
A Set-covering Model for a
Bidirectional Multi-shift Full

Truckload Vehicle Routing Problem

Ruibin Bai, Ning Xue, Jianjun Chen
International Doctoral Innovation Centre

School of Computer Science
University of Nottingham Ningbo China, Ningbo 315100, China

Gethin Wyn Roberts
Department of Civil Engineering,

University of Nottingham Ningbo China, 315100, China.

June 24, 2015

Abstract

This paper introduces a bidirectional multi-shift full truckload transportation
problem with operation dependent service times. The problem is different
from the previous container transport problems and the existing approaches
for container transport problems and vehicle routing pickup and delivery
are either not suitable or inefficient. In this paper, a set covering model
is developed for the problem based on a novel route representation and a
container-flow mapping. It was demonstrated that the model can be ap-
plied to solve real-life, medium sized instances of the container transport
problem at a large international port. A lower bound of the problem is also
obtained by relaxing the time window constraints to the nearest shifts and
transforming the problem into a service network design problem. Implica-
tions and managerial insights of the results by the lower bound results are
also provided.

Keywords: Full truckload transport; container transport; vehicle rout-
ing; set covering; service network design;

1

1 Introduction

Freight transportation research is often classified into full truckload transport
(FTL), less-than truckload transport (LTL) and express deliveries (Wieberneit,
2008). Despite numerous research studies on freight transportation, most of
them have focused on consolidation based transportation (LTL and express
deliveries) and research on the FTL problem is somewhat limited. Among
all the FTL problems, container transport is a special case of the full truck-
load transport problem since containers are both shipment commodities and
transport resources (Braekers et al., 2013). The container transportation in-
dustry is under fierce competition and pressure to improve its efficiency and
reduce energy use and increasingly more studies have been devoted to the
optimisation of operations at container terminals (see Tang et al. (2014) for
a recent example). In this paper, we study a multi-shift inter-dock container
forwarding problem, using data from a real-life problem faced by one of the
largest ports in the world. The problem is also common for any large port
with multiple docks being operated simultaneously.

Compared to other types of full truck load transportation problems, the
transport distances in the cross-dock container shipment problem concerned
in this paper are relatively short. At present, the daily transport demand
varies from 100-300 containers. The existing schedule in practice used by the
company has around 38% empty truck mileage which is too high. Due to the
special features of the problem (see Section 2), there are no existing models
and solution methods that can be directly applied.

2 Problem Description

The problem concerned in this paper is extracted from a real-world container
inter-dock transportation problem (Chen et al., 2013). The objective is to
minimise the total vehicle travel distance for transporting a large number of
non-consolidatable commodities (containers) between a relatively small num-
ber of nodes (docks), satisfying various time window constraints concerning
commodities and drivers. Typical time window constraints are the avail-
able time and deadline for commodities and work shifts for drivers. Thanks
to internationally adopted EDI (Electronic Data Interchange) systems and
GPS (Global Positioning Systems) sensors, the available and deadline times
of commodities are generally known 1-2 days in advance with some tolera-
ble estimation errors. The physical locations of different nodes are shown in
Figure 1. The problem has the following unique characteristics:

• The unit size of the commodity is equivalent of that of the trucks.

2

Figure 1: Positions of the container terminals in the port under study.

Therefore one unit of a commodity is shipped directly to its destination
without transfers or consolidations.

• Schedules are shift based. Each truck has to go back to a depot for
driver changeovers after a shift due to labour law related regulations.
For this particular problem, a shift is 12 hours. A schedule typically
spans from 4-8 shifts in order to maximise the efficiency.

• All docks are within a short distance of each other and a unit of any
commodity could be completed within a shift. The service time at each
node (loading time at the the source or unloading time at the desti-
nation of a shipment) is comparable to the truck travel times between
nodes. Therefore, service times cannot be ignored or simplified.

• The time window for each commodity (i.e. from time when the com-
modity becomes available to the time when it has to be delivered to its
destination) varies considerably from 1-2 hours, up to 6 shifts.

• The total quantities of all the commodities within a planning horizon
can be very large (up to 2000) but the number of distinct physical
nodes is relatively small (less than 10).

Because of these distinct features, the problem cannot be solved by off-
the-shelf approaches designed for vehicle routing problems with pickups and

3

deliveries. Similarly, the problem is different from the classic service network
design problem (SNDP) which is primarily consolidation oriented. Although
our problem shares similar constraints to the inland container transportation
problem studied in Zhang et al. (2010), the nature of the constraints are very
different. For example, the time window of a load in the problem considered
in this research spans from a few hours to up to 3 days (or 6 shifts), compared
to a load time window of between 1 to 4 hours in (Zhang et al., 2010). There-
fore, the time-window partition heuristics will not work for our problems due
to the potentially huge number of sub-loads generated, causing prohibitive
computational time. When the time window of a load spans several working
shifts, determination of the shift in which this load is serviced forms part of
the decisions to optimise. Therefore, the problem concerned in this research
requires a multi-shift model that is much larger than the single-shift model
adopted in (Zhang et al. 2010).

More recently, Nossack and Pesch (2013) also proposed a nonlinear in-
teger programming model, in which time window constraints are handled
explicitly. However, due to its nonlinear property, the formulation cannot
be solved exactly. In our proposed set-covering model, these time window
constraints are implicitly handled offline during the feasible route genera-
tion stage. In this way, we can handle any forms (linear, nonlinear) of route
related constraints, including nonlinear time window constraints and shift
constraints. In fact, more and tighter constraints are advantageous to this
formulation as it can reduce the size of the feasible route set.

Without losing the generality of the problem, we define the following
shift-based full truckload shipment problem with operation dependent ser-
vice time. A full list of the notations used in our model is given in Table
1. Denote G = (V,A) a directed graph with a set of nodes V (represent-
ing origins and destinations of different commodities) and a set of arcs A

between these nodes. Note that node 0 is the depot from which all ve-
hicles depart at the beginning of the shift. Denote K be the set of all
the commodities to be delivered. Each commodity k ∈ K is defined by
a tuple (Q(k), o(k), d(k), σ(k), τ(k)), standing for the quantity, origin, des-
tination, available time and deadline respectively. Denote S be a list of
time-continuous shifts in the planning horizon and s be the s-th shift in S.
All trucks have an identical capacity of 1 unit. Therefore, commodities are
shipped directly to their destinations without transfers or consolidation.

Denote tj be the service time at node j. Note that tj is dependent on
both the node a vehicle visits and the types of operation (either loading or
unloading) done at this node. Denote tlj and tuj respectively be the loading

4

Table 1: The list of notations.
Input Parameters

V The set of nodes in the transportation network.
S A list of time-continuous shifts in the planning horizon.
s The sth shift in S.
ets The beginning time for shift s.
lts The end time for shift s.
dij The distance between nodes i ∈ V and j ∈ V .
µij The travel time between nodes i ∈ V and j ∈ V .
tj The service time at node j.
tlj The loading time at node j.
tuj The unloading time at node j.
n The number of trucks available for use.
R Set of feasible truck routes within a shift. Each truck starts

from depot v0 and returns to depot before shift ends.
dr The distance of the route r ∈ R.
K A set of commodities to be delivered. Each commodity is

delivered by exactly one truck.
Q(k) The quantity of the standard commodity k.
o(k) The origin of the commodity k ∈ K.
d(k) The destination of the commodity k ∈ K.
σ(k) The available time of the commodity k ∈ K.
τ(k) The deadline or completion time by which the commodity

k ∈ K has to be serviced.
δk
ri

A binary constant indicating whether k can be serviced at
the ith node in r ∈ R.

es
ri

Earliest time that truck route r finishes a service (either a drop-off
or a pickup) at its ith node in shift s.

ls
ri

The latest time that truck route r may depart from its ith node in shift s.
M A sufficiently large positive number.

Decision Variables

ysr The number of times a given route r ∈ R is used during shift
s and ysr ∈ N+.

xks
ri

Binary variable to indicate whether the ith node of r in s is used
as the starting node for servicing commodity k.

and unloading time at node j, then we have

tj =

tlj if loading operation only at node j

tuj if unloading operation only at node j,

tlj + tuj if both loading and unloading at node j.

(1)

5

The problem is to find a set of vehicle routes with minimum total costs
to deliver all the commodities within their time windows. Each vehicle route
should depart from the depot at the start of a shift and return to the depot
before the shift ends.

3 Literature Review

As stated in Section 1, the research on container transportation is somewhat
limited despite numerous publications on other types of freight transport
problems. To help understand the core features of this problem, it is pos-
sible to broadly classify freight transportation into consolidated transport
and non-consolidated transport problems. In consolidated transportation,
freights can be split and shipped via multiple paths of a service network
and freights may get transferred and consolidated along some of the paths.
That is, during the process, some nodes in the service network act as hubs or
consolidation centres and a package may be transported by multiple vehicles
before arriving at its destination. In non-consolidated freight transporta-
tion, freight is delivered to its destination directly, in its entirety, by a single
vehicle.

For both the consolidated and non-consolidated transports, the ship-
ment of the freight can be single-directional or bi-directional. In
single-directional transport, each node in the transportation network is ei-
ther a supply node or a demand node but not both while the nodes in a
bi-directional transport can both be supplies as well as demands. Table
2 gives typical examples for each type of transportation problems. Single-
directional consolidated transportation includes the classical production lo-
gistics (in which necessary raw materials, parts and sub-parts of products are
consolidated and transported to the production factories) and deliveries for
fresh produce and hazardous materials that require special vehicles. Single-
directional, non-consolidated transport problems are studied intensively in
the forms of several vehicle routing problem variants (Toth and Vigo, 2001),
including capacitated vehicle routing problem (CVRP), vehicle routing with
time windows (VRPTW), multi-depot vehicle routing problem (MDVRP),
etc. With regards to bidirectional, consolidated transportation, service net-
work design research (Bai et al., 2012b) for less-than-truckload transport,
express delivery and postal mail delivery are typical examples. In terms
of the search space and complexity, this category probably represents the
most challenging freight transportation problem due to the huge size of the
search space. The final category is the bidirectional, non-consolidated trans-
portation. Typical examples include vehicle routing with pickup and delivery

6

Table 2: A possible classification of freight transportation problems.
Consolidated Non-consolidated

Single-
directional

Production supply
chain, Fresh produce
delivery, Hazards
transport, etc.

CVRP, VRPTW, TSP,
Multi-depot VRP

Bidirectional Service network design,
Postal mail delivery,
Less-than truckload
transport (LTL),
Express delivery

Vehicle routing with
pickup and delivery,
Full truckload transport
(FTL), Container trans-
port, Dial-a-ride problem,
etc.

(Min, 1989), full truckload transport (Liu et al., 2010), and container trans-
port which is a special case of the full truckload transport problem. The
problem that is considered in this paper falls into this final category. The
remainder of this section provides a review of existing research work for the
final bidirectional, non-consolidated transportation research with a special
focus on the container transportation problems.

3.1 Vehicle routing problem with pickup and delivery

The vehicle routing with pickups and deliveries (VRPPD) differs from classic
VRP problems in that some of the nodes are both demand and supply nodes
and the flow of the freight at these nodes is, therefore, bidirectional (both
incoming and outgoing). The inherent mixed loading capacity constraints in
VRPPD often leads to increased computational complexity. A comprehen-
sive review for VRPPD can be found in (Berbeglia et al., 2007). Research
by Min (1989) represents one of the first scientific studies on VRPPD. The
problem was abstracted from a public library distribution system in Ohio, US
and a simple three-phased procedure that resembles the well-know “cluster-
first, routing-second” heuristics was developed and compared against the
real-world manual solution. Pisinger and Ropke (2007) proposed a generic
adaptive large neighbourhood search (ALNS) meta-heuristic for 4 variants
of the VRP problems with competitive results reported for all variants. The
proposed ALNS shares many common features to the simulated annealing
hyper-heuristics (Bai et al., 2012a) that was shown successful for the course-
work timetabling and the well-known bin packing problem. Gutierrez-Jarpa
et al. (2010) studied a variant of VRPPD in which the pickups are selective
while deliveries are compulsory. A branch-and-price algorithm was devel-

7

oped which could solve instances containing up to 50 customers optimally.
Derigs et al. (2012) studied a real-life full truckload routing problem arising in
timber transportation and used a multilevel neighbourhood search method
to solve the problem. Liu et al. (2013) studied a vehicle scheduling prob-
lem encountered in home health care logistics. A genetic algorithm and a
tabu search method were proposed for this problem. The method was tested
on the benchmarks for the VRP with mixed backhauls and time windows
(VRPMBTW) against existing best solutions and obtained solutions that are
better than the best-known solutions in the literature. Pandelis et al. (2013)
studied capacitated VRPPD in which finite and infinite-horizon single VRP
with a predefined customer sequence and pickup and delivery is considered.
A a special-purpose dynamic programming algorithm that determines the
optimal policy was developed. Zhang et al. (2014) studied time dependent
vehicle routing problems with simultaneous pickup and delivery by formulat-
ing this problem as a mixed integer programming model. A hybrid algorithm
that integrates an ant colony algorithm and a tabu search method was de-
veloped and the computational results suggest that the hybrid algorithm
outperforms stand-alone ant colony algorithm and tabu search. Chen et al.
(2014) studied the routing problem with unpaired pickup and delivery with
split loads for fashion retailer chains. However, the common time window
constraints are missing. Both a simple heuristic and a variable neighbour-
hood search method were proposed. It can be seen that due to the NP-Hard
nature of the problem, almost all studies adopted metaheuristics to solve
large scale problem instances.

Another type of vehicle routing with pickup and delivery problem that
has been studied specifically is the dial-a-ride (DAR) problem. Kirchler and
Calvo (2013) proposed a fast algorithm for solving the static Dial-a-Ride
Problem (DARP). A granular tabu Search method has been applied for the
first time to solve this kind of problem. Paquette et al. (2013) developed
a multicriteria heuristic embedding a tabu search process in order to solve
DARPs combining cost and quality of service criteria. This is the first study
that handles more than two criteria for this type of problem. Ferrucci and
Bock (2014) introduced dynamic pickup and delivery problem with real-time
control (DPDPRC) in order to map urgent real-world transportation services.
A tabu search algorithm was proposed and computational result showed that
newly arriving requests, traffic congestion, and vehicle disturbances can be
efficiently handled by this approach. Braekers et al. (2014a) considered a
multi-depot heterogeneous dial-a-ride Problem (MD-H-DARP) in real life. A
exact branch-and-cut algorithm and a deterministic annealing meta-heuristic
were developed for solving small and large problems respectively.

8

3.2 Bidirectional full truckload transport

In bidirectional full truckload transport, commodities are shipped to destina-
tions in their entirety without intermediate stops or transhipment. Therefore
it is different from VRPPD since some of the commodities in VRPPD go
through intermediate nodes before reaching their destinations. Truck con-
tainer transport is a typical example of such a problem since the size of a
container is equivalent to the capacity of the truck (hence full truckload)
and flow of containers (either loaded or empty) can be bidirectional. There-
fore, the solution methods for VRPPD cannot directly be used for the truck
container transport problem or even if some variants are applicable, their
performance will not be as good since important features (e.g. no interme-
diate stops) are not exploited fully in the algorithms designed for VRPPD.
Even for the truck container transport problems, different characteristics will
lead to different problems. From the no-free-lunch theorem of Wolpert and
Macready (1997), we know that it is unlikely to develop a generic algorithm,
performing best for all possible instances.

Zhang et al. (2010) proposed a nonlinear model based on a preparative
graph for a container transportation between shippers, receivers, depots and
terminals. A solution method was designed by improving the time window
partitioning scheme used in (Wang and Regan, 2002) for a multiple travelling
salesman problem with time windows (m-TSPTW). The empirical results for
a set of randomly generated instances indicate that improved performance
can be achieved compared with a reactive tabu method in (Zhang et al.,
2009). The method is effective for small instances but may suffer for large
scale problems since the size of the graph can explode with increase in the
number of shipments and nodes. Similar issues exist for instances with very
wide time windows (e.g. time windows that spans over a few days) due to
the time partitioning scheme adopted in the method.

Nossack and Pesch (2013) presented a new formulation for the truck
scheduling problem based on a Full-Truckload Pickup and Delivery Prob-
lem with Time Windows and propose a 2-stage heuristic solution approach.
The results of computational experiments indicate that their 2-stage heuris-
tic outperforms the WPB method applied by Zhang et al. (2010) in terms
of computational efficiency. Braekers et al. (2013) investigated a two-stage
deterministic annealing algorithm for a full truckload transport problem with
simultaneous pickup and delivery nodes. The problem was formulated as an
asymmetric m-TSPTW. Similarly the problem was tested for a set of ran-
domly generated instances with commodity time windows ranging between
60 to 240 min, which is much smaller than those in our problems. Better
results were obtained using the algorithm than those given by the method of

9

Zhang et al. (2010). Most research studies assumed a constant travel time
among the transportation network which is not always realistic. Therefore,
Braekers et al. (2012) studied how time-dependent travel times will affect the
full truckload transport planning and scheduling, in which the optimal de-
parture times become decision variables in addition to the routing variables.
In real life of drayage operation, shippers may request empty containers to be
delivered while consignees may have empty containers available to be picked
up. By considering this, Braekers et al. (2014b) studied vehicle routes per-
forming all loaded and empty container transports in the service area of one
or several container terminals during a single day. A bi-objective approach
(minimising the number of vehicles and minimising total distance travelled)
is considered and it is shown that this method obtained considerably better
results than those reported in (Braekers et al., 2013). Sterzik and Kopfer
(2013) proposed a single-shift general model for transporting both full and
empty containers among multiple nodes (depots, terminals and customers).
A tabu search heuristic is developed and tested on instances that contain up
to 5 depots, 3 terminals and 75 loads with a one-day planning horizon.

It can be seen that there are a number of research studies on full truck-
load/container transport problems with several models and algorithms being
proposed. However, none of them can be directly used to solve the problem
described in Section 2. The reasons are: 1) the planning horizon of our prob-
lem is much longer than those in the previous studies. This is because the
time window of shipments in our problem spans from 1 hour to up to 3 days.
The time-window partitioning approach will lead to a huge graph that is pro-
hibitively large to solve. 2) the number of shipments is significantly larger
than the instances tested in the previous studies while the number of physical
nodes is relatively small (10). The existing approach could not exploit these
structures explicitly. 3) finally the operation in our problem is shift based
(each shift is 12 hours). Although a shift can be interpreted as a time window
for truck, its actual width is not necessarily bigger than the time windows of
shipments, and inconveniently most VRP solution methods assumed a big-
ger truck time window than shipment time window. These issues lead us to
consider a different approach which can fully exploit the structures of the
problem, and hopefully can be more efficient than the existing approach.

In this paper, we proposed a set covering linear model for the container
transport problem. By exploiting the special structure of the problem and
introducing a novel formulation, we show that the model can be solved to near
optimality for most of real-life instances at industrial sizes. The approach in
this paper complements well with Chen et al. (2013)’s variable neighbourhood
search metaheuristic method which can solve really large problem instances
very quickly but may get stuck to local optima sometimes. We now describe

10

our model in the next section.

4 Model Formulation and Solving

We now describe our proposed formulation for this problem. Our formulation
is similar to the classic set-covering model with additional side constraints.
The underlining idea is to find a subset of truck routes (from all possible
feasible routes) that sufficiently covers all the transportation demands with
a minimum total cost (i.e. distance). Because of the fact that all shifts are
of identical periods and all the trucks must depart from the depot at the
beginning of every shift and return to the depot before the shift ends, the
feasible route set is the same for all shifts, assuming the travel times and ser-
vice times are the same at different shifts (see the next section how operation
dependent service times can be transformed to conform with this assump-
tion). Therefore, the first issue of the model development is the generation
of a set of feasible truck routes. The list of notations used in the paper is
given in Table 1.

4.1 Feasible route generation

For a given directed graph G = (V,A) where V is the set of nodes, represent-
ing different freight forward terminals and A is the set of arcs between nodes.
Let node 0 be the depot. A feasible route is defined as a sequence of nodes
that a truck can cover in a shift. Since no transshipment is permitted in the
operation, for any feasible route, we ensure that each node will have at least
one operation (i.e. either loading or unloading) with some nodes involving
both operations simultaneously. Since time taken for loading/unloading op-
erations is substantial and is comparable to the travel time between nodes,
the service time at each node in a truck route will depend on actual commod-
ity shipments along the route. The service time for nodes involving both of
the operations will be much bigger than the service time if only one operation
is scheduled at this node. This creates a very challenging issue for modelling
since the service time is no longer a constant and depends on the actual so-
lution. To circumvent this problem, for any node that involves both of the
operations, we insert a copy of the node immediately after it in the route,
setting the distance between them to 0 but an unloading service time for
the first copy and a loading time for the second. In this way, all the routes
now have exactly one operation per node except the depot. Because each
unit of commodity shipment involves exactly two operations (i.e. loading at
the source node and then unloading at the destination node) and a truck

11

would never visit a node without a service, each of the feasible routes should
contain an even number of nodes (including nodes copies). The following is
an example of a feasible route.

0 ---> 2 ---> 3 ---> 4 ---> 5 ---> 5 ---> 6 ---> 0

| | | | | |

depot load unload load unload load unload

In this particular route, a truck departs from the depot and picks up
a commodity of unit quantity from node 2, and unloads the commodity at
node 3. Then the truck picks up another commodity at node 4, drops it off at
node 5. The final commodity delivered by this truck is from node 5 to node 6
before the truck returns to the depot. Therefore, in this route, in addition to
truck movements to and from the depot, the truck movement from node 3 to
node 4 is also empty. At node 5, the truck does both unloading and loading
since it has two copies in the route. Excluding depot, odd numbered nodes
are loading nodes and even numbered nodes have unloading operations only.
Therefore, the service time of each node will be determined by the index of
the node in the route. For an 0-indexed route, the service time of an odd-
numbered node equals the loading time and even-numbered node has service
time equalling its unloading time. Denote ri be the i-th node in a feasible
route r and tri be the service time at node ri:

tri =

0 if ri is depot,

tl
ri

if ri is an odd-numbered node in r,

tu
ri

if ri is an even-numbered node in r.

where tl
ri
and tu

ri
are loading and unloading times at node ri. With the route

representation introduced above, we can now develop an integer model as
follows. We will discuss later the algorithm to generate all feasible routes.

Denote R the set of all possible feasible routes within a shift and K the
set of commodities and S the set of shifts within the planning horizon. Here
each commodity k ∈ K represents a number of containers with same prop-
erties defined by tuple {s(k), d(k), σ(k), τ(k), Q(k)}, standing for its source,
destination, time of arrival at port, deadline for shipment, and its quantity
respectively. Note that in this application, we consolidate the quantity of
commodity so that each truck carries one unit of a commodity exactly. For
the real-life problem under consideration in this paper, one unit of a com-
modity means two small containers (20 inch) or 1 large container (40 inch).

12

The solution can be encoded into two decision variables xks
ri

and ysr . The
first variable defines whether the ith node of a route r ∈ R is used as the
loading node for commodity k ∈ K during shift s ∈ S while the latter de-
fines the frequency of route r being used in a given shift s. Therefore, a
given commodity k could potentially be serviced by several arcs of a route
in different shifts, subject to constraints of time windows (σ(k), τ(k)) and
source-destination pairs being matched up between the arc and the com-
modity.

In order to speedup the processing time, one could pre-process all the
possible arcs in each of the feasible routes for a given commodity. For each
of the feasible route r ∈ R and a given shift s ∈ S, a binary variable δks

ri
is

introduced to indicate whether the ith node in route r of shift s can be used
as the starting service node for commodity k. Therefore, δks

ri
= 1 means that

the following conditions should be satisfied, otherwise it is set to 0.

i mod 2 = 1 (2)

ri = o(k) (3)

ri+1 = d(k) (4)

lsri ≥ σ(k) + tri (5)

esri+1 ≤ τ(k) (6)

Condition (2) indicate that starting service node must be the node with load-
ing action. Condition (3) and (4) define source and destination of commodity
for starting service node i. In constraints (5) and (6), ls

ri
is the latest depar-

ture time from the i-th node of route r in shift s to ensure all the subsequent
services can be delivered on time. Similarly es

ri+1 is the earliest time that a
truck can possibly arrive at the (i+1)th node of r during shift s. ls

ri
and es

ri

can be pre-calculated as follows:

esr0 = ets (7)

esri = esri−1 + µri−1ri + tri−1 (8)

lr0 = lts (9)

lsri = lsri+1 − µriri+1 − tri+1 (10)

where ets and lts are the beginning and ending time for shift s respectively
and r0 denotes the final node in route r (i.e. the depot). Eqs. (7) and (9)
provide initial values for recursive equations (8) and (10).

13

4.2 Model formulation based on set covering

Once the feasible route set R is constructed, our problem can be formulated
as finding a subset of R for each of the shifts such that all the tasks are
covered (or serviced) on time and the total routing cost is minimised.

Denote xks
ri

and ysr the two decision variables. ysr is the frequency of route
r used in the sth shift in a solution. Variable xks

ri
denotes, in a given solution,

whether the ith node in route r is used to as the departure node for servicing
task k in the sth shift. The problem can be formally defined as follows:

min
∑

s

∑

r

dry
s
r (11)

subject to

∑

r

ysr ≤ n ∀s ∈ S (12)

∑

s

∑

r

∑

i

xks
ri = Q(k) ∀k ∈ K (13)

∑

k

xks
ri ≤ ysr ∀i ∈ r, ∀r ∈ R, ∀s ∈ S (14)

xks
ri ≤ δkri ∀i ∈ r, ∀r ∈ R, ∀k ∈ K, ∀s ∈ S (15)

lsri ≥ xks
ri [σ(k) + tri] ∀i ∈ r\0, ∀r ∈ R, ∀k ∈ K, ∀s ∈ S(16)

esri+1 ≤ xks
ri τ(k) ∀i ∈ r\0, ∀r ∈ R, ∀k ∈ K, ∀s ∈ S (17)

xks
ri = {0, 1} ∀i ∈ r, ∀r ∈ R, ∀k ∈ K, ∀s ∈ S (18)

ysr ∈ Z
+ ∀r ∈ R, ∀s ∈ S (19)

The objective is to minimise the total distance of all routes used in a solu-
tion. Constraints (12) ensures the availability of trucks the company actually
possesses. Constraints (13) ensures all the tasks are serviced. Constraints
(15) makes sure that any positive xks

ri
is feasible in terms of the source and

destination of task k. Constraints (16) and (17) ensure that the time win-
dows of each task are satisfied. That is: the latest departure time of a route
at its ith node should be no earlier than the available time of task k plus the
loading time if ith node of r is used to service task k; and the earliest arrival
at the (i+ 1)th node of route r should be no later than the deadline of task
k, should the ith node of route r is used as the departure node to service task
k.

Different from other Travelling Salesmen Problem based formulations that
represent each load as a node in a network (same as (Zhang et al., 2010)),
the above model treats commodities as flows to be covered by routes. This

14

makes the proposed model advantageous compared to the other alternative
methods. In real-life instances, it is common that large number of containers
arrives with a same S/D pair and a same time window. For the above model,
the complexity of solving a problem instance with Q(k) = 10 would be similar
to the instance with Q(k) = 100. However, the latter instance would be
multitude times harder to solve for Zhang et al. (2010)’s method.

Note that in the optimal solution of the model, variable ysr gives the
optimal number of times that a given feasible route should be used in each
shift. For clarity, we call each usage of a given route r an instance of
r. Practically each instance of a route can be associated with a truck for
implementation. Variable xks

ri
provides the information of which route arcs

are being utilised to service each commodity. Since there may exist several
instances of a feasible route in the optimal solution, some of the arcs of the
route may be assigned to service several commodities (although the arcs of
each route instance still service a maximum of 1 commodity). However how
flows of these commodities are distributed between different instances of the
route arcs is unknown. In fact there exists multiple feasible distributions but
all of them will lead to a same objective function. We will discuss in Section
4.4 how to obtain these distributions to recover the detailed solution. This
is another advantage of this model since it is able to reduce the size of the
search space by evaluating all feasible flow distributions on shared arcs only
once.

4.3 Data pre-processing

The original problem contains a total of 9 docks/nodes (see Figure 1). The
depot is at node BLCT2. We applied a recursive algorithm to generate
all feasible routes that satisfy all the constraints in Section 4.1. Since the
travelling time between some nodes are very short (e.g. 5 to 15 minutes),
the algorithm generated millions of feasible routes on an 12-hour shift. This
huge size of feasible routes will lead to prohibitively long solution time for
our model in Section 4.2. Therefore, the original data was preprocessed
before being populated into the model. Historical data show that node ZHCT
always has very few shipments. In order to reduce the total number of
feasible truck routes, we take out all the shipments related to node ZHCT.
In addition, all the nodes that are within 15 min travel times are merged
into super nodes and its servicing time is set as the mean service time of the
two original nodes. In the end, our reduced problem has a total of 6 nodes,
including two super nodes {BLCTZS, DXCTE} and {BLCT3, BLCTYD}
and the depot. We did not merge the depot with BLCT2 as we need the
depot in our route representation. Based on these 6 nodes, the feasible

15

route generator returns a total of 43081 feasible routes. We then exclude all
the commodities within the super nodes from the reduced problem. These
commodities will be inserted into the final solution during the final stage of
the proposed method.

4.4 Recover the full solution for the reduced problem

As mentioned in section 4.2, the solution obtained from the model gives
the number of times each feasible route is used, and what commodities are
serviced at each of the route arcs. If a route is used multiple times (specified
by ysr) in a solution, normally some of the arcs in the route are used to
service multiple commodities (i.e. for a given ri and s, xks

ri
takes value of 1

for more than one commodity). However, for practical applications we need
to specify the exact allocation of flows between different route instances (see
the last paragraph in Section 4.2), not just between different routes. For
example, assume there is a route 0 → 5(k1, k2) → 2 → 3(k3) → 4 → 0 and
the frequency of the route for shift s (i.e. ysr) is 8. Node 5 is used as the
starting service node for two commodities k1 and k2, and node 3 is used as
the starting service node for commodity k3. So here arc 5 → 2 is shared for
shipping two commodities while arc 3 → 4 is used to service commodity k3
alone. We defined the arcs such as 5 → 2 as shared arcs and arcs such as
3 → 4 exclusive arcs. Therefore, entire 8 unit capacity of arc 3 → 4 can
be used to service commodity k3. However, the 8 unit capacity of arc 5 → 2
is shared between commodities k1 and k2 and the actual splits between them
can be in many ways. In order to obtain all the feasible allocation of capacity
on shared arcs, we can solve the following linear equations.

First we denote A be the set of all the route arcs and Ā the set of all
the shared arcs like 5 → 2. Here the arcs from different routes but with
identical source-destination pairs are considered different. Let K̄ be the set
of commodities that are serviced by at least one of the shared arcs and Q∗(k)
be the total amount of flow of commodity k that is serviced by the exclusive
arcs. Denote variable zksa be the amount of flow of commodity k on a given
route arc a ∈ A in shift s, then zksa can be obtained by solving the following
linear equations.

∑

s∈S

∑

a∈Ā

zksa +Q∗(k) = Q(k) ∀k ∈ K̄ (20)

∑

k∈K̄

zksa <= ysa ∀a ∈ Ā, ∀s ∈ S (21)

where ysa is the optimal solution of ysr from the integer programming model

16

for the route containing arc a. Equations (20) ensure that the entirety of each
commodity is serviced by a combination of the shared arcs and exclusive arcs.
Equations (21) make sure that the total flow on each shared arc should not
be more than the total capacity.

4.5 Inserting unserviced commodities

In the reduced problem, we excluded the nodes that have very few shipments
and combined some nodes into super-nodes (and the shipments within the
super nodes are excluded accordingly). Therefore, these commodities need
to be inserted into the solution obtained from the reduced problem. For
each route in the current solution, a total of 4 conditions have to be satisfied
before a commodity is inserted into this route. Firstly, the route must have
enough remaining time for additional commodities. Secondly, the insertion
of a commodity must not affect the feasibility of the solution. Thirdly, the
deadline of commodities within the super-nodes should be satisfied. Since
the nodes in the super nodes are very close, most of intra-node shipments can
successfully be inserted into the current solution. In a few cases where there
is no feasible insertion, the procedure opens a new route. Finally, when
multiple insertion points are available, the procedure favours the one that
leads to the least empty load distance.

In summary, our approach is a three-stage hybrid method. 1) Pre-processing:
the original problem is reduced to a problem with a smaller number of nodes
and commodities. 2) Solving the reduced problem: the reduced problem
is solved in Gurobi solver and the full solution (including the flow distribu-
tion among route instances) for the reduced problem is recovered by solving
the linear equations described in Section 4.4. 3) Post-processing: finally
the commodities that were temporarily excluded from the reduced problem
were heuristically inserted into the existing routes whenever possible. A new
truck route is opened if there are commodities that cannot be assigned to
any existing routes.

5 Benchmark Instances and Experimental Tests

In order to evaluate the feasibility and performance of our model, we applied
it to solve real-life instances at a large international port in China. In ad-
dition, test instances with certain features were created to fully assess the
approach and to gain knowledge that may not be discovered from real-life in-
stances. These instances can be downloaded from http://www.cs.nott.ac.uk
/˜rzb/research/transport/data/nbport.zip.

17

5.1 Benchmark instances

5.1.1 Real-life instances

A total of 15 real-life instances were extracted from the real-life problem data
provided by the company. The original data contains three month demands
from February to May 2012. Since the time window of most shipments ranges
from 2 to 8 shifts, these instances have three planning horizons of 4, 6 and
8 shifts (the instance name, planning horizon and commodity size are given
in Table 3).

Table 3: Some details of the 15 real-life instances.
instance no. of shifts total commodity units
NP4-1 4 465
NP4-2 4 405
NP4-3 4 526
NP4-4 4 565
NP4-5 4 765
NP6-1 6 1073
NP6-2 6 920
NP6-3 6 384
NP6-4 6 746
NP6-5 6 557
NP8-1 8 913
NP8-2 8 827
NP8-3 8 786
NP8-4 8 1008
NP8-5 8 798

5.1.2 Artificial instances

In addition to the real-life instances, we have also created a total of 17 ar-
tificial instances with controlled demand parameters in terms of commodity
quantity, load (im-)balance and time windows. The number of available
trucks is set to n = 100. The other parameters (nodes, distance matrix,
time matrix, operation time, etc.) remain the same. More specifically, we
distinguish emergent tasks and non-emergent tasks. A transportation task
is defined as emergent if the difference of its available time and deadline is
less than 10 hours 1. we also measure whether the transportation demand of

1The 10-hour threshold is based on consultations with the port operators.

18

a problem is balanced or not in both space and time through the following
index:

B =
1

|V |

|V |
∑

i=1

∑

s∈S

|Isi −Os
i |

where |V | is the total number of physical nodes (i.e. docks). Isi and Os
i

are respectively the total incoming and outgoing commodities at node i dur-
ing shift s. The following 4 types of features are used in creating the test
instances.

• Tight instance: an instance is considered having “tight” time-windows
if 70%-80% of its commodities are emergent.

• Loose instance: an instance is defined as “loose” if up to 30% of its
tasks are emergent.

• Balanced instances are defined by a balance index B. An instance is
“balanced” if B is no more than 30.

• Unbalanced instance has a balance index B great than 30.

With 2 different planning horizons (4, and 8 shifts), we have a total of 8
combinations. For each combination, 2 instances are created, resulting in a
total of 16 instances. In addition, we also created a very large instance with
8 shifts and 2000 commodities. Details of these instances are given in Table
4.

5.2 Computational results

Gurobi 5.6 was used to solve the reduced problem directly with the default
algorithm setting. The experiments were run on a PC with Intel i7 3.40GHZ
processor (8 cores) and 16GB RAM. Although the total distance is chosen as
the objective for the mathematical model (see Section 4.2), the final solution
is evaluated in terms of the heavy load distance rate (HLDR), which is the
preferred efficiency indicator in practice. HLDR is defined as follows:

HLDR =
loaded distance

total travel distance
(22)

Since containers are shipped to their destinations directly, the total amount
of the loaded distance is fixed for a given commodity set K. Therefore,
HLDR is equivalent to the objective function (11) as far as optimisation is
concerned since minimising the total travel distance will also improve HLDR.

19

Table 4: The list of artificial instances
instance configuration no. of shifts total commodity units
LB4-1 Loose,Balanced 4 484
LB4-2 Loose,Balanced 4 396
TB4-3 Tight, Balanced 4 282
TB4-4 Tight, Balanced 4 368
LU4-5 Loose,Unbalanced 4 448
LU4-6 Loose,Unbalanced 4 479
TU4-7 Tight, Unbalanced 4 217
TU4-8 Tight, Unbalanced 4 354
LB8-1 Loose,Balanced 8 592
LB8-2 Loose,Balanced 8 657
TB8-3 Tight, Balanced 8 497
TB8-4 Tight, Balanced 8 621
LU8-5 Loose,Unbalanced 8 551
LU8-6 Loose,Unbalanced 8 559
TU8-7 Tight, Unbalanced 8 607
TU8-8 Tight, Unbalanced 8 525
Large Mixed, Unbalanced 8 2614

For brevity, we denote our three-stage method as hybrid method. We
compare its results against a reactive shaking variable neighbourhood search
(VNS) and a simulated annealing hyper-heuristic method (SAHH) (Chen
et al., 2013). VNS and SAHH were run on a PC with 2.8GHz Xeon processor
and 5GM memory. The computational time limit is 20 minutes per shift for
VNS and 15 minutes per shift for SAHH. Therefore, for a 4-shift instance,
VNS requires 80 minutes and SAHH requires 60 minutes.

5.2.1 Computational results for real-life instances

Table 5: The HLDR results of our hybrid method for 4-shift instances.
NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

total
distance 13508.5 16635.5 16878.5 21886 26731
time(s) 33301 15742 11178 18537 20647
hybrid 89.2% 69.2% 78.6% 70.0% 79.3%
VNS 83.2% 69.2% 77.1% 68.5% 80.7%
SAHH 83.2% 69.3% 76.2% 69.0% 80.8%

20

Table 6: The HLDR results of our hybrid method for 6-shift instances.
NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

total
distance 34054.5 33316 16191.5 26260 16880.5
time(s) 160079 138486 3978 58898 104446
hybrid 82.7% 75.0% 66.1% 80.5% 83.2%
VNS 79.3% 72.9% 64.2% 80.3% 77.7%
SAHH 80.5% 74.1% 65.8% 80.2% 78.8%

Table 7: The HLDR results of our hybrid method for 8-shift instances.
NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

total
distance 35685 30633 28314 44224 25451.5
time(s) 148067 147241 121074 66438 131369
hybrid 72.5% 76.8% 76.7% 61.7% 75.8%
VNS 74.6% 74.1% 76.1% 62.1% 74.6%
SAHH 74.7% 74.7% 76.0% 62.1% 73.3%

The computational results for the real-life instances are given in Tables
5,6 and 7. Values in bold represent the best results. It can be seen from the
table that for most of the instances, the hybrid 3-stage method outperformed
both VNS and SAHH. Taking NP4-1 as an example, the improvement is as
much as 6.0%, which translates into nearly 1000km saving in distance in 2
days. We can be fairly confident in saying that, overall, the proposed hybrid
method could produce much better solutions to these real-life instances when
compared to the recent multi-neighbourhood metaheuristic approaches.

For 4 instances (NP4-2, NP4-5, NP8-1, and NP8-4), the hybrid method
is outperformed by either SAHH or VNS. However, the margin is relatively
small. Note that our hybrid method does not guarantee the optimal solu-
tion because of the approximations made in the first and last stage of the
approach. More specifically, in the first stage of the hybrid method (see Sec-
tion 4.3), nodes BLCTZS and DXCTE were merged as a super node and
its service time was set to the mean value of the service times of BLCTZS
and DXCTE. However, because the service times for BLCTZS and DXCTE
are very different (in our setting, they are 60 minutes and 5 minutes re-
spectively), using the mean service time (33 minutes) could lead to either
infeasibility (which needs to be handled in stage 3) or inferior solutions. In
order to mitigate this problem, we replaced the simple mean service time
for the super node to the weighted average service time, with the weights

21

being proportional to the number of operations at the corresponding phys-
ical nodes. Therefore, all the remaining experiments in Section 5.2.2 were
conducted with this new setting.

5.2.2 Computational results for artificial instances

Table 8: The computational results by the hybrid method for artificial in-
stances in comparison with VNS and SAHH (Chen et al., 2013).

instance hybrid method VNS SAHH
HLDR(%) distance time(s) HLDR(%) HLDR(%)

LB4-1 77.6 15763.0 13438 77.1 76.4
LB4-2 83.4 14319.0 3812 79.3 78.1
TB4-3 68.9 10866.5 1415 67.5 67.9
TB4-4 72.4 12507.5 186 67.1 66.7
LU4-5 63.2 18499.5 1590 59.3 58.8
LU4-6 65.3 20315.5 1783 66.8 67.2
TU4-7 49.2 13032.5 79 46.6 46.6
TU4-8 54.3 17024.5 138 51.8 51.8
LB8-1 95.1 18132.5 138988 94.1 93.0
LB8-2 88.7 22834.0 157354 88.1 87.8
TB8-3 67.8 21337.5 148 66.7 66.8
TB8-4 61.6 28167.0 561 61.3 61.1
LU8-5 71.7 21226 4380 61.4 61.9
LU8-6 67.9 23261.0 13202 65.1 64.7
TU8-7 60.9 31094.0 140 53.2 53.2
TU8-8 49.9 27406.0 66 48.5 48.5
Large n.a.* n.a.* 48h 56.1 56.5

*:The algorithm fails to solve the problem after 48 hours.

The computational results for the artificial instances by different algo-
rithms are given in Table 8. The best results are highlighted in bold. It can
be seen that the 3-stage hybrid method was able to obtain best overall objec-
tive results for all the instances except two, whose performance seems to be
improved further by the weighted average service time. Again the better per-
formance was achieved at the expenses of more computational time. Gener-
ally, the proposed method can solve most “tight” instances fairly quickly but
struggled for some of “loose” instances. This is not surprising since “tight”
time-window constraints actually help speedup the search by producing bet-
ter bounds for an integer programming solver. This is in direct contrast to

22

the metaheuristic methods which often struggle for highly constrained in-
stances. When the problem size, in terms of commodity size, increased to
over 2000, the proposed hybrid method failed to solve the problem while
both VNS and SAHH can still produce feasible solutions with significantly
less computational time. In this sense, the proposed hybrid method is not a
complete replacement for, but rather a nice complementation to the existing
metaheuristic methods. The proposed algorithm would be the preferred so-
lution method for small or tightly constrained instances while large and less
constrained instances should be solved by the existing metaheuristics.

In terms of the transportation efficiency (i.e. HLDR), it can be observed
that generally a balanced demand can contribute to a higher HLDR, which
is consistent with the observation made by Chen et al. (2013). Also it can
be seen that “tightness” in the time window of transportation tasks affected
the HLDR negatively. The reasons are twofold: firstly, similar to the vehicle
routing problem with time windows, there are less flexibilities to coordinate
different transportation loads to improve HLDR when a task is highly con-
strained by time. Secondly, although overall transportation demand in each
shift may be balanced, tight time windows of tasks will cause unbalanced
demand during that particular time window, which leads to a low HLDR.

5.3 Computational time

Table 9: A comparison of HLDR results by the hybrid mehtod against meta-
heuristics with longer computational time (slow version). The results of the
fast version of VNS and SAHH are from Section 5.2.

Fast version Slow version
instance time (s) hybird VNS SAHH VNS SAHH
NP4-1 33301 89.2 83.2 83.2 82.9 83.2
NP6-3 3978 66.1 64.2 65.8 63.3 65.3
NP8-3 121074 76.7 76.1 76.0 76.0 76.0
LB4-1 13438 77.6 77.1 76.4 76.6 76.8
LB4-2 3812 83.4 79.3 78.1 79.4 79.4
LB8-1 138988 95.1 94.1 93.0 92.9 91.6
LB8-2 157354 88.7 88.1 87.8 89.9 90.8
LU8-5 4380 71.7 61.4 61.9 67.6 67.7
LU8-6 13202 67.9 65.1 64.7 64.2 66.0

As indicated in the previous section, the hybrid method requires more
than 10 hours computation for many instances (except some of tightly time-
constrained instances). However, the computational time by both VNS and

23

SAHH is less than 20 minutes per shift. For a fairer comparison, additional
experiments were also carried out with same amount of computational time
permitted for VNS and SAHH on some instances. Due to the long experi-
ments time, a subset of 9 instances were selected for this experiment. 3 of
them were selected from real-life instances for which the proposed hybrid
method outperformed metaheuristics with shorter running time. The rest
were chosen from artificial instances for which the hybrid algorithm took
longer time in solving than the metaheuristics did. In this particular exper-
iment, both VNS and SAHH were permitted the same amount of running
time by the hybrid algorithm (see Table 9) and their results are also given in
the same table, along with the previous results with a short computational
time (i.e. 20 minutes per shift).

The results showed that, with the additional computational time, both
VNS and SAHH are able to improve the results for some instances (e.g. LB8-
2, LB8-5). However, for many other instances, they fail to make noticeable
improvement. In fact, to our surprise, some of the results are even marginally
worse than before (e.g. NP4-1, NP6-3, LB8-1, LU8-6). We believe that this
was caused by the fact that the parameters by both VNS and SAHH were
finely tuned for the previous setting only and do not perform well for the new
setting. This sensitivity in parameters, again, is a common criticism for many
metaheuristic approaches. It’s interesting to observe that SAHH slightly out-
performed VNS both for the fast version and the slow version. We believe
this was probably contributed by the learning mechanism within the simu-
lated annealing hyper-heuristic that provides better adaptation than VNS
does by dynamically choosing between different neighbourhood functions for
different instances and experiment conditions. A more profound analysis of
neighbourhood selection and adaptation will be out of the scope of this pa-
per. Readers are encouraged to refer to the latest hyper-heuristic research
which has gradually gained more and more research attention recently.

In terms of practical applications, although the hybrid method may be
too long for direct utilisation, the problem can be resolved through multi-
core parallel computing facilities which have recently become available at
acceptable costs either through rented clouding services or through building
a moderate low-cost cluster.

6 Lower Bound

Through the computational analysis above it can be seen that the HLDR,
which is the main performance indicator used by the company, can be much
lower for some instances than others. For practical applications, it is im-

24

portant to identify the causes for such low HLDR values. Is it because of
the nature of the instances or the inability of finding near optimal solutions
by our approaches? Our conjecture is that these relatively low HLDR val-
ues was caused by the unbalanced demand distribution in space and time
nodes. By demand imbalance, we mean the difference between the inbound
and outbound demands for each node at a particular shift. In this section, we
analyse to what extent that the load imbalance has contributed to this. To
do this we solve a simplified problem in which the time window requirements
of each shipment (i.e. arrival time and delivery deadline) are relaxed to the
corresponding shift in which the time window lies. For ease of modelling, we
also neglect the empty truck movements from/to the depot in computing the
lower bound.

To do this, we define υ(k) and ω(k) respectively be the shift that com-
modity k becomes available and the shift that the delivery deadline of k lies
in. Denote uks

ij be the flow of commodity k on arc (i, j) during shift s and vsij
be the number of vehicles covering arc (i, j) during shift s. In addition, the
constraint of all trucks returning to the depot is discarded to exclude the fac-
tor of inappropriate depot location. The relaxed problem can be formulated
as the following service network design problem.

min
∑

s

∑

(i,j)

dijv
s
ij (23)

subject to

ω(k)
∑

s=υ(k)

∑

j

uks
ij −

ω(k)
∑

s=υ(k)

∑

j

uks
ji = bki ∀k, ∀i (24)

∑

j

vsij −
∑

j

vsji = 0 ∀s, ∀i ̸= 0 (25)

∑

k

uks
ij ≤ vsij ∀(i, j), ∀s (26)

where constraints (24) are the flow conservation constraints, (25) are the
truck balance constraints and (26) are the capacity constraints. Note that
the lower bound model (in terms of total distance) has all 9 nodes shown
in Figure 1 without merging any node. The bound results (in terms of
HLDR) for the 15 real-life are given in Table 10 in comparison with the
results obtained through the hybrid method in section 4.2. Similarly Table
11 shows the comparison of the hybrid method with the lower bounds for the
random artificial instances.

25

Table 10: The results of our hybrid algorithm for the real-life instances when
compared with the lower bound

instance lower bound hybrid algorithm gap(%)∗

NP4-1 13322.0 13508.5 1.4
NP4-2 16386.0 16635.5 1.5
NP4-3 16663.5 16878.5 1.3
NP4-4 20754.0 21886.0 5.2
NP4-5 26121.0 26731.0 2.3
NP6-1 33566.0 34054.5 1.4
NP6-2 32550.0 33316.0 2.3
NP6-3 16000.5 16191.5 1.2
NP6-4 26096.5 26260.0 0.6
NP6-5 16639.0 16880.5 1.4
NP8-1 33568.0 35685.0 5.9
NP8-2 30333.0 30633.0 1.0
NP8-3 27420.5 28314.0 3.2
NP8-4 43617.0 44224.0 1.4
NP8-5 25350.0 25451.5 0.4

*gap(%)=(ObjectiveValue-LowerBound)/ObjectiveValue * 100%

Table 11: The results of our hybrid algorithm for the random artificial in-
stances when compared with the lower bound.

instance lower bound hybrid algorithm gap(%)
LB4-1 15383.5 15763.0 2.4
LB4-2 13837.0 14319.0 3.4
TB4-3 8914.0 10866.5 18.0
TB4-4 10198.5 12507.5 18.5
LU4-5 15770.5 18499.5 14.8
LU4-6 17817.0 20315.5 12.3
TU4-7 9998.0 13032.5 23.3
TU4-8 14565.5 17024.5 14.4
LB8-1 17601.5 18132.5 2.9
LB8-2 20656.0 22834.0 9.5
TB8-3 16620.5 21337.5 22.1
TB8-4 18772.0 28167.0 33.4
LU8-5 20507.5 21226.0 3.4
LU8-6 21999.0 23261.0 5.4
TU8-7 26922.5 31094.0 13.4
TU8-8 24227.0 27406.0 11.6

26

For the real-life instances it can be seen from the Table 10 that the re-
sults of the proposed method are very close to the lower bounds. For some
instances, the difference (gap%) is smaller than 2%. This is particularly true
for the instances with relatively low HLDR (e.g. NP4-2, NP6-3 and NP8-4).
It is indeed the demand imbalance that caused low transport efficiency. For
some instances, the gaps to the lower bound are bigger (e.g. NP8-1). How-
ever, this observation cannot be repeated for the random artificial instances
(see Table 11), for which the gap can be as large as 33.4%. This suggests that
many artificial instances have very different characteristics to those shown
by the real-life instance. Although small gap to the lower bound can prove
the high performance of the algorithm, one cannot conclude that a big gap
to the lower bound implies poor solutions. This is because the bound for
these instances may be poor. Generally the gap is much bigger for tight
instances than for loose instances. Indeed, the time window relaxation made
in lower bound model leads to very different problems for the original tight
instances. In addition, the lower bound model also excluded the constraint
of using the depot as the sole departure node at the start of each shift, whose
inclusion may have caused long-distance empty truck returning to the depot.
For real-life instances, the depot is in fact very close to busier ports and in
most cases trucks return to the depot fully loaded. For these cases, tighter
bounds are needed. This would be out of the scope of this paper but could
be an interesting research direction in the future.

It should be noted that one would only need to use the 3-stage hybrid
method when the problem is too large to be handled directly. For small and
moderate instances (i.e. less than 7 nodes), only the second stage is required
and the exact solutions can be obtained.

7 Conclusions

This paper presents a set covering integer linear programming model for a
bidirectional multi-shift full truckload shipment problem. The problem is
drawn from a real-life container transshipment problem at a large container
port. Because of the special structures of the problem (in particular the much
longer planning horizons), existing methods are not efficient for the problem.
We have shown that through some pre-processing and post-processing, the
model can be applied to solve the real-life problems. In particular, compared
with the node-based formulations used in some of the container drayage
problems, the proposed formulation utilises commodity flows to represent
containers with the same O-D pair and time constraints, which helps reduce
the search space significantly. In order to investigate what has caused the

27

low loaded distance rate for some instances, the problem is relaxed to a
network design problem which provides a lower bound. It was shown that
the proposed model and method is able to find solutions that are very close to
the lower bounds. In order to improve the transportation efficiency further,
the problem needs to be solved at higher level where load imbalance has to
be addressed.

It was found that for real-life instances, the solution obtained from the
set covering model is very close to the lower bound, suggesting that the time
window may not be the driving factor for the low transport efficiency but
the demand imbalance between different ports is.

The model can be solved efficiently for most ”tight” instances but is found
to be computationally expensive for instances with “loose” time windows.
In future, it will be interesting to investigate other techniques to address
this problem, including multi-threading parallel computing and other novel
integer optimisation techniques to speedup the solution process.

Acknowledgement

This work is supported by the National Natural Science Foundation of China
(NSFC 71471092, NSFC-RS 71311130142), Ningbo Sci&Tech Bureau (2011B81006,2012B10055)
and the Internal Doctoral Innovation Centre programme.

References

R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum. A simulated
annealing hyper-heuristic methodology for flexible decision support. 4OR
- A Quarterly Journal of Operations Research, 10:43–66, 2012a.

R. Bai, G. Kendall, R. Qu, and J. Atkin. Tabu assisted guided local search
approaches for freight service network design. Information Sciences, 189:
266–281, 2012b.

Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert
Laporte. Static pickup and delivery problems: a classification scheme and
survey. Top, 15(1):1–31, 2007.

K. Braekers, A. Caris, and G.K. Janssens. Time-dependent routing of
drayage operations in the service area of intermodal terminals. In In-
ternational Conference on Harbour, Maritime and Multimodal Logistics
Modelling and Simulation, pages 29–36, 2012.

28

K. Braekers, A. Caris, and G.K. Janssens. Integrated planning of loaded and
empty container movements. OR Spectrum, 35(2):457–478, 2013.

Kris Braekers, An Caris, and Gerrit K. Janssens. Exact and meta-heuristic
approach for a general heterogeneous dial-a-ride problem with multiple
depots. Transportation Research Part B: Methodological, 67(0):166 – 186,
2014a. ISSN 0191-2615.

Kris Braekers, An Caris, and Gerrit K. Janssens. Bi-objective optimization
of drayage operations in the service area of intermodal terminals. Trans-
portation Research Part E: Logistics and Transportation Review, 65(0):50
– 69, 2014b. Special Issue on: Modelling, Optimization and Simulation of
the Logistics Systems.

Jianjun Chen, Ruibin Bai, Rong Qu, and G. Kendall. A task based approach
for a real-world commodity routing problem. In Computational Intelligence
In Production And Logistics Systems (CIPLS), 2013 IEEE Workshop on,
pages 1–8, April 2013.

Qingfeng Chen, Kunpeng Li, and Zhixue Liu. Model and algorithm for an
unpaired pickup and delivery vehicle routing problem with split loads.
Transportation Research Part E: Logistics and Transportation Review, 69
(0):218 – 235, 2014. ISSN 1366-5545.

U. Derigs, M. Pullmann, U. Vogel, M. Oberscheider, M. Gronalt, and
P. Hirsch. Multilevel neighborhood search for solving full truckload rout-
ing problems arising in timber transportation. Electronic Notes in Discrete
Mathematics, 39:281–288, 2012.

Francesco Ferrucci and Stefan Bock. Real-time control of express pickup and
delivery processes in a dynamic environment. Transportation Research
Part B: Methodological, 63(0):1 – 14, 2014. ISSN 0191-2615.

Gabriel Gutierrez-Jarpa, Guy Desaulniers, Gilbert Laporte, and Vladimir
Marianov. A branch-and-price algorithm for the Vehicle Routing Problem
with Deliveries, Selective Pickups and Time Windows. European Journal
of Operational Research, 206(2):341–349, OCT 16 2010.

Dominik Kirchler and Roberto Wolfler Calvo. A granular tabu search al-
gorithm for the dial-a-ride problem. Transportation Research Part B:
Methodological, 56(0):120 – 135, 2013. ISSN 0191-2615.

29

R. Liu, Z. Jiang, X. Liu, and F. Chen. Task selection and routing problems
in collaborative truckload transportation. Transportation Research Part
E: Logistics and Transportation Review, 46(6):1071–1085, 2010.

Ran Liu, Xiaolan Xie, Vincent Augusto, and Carlos Rodriguez. Heuristic
algorithms for a vehicle routing problem with simultaneous delivery and
pickup and time windows in home health care. European Journal of Op-
erational Research, 230(3):475 – 486, 2013. ISSN 0377-2217.

Hokey Min. The multiple vehicle routing problem with simultaneous delivery
and pick-up points. Transportation Research Part A: General, 23(5):377–
386, 1989.

Jenny Nossack and Erwin Pesch. A truck scheduling problem arising in
intermodal container transportation. European Journal of Operational Re-
search, 230(3):666 – 680, 2013. ISSN 0377-2217.

D.G. Pandelis, C.C. Karamatsoukis, and E.G. Kyriakidis. Finite and infinite-
horizon single vehicle routing problems with a predefined customer se-
quence and pickup and delivery. European Journal of Operational Research,
231(3):577 – 586, 2013.

Julie Paquette, Jean-François Cordeau, Gilbert Laporte, and Marta M.B.
Pascoal. Combining multicriteria analysis and tabu search for dial-a-ride
problems. Transportation Research Part B: Methodological, 52(0):1 – 16,
2013.

David Pisinger and Stefan Ropke. A general heuristic for vehicle routing
problems. Computers & Operations Research, 34(8):2403–2435, 2007.

Sebastian Sterzik and Herbert Kopfer. A tabu search heuristic for the inland
container transportation problem. Computers & Operations Research, 40
(4):953 – 962, 2013.

Lixin Tang, Jiao Zhao, and Jiyin Liu. Modeling and solution of the joint
quay crane and truck scheduling problem. European Journal of Operational
Research, 236(3):978–990, 2014.

Paolo Toth and Daniele Vigo. The vehicle routing problem. Siam, 2001.

Xiubin Wang and Amelia C Regan. Local truckload pickup and delivery with
hard time window constraints. Transportation Research Part B: Method-
ological, 36(2):97–112, 2002.

30

Nicole Wieberneit. Service network design for freight transportation: a re-
view. OR Spectrum, 30:77–112, 2008.

David H Wolpert and William G Macready. No free lunch theorems for
optimization. Evolutionary Computation, IEEE Transactions on, 1(1):67–
82, 1997.

Ruiyou Zhang, Won Young Yun, and Ilkyeong Moon. A reactive tabu search
algorithm for the multi-depot container truck transportation problem.
Transportation Research Part E: Logistics and Transportation Review, 45
(6):904–914, 2009.

Ruiyou Zhang, Won Young Yun, and Herbert Kopfer. Heuristic-based truck
scheduling for inland container transportation. OR spectrum, 32(3):787–
808, 2010.

T. Zhang, W.A. Chaovalitwongse, and Y. Zhang. Integrated ant colony and
tabu search approach for time dependent vehicle routing problems with
simultaneous pickup and delivery. Journal of Combinatorial Optimization,
28(1):288–309, 2014.

31

