
International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

DOI:10.5121/ijitcs.2013.3301 1

A SERVICE ORIENTED DESIGN APPROACH FOR

E-GOVERNANCE SYSTEMS

Rama Krushna Das
1

and Manas Ranjan Patra
2

1
National Informatics Centre, Berhampur, India

ramdash@yahoo.com
2

Department of Computer Science, Berhampur University, India
mrpatra12@gmail.com

ABSTRACT

Today electronic Governance (E-governance) is no more a buzzword but a reality as countries all over the
worldwide have shown interest in harnessing governance with state-of-the-art information and
communication technology(ICT), in order to foster better governance. However, the inherent complexities
of E-governance systems remain as a challenge for the architects to develop large scale, distributed, and
interoperable E-governance applications. Besides this the dynamic nature of such applications further
complicates the system design. In this paper, we present a design approach based on the service oriented
paradigm for building E-governance systems. We also formalize concepts like service environment, service
composition, and service collaboration which are some of the important ingredients of our design
approach. In the sequel we highlight the suitability of our approach through some E-governance service
provisioning scenarios.

KEYWORDS

E-governance, Service oriented design, service window, service provisioning

1. INTRODUCTION

Electronic Governance is an application of Information and Communication Technology (ICT)

for delivering government services, facilitating information exchange among various

stakeholders, and integrating different stand-alone systems with a view to foster better

governance. It is an approach in which the Government and its citizens, businesses, and other

arms of government can transact certain activities using different ICT tools and techniques. The

objective of e-Governance is to make government services available anywhere, anytime to the

citizens, employees, businesses, and other nongovernmental agencies in a convenient, efficient

and transparent manner. It attempts to reach out to the stakeholders, even in remote areas, to

provide information in real time. It tries to enhance operational efficiency and productivity by

operating seamlessly among government departments and concerned agencies. The majority of e-

government initiatives are aiming at improving government processes by cutting process costs,

managing process performance, making strategic connections in government and creating

empowerment within the government architecture. Accordingly, connection between

governments and citizens (and other stakeholders) can be improved [6]. In addition, the

interactions associated with the use of such rich pool of organizational and technological

platforms in e-governance, creates a “task-oriented” forum of engagement between governments

and other stakeholders [3][7][8]. Successful implementation of e-government initiatives depends

not only on the availability of “resources” but most importantly on the adoption of appropriate

implementation-oriented paradigms that describe the growth and evolution of e-governments

mailto:ramdash@yahoo.com
mailto:mrpatra12@gmail.com

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

2

[11]. The following sections of the paper explains about independent servicers and interdependent

services in Government departments and the approach to achieve interoperability, the ability to

handle heterogeneity and scalability.

1.1. Design challenges in E-governance systems

E-governance can be viewed as a digital means of public administration which essentially

facilitates the process of delivery of information and services to the public. Such systems keep

evolving as governments at different levels strive to adopt new governance style for achieving

higher degree of effectiveness. In practice E-governance systems are inherently incremental in

nature and it is hard to foresee all future requirements at a much early stage of development.

Therefore, one really finds it difficult to integrate applications developed by different parties

using varieties of technologies. Typical characteristics of E-governance systems includes, they are

highly interoperable, large-scale, distributed, and heterogeneous systems cutting across

geographical boundaries and administrative domains. Therefore, achieving interoperability

among E-governance applications towards seamless integration and information exchange is of

paramount importance.

The above characteristics of E-governance systems necessitate the choice of a suitable design

approach to build different applications to realize a pragmatic system. Some of the requirements

of the design approach are:

I. the ability to handle heterogeneity so that independently developed systems can be

integrated

II. the ability to achieve interoperability so that applications exchange information seamlessly

III. the ability to handle scalability so that new applications can be added and the system can

support growing number of users

IV. the ability to provide transparency so that complex processing details can be hidden from

the users thereby achieving a higher level of abstraction

2. SERVICE ORIENTED DESIGN PARADIGM

In recent years, Service Oriented Architecture (SOA) has emerged as an architectural style that

advocates reuse and integration of software components irrespective of their location and

implementation. It has been advocated as a suitable paradigm for crafting next-generation large

scale applications. While the SOA approach strongly reinforces well-established, general

software architecture principles such as information hiding, modularization, and separation of

concerns, it also adds additional themes such as service orchestration, service choreography,

service repositories, and concepts like service bus.

Service-orientation is a new way of thinking about software systems that require interoperability.

It helps one to identify certain high-level functionalities that can be deployed as logical units. One

who is interested in availing a specific functionality can possibly do so by requesting the logical

unit through the provided interfaces(s) without bothering about how the functionality is actually

worked out. This feature enables one to provide common interfaces to applications, thereby

enhancing the interoperability and reusability of already available functionalities of applications

running on different platforms. Eventually, this would help in rapid integration of applications

and automate most of the business processes of organizations.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

3

2.1. The Notion of Service

The notion of service has been defined in different way in the literature. Service has been

described as an encapsulated unit of functionalities [10]. It has also been considered as a logical

manifestation of some physical resources (like programs, databases, devices etc.) grouped as a

process that an organization exposes to the network [9]. A pragmatic definition of service can be

found in [4] wherein Service is defined as an externally observable behaviour of a

software/hardware component which possibly hides the internal processing details that is required

for the realization of a requested service, and is accessible only through a set of well-defined

interfaces. In the context of web services, a service is viewed as an application or business logic

that can run on a web server by exposing its functional capabilities to clients [2]. One thing that is

apparent in all these definitions is: service is a conceptual entity that facilitates certain actions in

response to a set of stimuli from its environment. The stimuli can be in the form of messages or

explicit invocation programs that trigger some internal processing at the service provider, which

may not be visible to the service requestor.

Based on the notion of service, software applications can be designed in an implementation

independent manner using the abstract concept of service as the fundamental design entity. Each

service encapsulates certain clearly specified functions while hiding implementation details of the

service under reference. Such service entities can be reused and even combined to build

systems/subsystems to implement higher level services. In this approach software development

begins by analysing an application domain and identifying a set of services to be provisioned.

These services form the fundamental design objects upon which a complete system can be built.

2.2. Service-Oriented Software Engineering

The notion of service is undoubtedly going to play a very important role for organizations that try

to model their applications as a set of service entities providing certain services that can be

consumed by those who request for it. In order to take benefit of the service-oriented paradigm it

is necessary to develop a precise understanding of the related concepts and use them consistently

right from the requirements elicitation phase through the design phase up to implementation. In

other words, there is a need for developing a software engineering approach to specify what

service is and systematically follow a methodology to implement applications based on the

service-oriented concepts. A typical service oriented architecture is presented in the Figure-1.

Figure 1. Service Oriented Architecture: Conceptual Model

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

4

This concept is based on an architectural style that defines an interaction model between three

primary parties: the service provider, who publishes a service description and provides the

implementation for the service, a service consumer, who can either use the uniform resource

identifier (URI) for the service description directly or can find the service description in a service

registry and bind and invoke the service [1].

2.3. Suitability of Service Oriented Design Approach for Developing E-

governance Systems

There is a whole range of E-governance Systems which have been implemented by various

governments all over the world. The most prominent ones can be categorized as G2C, G2E, G2G

and G2B. While G2C refers to a set of services exchanged between government and the citizen,

G2E is set of services exchanged between government and government employees, G2G is a set

of services exchanged between government agencies, and G2B is set of services exchanged

between government and the business community. The common aspect in all these applications is

the delivery of service. Thus, the notion of service is already inherent to the E-governance

Systems. This characteristic of E-governance Systems makes it suitable to be modelled using

service oriented design approach. Moreover, one can extend or change the design objects on

demand. SOA based solutions are composed of reusable services, with well-defined, published

interfaces. It also provides a mechanism to integrate existing legacy applications which is an

important requirement of E-governance Systems.

3. PROPOSED SERVICE ORIENTED DESIGN APPROACH

Considering the nature of E-governance applications, here we have proposed a design approach

that is pragmatic and can address most of the requirements of the current E-governance system

development. Our focus is to develop an approach that is realistic and very closely corresponds

to the manner government services are offered to a wide variety of user groups and accessed by

the citizens. It should also take into account services at different levels of abstraction, in the sense

that certain services can be provided straightway whereas certain other services may require

invocation of other related services in order to provision the requested service. Some of the key

concepts that we employ in our design approach are: the notion of service window, service

composition, service collaboration, and service enactment. Each of these concepts is formalized

in the following sections using the RAISE specification language. The benefit of having such a

formal description in the form of abstract specifications is to provide a precise understanding of

the design concepts which can be systematically concretised to an implementation model.

3.1. Service Types

Services requested by users may require different levels of processing. Depending on the

complexity of processing requirement we categorize services into three different types, namely,

readily available services, composable services, and collaborative services.

Let us consider the following services of different Government departments for the province of

Odisha in India, for explaining service types.

S0: Below Poverty Line(BPL) service, provided by Panchayat Raj Department.

S1: Antyodaya Anna Yojana (AAY) service, provided by Panchayat Raj Department

S2: National Rural Employment Guarantee Act (NREGA) service, provided by Panchayat Raj

Department

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

5

S3: Rashtriya Sawasthya Bima Yojna(RSBY) service, provided by Finance Department

S4: Indira Awaas Yojana(IAY) service, provided by Panchayat Raj Department

S5: Kutir Jyoti Yojna(KJY) service, provided by Energy Department

S6: Mamta Service, provided by Health Department

The use case diagram in Figure-2 below describes the interaction between the user and the

various services described above. The RSBY Service is interdependent on NREGS Service and

BPL Service, whereas KutirJ Service is interdependent on IAY Service and BPL Service. When

the user invokes AAY and Mamata Service they are dependent only on BPL Service.

3.1.1. Readily available services

These are services that do not require complex processing. For instance, a citizen applies for a

residence certificate. Such a request can be serviced after verifying some standard documents and

can be made available to the citizen. The other similar services form Revenue Department are

Nativity Certificate, Income Certificate, Social Status(caste) certificate etc.; from Health

Department Birth Certificate , Death Certificate, Disability Certificate etc.; from Agriculture

Department identification of small farmer and marginal farmer; from Social welfare Department

Old Age Pension, Widow Pension etc.; from Welfare Department Student Scholarship, Free

study books etc.; from Panchayat Raj Department NREGA Job card, BPL card etc.; The

following class diagram in Figure-3 explains the attributes and operations of BPL service.

Figure 3. BPL Service Class Diagram

Figure 2. Use case diagram of the referred services

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

6

3.1.2. Composable Services

These services are not readily available but require further processing, possibly invoking a set of

related services in the same department. For instance, permission for a building construction

cannot be given immediately. This would require verifying the ownership of land, check

construction regulation policies, approval of the design, etc. All such related activities/services

can be invoked to facilitate the requested service. Other similar examples are: for enrolling in

Swasthya Bikas Yojona, it is necessary to verify that the citizen has got NREGA job card and

BPL card. In order to provide 35Kg of one Rupee per Kilo rice every month under AAY scheme

it is necessary to verify that he/she has BPL card. The following diagram in Figure 4 explains the

operation FindBPL() invoked for using AddAAY() operation from another service.

The sequence diagram in Figure 5 illustrates different interactions to add a Citizen name in AAY.

3.1.3. Collaborative Services

These are services which are neither available readily nor can be composed using the services

available at a service window. In such a case, a service window needs to explore whether the

requested service can be provided using the services of other service windows. For instance, to

avail free electricity of one point household connection under Kutir Jyoti Yojona(KJY), one must

Figure 4. Class diagram of BPL and AAY Services

Figure 5. Sequence diagram to add a member under AAY

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

7

have a house constructed under Indira Awas Yojona(IAY). To have a house under IAY one must

be a BPL card holder. The BPL and IAY services are provided at the service window of

Panchayat Raj Department whereas the Kutir Jyoti service is provided at service window of

Energy Department. The request needs to come from Energy Department service window to

Panchyat Raj Dept. service window to add a new member in Kutir Jyoti Yojona. The following

sequence diagram illustrates different interactions to add a new member in Kutir Jyoti Yojona.

3.2. Service Window

We introduce the notion of a service window, which can refer to a physical location or a web

portal where users can submit their requests for service. Typically, a service window provisions a

set of well-defined services which can be accessed by interested users through appropriate service

requests. Next, we conceptualize the notion of service environment which is a loosely coupled

distributed environment consisting of a group of service windows. Each service window is

identified by a unique identification.

The Service Environment is formally specified as a RSL scheme which includes a set of abstract

types and a record type called Service window. The record type specifies entries that contribute to

the service provisioning at a service window, namely, a set of readily available services, a set of

service requests that it can handle, and other internal components that facilitate a requested

service. It also contains information about other service windows whose services may have to be

invoked in situations when a requested service is not readily available at a service window where

the service request has been made. Another important component of the service environment is

the service registry which is akin to a yellow page that contains information about all publicly

known service windows. The service registry is described as a map type that maps each service

window unique Id to a service window designed to facilitate a set of services. The change type

associated with each entry of the record type above indicates that new services can be added and

some existing services may be removed. Similarly, new service windows can be created and some

service windows may be withdrawn.

Figure 6. Sequence diagram to add a member under Kutir Jyoti

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

8

3.3. Service Composition

On receiving a service request a service window checks whether the service request can be

complied with using a set of readily available services without much processing. The

deliver_service function takes care of such requests. However, if the request needs further

processing then it invokes a service composition procedure which tries to facilitate the requested

service making use of relevant services accessible within the service window. This involves

selecting the services and determining the order in which those are to be executed for realizing

the service under consideration. The following specification describes the service composition

process.

Scheme ServiceEnvironment =
class

type

Service,
ServiceWindowId,
ServiceRequest,
ServiceWindow ::

readyServices : Service-set ↔ chg_services,
serviceRequests : ServiceRequest-set ↔ chg_servReq,
compserv : ServiceRequest ServiceComp-set ↔ chg_servcomp,
colbserv : ServiceRequest ServiceWindowId-set ↔ chg_servwindow,

ServiceRegistry = ServiceWindowId ServiceWindow
value

deliver_service: ServiceWindow × ServiceRequest Service
axiom

∀ sw: ServiceWindow, sr: ServiceRequest ●

deliver_service (sw,sr) ≡{s| s:Service ● s ϵ readyServices (sw)}
pre

sr ϵ serviceRequests (sw)

end

Scheme
ServiceComposition = extend ServiceEnvironment with

class

value

compose_service: ServiceWindow × ServiceRequest

ServiceComp-set

axiom

∀ sw: ServiceWindow, sr: ServiceRequest ●

compose_service(sw,sr) ≡rng compserv (sw)

pre

sr ϵ serviceRequests (sw)

end

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

9

3.3. Service Collaboration

In some cases the requested service is neither a readily available service nor a composable

service, i.e., the service window cannot facilitate the requested service by using its own service

capabilities. In the context of E-governance the effort is always to provide all requested services

at a service window as far as possible using the concept of one-stop service. Thus, in our design

approach we incorporate a mechanism whereby a service window can collaborate with other

service windows to facilitate the requested service. This is possible with the help of the service

registry which maintains a list of service window IDs along with the service requests they can

handle. This concept is geared towards realizing interoperability among service windows to

facilitate a whole range of services for the benefit of the users. The following specification

describes the service collaboration process.

4. Service Provisioning

In the previous sections we have introduced the basic design components around which an E-

governance system can be developed. The proposed service window embodies all these design

elements to handle different types of service requests submitted by the users time to time. A

logical structure of a service window is depicted in figure 7.

Scheme

ServiceCollaboration = extend ServiceEnvironment with

class

value

collaborate_service: ServiceWindow × ServiceRequest ServiceWindowId -set

axiom

∀ sw: ServiceWindow, sr: ServiceRequest ●

collaborate_service (sw,sr) ≡rng colbserv (sw)
pre

sr ∉serviceRequests (sw)
end

Service Window-2

R

H

CollabS

CompS

RAS

Figure 7. Interaction between Service Windows

: Request-IN : Request-OUT

: Service Outlet: User Request : Services

Service Window-1

RAS

CompS

CollabS

R

H

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

10

Each service window is associated with a Request Handler (RH) module which accepts service

requests and analyses them and takes appropriate action to process it. On receiving a service

request, the RH module checks if the requested service is one of the readily available service

categories; in that case it passes the control to the RAS module (Readily Available Service) to take

appropriate action to respond to the user’s request. However, if the requested service does not fall

into this category then it checks whether it requires further internal processing, in which case the

control is passed on to the CompS module (Composable Service) to perform necessary service

composition function. But, if the service request cannot be processed locally and requires

collaboration with other service windows, in that case the control is passed on to the CollabS
module (Collaborative service). The CollabS module in turn refers to the service registry and

selects the relevant service window(s) with which collaboration is necessary to realize the

requested service. Each service window is augmented with four different types of channels: User
Request, Service Outlet, Request-IN, and Request-OUT. Users make their service requests through

the User Request channel. Service is delivered to users through the Service Outlet channel. A

service window sends all its service collaboration requests through the Request-OUT channel and

receives such collaboration requests from other service windows through the Request-IN channel.

Collaborative service requests are processed according to some service level agreements (SLAs)

between the requesting and partner service windows. In a way, a service window acts as a one-

stop service provisioning point which does necessary processing on the background to facilitate

services requested by users.

5. CONCLUSIONS

New ICT opportunities and achievements are constantly emerging, which needs to be adopted

rapidly for effective results in e-Governance. Service oriented architecture (SOA) is a design

approach to organize existing IT assets such that the heterogeneous and distributed e-Governance

applications can be transformed into an integrated and simplified single window service centre for

common citizens. A systematically executed SOA project using software engineering principles

as discussed will help organisations to build stronger connection with service consumers and

provider and provide accurate and readily available information for better governance. It will help

common citizens in sharing the available information in an easy and affordable manner. These

software engineering principles can further be improved to develop citizen centric e-Governance

SOA models, so that the outputs of the business processes become visible to the end-customer,

who will be able to select and combine different services to configure unique solutions that meet

his/her personal needs.

REFERENCES

[1] Arsanjani, Ali, (2004), Service Oriented Modeling and Architecture, Web Service Centre of

Excellence, IBM

[2] D. Greenwood, M. Calisti, Engineering web services-Agent integration, IEEE proc. 2004.

[3] Davies, T. R. (2002). Throw e-gov a lifeline. Governing, 15(9), 72

[4] G. Lomow , E. Newcomer, Introduction to SOA with web services, Addison Wesley, 2005.

[5 G.P. Kumari, B. Kandan, A.K. Mishra, “Experience sharing on SOA based Heterogeneous Systems

Integration.” 2008 IEEE Congress on Services 2008 Part-I.

[6] Hussein Al-Omari and Ahmed Al-Omari “E-government readiness assessment model,” Journal of

Computer Science, (2006). Vol. 2, No. 11, pp. 841-845

[7] John Carlo Bertot, Paul T. Jaeger, Charles R. McClure “Citizen-centered e-government services:

benefits, costs, and research needs.” DG.O 2008: 137-142.

[8] Klaus Lenk, Roland Traunmüller (2002) Electronic Government: Where Are We Heading? EGOV

2002: 1-9

International Journal of Information Technology Convergence and Services (IJITCS) Vol.3, No.3, June 2013

11

[9] Webber, J. & Parastatidis, S. (2004), “Demystifying service oriented architecture”, web services

journal.

[10] V. Talwar, Q. Wu et al, “Approaches for service deployment”, (2005) IEEE Internet computing,

March-April, pp 70-80.

[11] Tagelsir Mohamed Gasmelseid: “A Multiagent Service-oriented Modeling of E-Government

Initiatives.” (2007) IJEGR 3(3): pp 87- 106

Authors

Rama Krushna Das is Technical Director (Scientist-E) working with National

Informatics Centre (NIC), Department of Electronics and Information Technology,

Government of India. His research and professional career spans over twenty five

years of coding, research and capacity building in computing, e-governance and

related subjects. His expertise is primarily in the domains of Electronic Governance,

Implementation Architectures and Strategy, and Software Technology. He is presently

involved in development and implementation of different E-Governance projects of

NIC. He has published several peer-reviewed papers as journal articles, book

chapters, and contributions to conference proceedings. His research interests include

e-governance, software engineering, Service Oriented Architecture and Cloud computing. He is a life

member of Computer Society of India (CSI) and a professional member of the Association for Computing

Machinery (ACM).

Dr. Manas Ranjan Patra holds a Ph.D. Degree in Computer Science from the

Central University of Hyderabad, India. Currently he is an Associate Professor in the

Post Graduate Department of Computer Science, Berhampur University, India. He has

about 25 years of experience in teaching and research in different areas of Computer

Science. He had visiting assignment to International Institute for Software

Technology, Macao as a United Nations Fellow and for some time worked as assistant

professor in the Institute for Development and Research in Banking Technology,

Hyderabad. He has about 90 publications to his credit. His research interests include

Service Oriented Computing, Software Engineering, Applications of Data mining and e-Governance. He

has presented papers, chaired technical sessions and served in technical committees of many International

conferences.

