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Abstract. A class of stabilizing decentralized proportional integral derivative (PID)
controllers for an n-link robot manipulator system is proposed. The range of decen-
tralized PID controller parameters for an n-link robot manipulator is obtained using
Kharitonov theorem and stability boundary equations. Basically, the proposed design
technique is based on the gain-phase margin tester and Kharitonov’s theorem that syn-
thesizes a set of PID controllers for the linear model while nonlinear interaction terms
involve in system dynamics are treated as zero. The stability analysis of the composite
system with the designed set of decentralized PID controllers is investigated by incor-
porating bounding parameters of interconnection terms in LMI formulation. From
the range of controller gains obtained by the proposed method, a genetic algorithm
is adopted to get an optimal controller gains so that the tracking error is minimum.
Simulation results are shown to demonstrate the applicability of the proposed con-
trol scheme for solution of fixed as well as time-varying trajectory tracking control
problems.

Keywords. Kharitnov theorem; decentralized controller; robot manipulator;
tracking error; linear matrix inequality; interconnected system.

1. Introduction

To improve the tracking performance of an interconnected system, the decentralized controller
has been widely accepted in industry due to ease of implementation, low cost hardware set-up
and tolerance to failure. Decentralized control schemes have been shown to be robust to a wide
range of parametric and nonlinear time-varying uncertainties with an added benefit of being
possible to implement with parallel processors. Thus, giving enhanced computational speed.
The solution of decentralized tracking control problem for robot manipulator is slightly comp-
lex since we cannot split the overall system into several subsystems whose states and input
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torques are not isolated from each other due to the coupling caused by nonlinear inertial terms.
Among the works reported in this area are Narendra & Oleng (2002), Tang et al (2000), Tarokh
(1996), Tang & Guerrero (1998), Wang & Wend (1999), Liu (1999) and Seraji (1989). Narendra
& Oleng (2002) have shown that in strictly decentralized adaptive control systems, it is theoreti-
cally possible to track desired outputs with zero error. Tang et al (2000) and Tarokh (1996) have
presented an asymptotically stable decentralized adaptive control scheme to enable accurate tra-
jectory tracking. Tang & Guerrero (1998) obtained an extremely simple controller, consisting of
a linear state-feedback with an additional signal designed to compensate for the coupling among
the joints, parameter uncertainty and bounded disturbances. In Wang & Wend (1999) the dynam-
ics of the subsystems are divided into two parts: a nominal system and uncertainties. Based on
the nominal system and the bounds on the uncertainties, the Riccati equation approach is used to
control the motion of robot manipulators. A set of nonlinear decentralized tracking error for each
subsystem is formulated so that the passivity property of robot dynamics can be used in the con-
troller design (Liu 1999). For manipulator tracking tasks, decentralized approaches are not that
straight forward since the overall system cannot be decomposed into subsystems whose states
and control inputs are not totally decoupled from one another because of the inherent coupling
such as moment of inertia and Coriolis force. Several attempts have been made to control inde-
pendently each robot joint attached to actuator by processing local measurements available from
that joint. As a result, how to improve the tracking performance of robots through decentralized
control is still an interesting topic in control literature.

In this paper, a class of decentralized stabilizing controllers is designed for an n-link robot
manipulator using Kharitonov’s theorem and boundary stability condition for an interaction free
subsystem. The control objective is to achieve accurate tracking of desired joint trajectories. The
significant results of Siljak & Stipanovic (2000) demonstrate how the Linear Matrix Inequalities
(LMIs) formulation can be used to quadratically stabilize nonlinear interconnected system via
decentralized linear constant feedback laws. Motivated by the work of Siljak & Stipanovic, we
tried to establish based on LMI approach, how the designed set of decentralized controllers for
each subsystems can be utilized to stabilize the interconnected nonlinear systems.

The paper is organized as follows. In section 2, problem formulation and a set of decentralized
PID controller for interaction free subsystems have been developed using the basic principles
of Kharitonov’s theorem and stability boundary condition. The stability analysis of composite
system (with interaction terms) using the designed decentralized controller has been studied in
section 3 based on LMI formulation. Simulation results are presented in section 4 to demonstrate
the effectiveness of the proposed control. Concluding remarks are given in section 5.

2. Controller design based on stability boundary equation and Kharitonov’s theorem

The Kharitonov’s theorem for linear interval plants is exploited for the purpose of synthesiz-
ing a set of stabilizing PID controller to meet design specification in terms of gain margins and
phase margins (Huang & Wang 2000). Controller is designed to simultaneously stabilize the
four Kharitonov’s vertex polynomials. A specific Kharitonov region can be obtained in the para-
meter plane using the parameters of the controller as the axes. This region constitutes the whole
admissible stabilizing PID controllers. The proposed method not only provides a necessary
and sufficient condition for a set of interval polynomials, but also fulfills several specifications
simultaneously. The concept of stability equation method by Lii et al (1993) is employed to
plot stability boundary of a system and simultaneously the gain margins (equal to 1) and phase
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margins (equal to zero) are maintained along the stability boundary in a controller parameter
plane or parameter space.

2.1 Problem formulation

Let us consider the dynamics of an n-link robot manipulator described by the nonlinear equation

τ = M(θ) θ̈ + V (θ, θ̇) + G (θ) , (1)

where M(θ) is an n × n symmetric positive definite inertia matrix, V (θ, θ̇) is an n × 1 Coriolis
and centrifugal vector, G(θ) is an n × 1 gravity vector of the manipulator, θ is the n × 1 vector
representing joint angular positions, and τ is the n × 1 vector of applied joint torques. For
simplicity, it is denoted that

N (θ, θ̇) = V (θ, θ̇) + G (θ) . (2)

There are uncertainties in M(θ) and N (θ, θ̇) due to unknown load on the manipulator and
unmodelled frictions. The following bounds are assumed on the uncertainties (Qu & Dawson
1996).

(i) There exist positive definite matrices Mu(θ) and Ml(θ) such that

Mu (θ) ≥ M (θ) ≥ Ml (θ) > 0.

(ii) There exist Nu(θ, θ̇) and a nonnegative function nmax(θ, θ̇) such that

‖Nu(θ, θ̇) − N (θ, θ̇)‖ ≤ nmax(θ, θ̇).

The state variables to be x1 = θ, x2 = θ̇ and the control to be

u = Mu (θ)−1 (τ − Nu(θ,
.

θ)).

Then

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = M(θ)−1(τ − N (θ, θ̇) = M(θ)−1 Mu(θ)u + M(θ)−1(Nu(θ, θ̇) − N (θ, θ̇))

= M(x1)
−1 Mu(x1)u + M(x1)

−1(Nu(x1, x2) − N (x1, x2)). (3)

The state space representation of (3) is given by

ẋ = Ax + B(u + f (x)u) + Bh(x), (4)

where f (x) = M(x1)
−1 Mu(x1) − I , and h(x) = M(x1)

−1(Nu(x1, x2) − N (x1, x2))

A =
[

0 I
0 0

]
, B =

[
0
I

]
and x =

[
x1
x2

]
.

Bf (x) is the uncertainty in the input matrix and in order to make its effect maximum f (x) is
taken as

f (x) = Ml(x1)
−1 Mu(x1) − I ≥ 0, (5)
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where Ml and Mu are the lower and upper bounds of inertia matrix that is found out as explained
in Lin & Brandt (1998). In order to make the system in the input decoupled form equation (5) is
written as

f (x) = daig(λmax( f (x)), (6)

which is obtained from the following expression

λmin( f )xT x ≤ xT f x ≤ λmax ( f ) xT x . (7)

The uncertainty h(x) has the following bounds (Meressi et al 1993):

‖h(x)‖ = ‖M(x1)
−1(Nu(x1, x2) − N (x1, x2))‖

≤ ‖M(x1)
−1‖ × ‖Nu(x1, x2) − N (x1, x2))‖

≤ ‖Ml(x1)‖−1nmax(x1, x2).

(8)

Although for the h(x) given in (4), ‖h(x)‖ may not be quadratically bounded, in many cases,
we can find out the largest physically feasible region of x and determine a quadratic bound for
‖h(x)‖2 such that

h(x)T h(x) ≤ xT Qx, (9)

where Q is a positive definite matrix. For the development of the decentralized control scheme,
it is convenient to view each joint as a subsystem of the entire manipulator system and state
variables are rearranged in (4) and are rewritten as

ẋi = Asi xi + Bni ui + Bi hi (x) ;
yi = Csi xi , i = 1, 2, . . . , n,

(10)

where

Bni = Bi + Bi λmax( f (x)), f (x) = Ml(z)
−1 Mu(z) − I ≥ 0,

u = Mu(z)−1(τ − Nu(x))

‖h(x)‖ =
∥∥∥M(z)−1 (Nu(x) − N (x))

∥∥∥ , xi =
[

xi1

xi2

]
=

[
θi

θ̇i

]
and z = [x11x21........xn1]T

Asi =
[

0 1
0 0

]
, Bi =

[
0
1

]
, Csi = [

1 0
]
.

If the variation of f (x) is considered, its minimum value is zero. So the input matrix Bni in
equation (10) varies from Bi to Bni . Hence, the transfer function of the i th joint with nonlinear
interaction terms hi(x) = 0, i − 1,2,. . . n becomes

Gi (s) = 1

ai s2
, (11)
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where ai ∈ [
a−

i a+
i

]
is the interval parameter associated with the j th joint having a−

i =
1/bni , a+

i = 1/bi . The parameters bi and bni are the elements of Bi and Bni , respectively, i.e.,

Bi =
[

0
bi

]
and Bni =

[
0

bni

]
.

Since from equation (11) the plant is an interval plant, a parameter plane method based on the
gain-phase margin tester method and Kharitonov’s theorem has been adopted in designing a set
of stabilizing PID controllers.

2.2 Design a set of stabilizing PID controller

Figure 1 shows decentralized control scheme for the i th joint of system (10). A decentralized
PID controller for the i th joint is described by

τi (t) = K pi ei (t) + Kdi ėi (t) + Kii

t∫
0

ei (t)dt, (12)

where ei (t) = θdi (t) − θi (t) is the position tracking error of i th joint, K pi , Kii and Kdi are
respectively the proportional, integral and derivative gains of the i th joint controller, θdi denotes
the i th joint desired constant position and θi be the actual joint position.

The control problem is to provide a complete solution to the constant gain stabilizing con-
trol parameters K pi , Kii , Kdi such that the position error ei (t) reduces to zero with time, i.e.,
lim

t→∞ ei (t) = 0.

Figure 2 shows the s-domain representation of the i th subsystem given in equation (10) with
hi = 0 (wi = Bi hi = 0). The open loop transfer function can be written as

Goi (s) = Gi (s)Ci (s). (13)

For s = jω, we have

Gi ( jω)Ci ( jω) = αi e
jβi , (14)

where |Gi ( jω)Ci ( jω)| = αi and 
 Gi ( jω)Ci ( jω) = βi .

ith PID
controller

Bni

As

Csdi 

-

ix xiuiei
i

wi = Bi h i

+

++
+ .

Figure 1. Decentralized control scheme for i th joint.
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Ci(s) 2/1)( sasG ii =

- 

Ei(s) θ i(s)di(s) 
ui

Figure 2. Transfer function model for interaction free i th joint.

Equation (14) can be written in the following form

1 + 1

αi
e− j(180+βi )Gi ( jω)Ci ( jω) = 0,

1 + Ai e
− jγi Gi ( jω)Ci ( jω) = 0,

(15)

where Ai = 1
αi

= 1
|Gi ( jω)Ci ( jω)| and γi = 180 + βi .

It is noted that Ai is the gain margin of the i th subsystem when γi = 0 and γi is the phase
margin when Ai = 1. More specifically, one can easily determine the gain margin and phase
margin of the system by adopting the gain-phase margin tester Ai e− jγi , which can be represented
by an additional block in cascade with Gi (s)Ci (s) and shown in figure 3.

The controller Ci (s) is designed to simultaneously stabilize the i th subsystem (9) with
hi (x) = 0. Let

Pi (s) = 1 + Ai e
− jγi Ci (s)Gi (s). (16)

Using the expression for Gi ( jω) given (11) and Ci (s) = K pi + Kii/s + Kdi s in characteristic
equation (16) we get

as3 + (−K pi s + Kii + s2 Kdi ) (Ai cos γi − j Ai sin γi ) = 0. (17)

This is a third order interval polynomial, and it is sufficient to check the stability of one
Kharitonov polynomial P+−( jω) (Meressi et al 1993), which is given below.

a+s3 + (−K pi s + Kii + s2 Kdi ) (Ai cos γi − j Ai sin γi ) = 0. (18)

The objective here is to find all possible sets of K pi , Kii and Kdi that make the characteristic
equation (18) to be stable. Equating the real and imaginary part of (18) to zero we get two
expressions as

ω3a+ − ωK pi Ai cos (γi ) + Ai sin (γi ) (Kii − ω2 Kdi ) = 0, (19)

- 

Ci (s)  Gi (s) 
Ei (s)

ui θiθdi  Ai ije γ−

Figure 3. i th joint with controller and gain-phase margin tester.
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ωK pi Ai sin (γi ) + Ai cos (γi ) (Kii − ω2 Kdi ) = 0. (20)

It can be noted that the number of controller parameters are more than the number of equa-
tions and it is necessary to assign one of the controller parameter (say Kdi ) and the remaining
controller parameters are solved from (19) and (20) with conditions of marginal stability
i.e., Ai = 1 and γi = 0. To have the stable region in the parametric plane, one gener-
ally finds the stability boundary first, and then determines the stable region by the sign of
J j = ∂Re/∂K pi · ∂Im/∂Kii − ∂Re/∂Kii · ∂Im/∂K pi , where Re and Im are real and imaginary
parts of equation (18). If the sign of J j is positive (negative) facing the direction in which ω is
increasing, the left (right) side of the stability boundary is the stable region (Siljak 1969). Thus,
one can obtain the range of controller parameters (K pi , Kii ) for a fixed value of Kdi from the
boundary of the stability region for the system.

The controller is designed based on the linear system, i.e., with hi = 0. A stability analysis for
the composite nonlinear system (10) based on Lyapunov method is investigated by transforming
quadratic terms into an equivalent LMI framework (Boyd et al 1994).

3. Stability analysis of an n-link robot manipulator

Recall the system equation (10) that is rewritten as

ẋi = Asi xi + Bni ui + wi (t, x) i = 1, 2, . . . , n, (21)

where wi = Bi hi , and it is required that nonlinear term wi satisfies the quadratic constraints.

wT
i (t, x)wi (t, x) ≤ α2

i xT W T
i Wi x, i = 1, 2, . . . , n, (22)

where αi > 0 are interconnection parameters and Wi are constant matrices of appropriate
dimensions. The input to the system (21) with the PID controller is

ui (t) = K pi ei (t) + Kdi ėi (t) + Kii

t∫
0

ei (t)dt . (23)

Assume θd (desired Position) = 0.

ui (t) = K pi (−yi ) + Kdi (−ẏi ) + Kii

t∫
0

(−yi ) dt,

where yi = Csi xi is the output of the system. Let xai = −Kii

t∫
0

yi dt, so

ẋai = −Kii yi = −Kii Csi xi . (24)

To study the stability of the interconnected system substitute for ui in (21) and augment it with
(24) to have the following form.

Eni ẋwi = Ani xwi + wni (t, xw) , (25)



412 G Leena and G Ray

where

Eni =
[

I + Bni Kdi Csi 0
0 1

]
, Ani =

[
Asi − Bni K pi Csi Bni

−Kii Csi 0

]
,

wni (t, xw) =
[

wi (t, x)

0

]
, and xwi =

[
xi
xai

]
.

In compact form equation (25) can be rewritten as

Enew ẋw = Anewxw + wn (t, xw) , (26)

where Anew = diag {An1 An2, . . . , Ann} and Enew = diag {En1, En2, . . . , Enn} are matrices
of appropriate dimensions and the nonlinear term wn = (

wT
n1, w

T
n2, . . . , w

T
nn

)T
is a function of

xw = [
xT
w1, xT

w2, . . . , xT
wn

]T
. Since the set of stabilizing PID controllers is obtained, the matrices

Enew and Anew are, in turn, of interval form. In (26), the nonlinear function is constrained as

wT
n (t, xw)wn(t, xw) ≤ xT

w

(
n∑

i=1

α2
i W T

ai Wai

)
xw, (27)

where Wai is a constant matrix with appropriate dimension.

Theorem 1: The nonlinear system (21) is robustly stabilizable with degree αi by the control law
(23) if for matrices P1, P2, P3 of compatible dimensions, and γ1, γ2, . . . , γn > 0 and there exists
a feasible solution for the following LMI problem for all the corner matrices of Anew and Enew.

Minimize
n∑

i=1
γi ,

subject to P1 > 0, and⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ar1
new

T P2 + PT
2 Ar1

new P1 − PT
2 Er2

new + Ar1
new

T P3 PT
2 W T

a1 · · · W T
an

PT
3 Ar1

new + P1 − Er2
new

T P2 −Er2
new

T P3 − PT
3 Er2

new PT
3 0 . . . 0

P2 P3 −I 0 . . . 0

Wa1 0 0 −γ1 I . . . 0

...
...

...
...

. . .
...

Wan 0 0 0 . . . −γn I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(28)

where r1, r2, . . . , 2k2
, γi = 1/α2

i , k is the size of the matrices Anew and Enew, i = 1,2,. . . ,n.

Proof:

The constraint (27) is equivalent to the quadratic inequality

[
xT
w wT

n (x)
]⎡
⎣ −

N∑
i=1

α2
i W T

ai Wai 0

0 I

⎤
⎦ [

xw

wn (x)

]
≤ 0. (29)
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For the descriptor system (26), we introduce an augmented system (Lin et al 2005) to get the

following equation for the augmented vector z(t) = [
xT
w(t)ẋ T

w(t)
]T

,

[
I 0
0 0

] [
ẋw

ẍw

]
=

[
0 I

Anew −Enew

] [
xw

ẋw

]
+

[
0

wn (x)

]
. (30)

For simplicity, it is denoted that

F =
[

I 0
0 0

]
, A =

[
0 I

Anew −Enew

]
, z =

[
xw

ẋw

]
and w (x) =

[
0

wn (x)

]
.

Let us choose a Lyapunov function candidate (Cao & Lin 2004) for the descriptor system (30) as

V = zT F Pz, (31)

where P =
[

P1 0
P2 P3

]
is nonsingular with P1 = PT

1 > 0, and FP = (FP)T due to special

structures of F and P . We compute

V̇ = zT
(

A
T

P + PT A
)

z + wT (x) Pz + zT PT w (x) .

In order that the descriptor system (30) is stable, it is required that

P1 > 0, zT
(

A
T

P + PT A
)

z + wT (x) Pz + zT PT w (x) < 0. (32)

Equation (32) is equivalently can be written as

P1 > 0,

xT
w

(
AT

new P2 + PT
2 Anew

)
xw + ẋ T

w

(
−ET

new P3 − PT
3 Enew

)
ẋw

+ ẋ T
w

(
P1 − ET

new P2 + PT
3 Anew

)
xw + xT

w

(
AT

new P3 + P1 − PT
2 Enew

)
ẋw

+ + wT
n (x) P2xw + wT

n (x) P3 ẋw + xT
w PT

2 wn(x) + ẋ T
w PT

3 wn(x) < 0.

(33)

These inequalities can be rewritten as,

P1 > 0,

[
xT
w ẋ T

w wT
n (x)

]⎡⎢⎣
AT

new P2 + PT
2 Anew AT

new P3 + P1 − PT
2 Enew PT

2

PT
3 Anew + P1 − ET

new P2 −ET
new P3 − PT

3 Enew PT
3

P2 P3 0

⎤
⎥⎦

⎡
⎣ xw

ẋw

wn(x)

⎤
⎦ < 0.

(34)
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By using S-procedure (Yakubovich 1977) it is possible to combine quadratic inequalities (29)
and (34) into one single linear matrix inequality (LMI) form as

⎡
⎢⎢⎢⎣

AT
new P2 + PT

2 Anew + β
N∑

i=1
α2

i W T
ai Wai AT

new P3 + P1 − PT
2 Enew PT

2

PT
3 Anew + P1 − ET

new P2 −ET
new P3 − PT

3 Enew PT
3

P2 P3 −β I

⎤
⎥⎥⎥⎦ < 0, (35)

where P1 > 0 and a number β > 0. By repeatedly applying the Schur complement formula
(Boyd et al 1994) to equation (35) with β = 1, the above equation can be rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
new P2 + PT

2 Anew AT
new P3 + P1 − PT

2 Enew PT
2 W T

a1 · · · W T
an

PT
3 Anew + P1 − ET

new P2 −ET
new P3 − PT

3 Enew PT
3 0 . . . 0

P2 P3 −I 0 . . . 0

Wa1 0 0 −γ1 I . . . 0

...
...

...
...

. . .
...

Wan 0 0 0 . . . −γN I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (36)

where γi = 1/α2
i .

The matrices Anew and Enew of (26) are interval matrices (obtained from (25)). As discussed
by Mansour (1988), Jiang (1987) and Garofalo et al (1993), a sufficient condition for the stability
robustness of interval matrices, i.e., matrices having the elements varying within given bounds,
requires that the derivative of Lyapunov function be negative definite when evaluated at the
so-called corner matrices. The corner matrices of an n × n interval matrix A are defined as
Ar =

{
ar

i j

}
, r = 1, 2, . . . , 2n2

with ar
i j = ali j or aui j , i , j = 1, 2, . . ., n, where ali j and aui j are

minimum and maximum values, respectively of ijth element of interval matrix. Hence equation
(36) should be satisfied for all the corner matrices of Anew and Enew for composite system (30)
to be asymptotically stable. The matrix Wai is assumed such that constraint (27) is satisfied
and the bounding parameter αi is to be maximized. Hence (36) can be reformulated as an LMI
optimization problem as stated in (28). In other words, system (21) is robustly stabilizable by
the set of designed decoupled stabilizing PID controllers provided the LMI (28) has a feasible
solution for all corner matrices. This completes the proof.

4. Simulation results for two-link robot manipulator

Consider a two-link manipulator as shown in figure 4 and its dynamics can be described by
nonlinear equation (1). The matrices M(θ), V (θ, θ̇) and G(θ) for this two-link robot are

M(θ) =
[

m11 m12
m12 m22

]
=

[
a1 + a2 + 2a3 cos θ2 a2 + a3 cos θ2

a2 + a3 cos θ2 a2

]
,

V (θ, θ̇) =
[ − (a3 sin θ2)

(
θ̇2

2 + 2θ̇1θ̇2
)

(a3 sin θ2) θ̇2
1

]
,
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m2 

l2 θ2 

m1
l1 

θ1 

Figure 4. Schematic of a two-link revolute robot.

G(θ) =
[

a4 cos θ1 + a5 cos (θ1 + θ2)

a5 cos (θ1 + θ2)

]
. (37)

In the above expression a1, a2, . . ., a5 are constant parameters obtained from mass
(m1, m2) and length (l1, l2) of robot links

[
a1 = (m1 + m2) l2

1 , a2 = m2l2
2 , a3 = m2l1l2,

a4 = (m1 + m2) l1g, a5 = m2l2g
]
. The parameters are m1 = m2 = 1.0 kg, l1 = l2 = 1.0 m and

g = 9.81 m/s2.
For the system (10) with the expression of (37) we have the following numerical values.

As1 = As2 =
[

0 1
0 0

]
, Bn1 = Bn2 =

[
0

5.8

]
, B1 = B2 =

[
0
1

]
, Cs1 = Cs2 = [

1 0
]
,

h(x) =
[

h1(x)

h2(x)

]
=

[
1.72x2

12 + 1.68x2
22 + 3.36x12x22

− (
5.12x2

12 + 1.72x2
22 + 3.44x12x22

)
]

,

and x1 =
[

x11
x12

]
=

[
θ1

θ̇1

]
, x2 =

[
x21
x22

]
=

[
θ2

θ̇2

]
. (38)

The stabilizing set of gains for links 1 and 2 for system (38), obtained by solving equations (19),
(20) assuming values for Kdi from 1 to 100 and ω varying from 0.01 to 25 Hz are shown in
figure 5. The shaded region in figure 5 is the stabilizing controller parameter space of joints 1
and 2. The set of controller gains for joints 1 and 2 are taken as

K p1 ∈ [
10.1 500

]
, Ki1 ∈ [

10.1 500
]
, Kd1 ∈ [

10 100
]
,

K p2 ∈ [
10.1 500

]
, Ki2 ∈ [

10.1 500
]
, Kd2 ∈ [

10 100
]
.

(39)

Knowing the ranges of controller gains (31) of the joints 1 and 2, genetic algorithm based
optimization technique (Goldberg 1989) is used to maximize the fitness function J f given by

J f = 1

1 + J
, (40)

where J =
t∫

0

n∑
i=1

e2
i dt and ei (t) = θdi (t) − θi (t).
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Figure 5. Range of K p , Ki , Kd gains for joints 1 and 2.

The optimal controller parameters are obtained for fixed as well as time-varying desired
positions. The genetic operations used are arithmetic crossover, uniform mutation and ranking
selection. The population size of 50 is taken and GA is run for 25 generations.

4.1 Case 1: Fixed desired positions

Suppose the desired positions for joints 1 and 2 are θd1 = 30◦ and θd2 = 45◦. The combined
optimal control parameters using genetic algorithm based optimizing technique for each joint
are obtained as

K ∗
p1 = 176.83, K ∗

i1 = 150.32, K ∗
d1 = 86.84,

K ∗
p2 = 127.99, K ∗

i2 = 128.4, K ∗
d2 = 42.09.

(41)

The combined optimal control law for each joint is given by

u1(t) = K ∗
p1e1(t) + K ∗

i1

t∫
0

e1(t)dt + K ∗
d1ė1(t)

= 176.83e1(t) + 150.32

t∫
0

e1(t)dt + 86.84ė1(t),

u2(t) = K ∗
p2e2(t) + K ∗

i2

t∫
0

e2(t)dt + K ∗
d2ė2(t)

= 127.99e2(t) + 128.4

t∫
0

e2(t)dt + 42.09ė2(t).

(42)

Figures 6 and 7 show the desired position and actual position of joints 1 and 2 with the designed
control laws (42). The position errors of each joint are also plotted in figures 8 and 9, respectively.



PID controllers for robot manipulator 417

Figure 6. θd1 and θ1 for joint 1with optimal PID gains.

Figure 7. θd2 and θ2 for joint 2 with optimal PID gains.

4.2 Case 2: Time-varying desired positions

Consider time-varying desired positions for joints 1 and 2 as θd1 = (1 − cos t) and θd2 =
(1 − cos t). The combined optimal control parameters using genetic algorithm based optimizing
technique for each joint are obtained as

K ∗
p1 = 129.11, K ∗

i1 = 43.29, K ∗
d1 = 56.31,

K ∗
p2 = 77.99, K ∗

i2 = 20.4, K ∗
d2 = 17.04.

(43)
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Figure 8. Position error of joint 1 with optimal PID gains.

Figure 9. Position error of joint 2 with optimal PID gains.

The control laws with optimal controller parameters for both joints are obtained as

u1(t)= K ∗
p1e1(t) + K ∗

i1

t∫
0

e1(t)dt + K ∗
d1ė1(t) = 129.11e1(t) + 43.29

t∫
0

e1(t)dt + 56.31ė1(t),

u2(t)= K ∗
p2e2(t) + K ∗

i2

t∫
0

e2(t)dt + K ∗
d2ė2(t) = 77.99e2(t) + 20.4

t∫
0

e2(t)dt + 17.04ė2(t).

(44)

Figures 10 and 11 show the desired and actual positions of joints 1 and 2 with the designed
optimal control laws (44). The position errors of each joint are plotted in figures 12 and 13.
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Figure 10. θ1 and θd1 with optimal PID gains.

Figure 11. θ2 and θd2 with optimal PID gains.

Figures 6–13 reveal the effectiveness of the proposed decentralized PID control scheme and
further it ensures tracking errors converge to zero asymptotically.

4.3 Stability analysis of two-link robot manipulator

The stability analysis of the two-link robot manipulator (38) with the designed set of controllers
(39) was studied by solving the LMI optimization problem (28) for all the corner matrices of
Anew and Enew. The designed ranges of Anew and Enew are calculated using equations (25)–(26)
with the controller gains (39) and are given by

Anew = diag {An1, An2} ,

Enew = diag {En1, En2} ,
(45)
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Figure 12. Position error of joint 1 with optimal PID gains.

Figure 13. Position error of joint 2 with optimal PID gains.

where

An1 =
⎡
⎣ 0 1 0[ −2900 −58.6

]
0 5.8[ −500 −10.1

]
0 0

⎤
⎦ , En1 =

⎡
⎣ 1 0 0[

58 580
]

1 0
0 0 1

⎤
⎦ ,

An2 =
⎡
⎣ 0 1 0[ −2900 −58.6

]
0 5.8[ −500 −10.1

]
0 0

⎤
⎦ and En2 =

⎡
⎣ 1 0 0[

58 580
]

1 0
0 0 1

⎤
⎦ .
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As given in equation (27), the term wn(t , xw) can be bounded by a quadratic inequality and is
constrained as

wT
n1(t, xw)wn1(t, xw) =

(
3.36x12x22 + 1.72x2

12 + 1.68x2
22

)2

≤ 17.07x12x22 ≤ 8.54
(

x2
12 + x2

22

)
≤ xT

wα2
1 W T

a1Wa1xw,

wT
n2(t, xw)wn2(t, xw) =

(
−3.44x12x22 − 5.12x2

12 − 1.72x2
22

)2

≤ 29.44x12x22 ≤ 14.72
(

x2
12 + x2

22

)
≤ xT

wα2
2 W T

a2Wa2xw (46)

(since x12 and x22 are much less than unity and the terms associated with the power of x12 and
x22 equal to three or more than three are neglected), where α1, α2 > 0 and Wa1 and Wa2 are
found out as

Wa1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 2.92 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2.92 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Wa2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 3.87 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 3.87 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (47)

Two elements each of An1, An2 and Enew are of interval form, i.e., four corner matrices for
each of An1, An2 and Enew are obtained. Table 1a shows the corner matrices of An1, An2 and
Enew. Thus sixteen corner matrices are possible for Anew with the eight corner matrices of An1,
An2. These corner matrices of Anew are given in table 1b. This sixteen combinations of Anew
and four corner matrices of Enew are considered, thus there are sixty-four combinations for
which optimization problem (28) is solved using LMI control toolbox (Gahinet et al 1995) with
Wa1, Wa2 taken as equation (47). As the number of links increases the number of LMIs to be
solved increases exponentially (23n where n is the number of links of the manipulator). Table
1c shows the values of α1, α2 obtained by solving the LMI problem (28) with the designed
range of controller parameters given by (39). It is seen that a feasible solution exists for all the
corner matrices. Hence, it is concluded that the set of decentralized PID controllers based on

Table 1a. Corner matrices of An1, An2 and Enew .

A1
n1 = {

An1(2, 1), An1(3, 1)
}

A1
n2 = {

An2(2, 1), An2(3, 1)
}

E1
new = {

En1(2, 1), En2(2, 1)
}

A2
n1 = {

An1(2, 1), An1(3, 1)
}

A2
n2 = {

An2(2, 1), An2(3, 1)
}

E2
new = {

En1(2, 1), En2(2, 1)
}

A3
n1 = {

An1(2, 1), An1(3, 1)
}

A3
n2 = {

An2(2, 1), An2(3, 1)
}

E3
new = {

En1(2, 1), En2(2, 1)
}

A4
n1 = {

An1(2, 1), An1(3, 1)
}

A4
n2 = {

An2(2, 1), An2(3, 1)
}

E4
new = {

En1(2, 1), En2(2, 1)
}

where Ani (2, 1) and Ani (2, 1) denote the lower and upper limits of (2, 1)th element of matrix Ani .

Table 1b. Corner matrices of Anew .

A1
new = {

A1
n1 A1

n2

}
A5

new = {
A1

n1 A2
n2

}
A9

new = {
A1

n1 A3
n2

}
A13

new = {
A1

n1 A4
n2

}
A2

new = {
A2

n1 A1
n2

}
A6

new = {
A2

n1 A2
n2

}
A10

new = {
A2

n1 A3
n2

}
A14

new = {
A2

n1 A4
n2

}
A3

new = {
A3

n1 A1
n2

}
A7

new = {
A3

n1 A2
n2

}
A11

new = {
A3

n1 A3
n2

}
A15

new = {
A3

n1 A4
n2

}
A4

new = {
A4

n1 A1
n2

}
A8

new = {
A4

n1 A2
n2

}
A12

new = {
A4

n1 A3
n2

}
A16

new = {
A4

n1 A4
n2

}
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Table 1c. α1, α2 values obtained solving LMI problem (28).

E1
new E2

new E3
new E4

new

α1 α2 α1 α2 α1 α2 α1 α2

A1
new 0.1585 0.1374 0.1584 0.1376 0.1584 0.1376 0.2226 0.1934

A2
new 0.1584 0.1376 0.1583 0.1376 0.2184 0.1897 0.2227 0.1935

A3
new 0.1566 0.1360 0.1584 0.1376 0.1566 0.1361 0.2227 0.1935

A4
new 0.0323 0.0281 0.1584 0.1376 0.0323 0.0281 0.2044 0.1772

A5
new 0.1584 0.1376 0.2184 0.1898 0.1583 0.1376 0.2227 0.1935

A6
new 0.2184 0.1896 0.2186 0.1898 0.2186 0.1898 0.2229 0.1936

A7
new 0.1566 0.1360 0.2185 0.1898 0.1566 0.1360 0.2227 0.1935

A8
new 0.0323 0.0281 0.2043 0.1773 0.0323 0.0281 0.2042 0.1774

A9
new 0.1566 0.1360 0.1566 0.1361 0.1584 0.1376 0.2227 0.1935

A10
new 0.1566 0.1360 0.1565 0.1360 0.2185 0.1898 0.2227 0.1935

A11
new 0.1565 0.1361 0.1567 0.1361 0.1567 0.1361 0.2226 0.1934

A12
new 0.0323 0.0281 0.1566 0.1361 0.0323 0.0281 0.2042 0.1774

A13
new 0.0323 0.0281 0.0323 0.0281 0.1584 0.1376 0.2044 0.1772

A14
new 0.0323 0.0281 0.0323 0.0281 0.2043 0.1772 0.2042 0.1774

A15
new 0.0323 0.0281 0.0323 0.0281 0.1566 0.1361 0.2042 0.1774

A16
new 0.0323 0.0280 0.0323 0.0281 0.0323 0.0281 0.2041 0.1772

Kharitonov’s theorem and stability boundary equation stabilizes the two-link manipulator system
(38) with the numerical values of local controller parameters (39). The finite numerical values
of αi , i = 1,2 indicate that the decentralized robust stability analysis of interconnected nonlinear
system with its maximum nonlinear perturbations.

5. Conclusion

A class of stabilizing decentralized PID controllers was designed for each link of a two-link
manipulator using parameter plane method and Kharitonov’s theorem. A Kharitonov region was
obtained graphically such that a PID controller with coefficients selected from this region sta-
bilizes the whole uncertain nonlinear system. Even though the design of PID controllers was
done based on linear system, the linear controller stabilizes the nonlinear system, which is
proved by solving LMI optimization problem and thereby obtaining the bounding parameter of
the interconnection terms. From the simulation results shown, it is concluded that the proposed
controllers closely tracks the constant as well as time-varying desired positions.
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