
A Set of Level 3 Basic Linear Algebra
Subprograms

JACK J. DONGARRA

University of Tennessee and Oak Ridge National Laboratory

JEREMY DU CROZ and SVEN HAMMARLING

Numerical Algorithms Group, Ltd.

and

IAIN DUFF

Harwell Laboratory

This paper describes a set of Level 3 Basic Linear Algebra Subprograms (Level 3 BLAS). The Level

3 BLAS are targeted at matrix-matrix operations, with the aim of providing more efficient, but

portable, implementations of algorithms on high-performance computers, especially those with

hierarchical memory and parallel processing capability.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:

Numerical Algorithms and Problems-computations on matrices; G.l.O [Numerical Analysis]:

General-numerical algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear

systems (direct and iterative methods); G.4 [Mathematics of Computing]: Mathematical Software-

certification and testing; efficiency; portability; reliability and robustness; verification

General Terms: Algorithms, Measurement, Performance, Reliability, Verification

Additional Key Words and Phrases: Extended BLAS, utilities

1. INTRODUCTION

In 1973, Hanson, Krogh, and Lawson wrote an article in the SIGNUM Newsletter
(Vol. 8, no. 4, p. 16) describing the advantages of adopting a set of basic routines
for problems in linear algebra. The original basic linear algebra subprograms,
now commonly referred to as the BLAS and fully described in [27, 281, have been
very successful, and have been used in a wide range of software including
LINPACK [131 and many of the algorithms published by the ACM Transactions
on Mathematical Software. In particular, they are an aid to clarity, portability,

This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of

Energy Research, U.S. Department of Energy, under contract W-31.109-Eng-38.

Authors’ addresses: J. J. Dongarra, Department of Computer Science, University of Tennessee,

Knoxville, TN 37996-1301; J. Du Croz and S. Hammarling, Numerical Algorithms Group Ltd.,

Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, England; I. Duff, Computer Science and

Systems Division, Harwell Laboratory, Oxfordshire OX11 ORA, England.
Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1990 ACM 0098-3500/90/0300-0001$01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990, Pages 1-17.

2 - J. J. Dongarra et al.

modularity, and maintenance of software; and they have become a de facto
standard for the elementary vector operations. An excellent discussion of the
raison d’&re of the BLAS is given in [13].

An extended set of Fortran BLAS, aimed at matrix-vector operations (Level 2

BLAS), was subsequently proposed by Dongarra, Du Croz, Hammarling, and
Hanson [14, 151. The Level 2 BLAS were proposed in order to support the
development of software that would be both portable and efficient across a wide
range of machine architectures, with emphasis on vector-processing machines.

Many of the frequently used algorithms of numerical linear algebra can be
coded so that the bulk of the computation is performed by calls to Level 2 BLAS
routines; efficiency can then be obtained by utilizing tailored implementations of
the Level 2 BLAS routines. On vector-processing machines, one of the aims of
such implementations is to keep the vector lengths as long as possible, and in
most algorithms the results are computed one vector (row or column) at a time.
In addition, on vector register machines, performance is increased by reusing the
results of a vector register, and not storing the vector back into memory.

Unfortunately, this approach to software construction is often not well suited
to computers with a hierarchy of memory (such as global memory, cache or local
memory, and vector registers) and true parallel-processing computers. (For a
description of many advanced computer architectures, see [171.) For those archi-
tectures, it is often preferable to partition the matrix or matrices into blocks and
to perform the computation by matrix-matrix operations on the blocks. By
organizing the computation in this fashion we provide for full reuse of data while
the block is held in the cache or local memory. This approach avoids excessive
movement of data to and from memory and gives a surface-to-volume effect for
the ratio of operations to data movement. In addition, on architectures that
provide for parallel processing, parallelism can be exploited in two ways: (1)
operations on distinct blocks may be performed in parallel; and (2) within the
operations on each block, scalar or vector operations may be performed in parallel.

The Level 3 BLAS specified here are targeted at the matrix-matrix operations
required for these purposes. If the vectors and matrices involved are of order n,
then the original BLAS include operations that are of order O(n), the extended
or Level 2 BLAS provide operations of order O(n’), and the routines specified
here provide operations of order O(n3)-hence our use of the term Level 3 BLAS.
Section 9 illustrates how an algorithm for Cholesky factorization can be imple-
mented by calls to the Level 3 BLAS. Such implementations can, we believe, be
portable across a wide variety of vector and parallel computers, and are also
efficient (assuming that efficient implementations of the Level 3 BLAS are
available). There is certainly considerable evidence for the efficiency of such
algorithms on particular machines (see, for example, the references cited in
Section 9); the question of portability has been much less studied but, by
proposing a standard set of building blocks, we hope, to encourage research into
this aspect.

The scope of the Level 3 BLAS is intentionally limited. For example, no
routines are included for matrix factorization; these are currently provided by
LINPACK [131, and will be included in a new linear algebra package currently
under development, which will use block algorithms and calls to Level 3 BLAS

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms l 3

wherever possible [lo]. Nor are the Level 3 BLAS intended to be a comprehensive
set of routines for elementary matrix algebra. They are intended primarily for
software developers, and to a lesser extent for experienced applications program-
mers.

The details of this paper are concerned specifically with defining a set of
subroutines for use in Fortran 77 programs. However, the essential features could
be adapted to other programming languages.

In a companion paper [191, we present a model implementation of the Level 3
BLAS in Fortran 77 (extended to include a COMPLEX*16 data type), and also
a set of rigorous test programs.

2. SCOPE OF THE LEVEL 3 BLAS

The routines described here have been derived in a fairly obvious manner from
some of the Level 2 BLAS, by replacing the vectors x and y with matrices B and
C. The advantage in keeping the design of the software as consistent as possible

with that of the Level 2 BLAS is that it will be easier for users to remember the
calling sequences and parameter conventions.

In real arithmetic, the operations proposed for the Level 3 BLAS have the
following forms:

(a) Matrix-matrix products

CtaAB+PC
CtaATB+/3C
CtaABT+/3C
C t aATBT + PC

Note that these operations are more accurately described as matrix-matrix
multiply-and-add operations; they include rank-k updates of a general matrix.

(b) Rank-k and rank-2k updates of a symmetric matrix:

CtaAAT+/3C
CtaATA+flC
Cc aABT + aBAT + PC
C t aATB + aBTA + PC

(c) Multiplying a matrix by a triangular matrix:

B t aTB
B t aTTB
BtaBT
B t arBTT

(d) Solving triangular systems of equations with multiple right-hand sides:

B t aT-‘B
B t ~YT-~B
B t aBT-’
B t LIBT-~

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

4 l J. J. Dongarra et al.

Here, (Y and /3 are scalars, A, B, and C are rectangular matrices (in some cases,

square and symmetric), and T is an upper or lower triangular matrix (and
nonsingular in (d)).

Analogous operations are proposed in complex arithmetic: conjugate transpo-
sition is specified as well as simple transposition, and additional operations in

(b) provide for updates of a Hermitian matrix, as follows:

CcaAAH+/3C
Cc(wAHA+PC

with (Y and p real, and

Cc olABH + GBAH + PC

Cc aAHB + GBHA + PC

with 6 real.

3. NAMING CONVENTIONS

The name of a Level 3 BLAS routine follows the conventions of the Level 2

BLAS. The first character in the name denotes the Fortran data type of the
matrix, as follows:

S REAL
D DOUBLE PRECISION
C COMPLEX
Z COMPLEX*16 or DOUBLE COMPLEX (if available)

Characters two and three in the name refer to the kind of matrix involved, as
fallows:

GE All matrices are general rectangular
HE One of the matrices is Hermitian
SY One of the matrices is symmetric
TR One of the matrices is triangular

The fourth and fifth, and in one case sixth, characters in the name denote the
type of operation, as follows:

MM
RK
R2K
SM

Matrix-matrix product
Rank& update of a symmetric or Hermitian matrix
Rank-B/z update of a symmetric or Hermitian matrix
Solve a system of linear equations for a matrix of right-hand
sides

The permitted combinations are indicated in Table I. In the first column, under
complex, the initial C may be replaced by Z. In the second column, under real,
the initial S may be replaced by D; see Appendix B for the full subroutine calling
sequences.

The collection of routines can be thought of as being divided into four separate
parts: real, double precision, complex, and complex*16 The routines can be written
in ANSI standard Fortran 77, with the exception of the routines that use
COMPLEX*16 variables. These routines are included for completeness and for
their usefulness on those systems that support this data type; but because they

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms - 5

Table I

Complex Real MM RK R2K SM

CGE SGE *
CSY SSY * * *
CHE * * *

CTR STR * *

do not conform to the Fortran standard, they may not be available on all
machines. However, note that rank-k updates of general matrices are provided
by the GEMM routines.

4. ARGUMENT CONVENTIONS

We follow a convention for the argument lists similar to that for the Level 2
BLAS, with the necessary adaptations. The order of arguments is as follows:

(a) Arguments specifying options
(b) Arguments defining the sizes of the matrices
(c) Input scalar
(d) Description of input matrices

(e) Input scalar (associated with input-output matrix)
(f) Description of the input-output matrix

Note that not every category is present in each of the routines.
The arguments that specify options are character arguments with the names

SIDE, TRANSA, TRANSB, TRANS, UPLO, and DIAG.
SIDE is used by the routines as follows:

Value

‘L’

‘R’

Meaning

Multiply general matrix by symmetric, Hermitian or triangular
matrix on the left
Multiply general matrix by symmetric, Hermitian or triangular
matrix on the right

TRANSA, TRANSB, and TRANS are used by the routines as follows:

Value Meaning

'N'
‘T’
‘C’

Operate with the matrix
Operate with the transpose of the matrix
Operate with the conjugate transpose of the matrix

In the real case, the values ‘T’ and ‘C’ have the same meaning.
UPLO is used by the Hermitian, symmetric, and triangular matrix routines to

specify whether the upper or lower triangle is being referenced, as follows:

Value Meaning

‘II’
‘L’

Upper triangle
Lower triangle

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

6 l J. J. Dongarra et al.

DIAG is used by the triangular matrix routines to specify whether the matrix
is unit triangular, as follows:

Value Meaning

‘U’ Unit triangular
‘N’ Nonunit triangular

When DIAG is supplied as ‘U’, the diagonal elements are not referenced.
Thus, UPLO and DIAG have the same values and meanings as for the Level

2 BLAS; TRANSA, TRANSB, and TRANS have the same values and meanings
as TRANS in the Level 2 BLAS, where TRANSA and TRANSB apply to the
matrices A or B, respectively.

We recommend that the equivalent lower-case characters be accepted with the
same meaning; although, because they are not included in the standard Fortran
character set, their use may not be supported on all systems (see Section 7 of
[131 for further discussion).

The sizes of the matrices are determined by the arguments M, N, and K. It is
permissible to call the routines with M or N = 0, in which case the routines exit
immediately without referencing their matrix arguments. If M and N > 0, but
K = 0, the operation reduces to C t /3C (this applies to the GEMM, SYRK,
HERK, SYRBK, and HERBK routines). The input-output matrix (B for the TR
routines, C otherwise) is always m X n if rectangular, and n X n if square.

The description of the matrix consists of the array name (A, B, or C) followed
by the leading dimension of the array as declared in the calling (sub)program

(LDA, LDB, or LDC).
The scalars always have the dummy argument names ALPHA and BETA.
The following values of arguments are invalid: Any value of the character

arguments SIDE, TRANSA, TRANSB, TRANS, UPLO, or DIAG whose meanig
is not specified.

Me0
NcO
Kc0

LDA < the number of rows in the matrix A.
LDB < the number of rows in the matrix B.
LDC < the number of rows in the matrix C.

If a routine is called with an invalid value for any of its arguments, then it must
report the fact and terminate execution of the routine. In the model implemen-
tation (see Appendix B), each routine, on detecting an error, calls a common
error handling routine XERBLA, passing to it the name of the routine and the
number of the first argument that is in error. Specialized implementations may
call system-specific exception-handling and diagnostic facilities.

5. STORAGE CONVENTIONS

All matrices are stored conventionally in a two-dimensional array with matrix-
element ai,j stored in array-element A(1, J); there is no provision for packed
storage for symmetric, Hermitian, or triangular matrices.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms l 7

For symmetric and Hermitian matrices, only the upper triangle (UPLO = ‘U’)
or the lower triangle (UPLO = ‘L’) is stored.

For triangular matrices, the argument UPLO serves to define whether the
matrix is upper (UPLO = ‘U’) or lower (UPLO = ‘L’) triangular.

For a Hermitian matrix, the imaginary parts of the diagonal elements are of
course zero, and thus the imaginary parts of the corresponding Fortran array
elements need not be set, but are assumed to be zero. In the HERK and HERSK
routines, these imaginary parts are set to zero on return, except when 0 = 1 and
LY or k = 0, in which case the routines exit immediately.

6. SPECIFICATION OF THE LEVEL 3 BLAS

Type and dimension for variables occurring in the subroutine specifications are
as follows:

INTEGER M, N, K, LDA, LDB, LDC
CHARACTER*1 SIDE, UPLO, TRANSA, TRANSB, TRANS, DIAG

For routines whose first letter is an S:

REAL ALPHA, BETA
REAL A(LDA, *), B(LDB, *), C(LDC, *)

For routines whose first letter is a D:

DOUBLE PRECISION ALPHA, BETA
DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *)

For routines whose first letter is a C:

COMPLEX ALPHA, BETA
COMPLEX A(LDA, *), B(LDB, *), C(LDC, *)

except that, for CHERK, the scalars (Y and p are real, so the first declaration
above is replaced by

REAL ALPHA, BETA

and, for CHER2K, (Y is complex and p is real, so this is replaced by

COMPLEX ALPHA
REAL BETA

For routines whose first letter is a Z:

COMPLEX*16 ALPHA, BETA or DOUBLE COMPLEX ALPHA, BETA
COMPLEX*16 A(LDA, *) DOUBLE COMPLEX A(LDA, *)
COMPLEX*16 B(LDB, *) DOUBLE COMPLEX B(LDB, *)
COMPLEX*16 C(LDC, *) DOUBLE COMPLEX C(LDC, *)

except that, for ZHERK, the scalars 01 and p are real, so the first declaration
above is replaced by

DOUBLE PRECISION ALPHA, BETA

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

8 l J. J. Dongarra et al.

and, for ZHER2K, (Y is complex and p is real, so this is replaced by

COMPLEX*16 ALPHA
DOUBLE PRECISION BETA

(a) General matrix-matrix products:

-GEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA,
C, LDC)

Operation (C is always m X n):

TRANSA = ‘N’ TRANSA = ‘T TRANSA = ‘C’

TRANSB = ‘N’ C + aAB + PC CcaATB+PC C+aA”B+/3C
AismXk,BiskXn Aiskxm,BiskXn AiskXm,Biskxn

TRANSB = ‘T’ CtaABT+PC CtaATBT+/3C C+aAHBT+/3C
AismXk,BisnXk AiskXm,BisnXk AiskXm,BisnXk

TRANSB = ‘C’ C+aABH+/3C Cc aATBH + PC C + aAHBH + PC
AismXk,BisnXk AiskXm,BisnXk AiskXm,BisnXk

(In the real case, the values ‘T’ and ‘C’ have the same meaning.)

(b) Matrix-matrix products where one matrix is real or complex symmetric or
complex Hermitian:

-SYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
-HEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

Operation (C is always m X n, A is symmetric for the -SYMM routines and
Hermitian for the -HEMM routines):

SIDE = ‘L’ SIDE = ‘R

C!taAB+PC CtaBA+PC

AismXm BismXn

BismXn AisnXn

(c) Rank-k updates of a real or complex symmetric or complex Hermitian
matrix:

-SYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
-HERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)

Operation (C is always n X n).

For -SYRK routines (C is symmetric):

TRANS = ‘N’ TRANS = ‘T’

CtaAAT+PC CtaATA+@C

AisnXk AiskXn

For -HERK routines (C is Hermitian):

TRANS = ‘N’ TRANS = ‘C’

CtaAA”+@C CtaA”A+PC

AisnXk AiskXn

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms l 9

(In the real case, the values ‘T’ and ‘C’ have the same meaning. In the complex
case, TRANS = ‘C’ is not allowed in -SYRK and TRANS = ‘T’ is not allowed
in -HERK.)

(d) Rank-2k updates of a real or complex symmetric or complex Hermitian
matrix:

-SYRBK (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

-HERSK (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

Operation (C is always n X n).
For -SYRBK routines (C is symmetric):

TRANS = ‘N TRANS = ‘T’

Cc aABT + aBAT + PC C t aATB + cxBTA + PC!

A and B are n x k A and B are k X n

For -HER2K routines (C is Hermitian):

TRANS = ‘N’ TRANS = ‘C’

Cc aABH + &BAH + PC C t aAHB + GBHA + /‘XT

A and B are n X k A and B are k X n

(In the real case, the values ‘T’ and ‘C’ have the same meaning. In the complex
case, TRANS = ‘C’ is not allowed in -SYR2K and TRANS = ‘T’ is not allowed
in -HERBK.)

(e) Triangular matrix-matrix products:

-TRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

Operation (B is always m x n, A is triangular):

TRANSA = ‘N’ TRANSA = ‘T’ TRANSA = ‘C’

SIDE = ‘L’ B+LvAB B + aATB B t aAHB

A is triangular m X m A is triangular m X m A is triangular m X m

SIDE = ‘R BtcrBA BcaBAT B c aBAH

A is triangular n X n A is triangular n x n A is triangular n x n

(In the real case, the values ‘T’ and ‘C’ have the same meaning.)
(f) Solution of triangular systems of equations:

-TRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

Operation (B is always m x n, A is triangular):

TRANSA = ‘N’ TRANSA = ‘T’ TRANSA = ‘C’

SIDE = ‘L’ B c aA-‘B B + CZA-~B B c CXA-~B
A is triangular m X m A is triangular m X m A is triangular m X m

SIDE = ‘R’ B t aBA-’ B +-- CIBA-~ B t CYBA-~
A is triangular n X n A is triangular n X n A is triangular n X n

(In the real case, the values ‘T’ and ‘C’ have the same meaning.)

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

10 l J. J. Dongarra et al.

7. NUMERICAL STABILITY

Although it is intended that the Level 3 BLAS be implemented as efficiently as
possible, it is essential that efficiency should not be achieved at the cost of
sacrificing numerical stability. This is particularly important because the Level
3 BLAS are intended to be used as building blocks in higher level algorithms of
linear algebra. If the Level 3 BLAS themselves were unstable, they would destroy
the stability of the algorithms that call them.

8. RATIONALE

In the design of all levels of BLAS, one of the main concerns is to keep both the
calling sequences simple and the range of options limited, while at the same time
maintaining sufficient functionality. This clearly implies a compromise, and a
good decision is vital if the BLAS are to be accepted as a useful standard. In this
section we discuss the reasoning behind some of the decisions we have made.

The three basic matrix-matrix operations were chosen because they occur in a
wide range of linear algebra applications: this is consistent with the criteria used
for the Level 1 and Level 2 BLAS. We have again aimed at a reasonable
compromise between a much larger number of routines, each performing only
one type of operation (e.g., B t LTB), and a smaller number of routines with a
more complicated set of options. There are in fact, in each precision, 6 real
routines performing altogether 48 different combinations of options, and 9
complex routines performing altogether 81 different combinations of options.
The number of routines is much smaller than in the Level 2 BLAS.

The routines that we have specified are not intended as high-level matrix
algebra routines, but rather as building blocks for the construction of such
routines.

In almost every case, where appropriate, we include operations involving a
matrix and its transpose (the only exceptions are the -SYMM and -HEMM
routines). We could ask the user to transpose the input matrix, but feel that this
would be an imposition, particularly if the BLAS routine is being called from
deep within the user’s code. It would also increase the amount of data movement,
whereas one of the aims of our proposal is to assist the development of software
that minimizes data movement.

It could also be argued that algorithms can be rewritten to require only one of
the patterns of access for symmetric, Hermitian, or triangular matrices (i.e.,
upper or lower triangle), but we do not feel that the BLAS should be dictating
this to the user.

We do not provide routines for operations involving trapezoidal matrices; all
our triangular matrices are square. This is consistent with the Level 2 BLAS. It
would be possible to extend the routines for triangular matrices so that they
could handle trapezoidal matrices, but at the cost of introducing extra arguments.
On the other hand, a trapezoidal matrix can always be partitioned into a
triangular matrix and a rectangular matrix.

We have not included specialized routines to take advantage of packed storage
schemes for symmetric, Hermitian, or triangular matrices, nor of compact storage
schemes for banded matrices, because such storage schemes do not seem to lend

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms 11

themselves to partitioning into blocks, and hence are not likely to be useful in
the type of application we are aiming at. Also, packed storage is required much
less with the large memory machines available today, and we wish to keep the
set of routines as small as possible.

We also have not specified a set of extended-precision routines analogous to
the ES and EC routines in the Level 2 BLAS, since this would require a two-
dimensional array in extended precision.

As with the Level 2 BLAS, no check has been included for singularity, or near
singularity, in the routines for solving triangular equations. The requirements
for such a test depend on the application, and so we felt that this should not be
included, but should instead be performed outside the triangular solver.

We have tried to adhere to the convention of, and maintain consistency with,
the Level 2 BLAS; however, we have deliberately departed from this approach in
a few cases. The input-output matrix C in the matrix-multiply routines is the
analogue of the vector y in the matrix-vector product routines. But here, C always
has the same dimensions, whereas y was either of length m or n depending on
context. In the rank-k update routines, we have included a parameter /3 which
was not present in the Level 2 rank update routines. Here we felt that the
parameter /3 is useful in applications, and since the matrix multiply routines can
also be viewed as rank-k update routines, we have consistency between the MM,
RK, and R2K routines.

We have also added a parameter 01 to the routines involving triangular matrices.
This was not felt to be needed in the corresponding Level 2 BLAS, since there
would be little additional cost in a separate operation to scale the result vector
by (Y. However, in the Level 3 BLAS, where there is a whole matrix to be scaled,
it is advantageous to incorporate the scaling within -TRMM or -TRSM.

Additionally, we have provided for complex symmetric, as well as complex
Hermitian, matrices, since they occur sufficiently often in applications.

In our proposed naming scheme, the first character (S, D, C, or Z) indicates
the relevant Fortran data type. This conforms to the conventions already estab-
lished for the Level 1 and Level 2 BLAS, and also other software such as Linpack.
However, the fact that single- and double-precision versions of a BLAS routine
have different names can be an obstacle to portability, because the actual
precision of, say an S routine may differ considerably between machines. For
example, SGEMM on a Cray 2 will use arithmetic with similar precision to
DGEMM on an IBM 3090. The ideal solution would be to use generic names,
not only for single- and double-precision versions, but also for real and complex
versions. This option is not available in a standard Fortran 77 environment.
However, for implementations in other environments or programming languages
that do permit generic names, we propose that the first character of the Fortran
77 names should simply be omitted, giving the generic names GEMM, SYMM,
SYRK, SYR2K, HEMM, HERK, HER2K, TRMM, and TRSM.

9. APPLICATIONS

The primary intended application of the Level 3 BLAS is in implementing
algorithms of numerical linear algebra in terms of operations on submatrices (or
blocks). There is a long history of block algorithms, e.g., [l, 4, 6, 8,9, 11, 22, 291.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

12 - J. J. Dongarra et al.

Both the NAG and the IMSL (Edition 9) libraries include such algorithms
(FOlBTF and FOlBXF in NAG; LEQIF and LEQOF in IMSL). The earlier work

was usually concerned with submatrices being transferred between the main
memory and disk or tape. Similar concerns motivated work designed to exploit
common page-swapping algorithms in virtual memory machines. Indeed, the
techniques are similar wherever there exists any hierarchy of data storage (in
terms of access speed). Additionally, full blocks, and hence the multiplication of

full matrices, might appear as a subproblem when handling large sparse systems
of equations (for example, [9, 23, 251).

More recently, several workers have demonstrated the effectiveness of block

algorithms on a variety of modern computer architectures, with vector-processing
or parallel-processing capabilities, on which potentially high performance can
easily be degraded by excessive transfer of data between different levels of
memory (vector registers, cache, local memory, main memory, or solid-state
disks) [2, 3, 5-7, 19-21, 24, 26, 30-321. See Demmel et al. [lo] for a proposal to
develop a new linear algebra library using block algorithms wherever possible
and calling Level 3 BLAS.

Here we illustrate how the Level 3 BLAS routines can be used to implement a
simple algorithm of numerical linear algebra, namely, Cholesky factorization.

The strategy is to compute at each stage a block of consecutive columns of the
result. The size of the block is a parameter, ~zb, that may be varied to suit
the size of the problem and the architecture of the machine. (For transportable
software, we shall need some means of determining the block size within the
routine, but we set that issue aside here.)

There are other ways to organize the computation: for example, it is equally
possible to compute a block of consecutive rows at each stage. The analysis of
Dongarra et al. [18] can easily be extended to block algorithms. We have chosen
an organization that works by columns rather than rows, one that involves fewest
memory references.

Also, we have implemented the algorithms in such a way that submatrices
passed to the Level 3 BLAS routines are kept as large as possible (once the block
size has been fixed); this gives the greatest scope for achieving efficiency within
the Level 3 BLAS. Alternatively, one might explicitly partition the matrix into,
say, square blocks of size nb X nb; this would require many more calls to the
Level 3 BLAS routines, but might allow a more precise control of memory or of
parallelism.

We assume that we are given a positive-definite symmetric matrix A whose
lower triangle is stored in the lower triangle of a two-dimensional array. We wish
to compute L, overwriting the given elements of A.

We can partition the matrices so that

(2; It; 2) = (2; ;; .,)ii: 2 2)

(

-L-G-l L-G Ll,G
= LZlLZ LlLZ + L22L& L21G + L22G

LLT, L31Gi + L32G2 L31G + &2-G + L&&

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms l 13

Here, L,, and L,, constitute the current block of columns of L to be computed,
and we assume that L1,, Lzl, and Lsl constitute the blocks, if any, that have
already been computed. Note that the blocks in the above partitioning are not
all of equal size-the off-diagonal blocks are, in general, rectangular.

Equating blocks, we have

so that

Thus the computation of one block-column of the result involves the following
operations:

(1) update the diagonal block:

-42’2 + A22 - L,,L,T,

(2) compute the Cholesky factorization of the diagonal block:

Ai2 --+ L22G2

(3) update the subdiagonal block:

(4) compute the subdiagonal block of L:

La2 t A&(L&)-’

To express the complete algorithm, we adopt a notation in which the matrix is
partitioned into blocks A, of size nb X nb, with p = rn/nbl, and use Aj,l:j-l to

denote, for example, the block row [Aj,l, Aj,2, . . . , Aj,j-11. The algorithm is

forj= 1 top
A,j c Ajj - Aj,1:j-~A;fi:j-~ (SYRK)
factorize A, (unblocked algorithm)
Aj+l:p,j + Ajt1:p.j - Aj+l:p,l:j-lA,Tl:,-l (-GEMM)
Aj+l:p,j + Aj+l:p.,(AJ’-’ (-TRSM)

In Appendix A, we give the Fortran code for a block Cholesky factorization
routine DLLTB, calling Level 3 BLAS routines; and also a lower level routine
DLLT, which is called by DLLTB and calls Level 1 and 2 BLAS routines. A
separate lower level routine is needed, since current standard Fortran forbids
recursion. The structure of DLLTB has been kept as similar as possible to that

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

14 l J. J. Dongarra et al.

of DLLT. The call-tree is

APPENDIX A BLOCKED CHOLESKY FACTORIZATION

*
*
*
*
*

*

*
*
*

*
*
*
*

+

*
*
*

*
*
*

SUBROUTINE DLLTB(N.A,LDA,INFO)

Computes an L*L**T factorization of a symnctric positive-dctinitc
matrix A.
Blocked version, calling Level 3 BLAS.

INTEGER INFO, LDA, N
DOUBLE PRECISION A(LDA,*)
INTEGER J, JB
INTEGER NB
PARAMETER (NB=64)
EXTERNAL DGEhM. DLLT, DSYRK, DTRSM

INFO = 0
DO 10 J = I. N. NB

JB = MIN(NB;N-J+l)

Update diagonal block.

CALL DSYRK(‘Lower’.‘No transpose’ .JB,J-I,-I.ODO.A(J.l),LDA,
l.ODO.A(J,J),LDA)

Factorize diagonal block and test for
non-positive-definiteness.

CALL DLLT(JB.A(J,J).LDA,INFO)
IF (INFO.NE.0) GO TO 20

IF (J+JB.LE.N) THEN

Update subdiagonal block.

CALL LXZIvM(‘No transpose’.‘Transpose’,N-J-JB+l.JB.J-1.
-I.ODO.A(J+JB,1),LDA,A(J.1),LDA,1.ODO,A(J+JB,J).
LDA)

Compute subdiagonal block of L.

CALL DTRSM(‘Right’.‘Lower’,‘Transpose’.’Non-unit’,N-J-JB+l,
JB,l.ODO.A(J,J),LDA,A(J+JB,J),LDA)

END IF

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms - 15

10

*
20

CONTINUE
RETURN

INFO = INFO + J - 1
RETURN
END
SUBROUTINE DLLT(N,A.LDA,INFO)

Computes an L*L**T factorization of a synxnetric positive-dehnitc
matrix A.
Unblocked version, calling Level 2 and Level 1 BLAS.

INTEGER INFO, LDA, N
DOUBLE PRECISION A(LDA.*)
INTEGER
DQUBLE PRECISION ;DClT
EXTERNAL DDQT
EXTERNAL DGEMV, DSCAL

INFO = 0
DO 10 J = 1, N

Update a(j,j).

A(J.J) = A(J,J) - DDQT(J-l,A(J.l).LDA,A(J.l),LDA)

Compute I(j,j) and test for non-positive-degniteness.

IF (A(J,J).LE.O.ODO) Go TO 20
A(J.J) = SQRT(A(J.J))

IF (J.LT.N) THEN

Update elements j+l:n of j-th column.

CALL DCEMV(‘No transpose’ ,N-J.J-I,-l.ODO,A(J+l,l),LDA,
s A(J,l),LDA,l.ODO.A(J+l,J),l)

Compute elements j+l:n of j-th column of L.

CALL DSCAL(N-J.l.ODO/A(J.J).A(J+l,J),l)
END IF

10 CONTINUJZ
RETURN

20 INFO = J
RETURN
END

APPENDIX B CALLING SEQUENCES FOR ALL THE LEVEL 3 BLAS

” ame opl ions dim scalar matrix matrix scalar matrix

-GM (TRANSA. TRANSB. M. N. K. ALPIM. A, LDA. B. LDB. BETA, C. LDC)

-SYlM (SIDE, UPLO. M. N. ALPHA. A. LDA. B. LDB. BETA, C. LLX)

JIM4 (SIDE, UPLO. M. N. ALPHA. A. LDA. B. LDB. BETA, C, LDC)

3-= (UPLO. TRANS (N. K. ALPHA. A. LDA. BETA, C. LX)

~1ERK (UPLO. TRANS (N. K. ALPHA. A. LDA. BETA. C. LDC)

-SYRZK(UPLO. TRANS) N. K, ALPHA, A, LDA, B. LDB. BBTA. C. LDC)

-IIERZK(UPLO. TRANS) N. K. ALPHA. A. LDA. B. LDB. BETA, C. LDC)

-TRW4 (SIDE, UPLO. TRANSA, DIAG. M. N. ALPHA. A. LDA. B. LDB)

-TRSM (SIDE. UPLO. TRANSA, DIAG. M. N. ALPHA. A. LDA. B. LDD)

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

16 - J. J. Dongarra et al.

ACKNOWLEDGMENTS

Draft proposals for the Level 3 BLAS were discussed initially at a workshop at
Argonne National Laboratory, on January 26-27, 1987, and subsequently at
various meetings. We thank all the participants in those discussions for their
comments and encouragement. We thank John Lewis in particular, for urging us
to provide for complex symmetric matrices.

REFERENCES

1. BARRON, D. W., AND SWINNERTON-DYER, H. P. F. Solution of simultaneous linear equations

using a magnetic-tape store. Comput. J. 3 (1960), 28-33.

2. BERRY, M., GALLIVAN, K., HARROD, W., JALBY, W., Lo, S., MEIER, U., PHILIPPE, B., AND

SAMEH, A. Parallel algorithms on the CEDAR system. CSRD Report 581, 1986.

3. BISCHOF, C., AND VAN LOAN, C. The WY representation for products of Householder matrices.

SIAM J. 5%. Stat. Comput. 8, 1 (Jan. 1987), s2-~13.

4. BRONLUND, 0. E., AND JOHNSEN, T. QR-factorization of partitioned matrices. Comput. Meth.

Appl. Mech. Eng., vol. 3, pp. 153-172, 1974.

5. BUCHER, I., AND JORDAN, T. Linear algebra programs for use on a vector computer with a

secondary solid state storage device. In Advances in Computer Methods for Partial Differential

Equations, R. Vichnevetsky and R. Stepleman, Eds. IMACS, 1984,546-550.

6. CALAHAN, D. A. Block-oriented local-memory-based linear equation solution on the CRAY-2:

Uniprocessor algorithms. In Proceedings International Conference on Parallel Processing (Aug.

1986). IEEE Computer Society Press, New York, 1986.

7. CARNEVALI, P., RADICATI DI BROZOLO, G., ROBERT, Y., AND SGUAZZERO, P. Efficient Fortran

implementation of the Gaussian elimination and Householder reduction algorithms on the IBM

3090 vector multiprocessor. IBM ECSEC Rep. ICE-0012, 1987.

8. CHARTRES, B. Adaption of the Jacobi and Givens methods for a computer with magnetic tape

backup store. Univ. of Sydney Tech. Rep. 8, 1960.

9. DAVE, A. K., AND DUFF, I. S. Sparse matrix calculations on the CRAY-2. Parallel Comput. 5
(July 1987), 55-64.

10. DEMMEL, J., DONGARRA, J. J., Du CROZ, J., GREENBAUM, A., HAMMARLING, S., AND SORENSEN,

D. Prospectus for the development of a linear algebra library for high-performance computers.
Argonne National Lab. Rep. ANL-MCS-TM-97, Sept. 1987.

11. DIETRICH, G. A new formulation of the hypermatrix Householder QR-decomposition. Comput.

Meth. Appl. Mech. Eng. 9 (1976), 273-280.

12. DODSON, D., AND LEWIS, J. Issues relating to extension of the basic linear algebra subprograms.

ACM SIGNUM Newsl. 20, 1 (1985), 2-18.

13. DONGARRA, J. J., BUNCH, J., MOLER, C., AND STEWART, G. LZNPACK Users’ Guide. SIAM,

Philadelphia, Pa., 1979.

14. DONGARRA, J. J., DUCROZ, J., HAMMARLING, S., AND HANSON, R. An extended set of Fortran

basic linear algebra subprograms. ACM Trans. Math. Softw. 24, 1 (Mar. 1988), l-17.

15. DONGARRA, J. J., DUCROZ, J., HAMMARLING, S., AND HANSON, R. An extended set of Fortran

basic linear algebra subprograms: Model implementation and test programs. ACM Trans. Math.

Softw. 14, 1 (Mar. 1988), 18-32.

16. DONGARRA, J. J., DUCROZ, J., DUFF, I. S., AND HAMMARLING, S. A set of level 3 basic linear

algebra subprograms: Model implementation and test programs. This issue, pp. 18-37.
17. DONGARRA, J. J., AND DUFF, I. S. Advanced architecture computers. Univ. of Tennessee, Rep.

CS-89-90, Nov. 1989.

18. DONGARRA, J. J., GUSTAVSON, F., AND KARP, A. Implementing linear algebra algorithms for

dense matrices on a vector pipeline machine. SIAM Reu. 26, 1 (1984), 91-112.
19. DONGARRA, J. J., HAMMARLING, S., AND SORENSEN, D. C. Block reduction of matrices to

condensed forms for eigenvalue computations. Argonne National Lab. Rep. ANL-MCS-TM-99,
Sept. 1987.

20. DONGARRA, J. J., AND HEWITT, T. Implementing dense linear algebra using multitasking on

the CRAY X-MP-4. J. Comput. Appl. Math. 27 (1989), 215-227.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

A Set of Level 3 Basic Linear Algebra Subprograms l 17

21. DONGARRA, J. J., AND SORENSEN, D. C. Linear algebra on high-performance computers. In

Proceedings Parallel Computing 85, U. Schendel, Ed. North Holland, Amsterdam, 1986,113-136.

22. DUCROZ, J., NUGENT, S., REID, J., AND TAYLOR, D. Solving large full sets of linear equations

in a paged virtual store. ACM Trans. Math. Softw. 7, 4 (19811, 527-536.
23. DUFF, I. S. Full matrix techniques in sparse Gaussian elimination. In Numerical Analysis

Proceedings, Dundee 1981, Lecture Notes in Mathematics 912. Springer-Verlag, New York, 1981,

71-84.

24. GALLIVAN, K., JALBY, W., AND MEIER, U. The use of BLASB in linear algebra on a parallel

processor with a hierarchical memory. SZAMJ. Sci. Stat. Comput. 8, 6 (Nov. 1987), 1079-1084.

25. GEORGE, A., AND RASHWAN, H. Auxiliary storage methods for solving finite element systems.

SZAMJ. Sci. Stat. Comput. 6, 4 (Oct. 1985), 882-910.

26. IBM. Engineering and scientific subroutine library. Program 5668-863, 1986.

27. LAWSON, C., HANSON, R. KINCAID, D., AND KROGH, F. Basic linear algebra subprograms for

Fortran usage. ACM Trans. Math. Softw. 5 (1979), 308-323.

28. LAWSON, C., HANSON, R., KINCAID, D., AND KROGH, F. Algorithm 539: Basic linear algebra

subprograms for Fortran usage. ACM Trans. Math. Softw. 5 (1979), 324-325.

29. MCKELLAR, A. C., AND COFFMAN, E. G., JR. Organizing matrices and matrix operations for

paged memory systems. Commun. ACM 12, 3 (1969), 153-165.

30. ROBERT, Y., AND SGUAZZERO, P. The LU decomposition algorithm and its efficient Fortran

implementation on the IBM 3090 vector multiprocessor. IBM ECSEC Rep. ICE-0006,1987.

31. SCHREIBER, R. Module design specification (Version 1.0). SAXPY Computer Corp., 255 San

Geronimo Way, Sunnyvale, CA 94086, 1986.

32. SCHREIBER, R., AND PARLETT, B. Block reflectors: Theory and computation. SIAM J. Numer.

AnaL 25, 1 (Feb. 1988), 189-205.

Received October 1988; revised February 1989; accepted March 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

