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Introduction.

Postulate-sets for determining the class of Boolean algebrasf have been

given by Schröder,^ Whttehead,§ and Huntington.|| Schroder's set

of ten postulates assumes—in addition to an undefined class K, common to

all these postulate-sets—an undefined dyadic relation, 4 > and Boole's 1f

undefined binary AT-rules** of combination, + and X ; Whitehead's two sets,

the first of thirteen, and the second of fifteen, postulates, and Huntington's

first set, of ten postulates, assume the same undefined AT-rules of combination,

+ and X , which Huntington writes respectively © and o ; Huntington's

second set, of nine postulates, assumes Schroder's undefined relation 4 >

* Presented to the Society, December 31, 1912.
f We employ the term Boolean algebras in its plural form for the following reasons: (1)

none of the equivalent postulate-sets here referred to is in terms of its undefined entities one-

valued ("categorical")—that is, each determines not a single algebra but a class of algebras;

one should not speak, therefore, of "der identische Kalkül" (Schröder), "the Algebra of

Symbolic Logic" (Whitehead), or "the algebra of logic" (Huntington); (2) Peano's Formu-

lario Mathematico and Whitehead and Russell's Principia Mathematica, each of which in-

cludes, as a part, the algebras under consideration, have a far stronger title to the name

"algebra of logic"; (3) "The Algebra of Symbolic Logic, viewed as a distinct algebra, is due

to Boole" (Whitehead, loc. cit., p. 115). "This algebra in all its essential particulars was

invented and perfected by Boole" (ib., p. 35, footnote).
i Ernst Schröder: Vorlesungen über die Algebra der Logik (Exakte Logik), Erster Band,

1890. The postulates, under various names, are scattered throughout the volume; collected

into one list by E. Müller: Abriss der Algebra der Logik, Erster Teil (1909), pp. 20, 21.
§ A. N. Whitehead: A Treatise on Universal Algebra, Vol. I, 1898, pp. 35-37.
|| E. V. Huntington: Sets of Independent Postulates for the Algebra of Logic. These

Transactions, vol. 5 (1904), pp. 288-309.
If G. Boole: An Investigation of the Laws of Thought.   London, 1854.
** An n-ary rule of combination <t>, is an agreement according to which any n (distinct or

non-distinct) logical entities, ah a,, a,, • • -, in a definite order, determine a unique logical

entity <j> (oi, a,, at, •■• ); in other words, a rule of combination is a one-valued logical function.

If the entity <t> (a¡, a,, a,, ■ ■ ■ ) is defined for all those and only those cases where all the n

entities ai, a,, at, • • • are elements of some class K , then <t> is a K-rule of combination; for a

binary X-rule of combination, <f> ( a, b) is also conveniently written a°b . If, for a X-rule

of combination $ , the entity 4> (ai, a,, a¡, ■ ■ ■ ) is always a K-element, then <p is K-closed.
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which he writes © ; and his third set, of nine postulates, the undefined K-Tu\e

of combination e. Each of these sets contains three existence-postulates,

namely, those demanding the existence of (1) the special Boolean* element z;

(2) the special Boolean* element u; and (3) for any üT-element a, its corre-

sponding Boolean element ä. The independence of all the postulates of each

set is proved only for Huntington's sets; and Huntington was the first to show

that any two of the concepts ©, O, and © are definable in terms of the third.

In this paper we offer, in § 1, a set of five independent postulates for Boolean

algebras. This set, which like Huntington's third set assumes but one un-

defined ii-rule of combination, differs from the previous sets (1) in the small

number of postulates, and (2) in the fact that the set contains no existence-

postulate f or z, u, or ä.

In § 2 we apply our results to the problem of reducing the number of primi-

tive logical constants, f

§ 1.   Postulate-Set for Boolean Algebras.

We assume:

I. A class K,
II. A binary .ri-rule of combination |,

III. The following properties of K and | :

1. There are at least two distinct If-elements.

2. Whenever a and b are Ti-elements, a \ b is a .K-element.

Def.   a' — a\ a.

3. Whenever a and the indicated combinations of a are Hi-elements,

(a')' = a.

4. Whenever a, b, and the indicated combinations of a and b are

it-elements,

a | (b | b') = a'.

5. Whenever a,b,c, and the indicated combinations of a, b, and c

are ii-elements,

(a|(6|C))'=(6'|a)|(c'[a).

For convenience, a | b may be read a per b.

Classification of Postulates 1-5.

Postulate 1 is an existence-postulate. Postulate 2, which demands that

the TT-rule of combination | shall be üT-closed,! is a K-closing postulate.

* For z, Boole and Schröder write 0; for u, 1.   Cf. p. 486, footnote f.
t Whitehead and Russell: Principia Maíhematica, vol. I, 1910, pp. 94-101.

t See p. 481, footnote **.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1913] POSTULATES FOR BOOLEAN ALGEBRAS 483

Postulate 3, which demands that a and (a1)' shall always be names for the

same TC-element—that the names a and (a')' shall always be equivalent—

is an equivalence postulate; so are 4 and 5.

Thus our set consists of an existence-postulate, a Ä-closing postulate, and

three equivalence postulates. Moreover, if we do not wish to exclude systems

which have but a single element, then 1 may be replaced by the weaker postu-

late

1'. There is at least one if-element.

Consistence of Postulates 1-5.

With the following interpretation of K and |, postulates 1-5 are satisfied:

K has only two distinct elements, m and n; m\m=n, m\n=n\m=n\n=m.

Independence of Postulates 1-5.

With each of the interpretations of K and | given in (l)-(5) below, all

the postulates, except the one correspondingly numbered, are satisfied; that

postulate is, therefore, independent of the remaining four.

(1) K has only one element m; m \ m = m.

(2) K has any number, greater than one, of distinct elements; for any

X-element m, m | m = m; for any two distinct K-elements, m and n, m\n

is hot a if-element.

(3) K has only two distinct elements, m and n; m\m=m\n = n\m

= n\ n = m.

(4) K is the class of all rationals; for any TT-elements, m and n, m\n —

— è ( m + n ).    Postulate 4 holds only when m = 0.

(5) K has only three distinct elements, I, m, and n; \ is defined by the

following table (for example: m \ I = n).

I   \l

m

n

n

m

m

m

n

n

n

m

Deductions from Postulates 1-5.

The proofs are given after theorem V.

A. Whenever a and b are .^-elements, a | b = b | a.

B. Whenever a and b are TT-elements, a \ a' = b \ b'.

la. Whenever a and b are TT-elements, (a \ b)' is a TT-element.

Trans. Am. Matb. Soc. 39
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16. Whenever a and b are /{-elements, a' | b' is a /{"-element,

lia. There is a /{-element z such that for any /{-element a, (a \ z)' = a.

lib. There is a /{-element u such that for any /{-element a, a' \ u' = a.

Ilia. Whenever a, b, (a \ b)', and (b \ a)' are /{-elements, ( a | 6 )' = (b\ a)'.

III6. Whenever a, b, a' \ b', and b' | a' are /{-elements, a' \ b' — V \ a'.

IVa. Whenever   a,   b,   c,   (a\b)',   (a\c)',   b'\c',   [a\(b'\c')\,   and

[(a|6)']'|[(a|c)']' are tf-elements, [a|(6'|c')]' = [(a|&)']'|[(a|c)']'-

IV6. Whenever   a,   b,   c,   a'\b',   a'\c',    (b\c)',   a' \ [ (b \ c)' ]',   and

[(a'|6')|(a'|C)]' are ^-elements, a'|[(6|c)']'=[(a'|6')|(a'|c')]'.

V*. If z and u of lía and 116 are unique /{-elements, then for any if-element

a there is a /{-element ä such that (a \ ä)' — u and a' \ (ä)' = z.

Proofs of the Preceding Theorems.

In the following proofs the use of postulate 2 is not always explicitly men-

tioned.

Proof of A.

a|6 = [(a|6)']' [by 3]

= [(a\{b'}')']' [by3

= [({b'\'\a)']' [by 5, 6 replaced by 6' and c by 6' ]

= [(6 | a)']' [by 3]

= 6 | a [by 3].

Proof of B.

a|a' = [(a|a')']' [by 3]

= [ (a | a') | (6 | 6') ]' [by 4, a replaced by a | a'J

= [(b\b')\(a\a')]' [by A]

= [ (6 | 6')' ]' [by 4, a replaced by 6 | V and 6 by a ]

= b\b' [by 3].

Proof of la.   Use 2 twice.

Proof of lb.    Use 2 thrice.

* Other theorems, the proofs of which we omit, are:

Ü.    ( a | 6 ) | ( a | 6' ) =a.

D. [a'|(o|6)]' = o|(o'|i>').

E. [ ( a | 6' ) | ( a' | & ) 1' = ( « I & ) I ( a' | 6' ) -
F. a\[a\(b\c)]=b\[b\(c\a)] =c|[c|(a|6)]

= a|(6|c)'       =6|(c|a)'      =c|(a|6)'.

G. (a'|o)|[(6'|a)l(C|o)]-a(6|c).
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Proof of lia.
There is a iT-element—say, x [by 1].

There is a üT-element, x | x', which we call z   [by 2, used twice].

(a | z)' = (a')' [by 4, b replaced by x ]

= a . [by 3].

Proof of lib.
There is a TT-element, z', which we call u [by lia and 2].

a'\u' = a'\ (z'Y

= a' | z    [by 3]

= (a')'   [by 4, a replaced by a' and 6 by x ]

= a [by 3].

Proof of Ilia. a \ b = b | a [by ¿ ].

Hence (a|6)'= (6|a)'.

Proo/ o/ 7776. a'\b' = b'\ a'

[by ̂ 4, a replaced by a' and b by b'].

Proof of IVa.   [ a \ (b' | c') ]' = [ (6')'| o] | [ (c')' | a]

[by 5, b replaced by V and c by c' ]

= (6 | a) | (c | a) [by 3, used twice]

= (a | 6) | (a | c) [by .¡4, used twice]

= [ (a | 6)' ]' | [ (a | c)' ]'      [by 3, used twice].
Proof of IVb.

a'\[(b\c)']' = a'\(b\c) [by3]

= [[a'\(b\c)}']' [by3]

= [(b'\a')\(c'\a')]'    [by 5, a replaced by a' ]

= [(a'\b')\(a'\c')]'   [by A, used twice].
Proo/ of V.

Take ä = a'.   Then

(a | a')' = (x | x')'   [by B, 6 replaced by x]

= z' [by lia]

= u [by lib].

a'\(a')' = a'\a [by 3]

= a | a' [by A ]

= z [by fi, 6 replaced by x ].
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Postulates 1-5 oTid Boolean Algebras.

The following is Huntington's first postulate-set* for Boolean algebras:

" [ For this postulate-set] we take as the fundamental concepts a class K

with two [binary K-] rules of combination e and o ; and as the fundamental

propositions the following ten postulates:

la.   a © 6 is in the class whenever a and 6 are in the class.

16.   a 0 6 is in the class whenever a and 6 are in the class.

Ha.   There is an element t z such that a © z — a for every element a.

116.    There is an element t u such that a 0 u = a for every element a.

Ilia,   a © 6 = 6 © a whenever a, 6, a © 6, and 6 © a are in the class.

III6.    a o 6 = 6 © a whenever a, b, a o 6, and 6 o a are in the class.

IVa.   a© (6©c) = (a©6) o (a ® c) whenever a, 6,c,affi6,affic,

60c,a©(6oc), and (a©6)o(a©c) are in the class.

IV6.   a© ( 6 © c ) = (a©6) © (aOc) whenever a,6,c,a©6,a0c,

6ffic,aO (6©c), and (a©6)©(aOc) are in the class.

V.    If the elements z and u in postulates lia and 116 exist and are unique,

then for every element a there is an element ä such that a © ä = u

and a 0 ä = z.

VI.   There are at least two elements, x and y, in the class such that x#=y."{

That set 1-5 is a postulate-set for Boolean algebras we shall prove by showing

that this set and Huntington's first postulate-set are equivalent.

Proof.—If for any elements, a and 6, of our class K we write

ä for a', a © 6 for (a | 6)', and a 0 6 for a' \ b',

theorems Ia-V and postulate 1 are precisely Huntington's first postulate-set;

hence set 1-5 implies Huntington's set.

If for any elements, a and 6, of Huntington's class we write

a | 6   for   5 o B,

Huntington's set implies set 1-5. §

§ 2.   Application to Primitive Logical Constants.

Since not only in special deductive systems but even in the foundations of

logic not all propositions can be proved and not all non-propositional entities

* Huntington, loe. cit., pp. 292-3.
t For 2 and u respectively Huntington uses the symbols A and V, which he takes from

Peano's Formulaire de Mathématiques. These are, however, symbols for logical constants,

just as 0 and 1 are symbols for numerical constants. We have replaced, therefore, Boole's

and Schroder's 0 and 1, and Huntington's A and V, by z and u .

t That is, such that x and y are distinct.

S By the_" principle of duality " the results of 51 hold also when a\b is interpreted through-

out as 5©b.
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can be defined, some logical constants* must be primitive,! that is, either

unproved or undefined. A list of primitive logical constants—primitive

ideas and primitive propositions—in terms of which, presumably,4: all other

logical constants can be either defined or proved, is given by Whitehead and

Russell in their Principia Mathematical This list contains, among other

logical constants, the primitive ideas|| negation (symbolized ~ ) and dis-

junction (symbolized v). Negation and disjunction are partly explained—

but, of course, not at all defined—by the statement that for any elementary

proposition p (elementary proposition being itself one of the Principia's primitive

ideas), ~ p means the elementary proposition not-p; and for any two elemen-

tary propositions, p and q, pvq means the elementary proposition either p

or q (or both).

On these two primitive ideas, in view of the following interpretation of K

and |, our set 1-5 has an important bearing. For, if Ar is the class of all

propositions of a given logical type.^f then whenever p and q are two propo-

sitions of this type, p \ q may be interpreted as the proposition neither p nor q;

in other words, | has the properties of the logical constant neither-nor. This

logical constant we may symbolize by a, and for obvious reasons we may

name rejection.**

Theorem 1. If in any list of primitive ideas for logic both negation and dis-

junction are primitive, they may be replaced by the single primitive idea rejection.

Proof.—In terms of negation and disjunction, rejection is defined by the

Def.—For any two elementary propositions, p and q,

pAq = co (pvq).

In terms of rejection, negation is defined ft by the

Def.—For any elementary proposition p, «*> p = p a p.

In terms of rejection, disjunction is defined by the

Def.—For any two elementary propositions, p and q,

pvq = (p*q)*(p*q).

By the following theorem, a similar reduction is possible for primitive

propositions.

* Whitehead and Russell, loc. cit., pp. 94-101.

t Ib., p. 95.
J ". . . there must always be some element of doubt, since it is hard to be sure that one

never uses some principle unconsciously" (ib., p. 94).

§ Whitehead and Russell, loc. cit., partial list, pp. 95-101; the other primitives are scat-

tered throughout the rest of the book.

|| 76., p. 97.
f 7b., pp. 39-68.
** By analogy with subject and object, we may call p a g the reject of p and q .

ft Negation may thus be considered as a special case of rejection.
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Two primitive propositions of the Principia* are:

* 1.7.    If p is an elementary proposition, « p is an elementary proposition.

* 1.71.    If p and q are elementary propositions, pvq is an elementary

proposition.

Theorem 2.    If in any list of primitive propositions for logic both  * 1.7 and

* 1.71 are primitive, they may be replaced by the single primitive proposition.

* 1.7'. // p and q are elementary propositions, p*q is an elementary propo-

sition.

Proof.—If in * 1.7 we replace pby pwq, * 1.7 and * 1.71 imply  * 1.7'.

If in  * 1.7' we replace q by p, * 1.7' implies  * 1.7.

If in * 1.7' we replace p by pnq and q by p*q * 1.7', used twice,

implies   * 1.71. t

'Thus we have made it possible to reduce, by one each, the number of

primitive ideas and of primitive propositions used in the Principia for the

foundation of logic.

Cornell University,

February, 1913.

* Whitehead and Russell, loc. cit., p. 101.

t By the "principle of duality" the results of §2 hold also when pAq is interpreted

throughout as the logical constant cither not-p or not-q.
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