucket/4

projects/ECGS/repos/emeli-web-application/browse5

1. Introduction6

There is an increasing need of integration and re-use of models from different disciplines in the geoscience7

community to simulate and model complex environmental systems. Due to different scientific conventions8
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and vocabulary usage in different disciplines, the associated numerical and physical models usually differ in9

programming languages, variable names, variable units, and spatial and temporal grids for solution, causing10

the difficulties of model integration(Argent, 2004). To address the issues of coupling multidisciplinary11

heterogeneous models, a lot of solutions have been put forward during the past decade (Sui & Maggio,12

1999; Hill et al., 2004; Syvitski et al., 2004; Maxwell & Miller, 2005; Moore & Tindall, 2005; David et al.,13

2013). Among these solutions, a loosely-coupled, service-oriented approach is gaining momentum recently14

due to its ability of leveraging the World Wide Web for integrated modeling (Geller & Melton, 2008; Goodall15

et al., 2011; Laniak et al., 2013; Nativi et al., 2013). However, most applications of such service-oriented16

architecture (SOA) are limited to models wrapped with the model interfaces which (1) does not reduce the17

heterogeneity of variable names, and (2) is used in a specific model integration framework thus causing the18

difficulties of being applied in other frameworks (Goodall et al., 2011; Castronova et al., 2013; Goodall et al.,19

2013). Therefore, the goal of this study is to develop a service-oriented modeling framework for coupling20

models by adopting the Basic Model Interface (BMI, Peckham et al. (2013)) which not only enriches the21

semantic information of variable names but also is framework-independent.22

Prior to the emergence of the loosely-coupled, service-oriented approach, researchers have proposed23

multiple solutions to integrate heterogeneous models. Generally, there are two types of methods: tightly-24

coupled and loosely-coupled, integration approaches. The tight coupling approach has been adopted by25

a number of researchers by porting codes from different models into a single modeling application (Sui &26

Maggio, 1999; Facchi et al., 2004; Maxwell & Miller, 2005; Yu et al., 2006). Despite its capability in fully27

controlling the modeling process, the tightly-coupled approach requires the consistent internal conventions28

within the models (e.g., data structures). In contrast, following a loosely-coupled approach, researchers29

only need to standardize the model interface and integrate models within a specific modeling framework,30

thus allowing the internal structure of the model to be unchanged. Examples of such modeling frameworks31

include the Earth System Modleing Framework (ESMF, Hill et al. (2004)), the Open Modeling Interface32

(OpenMI, Moore & Tindall (2005)), the Object Modeling System (OMS, David et al. (2013)), and the33

Community Surface Dynamics Modeling System (CSDMS, Peckham et al. (2013)).34

Compared with the traditional loose coupling approach (for example, the component-based modeling ap-35

proach where the models are integrated in one computing platform in a plug-and-play manner (Van Ittersum36

et al., 2008; Elag et al., 2011; Peckham et al., 2013; Theurich et al., 2015)), the application of loosely-coupled37

service-oriented method in model integration has the following advantages (Goodall et al., 2011). First, it38

allows the independence of operating system and programming languages for models, lowering the interop-39

erability barrier of model integration. Second, by exposing models through web service, one can utilize the40

functionality of the model without installing it in his or her own computing system. Third, the web service41

feature allows the maintenance or update of a model while still providing the original functionality to the42

clients over the web. In geoscience domain, the idea of adopting SOA in modeling is also termed as “Model43
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Web” (Geller & Melton, 2008) and has been applied in modeling water resource systems (Goodall et al.,44

2011; Castronova et al., 2013).45

Despite the existing efforts in applying SOA in model integration, the model interfaces used do not46

provide sufficient semantic information of variable names and are heavily dependent on model integration47

framework and model interface standard. For instance, hydrologic models encapsulated with OpenMI are48

transformed into web services and loosely coupled in a service-oriented architecture (Goodall et al., 2011;49

Castronova et al., 2013). However, OpenMI standard fails to address the heterogeneity issue of variable50

names. Furthermore, it is usually difficult to integrate models standardized in different modeling frameworks51

(e.g., ESMF and OMS), therefore limiting a wider application of these modeling frameworks and standards.52

Hence, in this study, we adopt the Basic Model Interface (BMI) as the model interface, which is originally53

developed in the Community Surface Dynamics Modeling System (CSDMS) (Peckham et al., 2013). There54

are two unique features of BMI. First, BMI is able to map a model’s internal variable names to CSDMS55

standard names, which is a set of “cross-domain naming conventions for describing process models, data56

sets, and their associated variables” (Peckham, 2014a), so that models adopting different variable naming57

convention can still be properly connected before being further coupled. The second feature of BMI is58

that it is framework-agnostic. Namely, there is no need for researchers to adjust their models to a specific59

modeling framework (Peckham, 2014b). It also suggests that a BMI-enabled model can be used in any other60

framework once a corresponding adapter is developed. This is reflected in an ongoing EarthCube project,61

Earth System Bridge whose goal is to allow different modeling frameworks to be “interoperate” by using62

BMI as the “bridge” connecting different frameworks (Peckham et al., 2014). Another example of utilizing63

BMI’s framework-agnostic property is the development of Experimental Modeling Environment for Linking64

and Interoperability (EMELI), a smart modeling framework for integrating BMI-enabled models (Peckham,65

2014b).66

In this research, we develop a service-oriented modeling framework by enhancing EMELI to integrate web67

service models using BMI as depicted in Figure 1. To achieve the BMI-based service-oriented framework,68

the following technical challenges are addressed: (1) how to convert the BMI-enabled models into web69

service models (i.e., constructing the web service exposing the functionality of BMI); (2) how to advance70

the EMELI framework to EMELI-Web which enables the “integration” of the BMI-enabled web serviced71

models. Also, a web interface is established for EMELI-Web, which allows the convenient usage of EMELI-72

Web through the browser. The entire architecture is then tested by (1) transforming components of a set73

of spatially-distributed hydrologic model TopoFlow (Peckham, 2009) into BMI-enabled web service models74

and (2) executing the models in Owl watershed of the Upper Sangamon River Basin in Illinois through75

EMELI-Web.76

In the remainder of this paper, the concept of SOA and its application is reviewed in Section 2. Sec-77

tion 3 details the design of the BMI-based service-oriented modeling paradigm, including the conversion of78
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BMI-enabled models into web services and the construction of EMELI-Web. An implementation is then79

performed by converting TopoFlow components into the BMI-enabled web service models in Section 4. A80

short discussion of the whole architecture is provided in Section 5, and the paper is briefly concluded in81

Section 6.82

2. Background83

Service-Oriented Architecture (SOA) is a way of using web service to model a large software system, where84

sub-softwares or computing components are distributed on different remote servers that provide services for85

other clients (Erl, 2004; Huhns & Singh, 2005). A typical communication between a service and a client86

(which can be either a human being or another service) is as follows. Following a specific communication87

protocol, a client sends a request to a web service operated on another server via the internet. After receiving88

the request, the service reads the incoming information, carries out a certain processing, and sends a response89

back to the client. Such communication in SOA implies a loosely-coupled architecture where the software90

or computing component behind the web service can be conserved in any hardware environment and run in91

any programming language.92

Until recently, SOA has been adopted as an alternative in model integration for component-based mod-93

eling approach, which has been widely applied in coupling heterogeneous models in a ‘plug-and-play’ man-94

ner (Geller & Melton, 2008). Compared with the component-based approach, which usually has to reply95

on a specific modeling framework in a single computing resource, the service-oriented modeling paradigm96

allows the independence of both operating system and programming language as well as the avoidance of97

code duplication (Nativi et al., 2013). By exposing a model as web services, users can utilize the func-98

tionality of the models directly by calling the service, without considering the dependent platform and99

programming language. Also, because of the ability to run a model via the Internet, there is no need to100

duplicate the code in the users’ own computer. There have been some efforts to apply SOA for coupling101

models in geoscience. For example, Goodall et al. (2011) transformed water resource models into web ser-102

vices by using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) and demonstrated103

how it can be encapsulated as OpenMI-compliant models. Later, Castronova et al. (2013) furthered the idea104

of servicing an OpenMI-compliant model by considering the case of time-dependent models. In addition,105

an OpenMI-ESMF web service wrapper was developed to couple a climate model implemented via ESMF106

web service with an OpenMI-compliant hydrologic model running on a personal computer (Goodall et al.,107

2013). Exposing models through web services would significantly lower the interoperability barrier of the108

communication between models, and a client only needs to configure the communication protocol used by109

the modeling service.110

Two common web service communication methods are: Simple Object Access Protocol (SOAP, SOAP111
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(2004)) and REpresentational State Transfer (REST, Fielding (2000)) specifications. SOAP has been widely112

applied for setting up web services, usually combined with the Web Service Description Language (WSDL).113

However, a web service adopting SOAP/WSDL protocol is complex in that SOAP is designed for structured114

information and thus requires the incoming data to follow a sophisticated prototype (Mulligan & Gračanin,115

2009). Meanwhile, constructing a RESTful application is relatively simple because it only relies on a stateless116

communication protocol, most commonly Hypertext Transfer Protocol (HTTP). By using a set of HTTP117

methods (GET, POST, PUT, DELETE, HEAD (Fielding et al., 1999)), a RESTful application is able to118

interact with the resources exposed by a web service.119

In this study, we adopt the RESTful approach due to its simplicity and easy of use. Also, in terms of the120

specification encoding messages transferred between the RESTful web services, JavaScript Object Notation121

(JSON) is utilized due to its capability of transmitting messages in a lightweight data-interchange format.122

3. Design123

The design of our SOA includes (1) a modeling service for exposing BMI-enabled models as web service124

models, and (2) the EMELI-Web framework for coupling web service models, which is a enhanced version of125

EMELI to handle BMI-enabled web service model. As discussed in Section 1, BMI is chosen as the model126

interface because of its framework-agnostic property and capability of enriching the semantic information of127

variable names. Therefore, despite the adoption of BMI as the model interface, models encapsulated with128

other standards or in other frameworks can also be integrated in this SOA once a wrapper like the one being129

developed in Earth System Bridge is ready.130

By exposing BMI-enabled models as web services, clients can get the information of a model and execute131

it by sending requests to the services. To couple the BMI-enabled web service models, EMELI-Web is132

equipped with a user interface and introduces a port to receive and ingest the response from the modeling133

service.134

3.1. Exposing BMI-enabled models through web service135

The interface of a web service model developed in this work is based on a combination of the Basic Model136

Interface (BMI) and a set of JSON-based RESTful web service APIs (application programming interfaces)137

exposing information provided by BMI. As a model interface, BMI allows a model to self-describe in that138

the basic features of a model (e.g., input and output names) are able to be retrieved through a set of BMI139

functions (Peckham et al., 2013). In terms of web service interface, despite the wide applications of different140

web service specifications developed in the Open Geospatial Consortium (OGC), there is no specification141

for geoscience modeling. Even though a combination of several existing standards (e.g., the Web Processing142

Service, the Geography Markup Language and Water Markup Language) might provide a solution to address143
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this issue, as suggested by Castronova et al. (2013), these XML-based standards would make the conveyed144

information heavily encapsulated, slowing down the entire service-based communication. Hence, in this145

study, we develop a set of JSON-based web service APIs for conveying information provided by BMI.146

To convert a BMI-enabled model into a web service, we construct a wrapper by exposing most BMI147

functions through web service APIs. In addition, when a instance of a model resource is initialized in the148

server, its own ID and file system are generated as well. In order to reduce the web latency of service149

communication, variable values of a model are saved in a binary-formate netCDF (i.e., network Common150

Data Form) file and transferred over the web.151

3.1.1. Web service design for BMI-enabled models152

The design of BMI-enabled web service models is to allow the integration of the web service models153

under a EMELI-based web service framework in our study. To this end, the following efforts are made: (1)154

exposing almost all BMI functions into RESTful APIs; (2) designing a RESTful API by combining several155

BMI functions to reduce web latency; and (3) introducing utility RESTful APIs to smooth the SOA-based156

coupling in EMELI-Web. All the APIs designed for a BMI-enabled web service model, including BMI-based157

APIs and utility APIs, are listed in Table 1 and Table 2, respectively,158

A BMI-enabled model not only is self-describing but also facilitates clients to have a full control of159

the model. The BMI functions are categorized into five groups: model control functions, model informa-160

tion functions, variable getter and setter functions, variable information functions, and grid information161

functions. The basic information of a model is available through performing model information functions,162

variable information functions and grid information functions. For example, by using model information163

functions, the input(s) and output(s) of a model can be retrieved in CSDMS standard names, which would164

help check the connections between models in a model coupling workflow. Also, the variables’ values can165

be obtained and reset through variable getter and setter functions. Furthermore, model control functions166

enable clients to initialize the model based on a configuration file, update the model at each time step and167

finalize the model by releasing all computational resources. More detailed functionality of BMI are provided168

in Peckham et al. (2013).169

For the conversion of a BMI-enabled model into web services, most BMI-based APIs are directly con-170

structed upon the original BMI functions as shown in Table 1. This design allows a convenient revision171

of EMELI in that most BMI functions utilized by EMELI can then be easily revised to consume the re-172

sponses from calling the corresponding BMI-based APIs. For example, in model control functions, the BMI173

capability of initializing, updating and finalizing a model is converted into three corresponding HTTP PUT174

methods. Similarly, in model information functions, three HTTP GET methods are built up to retrieve the175

input and output names of the model as well as the model’s attributes.176

Moreover, to reduce web latency, some BMI-based APIs are established by including several BMI func-177
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tions. For instance, for grid information function, one single API is provided to obtain variable’s spatial178

information which is originally available through several BMI functions. In this way, the number of modeling179

services called decreases so that the web latency is diminished. Also, for BMI’s variable getter and setter180

functions, instead of getting and setting values of one variable at each time, the web service design allows181

retrieving and changing values of multiple variables by saving the variables’ values in a netCDF file, thereby182

reducing web service calling times. The details of using netCDF file to store variable values are further183

explained in Section 3.1.3.184

Some utility RESTful APIs of a BMI-enabled web service model are designed for performing specific185

tasks under a service-oriented environment (as shown in Table 2). For example, once the model instance is186

finalized, the client can obtain the list of outputs through calling the API /〈id〉/output, and download187

them by sending a request to the API /〈id〉/download output/〈file〉 to download the output.188

3.1.2. Identification of a web service model instance189

To avoid the conflicting executions of a modeling resource by different clients, a unique ID is as-190

signed to the model instance when the model is instantiated by calling the model instantiation API (i.e.,191

/〈id〉/instantiate). Universally unique identifier (UUID), a widely adopted identifier standard in soft-192

ware construction, is employed as the mechanism for generating the ID (Leach et al., 2005). Once a model193

instance is created in the server, the assigned ID is required for further interactions with the specific instance194

of the modeling resource through the APIs shown in Tables 1 and 2.195

Furthermore, a file system is needed for each model instance to store input and output files. During the196

model instantiation, three file folders (i.e., input folder, output folder and temp folder) are created for the197

specific model instance to store the input files, the output files and the files containing temporary variable198

values during the model simulation, respectively. Specifically, the temp folder contains files either created199

when the model is executed and stores the variable values, or uploaded from a client for resetting the variable200

values, in netCDF format. The file system belonging to a specific model instance is deleted once the model201

instance is removed by using the API /〈id〉/remove.202

3.1.3. Variable value transfer via the internet through netCDF files203

To enable unambiguous, structured and efficient client-service communication, the variable values of a204

model are saved in a netCDF file at each time step. NetCDF is a “self-describing, machine-independent”205

and binary data format to store and access the array-oriented data, developed in Unidata program by the206

University Corporation for Atmospheric Research (UCAR) (Rew & Davis, 1990). It is also a standard207

for defining data in terms of variable name, variable unit and spatio-temporal property. As a consequence,208

adopting the binary-based netCDF files to store variable values is extremely helpful in both structuring data209

values and reducing information storage compared with the traditional XML-based data transfer format.210
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We use netCDF files to store variable data in the following scenarios. First, netCDF files are utilized to211

contain several variable values and returned back to the client when a model is either initialized, updated or212

finalized. The variables of a model required by the clients should be informed when the modeling service is213

initialized by sending a list of the required variables to the API /〈id〉/set vars provided list. In a214

workflow, the required variables are usually parts of the model’s BMI outputs which are utilized as the inputs215

of other models. Once the model instance is informed of what variables should be provided for the client, a216

netCDF file storing the values of these required variables is sent back to the client during each model execu-217

tion (i.e., model initialization, update and finalization). The second case of using netCDF files is for resetting218

values of multiple variables in a model by posting a netCDF file to the API /〈id〉/set values for vars.219

This is useful in a scenario when the inputs of the model need to be updated based on the outputs of other220

models before the model is further executed.221

3.2. Service orchestration based on EMELI-Web222

As illustrated in Figure 1, EMELI-Web, a web-based implementation of EMELI, is responsible for creat-223

ing the workflow of multiple web service models, orchestrating the execution of web service models running224

at different time steps, and coordinating the information (e.g., netCDF data files) flowing between EMELI-225

Web and modeling services. To enable EMELI to integrate BMI-enabled web service models, EMELI is first226

enhanced by introducing a port to call the modeling service and receive its response. Then, a web interface227

is constructed for users to conveniently utilize EMELI-Web through web browsers.228

3.2.1. EMELI-Web design for integrating BMI-enabled web service models229

We choose EMELI as the basis for integrating BMI-enabled web service models. EMELI is a Python class230

whose goal is to conveniently integrate component models wrapped with BMI into a composite model (Peck-231

ham, 2014b). EMELI creates a runtime environment for the BMI-enabled models, and it couples the models232

by sequentially going through model instantiation, initialization, update and finalization stages. For details233

of how EMELI works, please see the Peckham’s description of EMELI (Peckham, 2014b).234

The port, a Python class, is developed for converting the JSON-based response from the modeling235

service into the data structure that EMELI can consume. Based on the combination of EMELI and the236

port for calling modeling service, EMELI-Web is set up to interact with a BMI-enabled web service model,237

as illustrated in Figure 2.238

• Model preparation: After BMI-enabled models are exposed through web service, their URL names-239

paces are registered in an XML file (i.e., component repository.xml). The registration file is used later240

for calling the web service model in EMELI-Web.241

• Model instantiation: A new instance of EMELI-Web is created. The instance first obtains the242

available web service models by reading the model registration file (i.e., component repository.xml).243
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Then, the EMELI-Web instance reads a text file (named provider file in Figure 2), which lists the244

models to be coupled in the execution order, and instantiates the selected web service models.245

• Model initialization: In this stage, the EMELI-Web instance checks the connections between the246

web service models. Basically, the connection check ensures whether the inputs of a models can be247

provided by the outputs of other models. This connection process is improved by reading standard-248

based variable names between models through the BMI functions. Once all the chosen models are249

connected, by using the model initialization API, the EMELI-Web instance then initializes the models250

through sending the input files and obtains the IDs of the modeling web service instances for further251

interaction usage.252

• Model update: After the web service models are initialized, the update API is used to update each253

model according to its own time step. In each time step, to judge whether a model needs to be254

updated, a framework environment clock time is compared with the internal time of a model, which255

is available by calling the API for BMI variable information functions. The model is updated if clock256

time is larger than model’s internal time. Once the internal times of all the models are larger than257

clock time, clock time is updated and compared again with models’ current time for the update of the258

model. Furthermore, before a model is updated, EMELI-Web resets the input values of the model259

by (1) extracting other models’ output values (by calling the APIs for BMI variable getter and setter260

functions), and (2) conducting numerical alignments (e.g., unit conversion and temporal alignment)261

based on the variable features (e.g., variable unit and its spatio-temporal property) of each model.262

• Model completion: When a certain stopping condition (e.g., the total runtime or the excedance of263

a specific variable value threshold) is fulfilled, EMELI-Web sends a request to the finalization API of264

each modeling service, and downloads any existing output files.265

3.2.2. Creating a web interface for EMELI-Web266

To make it easy for users to utilize web service model coupling capability, EMELI-Web provides a267

web interface, which is constructed by using Flask – a Python web development package (Flask, 2016).268

This web interface is similar to CSDMS Web Modeling Tool (WMT), enabling the model selection, model269

configuration, model running and output download based on a web interface (CSDMS, 2016). However, it270

is noted that, different from CSDMS WMT, which interacts with BMI-enabled models existing in CSDMS271

High Performance Computing Cluster, the web application supported by EMELI-Web aims to couple models272

under a service-oriented architecture.273

As a web application, EMELI-Web employs a simple relational database by using SQL (Structured Query274

Language) to enable the authorization of using EMELI-Web and also record the coupling activities of each275

user, which is illustrated in Figure 3. The User database model is utilized to record a user’s basic information276
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(e.g., id, email, user name, password, etc.) and authorize the usage of EMELI-Web. The other database277

model is EMELI Instance, which is used for recording coupling activities of each user. The affiliation of278

a EMELI Instance to a User is referred by the connection between user id in EMELI Instance and id in279

User. In addition, it is noted that the id field in EMELI Instance serves a similar purpose as the ID in280

identifying the instance of a modeling service (see Section 3.1.2) — to avoid the conflicting uses of the same281

resource (EMELI in this case) from different users (see Figure 1).282

After registration, a user can start to use EMELI-Web to couple BMI-enabled web service models follow-283

ing the procedures depicted in Figure 4 (i.e., selecting, configuring, and coupling, and getting results). In the284

Select model page, a new EMELI Instance is generated to record this coupling activity based on the fields285

of EMELI Instance (see Figure 3). The user is required to: (1) select the models from the available BMI-286

enabled web service models in the execution order, (2) check the connections between the selected models287

by clicking check model connections, and (3) click submit to go to the Configure model page. In the288

Configure model page, the user needs to provide the values or files of the configuration variables. Once289

the configuration variables are ready, the user can click the submit button to trigger both the generation290

of the configuration file for each model and the creation of a runtime environment by EMELI-Web. After291

the coupling completes, the Results & Outputs page is shown, listing all the outputs.292

4. Implementation293

In this section we present an implementation of the BMI-based service-oriented modeling paradigm in294

loosely coupling a set of hydrological models. TopoFlow, a family of spatially distributed hydrological295

process components, is deployed as BMI-enabled web service models. EMELI-Web is then used to create a296

runtime environment for coupling these web service models.297

4.1. Model description298

TopoFlow is a spatially-distributed, D8-based hydrologic model (Peckham, 2009) that simulates several299

hydrologic processes, including meteorology, channel/overland flow, snow, evaporation, infiltration and sub-300

surface flow. Its capability of reproducing different processes in hydrological cycle is well tested in modeling301

the Imnavait Creek watershed, Alaska (Bolton, 2006; Schramm et al., 2007). Furthermore, each process in302

TopoFlow can be simulated by using at least one method. For example, the infiltration process includes303

three methods: Green-Ampt method, Smith-Parlange method, and 1D Richards’ equation with 3 layers. In304

addition, each process runs at a different time step (see Figure 5) and is modular such that each process305

can be simulated as an independent model.306

The modular feature of TopoFlow components allows the models being wrapped with BMI interfaces307

individually and work as plug-and-play components in the CSDMS architecture. The latest version of308
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TopoFlow is written in Python and wrapped with BMI interfaces (Peckham, 2013). The BMI-enabled fea-309

ture of TopoFlow components facilitates the mapping between the CSDMS standard names and the models’310

internal variable names in BMI’s model information functions for retrieving the BMI’s inputs and outputs of311

a model in standard names. The semantic mapping between variable names helps connect models. For in-312

stance, one of the BMI output of the meteorology component is rainfall volume flux with the internal symbol313

P rain, while the BMI input of the channel flow component uses a different internal symbol P for rainfall.314

By mapping both P rain and P to the CSDMS standard name atmosphere water rainfall volume flux in315

the meteorology component and the channel flow component, respectively, the two models can be connected316

through the rainfall variable even though their internal representations are different. The integration of the317

BMI-enabled TopoFlow components has been successfully implemented not only in the CSDMS framework318

but also in EMELI (Peckham, 2014b).319

4.2. Integrating TopoFlow components as BMI-enabled web service models in EMELI-WEB320

We expose the BMI-enabled TopoFlow components through web services, based on the endpoints listed321

in Tables 1 and 2. The Python web development package, Flask, is used for creating the web services.322

Once the web service version of BMI-enabled TopoFlow components is ready, the basic information of323

the components (e.g., model name, author, URL, etc.) are registered in the component repository.xml file.324

The XML file is later read by EMELI-Web in model instantiation stage as described in Section 3.2.1. Also, a325

web interface allowing users to provide information of configuration variables for each model is constructed326

in EMELI-Web, of which an example is illustrated in the configure model page screenshot in Figure 4.327

A simulation of TopoFlow is conducted on the Owl watershed, located in the Upper Sangamon River328

Basin in Illinois (see Figure 6). The integrated TopoFlow components listed in the execution order are the329

meteorology component, the channel flow component of the kinematic wave method, the snow component of330

the degree day method, the evaporation component of Priestley-Taylor method, the infiltration component of331

Green-Ampt method and the saturated zone process component. To drive the above TopoFlow components,332

the following data files are used: (1) the digital elevation model of the Owl watershed and (2) the time series333

data collected from the sites of Intensively Managed Landscapes of Critical Zone Observatory (IML-CZO,334

2014), including air temperature, precipitation and relative humidity. The remaining configuration variables335

of the models are assumed to be constant in that the main purpose of the simulation is to study the feasibility336

of coupling BMI-enabled web service models rather than seeking simulation accuracy. The procedures of337

using EMELI-Web to run BMI-enabled TopoFlow components have been detailed in Section 3.2.2. First,338

select the TopoFlow components in the Select model page, and check the model connections. Then, go339

to the Configure model page, and provide the configuration variables’ information (i.e., upload data files340

from IML-CZO data repository site or enter default values). Next, when the configuration information is341

provided, click the submit button and EMELI-Web would start to couple the web service models. Once342
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the model simulation finishes, the output files are available for downloading in the Results & Outputs343

page, as shown in Figure 4.344

5. Discussion345

The motivation of this study is to create a service-oriented architecture for coupling models using Basic346

Model Interface (BMI). BMI is chosen as the standard model interface because of its two unique advantages347

in terms of model integration. First, the framework-agnostic property of BMI allows a BMI-enabled model to348

be easily set up in any other modeling integration frameworks. This is proved by the successfully developed349

EMELI, which is the basis of EMELI-Web. Also, BMI’s capability of mapping between models’ internal350

variable names and CSDMS standard names helps semantic mapping during the connection of models. We351

illustrated how TopoFlow components are connected to create a composite model in EMELI-Web through352

the BMI’s input and output functions (Section 4.2).353

A set of web service APIs are developed for converting a BMI-enabled model into web services, with JSON354

as the schema for encoding the information to and from the endpoints. Contrary to XML, which has been355

widely used as the basic data transfer schema in many standards (e.g., different conventions developed by356

OGC), JSON is adopted as the data-interchange format because of its light-weight format. Furthermore, we357

didn’t adopt any existing web service standard due to the lack of a domain-specific web service standard for358

geoscience modeling, despite the existence of web service standard for different subdomains (e.g., OGC WPS359

standard for processing general data, the Water Markup Language (WaterML) for describing time series360

data (Taylor, 2012) and the Geography Markup Language (GML) for describing spatial information (Portele,361

2013)). Besides a call for a web service standard of geoscience modeling, the combined employment of OGC362

WPS, WaterML and GML is also suggested as an alternative (Castronova et al., 2013). This effort requires363

a separate publication which demands not only how the different web service standards are combined but364

also whether the combination is suitable for a new standard. Hence, we suggest not only the development365

of a standard for geoscience modeling web service but also more JSON-based web service standards (some366

of which are being developed in the community (Cox & Taylor, 2015)).367

One important consideration in our service-oriented modeling is reducing network latency caused by368

numerous information flowing between services. Specifically, netCDF files are utilized to store the numerical369

values of variables for updating variables between models through EMELI-Web. Compared with storing370

numerical values in XML format, less data storage in a binary-based netCDF file can be of benefit and leads371

to a faster information communication over the web.372

Further, to identify different usages of the same resource (which can be either a BMI-enabled web service373

model or a model integration environment based on EMELI-Web in this study), a unique ID is assigned to a374

resource instance when the instance is generated by a specific client during the stage of model instantiation.375
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However, the design of conserving different instances in both the memory and the file system raises the issue376

of system reliability and service performance, which is also a key aspect in service-oriented architecture. For377

example, how to optimize the execution procedures at the server side when multiple requests are sent to378

the server? To answer this question, a thoughtful parallel programming design considering the estimated379

execution time spent on each request would be helpful to achieve the minimum running time in the server,380

and requires further investigations.381

Moreover, such service-oriented architecture can be not only applied in model coupling, but used for382

integrating a model with either an online data repository or a model assessment tool as well. For instance,383

a modeling service can be coupled with a model analysis toolkit such as DAKOTA , which has already been384

integrated into CSDMS modeling framework (Peckham et al., 2016). Also, a service-oriented wrapper can385

be set up between a modeling service and an online data repository (e.g. CUAHSI-HIS (the Consortium of386

Universities for the Advancement of Hydrologic Science, Inc - Hydrologic Information System)). Peckham387

& Goodall (2013) demonstrated the interoperability between CUAHSI-HIS and CSDMS by developing a388

prototype CSDMS component. Such component can be revised to allow the interoperability between a389

EMELI-Web coupling activity and CUAHSI-HIS.390

6. Summary and conclusions391

We have deployed a release of a service-oriented modeling paradigm by adopting the Basic Model Interface392

(BMI) in this paper. We developed a set of web service APIs to expose the functionality of a BMI-enabled393

model via the internet. We enhanced EMELI to EMELI-Web enabling the integration of BMI-enabled web394

service models by using their web service APIs. Finally, we developed a user-friendly web interface for395

the convenient use of EMELI-Web. The whole orchestration was then implemented in coupling TopoFlow396

components, a set of spatially distributed hydrologic models.397

The key contributions of this study in integrating web service models are as follows. First, employing the398

BMI as the standard model interface in modeling service not only enriches the semantic information of vari-399

ables names which facilitates checking connections between web service models, but also allows the utilization400

of EMELI as a base to construct EMELI-Web due to its framework-independent property. In addition, to401

reduce network latency of executing web-serviced models, saving input/output values in a binary-format402

file transferred over the internet is more efficient than storing the values in a standard data-interchange403

protocol (e.g., JSON and XML). In this study, netCDF file is utilized to convey the variable values between404

EMELI-Web and a BMI-enabled web service model. Finally, the proposed way of identification of the model405

instance is effective in the avoidance of conflicting executions towards the web service model.406

As stated in the introduction, employing a service-oriented architecture in model coupling is able to407

(1) lower the interoperability barrier of model integration by enabling the independence of programming408
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language and operating system of models, (2) facilitate a model to be accessed via the internet without being409

downloaded thus popularizing the model, and (3) allow the easier maintenance of the model with it original410

functionality exposed through a web service. Despite these benefits of SOA, issues such as the network411

latency and the reliability of the architecture should also be taken into consideration for modelers and412

decision makers when applying a service-oriented modeling paradigm in simulating a specific phenomenon.413

Finally, even though further investigations need to be emphasized on the reduction of the web latency and414

the improvement of the execution performance, we are confident that service-oriented modeling paradigm415

implying a loosely coupling style is more suitable and convenient for integrating models where models are416

set up at different platform.417
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Table 1: The BMI-based RESTful APIs of a BMI-enabled web service model where 〈model〉 and 〈id〉 represent the model name

and the ID of the model instance, respectively.

Model Control Functions

/instantiate POST Instantiates the model and return back an ID

/〈id〉/initialize PUT Initializes the model after it is instantiated by sending the

configuration file

/〈id〉/update PUT Updates the model after it is initialized

/〈id〉/finalize PUT Finalizes the model after the simulation is done

Model Information Functions

/〈id〉/get input var names GET Returns the inputs of the model

/〈id〉/get output var names GET Returns the outputs of the model

/〈id〉/get attribute GET Returns the attributes of the model

Variable Information Functions

/〈id〉/get time step GET Returns the time step of the model after model initialization

/〈id〉/get time units GET Returns the time units of the model after model initialization

/〈id〉/get time/〈when〉 GET Returns the time of the model after model initialization

Variable Getter and Setter Functions

/〈id〉/set values for vars PUT Resets the values of some variables in the model by sending a

netCDF file including the variable values after model initialization.

/〈id〉/set vars provided list PUT Informs the model of the variables which are used by clients

after model initialization

Grid Information Functions

/〈id〉/get grid properties GET Returns the grid properties of the variable with name var after model

initialization
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Table 2: The utility RESTful APIs of a BMI-enabled web service model where 〈id〉 represents the ID of the model instance.

/〈id〉/send cfg sup files GET Sends a configuration file along with any input files to the

model after model instantiation

/〈id〉/mode/update/〈status〉 PUT Updates the mode status of the model after model instantiation

/〈id〉/output GET Lists the model’s output files after model instantiation

/〈id〉/download output/〈file〉 GET Downloads the model’s output files after model completion

/〈id〉/download temp nc/〈file〉 GET Downloads the temporary netCDF files of the model when the

model is initialized updated or finalized

/〈id〉/remove DELETE Removes the model instance after the model is instantiated
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Figure 1: The architecture of integrating BMI-enabled web service models through EMELI-Web.
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Figure 3: The SQL relational database used for EMELI-Web includes two database model: User and EMELI instance. The

user id in EMELI instance is used as the foreign key pointing to the primary key id in User so that a user may have multiple

EMELI-Web instances.
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Figure 5: An example of running TopoFlow components at different time steps.
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Figure 6: The digital elevation model of Owl watershed and its location in Illinois (shown as the blue area of the figure in the

lower right corner).
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