

 A Service-Oriented Architecture for

Virtualizing Robots in Robot-as-a-Service

Clouds

Technical Report

CISTER-TR-140508

Version:

Date: 2/25/2014

Anis Koubâa

Technical Report CISTER-TR-140508 A Service-Oriented Architecture for Virtualizing Robots in

 Robot-as-a-Service Clouds

© CISTER Research Unit
www.cister.isep.ipp.pt

1

 A Service-Oriented Architecture for Virtualizing Robots in Robot-as-a-Service
Clouds

Anis Koubâa

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: aska@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Exposing software and hardware computing resources as ser- vices through a cloud is increasingly emerging in the

recent years. This comes as a result of extending the service-oriented architecture (SOA) paradigm to virtualize
computing resources. In this paper, we extend the paradigm of the SOA approach to virtualize robotic hardware
and software resources to expose them as services through the Web. This al- lows non-technical users to access,

interact and manipulate robots simply through a Web browser. The proposed RoboWeb system is based on a
SOAP-based Web service middleware that binds robots computing re- sources as services and publish them to the
end-users. We consider robots that operates with the Robotic Operating System (ROS), as it provides hardware
abstraction that makes easier applications development. We de- scribe the implementation of RoboWeb and

demonstrate how researchers can use it to interact remotely with the robots. We believe that this work
consistently contributes to enabling remote robotic labs using the cloud paradigm.

A Service-Oriented Architecture for Virtualizing

Robots in Robot-as-a-Service Clouds

Anis Koubaa

Prince Sultan University, Riyadh, Saudi Arabia
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

COINS Research Group, Riyadh, Saudi Arabia
akoubaa@coins-lab.org

Abstract. Exposing software and hardware computing resources as ser-
vices through a cloud is increasingly emerging in the recent years. This
comes as a result of extending the service-oriented architecture (SOA)
paradigm to virtualize computing resources. In this paper, we extend
the paradigm of the SOA approach to virtualize robotic hardware and
software resources to expose them as services through the Web. This al-
lows non-technical users to access, interact and manipulate robots simply
through a Web browser. The proposed RoboWeb system is based on a
SOAP-based Web service middleware that binds robots computing re-
sources as services and publish them to the end-users. We consider robots
that operates with the Robotic Operating System (ROS), as it provides
hardware abstraction that makes easier applications development. We de-
scribe the implementation of RoboWeb and demonstrate how researchers
can use it to interact remotely with the robots. We believe that this work
consistently contributes to enabling remote robotic labs using the cloud
paradigm.

Keywords: Cloud Robotics, Service-Oriented Architecture, SOAP,Web
Services, Robot Operating System (ROS), Remote Robotic Labs

1 Introduction

Cloud robotics have been attracting a lot of interest in the last three years
[1–5]. In a general sense, this emerging paradigm consists in integrating cloud
computing concepts and other Internet Web-centered technologies to leverage
converged infrastructures and shared services for robotics [6]. Cloud robotics are
very promising to be the most effective way to create and monitor robotic ap-
plications, in particular for service robots, in different fields including security
and surveillance, remote robotic labs, and home and industrial automation. In-
deed, on the one hand, robots will be able to go beyond their limited processing
capabilities and take profit from Internet computing resources. On the other
hand, robots can be accessed anywhere and anytime through Web interfaces.
Several recent works have proposed different designs and implementations for
cloud robotics [2, 4, 7, 6, 8]. With reference to these works [1], the robotic cloud

2 Anis Koubaa

can play two different roles. The first role is to act as a virtualization middle-

ware, where service-oriented technologies are used to build virtual environments
of robotic ecosystem through Web services, which allow the users to access the
robots through Web browsers and Internet utilities. The virtualization of robotic
ecosystem through Web services contributed to offering the Robot as a Service
(RaaS) model [1, 7]. For instance, in [1], the authors designed and implemented
an service-oriented framework of RaaS model for both Windows and Linux oper-
ating systems using Web 2.0 technologies and complies with common service and
development platforms standards. The second role that the robotic cloud plays
is computations offloading, which consists in migrating intensive computations
and processing tasks from the robot to the cloud computing infrastructure [9,
2]. This is particularly interesting for mobile robots that might have low compu-
tation and energy capabilities to perform computationally-intensive tasks, such
as 3D localization and mapping, image processing, object recognition, etc. For
instance, in [9], the authors proposed a cloud robotics system for recognizing
and grasping common household objects by sending 2D images captured by the
robot to the cloud, which returns semantic information about the object.

In this paper, we consider the design and implementation of a cloud robotics
system of the first category, i.e. virtualization layer. Indeed, the idea of this
work is triggered by our need to develop a remote robotic lab to allow different
students and researchers outside the University and/or abroad to access and use
our robotic platforms located in Saudi Arabia. Our main objective is to make
our robots accessible through the Internet for authorized users through Web
browsers. We would like to allow students and researchers to access, manipulate,
interact and perform experiments with robots living behind the “cloud”. For this
purpose, we devised a service-oriented framework based on SOAP Web services
for mapping hardware and software robotic resources as services and publish
them to the end-users as Web services. We considered robots operating with
the Robotic Operating System (ROS) [10], which also provides an abstraction
layer, at the level of the operating system, of the hardware resources of the
robots. The main advantage of ROS is that it allows to manipulate sensor data
of the robot as a labeled abstract data stream, called topic, without having to
deal with hardware drivers. Several previous works have also proposed different
architecture for cloud robotics and remote robotic labs, which we present and
discuss their advantages and limitations in details in Section 2, and we clarify
the difference of our proposed system as compared to other existing systems.

The remainder of this paper is as follows. Section 2 surveys the most relevant
works on cloud robotics and discusses their contributions to the field. Section 3
describes the system and software architecture of the RoboWeb system starting
from requirements specification to system design. In Section 4, we present the
implementation, deployment and experimentation with the RoboWeb system
and we demonstrate its features. Section 5 concludes the paper and discusses
future works.

A Service-Oriented Architecture for Virtualizing Robots 3

2 Related Works

The concept of cloud robotics has been increasingly expanding since the last
three years. Basically, the cloud robotics research trend can be roughly classified
into two categories: (i.) using cloud for virtualizing robotic resources (e.g. [1, 7]),
(ii.) using cloud for offloading heavy computations from the robot to the cloud
(e.g. [9]). In what follows, we present the most relevant works over the past four
years in the increasing chronological order of their publications dates.

In [1], the authors exploited the Service Oriented Architecture (SOA) tech-
nology to design and implement a prototype of the Robot as a Service (RaaS)
cloud computing model. The design complies with the common service stan-
dards, development platforms, and execution infrastructure, following the Web
2.0 principles and participation. The authors also demonstrated through exper-
iments that their system is effective, flexible, and portable.
DAvinCi was proposed in [2] as a cloud computing software framework for ser-
vice robots. The goal of this system is to offload intensive workloads from the
onboard robots’ resources to a backend cluster system in the cloud. The idea was
to investigate the possibility of parallelizing the execution some complex robotic
algorithms, and applied it to the FastSLAM algorithm as a proof of concept.
The DAvinCi architecture was implemented using the open source Hadoop clus-
ter and ROS as messaging framwork for the robotic ecosystem. The deployment
did not consider network latencies and delays, which turns the results limited to
ideal operational conditions.
In [11], the authors designed a robot cloud center to overcome the limitation in
capacity, versatility and extensibility of robotic applications, and to meet the di-
verse requirements of the end-users requesting robot resources according to their
demand. They also designed a Robot Resources Scheduler to minimize the task
execution cost while still meeting the end-users requirements. Robot scheduling
simulation proved that robots, especially whose cost-capability density is low,
can be used more efficiently with the scheduler. In [12], the authors have pro-
posed the RSi Research Cloud (RSi-Cloud) that seamlessly integrates robotic
services with the Internet.
In [4], the authors described their vision of cloud robotics and proposed differ-
ent possible architectures to address the constraints faced by current networked
robots. The motivation of the work was to allow the robots to share information
and computation resources among each other and cooperate through the cloud to
acquire new knowledge and behaviors. The cloud artchitecture design takes into
account two types of communication paradigms namely the machine-to-machine
(M2M) communications among participating robots, and the machine-to-cloud
(M2C) communications between the robots and the cloud. The authors also pro-
posed three elastic computing models for cloud robotics, namely the peer-to-peer
model, proxy-based model and the clone-based model.
In [13] and [7], the authors made interesting extensions to the ROS middleware,
namely rosjs, which is a JavaScript library for ROS that exposes the robot func-
tionalities as web services, and rosbridge, which is a light weight protocol that
exposes robot sensor data and controllers, through web sockets accessible any-

4 Anis Koubaa

where over the Internet, and provides security mechanisms and runtime tools
for remotely manipulating the robots. Similarly to one of the objective of our
work, The rosjs and robridge were proved to enable remote laboratories, and a
prototype was implemented and tested for monitoring iRobot Create and PR2
robots. The difference with our work is that our approach is based on a SOAP-
based service oriented archirtcture, which represents a complementary solution
to rosjs and rosbridge.

3 RoboWeb System Architecture

In this section, we describe the system architecture and the software develop-
ment process of the RoboWeb system. We start by specifying the functional and
non-functional requirements of RoboWeb, then, we describe the system archi-
tecture and software design. RoboWeb differs from existing systems in that it
leverages SOAP-based Web services for building the virtualization layer of the
cloud robotic infrastructure.

3.1 Requirements Specification

As a research group installed in Saudi Arabia at Al-Imam Mohamed bin Saud
University and Prince Sultan University, we have several robotic platforms in-
cluding four Turtlebot robots, two Wifibot Lab robots, two unmanned aerial
vehicles (UAVs), namely the AscTec Pelican and AscTec FireFly, which are
cutting-edge and expensive robotic technologies, and several other sensor and
robotic devices. Our objective is to allow our students and researchers abroad
or from outside the University during non-working hours to access and use the
robots in a ubiquitous and seamless way, i.e. anywhere and anytime, through the
Internet. This lead us to design a service-oriented cloud robotics system, namely
RoboWeb.

Basically, the idea of RoboWeb is to develop a service-oriented middleware
that plays the role of the virtualization layer. This layer binds software and hard-
ware robotic resources as Web services allowing authorized users to subscribe
to the published services of interests, through which they can “play” with the
robots. Two Web services options were possible: SOAP approach or the REST-
ful approach. We had to make a milestone decision at this point. Finally, we
have opted for the SOAP approach for several reasons. First, SOAP provides a
well-structured transctional model between the client (service subscriber) and
server (service publisher) that allows to define a contract between both ends.
Indeed, in contrast to SOAP, REST is basically an architectural style based on
the HTTP protocol rather than a SOA middleware as it is the case with SOAP
Web services. Second, SOAP Web services enables the definition of composable
and complex Web services in contrast to REST. This is an important require-
ment in the design of RoboWeb as we need to take advantage of the flexibility
of the SOAP approach to define different service/abstraction layers, which help
achieving virtulization more effectively.

A Service-Oriented Architecture for Virtualizing Robots 5

With respect to robots to be supported by the system, we considered robotic
platforms operating with ROS. The adoption of ROS has several advantages.
First, ROS is a free and open-source middleware for robots that acts as a meta
operating system and builds a hardware abstraction layer. This makes the pro-
gramming of ROS-enabled robots much easier as software developers will not
have to deal with hardware drivers and interfacing. In fact, ROS already pro-
vides comprehensive and well-structured libraries and drivers for several robots
and sensor devices, and publishes sensor data (camera frames, laser range data,
IMU data, motors speeds, etc.) simply as labeled data streams called topics. Sec-
ond, the control of robots through Web services will be much easier when ROS
is used as the Web server will only have to deal with topics rather than with
hardware resources. Indeed, ROS provides another level of resources virtualiza-
tion at the operating system level. Third, ROS complies with component-based
software development, which makes ROS-based system modular, extensible and
flexible. This is particularly important as architectural design since services can
be mapped to software components making easier their composition, addition
and removal.

We also derived the following four (most important) non-functional proper-
ties for the RoboWeb system:

– Service-Orientation: This is the most important requirement in our sys-
tem as we need to map any robotic resource or operation as a service. The
SOA approach allow to easily extends the capabilities and functionalities of
the system by dynamically adding services. The users will be able to manip-
ulate robots in the same way they use any Web service. In addition, robot
software developers can reuse available services to design more complex com-
posite services.

– Reliability: The system must be reliable in different perspective. First, it
must be available such that it ensures continuous connectivity with users at
anytime. In addition, it must provide consistent view of the robot status to
the users. For example, the system should consistently report in real-time
the list of connected robots and change the connectivity status each time a
robot join or leave the cloud.

– Modularity: The system should be easily extensible by dynamically adding/removing
components to/from the system. The modularity ensures the independence
of the different modules which makes their integration more effective. This
is very appropriate for service composition and orchestration to build more
complex Web services for manipulating the robots. For instance, making ex-
periments with a robot can be seen as a complex Web service composed of
several other Web services including accessing robot, running a program, get-
ting the list of nodes and topics, etc. The modularity has also the advantage
of allowing software reuse.

– Real-Time: Once the user is connected to a particular robot, it is important
that the system ensures small and controlled delays. Indeed, the user must be
kept up-to-date with latest status updates of the robot for effective control
and monitoring. Large delays and delay variations (jitter) will compromise

6 Anis Koubaa

Robot Operating System

Web-based Interface

FTP Server Database

Server

Internet

WiFi WiFi

RoboWeb Server

Web Service

Server

PHP Server

rosPHP.php

Fig. 1. High-Level System Architecture

the user experiments. Delays must be kept as low as possible to ensure
interactivity between the user and the robot.

3.2 System Architecture Design

In this section, we describe the RoboWeb system architecture and discuss the
design considerations. Figure 1 depicts a high-level overview of the system ar-
chitecture. The bottom layer consists of the robotic ecosystem that comprises
ROS-enabled robots, each of them runs its own ROS master node. Mobile robots
are dotted with wireless communication capabilities allowing them to collabo-
rate for performing certain missions on demand. the ROS platform is used for
sensor data collection and streaming among the robot agents and the end-users
(clients).

The top layer defines the Web interfaces for users to access and manipulate
the robots remotely. We implemented a PHP library, called rosPHP, to act as
an abstraction layer on top of ROS providing the required ROS functionalities
to interact with ROS-enabled robots. The rosPHP layer allows the interaction
between the end-users and the robots though SOAP Web services and provides
several functionalities including connection to the Web server, getting the list of
available ROS-enabled robots, getting ROS nodes and topics of selected robots,
getting information about robots sensors, publishing and subscribing to a ROS
topic, creating new ROS package, uploading, running and stopping ROS pro-
grams.

The core part of the system is the RoboWeb service broker. It basically
include three main components: (1) the Web service server, which is required
to deploy robotic Web services and respond to end-users requests. The Apache
Axis Web server for development and deployment of SOAP Web services. (2)
the back-end MySQL database that is used to store information about the whole
cloud including robots, users, programs, reservations, experiments, etc. and (3)
the FTP server, which is used to upload files, namely experiments output, user

A Service-Oriented Architecture for Virtualizing Robots 7

programs, and robot description files. The robot description files are XML files
that contain meta-data about the robots and their sensors.

Figure 2 presented a more detailed view of the system architecture and its
subsystems.

Robot Side Server Side End-user Side

WWW

SOAP /

XML

Upload program on

robot

PHP Server

Run / stop program

on robot

Create package on

robot

Publish on topic

Subscribe on topic

Get robot sensors

Get robot nodes /

topics

Teleop Widget

ro
s
P

H
P
.p

h
p

HTML

mjpegcanvasjs

Web Service Server

Upload program on

robot

Run program on

robot

Stop program

Publish on topic

Subscribe on topic

Hardware Interface ROS Middleware

R
O

S
 C

o
n

n
e

c
ti

o
n

MJPEG Server

ROS Master

ROS Tools

ROS Libraries

S
S

H

 - Building ROS nodes

 - Running ROS nodes

 - Publish On Topic
 - Subscribe On Topic

 - Arm Controller

 - Head Controller

 - Navigation

 - Building Map

S
C

P

WWW

HTTP

WWW

HTTP

Upload files

Manage database

FTP Server

DataBase Server

Sensors

 - Camera
 - Laser Scanner

Actuators

 - Arms
 - Head

Controller

 - CPU

 - Memory

 - Base

Drivers

 - Camera Driver

 - Laser Scanner

 Driver

Software Interface

Robot

Registration

Ping on robot

AJAX

WWW

HTTP

Interact with ROS-

enabled robots

WWW

HTTP

WWW

FTP

WWW

HTTP

WWW

SOAP /

XML

Fig. 2. Low-Level System Architecture: The figure presents four main parts of the
RoboWeb System. The End-User side uses a AJAX interface to interact with ROS-
enabled Robot through a PHP Server (rosPHP) the implements the core functionalities
of ROS. The rosPHP server communication with the Web Service server that directly
interfaces with ROS middleware installed on robots through SSH and SCP protocols to
perform requested commands submitted by the user and ensure sending back responses
to the end-user side.

The robot side of the system includes the hardware interface that consists of
robot hardware resources (i.e. sensor, actuators, controllers) and their drivers.
This interface is abstracted by the ROS middleware that provides a first level of
virtualization to all robotic hardware resources. Indeed, any sensor or actuator
data is provided by ROS as a a stream of data that can be manipulated by any
client that subscribes to that data. ROS manages the hardware through ROS
connection which provides tools and libraries required to control and manage
hardware and software interfaces. The MJPEG server is defined as a ROS pack-
age that streams image topics captured from the robot camera ROS using the
HTTP protocol, so that it can be displayed by any browser. The software inter-
face is responsible for the robot auto-registration to the system. We developed
a program that allows a robot to register to the RoboWeb system and publishes
the services that it provides. In the server side, the Web service server interacts
with the ROS middleware through the SSH secure communication protocol to
execute commands or programs on the remote robot. On the other hand, it uses

8 Anis Koubaa

the Session Control Protocol (SCP) to transfer computer files between the server
and to run program on the remote robot. We also consider the PHP server which
essentially includes three main parts. The first part consists of the rosPHP li-
brary, which represents a PHP layer that defines ROS and network commands
to be executed on the robot such as upload program to robot, run a ROS node
on the robot, stop a ROS node, publish a ROS topic, create a ROS package, get
robot sensor information, subscribe to a ROS topic and ping a robot, and tele-
operate the robot. the rosPHP layer communicates with the Web service server
via SOAP/XML protocol, and also define methods to access FTP and database
servers via FTP and HTTP protocols.

The end-user side consists of the user-interface which uses AJAX to interact
with PHP server. It also uses the mjpegcanvasjs, a JavaScript tool that allows
the user to easily display, manage and modify ROS image streams received from
MJPEG sever via HTTP.

4 Implementation and Deployment

4.1 Hardware and Software Suits

To demonstrate the feasibility of our architecture, we developed a complete pro-
totype of the RoboWeb application and tested on a wireless local area network.
The Web Service server was implemented on a computer laptop with Intel(R)
Core(TM) i3 CPU, 4.00 Go RAM, and Ubuntu 12.04 OS, running Apache Axis
(Apache eXtensible Interaction System) Web service framework for generating
and deploying Web service applications; Apache Tomcat, which provides a Java
HTTP web server environment for Java code (including Servlets and JSP) to
run in; and Eclipse IDE for software development.

The front-end user interface provides an easy-to-use and intuitive GUI to
interact with the robots living behind the cloud. It was implemented using:
(i.) AJAX client side scripting technology for ensuring asynchronous interaction
with the rosPHP server library that we developed. It provides the benefit of asyn-
chronous communication with the server seamlessly in the background without
interference with the display and the behavior of the web page; (ii.) HTML5
Web Workers technology to take benefit from its multi-threading capability in
particular for subscribing to ROS topics; indeed, Web Workers technology allows
the execute and run multiple JavaScript scripts in the background of a web page
independently of other user-defined scripts, and enables to perform parallel and
computationally expensive tasks without interrupting the user interface. This
is particularly useful in our RoboWeb system as a robot may independently
subscribe to or publish several ROS topics that must be handled with different
threads in the user-interface; (iii.) mySQL triggers and procedures to manage
the information and reservations of the robots; and (iv.) JQuery and CSS for
the dynamicity and the design of the interface.

The back-end database was also implemented using the mySQL 5.5 server.
The FTP server was set-up on the same computer laptop using the vsftpd 3.0

A Service-Oriented Architecture for Virtualizing Robots 9

server (Very Secure FTP Daemon), which is an FTP server for Unix-like systems,
and represents the default FTP server for the Ubuntu OS. Regarding the PHP
server, we have installed PHP5 on the same computer laptop.

As for the robotics hardware, we tested our RoboWeb prototype with two
ROS-enabled robots, namely the TurtleBot 2.0 robot and the Wifibot Lab V2
robot. Any other ROS-enabled robots can easily be added to the RoboWeb
system as will be explained in the deployment subsection.

4.2 Deployment

In this subsection, we provide step-by-step guidelines on the deployment of the
RoboWeb system through illustrative examples and we demonstrate how to use
it for accessing and manipulating ROS-enabled robots.

The first step in deployment consists in setting-up and configuring the back-
end system of the RoboWeb cloud, that is configuring the robots, running their
ROS middleware and setting-up their networking configurations including the
IP addresses, the IP port numbers, the IP Addresses of the ROS Masters and
its port numbers. These settings are crucial for the ensuring the communication
between the ROS-enabled robots and the system. Second, at its startup, the Web
Service server will check and discover existing robots in the cloud automatically.
Actually, once a robot joins the cloud, it uploads its description file on the FTP
server. Then, it registers itself in the back-end database, or updates its status
and IP address if it has already been registered. At this instance, the robots
are considered as active and accessible to the end-user interface through the
RoboWeb cloud. Finally, the robot invokes a web service that periodically tests
its connectivity. This web service tests the robot connectivity every 30 seconds.
If the robot disconnects or fails, the web service will attempt three times testing
the robot connectivity: 180, 300 and 600 seconds later. If the robot remains still
disconnected, the web service will deactivate the robot by updating its status in
the database to be inactive, notify the administrator by email, and stop testing
the robot connectivity. In what follows, we present the main functionalities at
the user side.

1. Register and authenticate: First, the end-user is required to create an
account to be authorized to access the robotic resources. Once the registra-
tion request is submitted and approved by the administrator, the end-user
must authenticate to use the system functionalities. Non-authenticated users
are only able to get information about active robots in the cloud. They are
not allowed to reserve robots or perform experiments.

2. Browse the list of active robots: Once authenticated, the end-user is
allowed to obtain and browse the list of active robots (i.e. already connected
with the Web Service server) with information including the list of avail-
able ROS topics and ROS nodes, robot sensors (camera, laser data), IP
address, and status. The top half of Figure 3 depicts the list of robot cate-
gories (TurtleBot 2.0, Wifobot Lab V2) supported by the RoboWeb robotic
prototype.

10 Anis Koubaa

Fig. 3. Robot Description Interface

When the end-user selects a robot category, all active robots that belong
to this category will be displayed. Then, the end-user can get information
of a given robot including (1) robot description, (2) list of available ROS
Nodes, and (3) list of available ROS Topics. The bottom half of Figure 3
shows the information about the selected robot. It is also possible for a user
to look at the list of ROS topics and the list of ROS nodes of the selected
robot, as illustrated in Figure 4. This interface allows the user to indentify
the different ROS nodes and topics that he might need in his application and
helps him choosing the most appropriate robot for his experiments before
proceeding to the reservation.

Fig. 4. List of Available ROS Nodes and ROS Topics in the Selected Robot

3. Reserve Robot: After browsing the list of robots and identifying currently
active robots and their specifications, the end-user may reserve a robot to use
for experimentation and/or remote manipulation. The reservation process

A Service-Oriented Architecture for Virtualizing Robots 11

consists in booking the requested robotic platform for a particular reservation
date and time. The RoboWeb reservation system is able to check possible
booking conflicts and only propose the user with available dates/times for
the available active robots.

4. Perform Experiment: Once an authenticated user has successfully booked
a robot, he will be allowed to access and use that reserved robot for running
his experiments at the allocated time slot. Authorized users are allowed to
interact with and manipulate a given robot by uploading and running a ROS
program, in addition to remotely controlling and monitoring it. For safety
of execution, experiments should be run with the assistance of a local tech-
nical staff to avoid hazardous manipulation and control of the robot in the
cyber-lab space. Figure 5 shows the ‘ ‘Robot Experiment Interface”, which
provides information concerning the selected robot, the booked period, the
robot camera video streams, and the list of ROS topics. The Robot Exper-
iment Interface also shows buttons to upload, run, and stop ROS programs
on reserved robot. The end-user is allowed to publish and subscribe to any
of the available ROS topics. He also allowed to send rospy commands (ROS
Python) to control the robot. Execution results are displayed in the output
area in real-time.

Fig. 5. Robot Experiment Interface

For maintaining connectivity with the server, the client system controls con-
tinuously whether the web server is working, and whether the reserved robot
is still connected and active. The green light on the right side of the name of
the reserved robot indicates that the robot is still active. When the connec-
tion is lost, the end-user will be updated by changing the connection color
to the gray. Figure 6 displays the warning messages sent by the system to

12 Anis Koubaa

alert the end-user when a problem, with the web server or the robot, occurs.

Fig. 6. System Fault-Tolerance: The figure shows an error message when the server
stops working for any reason, warning the user and requesting him to contact the
administrator

5 Conclusion

In this paper, we presented RoboWeb, a SOAP-based service-oriented archi-
tecture that virtualizes robotic hardware and software resources and exposes
them as services through the Web, contributing to the evolving concept of cloud
robotics. The major contribution of this paper lies in the integration of different
Web services technologies with the Robot Operating System (ROS) middleware
to allow for different levels of abstraction (multi-layer architecture), ensuring
more modularity and flexibility of the deployment. We have also demonstrated
the feasibility and the added value of RoboWeb through a complete prototypic
implementation.

Although we believe that this work provides a consistent step towards the
future cloud robotics paradigm, we are currently planning and working on ex-
tending the RoboWeb system design and deployment in several perspectives.
First, we aim at extending the deployment to the Internet rather than on a local
area network. Proxy servers can be used for that purpose. Furthermore, we aim
at looking into more depth into security issues, in particular, investigating po-
tential attacks and threats that might compromise the robots’ cloud operation,
and undertake appropriate preventive measures. Finally, the RoboWeb system
should allow the user to reserve and use more than one robot to be able to deploy
multi-robot applications.

Acknowledgment

This work is supported by the iroboapp project “Design and Analysis of Intelli-
gent Algorithms for Robotic Problems and Applications”[14] under the grant of
the National Plan for Sciences, Technology and Innovation (NPSTI), managed
by the Science and Technology Unit of Al-Imam Mohamed bin Saud University
and by King AbdulAziz Center for Science and Technology (KACST).

The author would like to thank Fatma Ellouze for her excellent performance
in this work in the context of her graduation project and her outstanding work
in the implementation of the RoboWeb system.

A Service-Oriented Architecture for Virtualizing Robots 13

Also, the author would like to thank Rihab Chaari, Dr. Slim Kallel and Dr.
Wajdi Louati for the technical support they provided.

References

1. Yinong Chen, Zhihui Du, and Marcos Garca-Acosta. Robot as a service in cloud
computing. In Fifth IEEE International Symposium on Service Oriented System
Engineering. IEEE, 2010.

2. Rajesh Arumugam, Vikas Reddy Enti, Liu Bingbing, Wu Xiaojun, Krishnamoor-
thy Baskaran Foong Foo Konga, Kang Dee Meng Senthil Kumar, and Goh Wai
Kit. Davinci: A cloud computing framework for service robots. In 2010 IEEE
International Conference on Robotics and Automation (ICRA), pages 3084–3089,
2010.

3. Markus Waibel, Michael Beetz, Javier Civera, Raffaello DAndrea, Jos Elfring, Do-
rian Galvez-Lopez, Kai Haussermann, Rob Janssen, J.M.M. Montiel, Alexander
Perzylo, Bjorn Schiele, Moritz Tenorth, Oliver Zweigle, and Rene van de Molen-
graft. A world wide web of robots: Roboearth. IEEE Robotics and Automation
Magazine, 2011.

4. Guoqiang Hu, Wee-Peng Tay, and Yonggang Wen. Cloud robotics: architecture,
challenges and applications. Network, IEEE, 26(3):21–28, 2012.

5. K. Kamei, S. Nishio, N. Hagita, and M. Sato. Cloud networked robotics. Network,
IEEE, 26(3):28–34, 2012.

6. Jihoon Lee. Project report:web applications for robots using rosbridge, 2012.
7. Osentoski S., Pitzer B., Crick C., Graylin J., Dong S., Grollman D., Suay H.B.,

and Jenkins O.C. Remote robotic laboratories for learning from demonstration.
International Journal of Social Robotics (SORO), special issue on Learning from
Demonstration, 2012.

8. Tsung-Hsien Yang and Wei-Po Lee. A service-oriented framework for the develop-
ment of home robots. International Journal of Advanced Robotic Systems, 2013.

9. Ben Kehoe, Akihiro Matsukawa, Sal Candido, James Kuffner, and Ken Goldberg.
Cloud-based robot grasping with the google object recognition engine. In 2013
IEEE International Conference on Robotics and Automation (ICRA), 2013.

10. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

11. Zhihui Du, Weiqiang Yang, Yinong Chen, Xin Sun, Xiaoying Wang, and Chen Xu.
Design of a robot cloud center. In Autonomous Decentralized Systems (ISADS),
2011 10th International Symposium on, pages 269–275, 2011.

12. Y. Kato, T. Izui, Y. Murakawa, K. Okabayashi, M. Ueki, Y. Tsuchiya, and
M. Narita. Research and development environments for robot services and its
implementation. In 2011 IEEE/SICE International Symposium on System Inte-
gration (SII), pages 306–311, 2011.

13. Sarah Osentoski, Graylin Jay, Christopher Crick, Benjamin Pitzer, Charles DuHad-
way, and Odest Chadwicke Jenkins. Robots as web services: Reproducible experi-
mentation and application development using rosjs, 2011.

14. iroboapp: Design and analysis of intelligent algorithms for robotic problems and
applications, http://www.iroboapp.org.

