P-f

Probability in the Engineering and Informational Sciences, 8, 1994, 291~307. Printed in the U.S.A.

A SET OF ALGORITHMS
FOR THE INCOMPLETE
GAMMA FUNCTIONS

N. M. TEMME

CWI/, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

This paper gives fast and reliable algorithms for the numerical evaluation of the
incomplete gamma functions and for auxiliary functions, such as functions
related with the gamma function and error function. All these functions are of
basic importance in applied probability problems.

1. INTRODUCTION

The incomplete gamma integral, and its equivalent, the chi-squared distribution,
is of basic importance in applied probability problems arising in inventory,
queueing, and reliability. The principle idea behind this paper is to make avail-
able reliable, fast, and simple algorithms with limited accuracy (say, nine sig-
nificant digits) that are easily implemented by the practitioner in applied
probability. This note intends to fulfill a long-felt need for such algorithms. We
give a basic set of algorithms for computing the incomplete gamma integral,
including programs for the gamma function and the error functions.

2. AUXILIARY GAMMA FUNCTIONS

The Euler gamma function is defined by
T'(x) =f *te='dt, x> 0. 2.1
[4]

@ 1994 Cambridge University Press 0269-9648/94 $5.00 + .00 291

292 N. M. Temme

We consider positive values of x. We give approximations for I' (x) and for aux-
iliary functions. As a rule, we give nearly-best Chebyshev rational approxima-
tions for the functions. The rational approximations all give answers accurate
to nine significant digits. The coefficients are given in Pascal programs and are
computed by the Remes algorithm, with accuracy of 19 significant digits.

2.1. The Function I'(x)
We need an algorithm for the “tempered” gamma function I'(x) defined by
T(x) = VZre“x*iT*x), x> 0. 2.2)

This function is of fundamental importance in algorithms when x is large,
because, on account of Stirling’s formula, we have I'"(x) = 1 + O(1/x), as
x — oo. For instance, when ratios of gamma functions are used, it is all-
important to cancel the dominant parts in the fractions. The dominant part of
the gamma function usually causes overflow, whereas the result of a combina-
tion of gamma functions may be representable.

For x > 1, we use rational approximations; for x € (0,1), we use the
recursion

T+ 1).

1
I(x) = e“‘(x+ 1)”’

In this way the algorithm is independent from other algorithms for the gamma
function.

2.2. Another Auxiliary Function for the Gamma Function

In our algorithm for the incomplete gamma functions, we need the evaluation
of 1/T(1 4+ x) — 1 for small values of |x|. In fact, we use the function g(x)
defined by

1

T~ FXx-Del), O0=x=1 2.3)

This representation shows the vanishing of 1/T'(1 +x) ~latx=0,x= 1. On
the interval [0,1], the function g(x) is computed by using a rational function.
In the algorithm for the incomplete gamma function, we also need values on a
neighboring interval, especially on [1,11], which can be obtained by a simple
stable recursion. For x > 2, direct evaluation of 1/T"(1 + x) — 1 is stable when
the gamma function itself is used.

2.3. The Gamma Function

We use a rational approximation on the interval [2,3]. For x € (0,2) and x €
(3,10), we use recursion. For x = 10, we use the asymptotic expansion for the

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS 293

logarithm of the gamma function. We take care of large values, because over-
flow occurs very soon.

The special cases x = n or x = n + 4, n integer, occur very frequently in
practical problems and the gamma function values can be given very easily. For
these reasons we treat these values separately.

2.4. The Logarithm of the Gamma Function

This function is not needed in our programs. We like to draw attention to a
robust algorithm given in Macleod [5]. A program in Fortran gives nine signif-
icant decimals, with good care for underflow and overflow. Also, care is taken
for the vanishing of InI'(x) at x = 1, x = 2. The algorithm is based on ratio-
nal approximations, as given in Cody and Hillstrom [2]. For convenience we
include a Pascal version of Macleod’s algorithm in our collection.

Remark: T (x) and In T (x) may be obtained directly from I'*(x). However, in
that case the computation of the exponential and/or logarithmic function is
needed, which may not be as fast as the direct evaluation by using rational
approximations. Another point is that the special values of InT'(x) at x = 1,
Xx =2, will be inaccurate when taking the logarithm of I" (x).

3. AUXILIARY ALGORITHMS FOR THE EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

3.1. The Function In{1 + x) — x

When we need In(1 + x) for small values of |x|, straightforward use of the stan-
dard log-function gives bad relative accuracy. For instance, when | x| is so small
that 1 + x = 1 (on the computer), In(1 + x) is just equal to 0, while we may
need the correct value, which is of order x + ©(x?). In the case of the incom-
plete gamma functions, we need the evaluation of In(1 + x) — x, which is of
order —ix? + O(x?) when |x| is small. To obtain this quantity, we use a ratio-
nal approximation on the interval [0,1.36]. On [~0.70,0) we use a symmetry
rule, namely, the relation

X
x+1

In(l + x) —x=—[In(l +z) — 7] + xz, z=-

3.2. The Function e* — 1

We also need an algorithm for the evaluation of e* — 1 for small values of |x|.
This can be done by the Taylor series of e*, but again we use rational
approximations - in this case on the interval [In i,In 2]. Note that in sinh x =
(e™ —e™)/2 also loss of accuracy occurs when |x| is small. However, when
we have y = e¥ — 1, a stable representation is sinhx = §y(y + 2)/(y + 1).

294 N. M. Temme

3.3. The Function x?e ™ */I'(a + 1)

The function

xlle —-X
D(a,x) = ———
F(a+ 1)
is the dominant part in many representations of the incomplete gamma func-
tions. Especially when @ and x are large, the computation of this quantity needs
some care. We write D(a,x) in the form

e ~4lp—Intl+u)] X —-a

GraTa) ~ T a7

where I'(x) is defined in Eq. (2.2). When |pu]| is small, the computation of
—In(1 + p) in the exponential function should be done, for instance, by using
the algorithm mentioned in Section 3.1. We want to point out that, for large
parameters a,Xx, the accuracy in the computations of the incomplete gamma
functions strongly depends on the evaluation of the function D(a,x). Represen-
tation (3.1) does not solve all problems, because the well-known loss of accu-
racy in evaluating the exponential function for a large argument is still a crucial
point.

D(a,x) =

3.0

4. THE ERROR FUNCTIONS
We define

2 < 2 2 had 2
erfz = ——f e dt, erfcz=1—-erfz= —f e ' di. 4.1
77 s 77 “.1)

These functions are used in statistics and probability theory as the normal dis-
tribution functions, with somewhat different notation. For instance, we have

Z(x) = —\/,;:We—%xl, P(x):fx Z(1) dr, Q(x)zf.mZ(t)dt. @.2)

It easily follows that
P(x) = jerfe(~x/N2), Q(x) = }erfe(x/v2). “.3)
We have the symmetry relations
erf(—x) = —erf x, erfc(—x) =2 — erfc x.

The error functions are entire functions.

We base the algorithm on rational approximations of Cody [1]. The stan-
dard method for real x is to compute directly erf x and erfc x indirectly (as 1 —
erf x) when erf x is smaller in value. Otherwise, erfc x is computed directly. We
have erf x, = erfc x, when x; = 0.47, and we take 0.50 as the changeover point.

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS 295

Another feature of our algorithm is that we can obtain e** erfc x when x is
positive. This is of great importance in numerical algorithms, because the com-
putation of erfc x causes underflow for quite moderate values of x, due to the
dominant term e~*" in the asymptotic behavior of erfc x.

This all is handled in one master algorithm:

errorfunction (x: double; erfc, expo: boolean): double;
where the booleans erfc and expo mean the following:

¢ if erfc = true and expo = false then errorfunction computes erfc x;

o if 2.erfc = true and expo = true and x > 0 then errorfunction computes
e* erfcx; and

¢ if erfc = false then errorfunction computes erf x.

In three special-purpose algorithms, the use of errorfunction is explained
further. The rational approximations are accurate to nine significant decimals.

5. THE INCOMPLETE GAMMA FUNCTIONS
We define

X ==
v(a,x) =f e dt, F(a,x)zf tle~t dr. 5.1
0 X
We assume that ¢ and x are positive numbers. It is useful to define the
normalizations

T'(a,x)
I'(a) ’

P(a,x) = VF(‘(’;;) O(a,x) =

(5.2)

of which the sum equals unity.
In statistics and probability theory, one is more familiar with the chi-
squared probability functions, which are defined by

P(X2|y) :P(a’x)’ Q(XZ!V) :Q(a,x)’ y=2a, X2=2x. (5-3)

In other words,

1 X i
Ply2 — _____f (2l =12 g,
(X |V) 2"/211(%1/) o
| . 5.4)
2 - tv/ZvleAl/Z dl«
Q(X |V) 2u/211(-%y) j;:

When » is even, we have the Poisson distribution, which reads

c—1 J
Q(XZIV) = E:e "’71 ¢ =

PP
j=0 j!

296 N. M. Temme

5.1. Gautschi’s Algorithm

Our algorithm for the computation of P(a,x),Q(a,x) is partly based on Gaut-
schi [4]. Another interesting paper in the same spirit is DiDonato and Morris
[3]. A rather short Fortran program appeared in the statistical literature in Shea
[6], which also compared the results with Gautschi’s Fortran program.

We will explain a few aspects of our algorithm. The quarter plane {a > 0,
Xx > 0} is divided in two parts, roughly by using the diagonal ¢ = x with small
corrections at the origin. When a = x, P(a,x) is computed directly, and Q(a, x)
indirectly as 1 — P(a,x). When x > a, Q(a,x) is computed directly.

P(a,x) is computed by the Taylor series:

x%e™ 2 T'(a+1)

P(a,x) = ——— > x"

Ta+ 1) 2" Th+a+l) (5.5)

which is stable and converges quite fast when a = x. When both parameters are
large and of the same order, the convergence slows down. In that case we mod-
ify Gautschi’s algorithm (see Section 5.2).

For small values of x, that is, when x < 1, Q{a, x) is computed by using the
representation
0 (-1)nxn

xﬂ
Qla,x) =1 — T >,

= (a+mn!’

in which a different Taylor expansion of P(a,x) is used. The crucial part of the
algorithm is the computation of 1 — x%/T'(a + 1) (obtained from the first term
of the series). When « is small, loss of accuracy may occur in the subtraction;
also, when x is near unity and ¢ is near zero or unity, instabilities occur. Writing

1 x4 - |; 1 [x4 — 1]
e+ 1) Fa+ 1) ' +a)’
we can control the instabilities by computing the terms between square brack-
ets separately. For computing these terms, the auxiliary algorithms in the pre-
vious sections are used.

When x > 1, x > a, the function Q(a,x) is computed by using Legendre’s
continued fraction:

x%e~/T(a
0(a,x) = e
- a
X+
1+ !
2—a
X +
1+ 2
3—a
x +
1+,

(5.6)

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS 297

This expansion converges for all x > 0 and any value of @ (also for complex val-
ues of @ and x). The continued fraction is evaluated by turning the fraction into
a series, as described in Gautschi [4]. Convergence is fast when x > a. Again,
convergence slows down when both x and « are large and of the same order.

5.2. Evaluation Based on Uniform Expansions

When a is large, the functions P(a,\a), O (a,\a) change rapidly when X crosses
the value 1. This sudden change in behavior is the cause of bad convergence of
standard expansions (5.5) and (5.6). The asymptotic behavior of the incomplete
gamma functions can be described by using the error function (the normal dis-
tribution function). In Temme [7] uniform expansions of the incomplete gamma
functions in terms of the error function are given; in Temme [8] a numerical
algorithm is described based on the uniform representations. We summarize the
basic elements of this algorithm.
Let n be the real number defined by

Iy =N—=1-=InAx, >0, sign(n) = sign(\ — 1).
Then we write, with X\ = x/a,

Q(a,x) = } erfe(nva/2) + Ry(n), (5.7)
P(a,x) = }erfc(—nVa/2) = R, (n).

The error functions are the dominant terms that describe the transition at a =
x. Observe that the property P + Q = 1 is reflected in the error functions,
because erfc x + erfc(—x) = 1, and in having the same remainder R,(n). We
write
R) e‘%a"lz

a(n - r——-—zﬂ_a
From our papers already quoted, it follows that S,(n) is slowly varying for all
7 € R, that is, for all A € (0,e), where A = x/a. We expand

Sa(m). (5.8)

S,(n) =

m 5.9

m

()mO

In Temme [8] we showed that the coefficients b,, can be computed by the
recursion

+1
b (@) = f + ’—”~a— b (@), (5.10)

where the numbers f,, are given by

1 -
Jo=1, fHi=—% fi=1, ==t fi= S5 = m3-

Further coefficients can be generated by the recursion

298 N. M. Temme

m+1lim-—1 m_lfj—lfmﬂ—j
= e | e [y + 3 HEMmES s g
I m+2| 3m ot Z; m+2—j

The backward recursion for b,, is stable; we can start with the false initial
values

bu(a) =f1«'+1: bu—l(a) :fzn (5'11)

for some value ». In the algorithm we use » = 14. The backward recursion
scheme converges better as @ increases. Here, “convergence” means that the
computed values of b, (a) obtained by recursion (5.10), and needed in the
series in Eq. (5.9), are accurate enough for obtaining the desired precision.

We want to obtain nine-digit accuracy, and we use Eq. (5.9) for gy €
(—0.92,0.19). This corresponds with (about) A € (0.8,1.2). Then, when we take
a = 25 and only ten terms in the series of Eq. (5.9), we can obtain results that
are accurate to nine decimal digits for the computation of P(a,x), Q(a,x) by
using the representations of Eq. (5.7).

References

1. Cody, W.J. (1969). Rational Chebyshev approximations for the error function. Mathematics of
Computation 23: 631-637.

2. Cody, W.J. & Hillstrom, K.E. (1967). Chebyshev approximations for the natural logarithm of
the gamma function. Mathematics of Computation 21: 198-203.

3. DiDonato, A.R. & Morris, A.H., Jr. (1986). Computation of the incomplete gamma functions.
ACM Transactions on Mathematical Software 12: 377-393.

4. Gautschi, W. (1979). A computational procedure for incomplete gamma functions. ACM Trans-
actions on Mathematical Software 5: 466-481.

5. Macleod, A.J. (1989). A robust and reliable algorithm for the logarithm of the gamma function;
algorithm AS 245. Applied Statistics 38: 397-423.

6. Shea, B.L. (1988). Chi-squared and incomplete gamma integral. Applied Statistics 37: 466-473.

7. Temme, N.M. (1979). The asymptotic expansions of the incomplete gamma functions. SIAM
Journal on Mathematical Analysis 10: 239-253.

8. Temme, N.M. (1987). On the computation of the incomplete gamma functions for large values
of the parameters. In E.J.C. Mason & M.G. Cox (eds.), Algorithms for approximation. Pro-
ceedings of the IMA-Conference, Shrivenham, July 15-19, 1985, Oxford, Clarendon, pp. 479-489.

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS 299

APPENDIX: PASCAL PROGRAMS

The Pascal programs were designed on a Macintosh in Think Pascal. No special features
of this compiler are used; units are not used. We expect that the program will run on
many other compilers and that no significant changes are needed.

The user has to specify three constants:

* machtol is the machine precision: the smallest constant such that 1 + machtol is
different from unity.
¢ giant is the upper limit of machine-representable numbers (the “overflow” bound).

* dwarf is the lower limit of machine-representable numbers (the “underflow”
bound).

Of course, these numbers may be slightly larger, smaller, and larger, respectively, than
the exact machine constants of the user’s computer.

program incomgamma;

const
machtol = 1.0e—10;
dwarf = 1.0e—300;
giant = 1.0e+300
pi = 3.1415926535897932385;

type
arrcoeff = array[0..15] of double;

var
a, h, x, y: double; k: integer; eps: real; ak, bk, bm, fm: arrcoeff;
sqrtgiant, sqrtdwarf, Indwarf, Inmachto!l, sqrtmininmachtol:double;
oneoversqrt2mt, explow, sqrtminexplow, exphigh, sqrttwopi: double;
Insqrttwopi, sqrtpi, oneoversqrtpi: double;

procedure computeconstants;
begin
sqrtgiant := sqrt(giant); sqrtdwarf := sqrt(dwarf); Indwarf := In(dwarf);
Inmachtol := In(machtol); sqrtminlnmachtol := sqrt(—Inmachtol);
oneoversqrt2mt := 1 / sqrt(2 * machtol); explow := Indwarf;
sqrtminexplow := sqrt(—explow); exphigh := In(giant); sqrttwopi := sqrt(2 * pi);
Insqgrttwopi := In(sqrttwopi); sqrtpi := sqrt(pi); oneoversqrtpi := 1 / sqripi;
end; {computeconstants}

function ratfun (x: double; n, m: integer): double;
var nl, ml, k: integer; num, den: double;

begin
nt:=n-1;ml:=m-1;
num := ak[n]; for k := nl downto 0 do num := num * x + ak[k];
den := bk[m]; for k := m! downto 0 do den := den * x + bk[k];
ratfun := num / den

end; {ratfun}

300 N. M. Temme

function exmin! (x: double): double;
var y: double;
begin
if x < Inmachtol then y := —1 else if x > exphigh then y := giant else
if (x < —0.69) or (x > 0.41) then y := exp(x) — 1.0 else
if abs(x) < machtol then y := x else

begin
ak[0] := 9.9999999983%0e—1; bk[0] := 1.000000000000e+-0;
ak[1] := 6.652950247674e—2; bk[1] := —4.334704979491e-1;
ak[2] := 2.331217139081e-2; bk[2] := 7.338073943202e—2;
ak([3] := 1.107965764952e—3; bk[3] := —5.00398685069%¢—3;
= x *ratfun(x, 3, 3)
end;
exminl =y
end; {exminl}

function auxin (x: double): double;
var y, z: double; n: integer;

begin
if x = —1 then y := —giant else if (x < —0.70) or (x> 1.36) then y :=In(1 + x) — x
else if abs(x) < machtol then y := —0.5 % sqr(x) else
begin

ak[0] := —4.999999994526¢e—1; bk{0] := 1.000000000000e-+0;
ak[l] := —5.717084236157e—1; bk[1] := 1.810083408290e+0;
ak[2] := —1.423751838241e-1; bk[2] :=9.914744762863e—1;
ak[3] := ~8.310525299547¢—4; bk[3] := 1.575899184525e—1;
ak[4] := 3.899341537646e—5;

if x > 0 then y := sqr(x) * ratfun(x, 4, 3) else

begin
z!i=-x/(1+x)if z>1.36theny := —(In(1 +2) —2) + x*z
else y := —sqr(z) *ratfun(z, 4, 3) + x*z
end
end;
auxln :=y
end; {auxin}

funetion gammastar (x: double): double;
var a, g, s: double; j, k: integer;
begin
if x > 1.0e10 then
begin if x > 1 / (12 * machtol) then g := 1.0else g:= 1.0 + 1 / (12 % x)
end else if x = 12.0 then
begin
ak[0] := 1.00000000094%¢+0; bk[0] := 1.000000000000e+0;
ak[l] := 9.781658613041e—1; bk[1] := 8.948328926305¢e—1;
ak[2] := 7.806359425652¢e—2;
a:=1/x; g:=(ak[0] + a * (ak[1] + a*ak[2])) / (bk[0] + a * bk[1])
end else if x = 1.0 then

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS

begin
ak[0] := 5.115471897484e—2;
ak[l] := 4.990196893575e—1;
ak[2] := 9.404953102900e—1;
ak[3] := 9.999999625957¢—1;

301

bk[0] := 1.544892866413e~2;
bk[1] := 4.241288251916e—1;
bk[2] := 8.571609363101e—1;
bk[3] := 1.000000000000e+0;

g = ratfun(x, 3, 3)
end else if x > dwarf then
begin
a:= 1.0+ 1.0 / x; g := gammastar(x + 1) % sqrt(a) * exp(—1.0 + x * In(a))
end else g := 1.0 / (sqrttwopi * sqrtdwarf);
gammastar = g;
end; {gammastar}

function gamma (x: double): double;
var a, g, s, dw: double; j, k, kI, m: integer;
begin
if x = dwarf then g := 1.0 / dwarf else
begin
k :=round(x); m := trunc(x); kl :=k — 1;
if X = 0 then dw := dwarf else dw := (1.0 + x) * machtol;
if (abs(k — x) < dw) and (x = 15) then
begin g 1= 1.0; for j:=2tokl do g :=g*j end
else if (abs((x — m) — 0.5) < (1.0 + x) * machtol) and (x = 15) then
begin g := sqrtpi; for j:=1tomdo g :=g=*(j — 0.5) end

else
begin
ak[0] := 1.000000000000e+0; bk[0] := —1.345271397926e—1;
ak[1] := —3.965937302325¢~1; bk[l} := 1.510518912977¢+0;
ak{2] := 2.54676616743%—1; bk[2] := —6.508685450017e—1;
ak([3] 1= —4.880928874015e—2; bk[3] := 9.766752854610e—2;
ak[4] := 9.308302710346e—3; bk[4] ;= —5.024949667262e-3;

if x < 1.0 then g :=ratfun(x + 2, 4, 4) / (x* (x + 1.0))
else if x < 2 then g := ratfun(x + 1.0, 4, 4) / x
else if x < 3 then g := ratfun(x, 4, 4)
else if x < 10 then
begin g :=1.0; a := x;
repeat a :=a — 1.0; g:=a*guntil a < 3;
g := g xratfun(a, 4, 4)
end else if x < exphigh then
begin
a:=1.0/sqr(x);
g = (1.0 + a % (—3.33333333333e—-2 + a*9.52380952381e—-3)) /
(12.0%x); a := —x + (x — 0.5) * In(x) + g + Insqrttwopi;
if a < exphigh then g := exp(a) else g = giant;
end else g := giant
end
end;
gamma =g
end; {gamma}

gikliotheek
\ CW Comicam Vot ‘Ms’h:;ﬁéﬁaﬂ

m&smmb

TS

302 N. M. Temme

function auxgam (x: double): double;
{function g(x) in I/T(1+x) =1 +x*x(x—1)*g(x), 0= x = 1.0}
var g: double;

begin
ak[0] := —5.772156647338e~—1; bk[0] := 1.000000000000e+0;
ak[1] := —1.087824060619%¢—1; bk[1] :=3.247396119172¢e—1;
ak[2] := 4.369287357367e—2; bk[2] := 1.776068284106e—1;
ak[3] := —6.127046810372¢e—3; bk([3] := 2.322361333467e—-2;

bk[4] := 8.148654046054¢e—3;
if x = —1.0 then g := —0.5 else if x < 0 then
g = —(L.0 + sqr(x + 1.0) # ratfun(x + 1.0, 3, 4)) / (1.0 — x)
else if x = 1.0 then g := ratfun(x, 3, 4)
else if x = 2.0 then g := ((x — 2.0)* ratfun(x — 1, 3, 4 — 1.0) / sqr(x)
else g := (1 / gamma(x + 1.0) — 1) / (x* (x — 1.0));
auxgam =g
end; {auxgam}

function Ingamma (x: double): double;
{In T (x); rational approximations from Cody & Hillstrom (1967)}
var a, g, v: double;
begin if x > 12 then
begin g := 1.0 / (12 * x);
a = —x-+ (x —0.5) *In(x) + Insqrttwopi; y :=a+ g;if y=atheng :=y
else
begin y := 1.0 / sqr(x);
gi=a+ g*(1.0 + y*(—3.33333333333¢—2 + y * 9.52380952381e-3));

end
end
else if x = 4 then

begin
ak[0] := —2.12159572323e5; bk[0] := —1.16328495004e5;
ak[1] :=2.30661510616¢5; bk[1] := —1.46025937511e5;
ak({2] := 2.74647644705¢e4; bk[2] := —2.42357409629¢4;
ak[3] := —4.02621119975e4; bk[3] := —5.70691009324¢2;
ak[4] := —2.29660729780e3; bk[4] := 1.00000000000;

g = ratfun(x, 4, 4)
end
else if x > 1.5 then

begin
ak[0] := —7.83359299449¢1; bk[0] := 4.70668766060¢1;
ak[1] := —1.42046296688¢2; bk[1] := 3.13399215894¢2;
akf2] := 1.37519416416¢2; bk[2] := 2.63505074721e2;
ak[3] := 7.86994924154e1; bk[3] := 4.33400022514e1;
ak[4] := 4.16438922228; bk{4] := 1.00000000000;

g = (x — 2) *ratfun(x, 4, 4)
end

else if x > 0 then

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS

begin
ak[0] := ~2.66685511495; bk[0] := 6.07771387771e—1;
ak[l] := —2.44387534237el,; bk[1] := 1.19400905721el;
ak[2] := —2.19698958928¢1; bk[2] := 3.14690115749¢1;
ak[3] := 1.11667541262¢1; bk[3] := 1.52346874070el,
ak[4] := 3.13060547623; bk[4] := 1.00000000000;
if x= 0.5 then g := (x — 1.0) * ratfun(x, 4, 4)
else if x > machtol then g := —In(x) + x *ratfun(x + 1.0, 4, 4)
else if x > dwarf then g := —In(x) else g := —Indwarf
end;

Ingamma =g
end; {Ingamma}

function errorfunction (x: double; erfc, expo: boolean): double;
{rational approximations from Cody (1969)}
var xl, y, z: double; done: boolean;
begin {main of errorfunction}
if erfc then
begin
if x < —sgrtminlnmachtol then y := 2 else if x < —machtol then

303

y := 2 — errorfunction(—x, true, false) else if x < machtol theny := 1.0

else if x < 0.5 then
begin
if expo then y := exp(x *x) else y := 1.0;
y 1=y * (1.0 — errorfunction(x, false, false))
end
else if x < 4 then
begin if expo then y := 1.0 else y 1= exp(—X * X);
ak[0] := 7.3738883116; bk[0] := 7.3739608908;
ak[1] := 6.8650184849; bk[1] := 1.5184908190e1;
akf2] := 3.0317993362; bk[2] := 1.2795529509¢1;
ak([3] := 5.6316961891e—1; bk{[3] := 5.3542167949;
ak[4] := 4.3187787405e—~5; bk[4] := 1.0000000000;
y = yx*ratfun(x, 4, 4)
end
else
begin done := false; if expo then
begin x| := 1 / (dwarf * sqrtpi);
if x > xI then begin y := 0.0; done := true end
else if x > oneoversqrt2mt then
begin y := 1.0 / (x * sqrtpi); done := true end
else begin z := x*x; y := 1.0 end
end
else
begin x| := sqrtminexplow; if x < x| then
begin z ;= x *x; y := exp(—2z);
if x*dwarf > y % oneoversqrtpi then
begin y := 0; done := true end

it

Il

304 N. M. Temme

end
else begin y := 0; done = true end
end;
if not done then
begin z 1= 1.0 / z;
ak[0] := —4.25799643553e~2; bk[0] := 1.50942070545¢e~1;

ak[1] := —1.96068973726e—1; bk[1] := 9.214524116%4e—1;
ak[2] := —5.16882262185e—2; bk[2] := 1.00000000000;
y =y * (oneoversqrtpi + z * ratfun(z, 2, 2)) / x
end
end
end
else
begin
if x =0 then
y:=0

else if abs(x) > sqrtminlnmachtol then y := x / abs(x)
else if x > 0.5 then y := 1.0 — errorfunction(x, true, false)
else if x < —0.5 then y := errorfunction(—x, true, false) — 1.0

else

begin
ak([0] := 2.13853322378el; bk[0] := 1.89522572415¢l;
ak[1] := 1.72227577039; bk[1] := 7.84374570830;

ak(2] := 3.16652890658¢e—1; bk[2] := 1.00000000000;
z:=x*Xx;y = x#*ratfun(z, 2, 2)
end
end;
errorfunction =y
end; {errorfunction}

function erf (x: double): double;
begin erf := errorfunction(x, false, false) end; {erf}

function erfc (x: double): double;
begin erfc := errorfunction(x, true, false) end; {erfc}

function erfctamed (x: double): double;
begin erfctamed :=errorfunction(x, true, true) end; {erfctamed}

procedure incomgam (a, x: double; var p, q: double; eps: real);
var dp, Inx, mu, auxinmu: double;

function alfa (x: double): double;

begin if x > 0.25 then alfa := x + 0.25 else if x = dwarf
then alfa := —0.6931 / Inx else alfa := —0.6931 / Indwarf

end; {alpha}

function dax: double;

begin
mu = (x ~ a) / a; auxlnmu := auxln(mu); dp := a*xauxlnmu ~ 0.5 *In(2 * pi ¥ a);
if dp < explow then

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS

begin
dp :=0;
if mu < O then begin p := 0.0; q := 1.0 end
else begin p :=1.0; q := 0.0 end
end
else dp := exp(dp) / gammastar(a);
dax :=dp
end; {dax}

procedure qtaylor;
varr, s, t, u, v, w, xpowa: double;
{Gautschi’s algorithm for Q(e,x), when x < 1}
begin
r = ax*Inx;
if (r < —0.69) or (r > 0.41) then
begin xpowa := exp(r); q := xpowa — | end
else
begin q := exminl(r); xpowa :=q + 1 end;
s:i=—a*(a — l)xauxgam(a); u:=s —q#*(l —s);
p:=a*x;q:=a+1.0;r:=a+3.0;t:=1.0; v :=1.0;
repeat
=p+x;qi=q4rnri=r+2;ti=—p*t/qvi=v+t
until abs(t / v) < eps;
vi=a*(l.0 —s)*exp((@a+ 1.O)*Inx)*v / (a + 1.0);
q:=u+v;p:=1-—gq
end; {qtaylor}

procedure ptaylor;
var ¢, r: double;
{Gautschi’s algorithm for P(a,x)}
begin p :=1.0; ¢ :=1.0; v = a;
repeatr:=r + 1.0; c:=x*c/r;p:=p -+ cuntil c / p < eps;
pi=pxdp;q:=1-p
end; {ptaylor}

procedure gfraction;
var g, 1, s, t, tau, ro: double;
{Gautschi’s continued fraction algorithm for Q(a,x)}

beginp:=0;q:=(x—-1.0—a)*x+1.0—-a)r:=4%x+1.0—a);

=1.0—a;ro:=0;t:=1.0;g:=1.0;
repeat

pi=p+s;qi=q+r;r:=r+80;s:=s+2.0; tau :=p* (1.0 + ro);

ro:=tau / (q —tau); t:=ro*xt; g:=g+t
until abs(t / g) < eps;
qg=(/x+1.0—a)*gxdp;pi=1—q
end; {gfraction}

procedure pgasymp;
var s eta, y, t, u, v: double; m, s: integer; fm, bm: arrcoeff;

305

306 N. M. Temme

begin

fm[0] := 1.0000000000e+0; fm[1] := —3.3333333333e—1;
fm[2] := 8.3333333333e—2; fm[3] := —1.4814814815e~2;
fm[4] := 1.1574074074e—-3; fm[5] := 3.5273368607e—4;
fm[6] := —1.7875514403e—4; fm[7] :=3.9192631785e—5;
fm[8] := —2.1854485107¢—6; fm[9] := —1.8540622107e—6;
fm[10] := 8.2967113410e—7; fm[11] := —1.7665952737e~7;
fm[12] := 6.7078535434e—9; fm{13] := 1.0261809784e—38;
fm{14] := —4.3820360185e—9; fm[15] := 9.1476995822e—10;

y ‘= —auxinmu; eta := sqrt(2 *y);

v := 0.5 % errorfunction(sqrt(a *y), true, true) * gammastar(a) * sqrt(2 * pi * a);

s:=1;if mu<Othens:= —1;eta := s *eta;

bm[14] := fm[15]; bm[13] := fm[14]; u := 0;
for m := 13 downto 1 do
begin
t:=fm[m] +(m +)*xbmfm + 1] / a; u :=eta*xu + t; bm[m — 1] :=t;
end; u i=s*u; p = (u+ v)*dp;
if s =1 then beginq:=p;p:=1.0—qendelseq:=1.0 —p
end; {pqasymp}

begin {main of incomgam}
if (a =0.0) and (x = 0.0) then begin p :=0.5; g := 0.5 end
else if x = 0.0 then begin p := 0.0; g := 1.0 end
else if a = 0.0 then begin p :=1.0; q := 0.0 end
else
begin
if x = dwarf then Inx := Indwarf else Inx := In(x);
dp := dax; if dp = dwarf then
begin
if (a > 25.0) and (abs(mu) < 0.2) then pgasymp else
if a > alfa(x) then ptaylor else
begin if x < 1.0 then gtaylor else gfraction end
end else begin if a > x then p := 0.0 else p :=1.0; q := 1.0 — p end
end
end; {incomgam}

function checkincgam (a, x: double; eps: real): double;
{checks the relative accuracy in the recursions}
{Qla+ 1,x) = Q(a,x) + x**exp(—x)/T (a + 1)}
{Pla+ 1,x) = P(a,x) — x?*exp(—x)/T(a + 1)}
var dp, p, q, pl, ql, mu, y: double;
begin mu := (x — a) / a; dp := a * auxIn{mu) — 0.5 * In(2 * pi * a);
if dp < explow then dp := 0 else dp := exp(dp) / gammastar(a);
incomgam(a + 1, x, pl, ql, eps); incomgam(a, X, p, q, €ps);
if dp > O then
begin
if x>atheny:=ql/(q+dp)—lelsey:=(pl+dp)/p—1
end else v := 0;

ALGORITHMS FOR INCOMPLETE GAMMA FUNCTIONS 307

checkincgam:=y
end; {checkincgam]

begin {main}
computeconstants; eps := 1.0e—10; k :=0; h :=0;
repeai {random returns an integer in the range [—32768, 32767}}
a := machtol + abs(random / 300);
x := machtol + abs(random / 320);
y := abs(checkincgam(a, X, eps)); k :=k + 1;
if y > h then begin h :=y; writeln(a : 16, x : 16, h, *’, k) end;
until k = 1000;
end.

