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This paper describes a set of Level 3 Basic Linear Algebra Subprograms (Level 3 BLAS). The Level 

3 BLAS are targeted at matrix-matrix operations, with the aim of providing more efficient, but 

portable, implementations of algorithms on high-performance computers, especially those with 

hierarchical memory and parallel processing capability. 
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1. INTRODUCTION 

In 1973, Hanson, Krogh, and Lawson wrote an article in the SIGNUM Newsletter 
(Vol. 8, no. 4, p. 16) describing the advantages of adopting a set of basic routines 
for problems in linear algebra. The original basic linear algebra subprograms, 
now commonly referred to as the BLAS and fully described in [27, 281, have been 
very successful, and have been used in a wide range of software including 
LINPACK [ 131 and many of the algorithms published by the ACM Transactions 
on Mathematical Software. In particular, they are an aid to clarity, portability, 
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modularity, and maintenance of software; and they have become a de facto 
standard for the elementary vector operations. An excellent discussion of the 
raison d’&re of the BLAS is given in [13]. 

An extended set of Fortran BLAS, aimed at matrix-vector operations (Level 2 

BLAS), was subsequently proposed by Dongarra, Du Croz, Hammarling, and 
Hanson [14, 151. The Level 2 BLAS were proposed in order to support the 
development of software that would be both portable and efficient across a wide 
range of machine architectures, with emphasis on vector-processing machines. 

Many of the frequently used algorithms of numerical linear algebra can be 
coded so that the bulk of the computation is performed by calls to Level 2 BLAS 
routines; efficiency can then be obtained by utilizing tailored implementations of 
the Level 2 BLAS routines. On vector-processing machines, one of the aims of 
such implementations is to keep the vector lengths as long as possible, and in 
most algorithms the results are computed one vector (row or column) at a time. 
In addition, on vector register machines, performance is increased by reusing the 
results of a vector register, and not storing the vector back into memory. 

Unfortunately, this approach to software construction is often not well suited 
to computers with a hierarchy of memory (such as global memory, cache or local 
memory, and vector registers) and true parallel-processing computers. (For a 
description of many advanced computer architectures, see [ 171.) For those archi- 
tectures, it is often preferable to partition the matrix or matrices into blocks and 
to perform the computation by matrix-matrix operations on the blocks. By 
organizing the computation in this fashion we provide for full reuse of data while 
the block is held in the cache or local memory. This approach avoids excessive 
movement of data to and from memory and gives a surface-to-volume effect for 
the ratio of operations to data movement. In addition, on architectures that 
provide for parallel processing, parallelism can be exploited in two ways: (1) 
operations on distinct blocks may be performed in parallel; and (2) within the 
operations on each block, scalar or vector operations may be performed in parallel. 

The Level 3 BLAS specified here are targeted at the matrix-matrix operations 
required for these purposes. If the vectors and matrices involved are of order n, 
then the original BLAS include operations that are of order O(n), the extended 
or Level 2 BLAS provide operations of order O(n’), and the routines specified 
here provide operations of order O(n3)-hence our use of the term Level 3 BLAS. 
Section 9 illustrates how an algorithm for Cholesky factorization can be imple- 
mented by calls to the Level 3 BLAS. Such implementations can, we believe, be 
portable across a wide variety of vector and parallel computers, and are also 
efficient (assuming that efficient implementations of the Level 3 BLAS are 
available). There is certainly considerable evidence for the efficiency of such 
algorithms on particular machines (see, for example, the references cited in 
Section 9); the question of portability has been much less studied but, by 
proposing a standard set of building blocks, we hope, to encourage research into 
this aspect. 

The scope of the Level 3 BLAS is intentionally limited. For example, no 
routines are included for matrix factorization; these are currently provided by 
LINPACK [ 131, and will be included in a new linear algebra package currently 
under development, which will use block algorithms and calls to Level 3 BLAS 
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wherever possible [lo]. Nor are the Level 3 BLAS intended to be a comprehensive 
set of routines for elementary matrix algebra. They are intended primarily for 
software developers, and to a lesser extent for experienced applications program- 
mers. 

The details of this paper are concerned specifically with defining a set of 
subroutines for use in Fortran 77 programs. However, the essential features could 
be adapted to other programming languages. 

In a companion paper [ 191, we present a model implementation of the Level 3 
BLAS in Fortran 77 (extended to include a COMPLEX*16 data type), and also 
a set of rigorous test programs. 

2. SCOPE OF THE LEVEL 3 BLAS 

The routines described here have been derived in a fairly obvious manner from 
some of the Level 2 BLAS, by replacing the vectors x and y with matrices B and 
C. The advantage in keeping the design of the software as consistent as possible 

with that of the Level 2 BLAS is that it will be easier for users to remember the 
calling sequences and parameter conventions. 

In real arithmetic, the operations proposed for the Level 3 BLAS have the 
following forms: 

(a) Matrix-matrix products 

CtaAB+PC 
CtaATB+/3C 
CtaABT+/3C 
C t aATBT + PC 

Note that these operations are more accurately described as matrix-matrix 
multiply-and-add operations; they include rank-k updates of a general matrix. 

(b) Rank-k and rank-2k updates of a symmetric matrix: 

CtaAAT+/3C 
CtaATA+flC 
Cc aABT + aBAT + PC 
C t aATB + aBTA + PC 

(c) Multiplying a matrix by a triangular matrix: 

B t aTB 
B t aTTB 
BtaBT 
B t arBTT 

(d) Solving triangular systems of equations with multiple right-hand sides: 

B t aT-‘B 
B t ~YT-~B 
B t aBT-’ 
B t LIBT-~ 
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Here, (Y and /3 are scalars, A, B, and C are rectangular matrices (in some cases, 

square and symmetric), and T is an upper or lower triangular matrix (and 
nonsingular in (d)). 

Analogous operations are proposed in complex arithmetic: conjugate transpo- 
sition is specified as well as simple transposition, and additional operations in 

(b) provide for updates of a Hermitian matrix, as follows: 

CcaAAH+/3C 
Cc(wAHA+PC 

with (Y and p real, and 

Cc olABH + GBAH + PC 

Cc aAHB + GBHA + PC 

with 6 real. 

3. NAMING CONVENTIONS 

The name of a Level 3 BLAS routine follows the conventions of the Level 2 

BLAS. The first character in the name denotes the Fortran data type of the 
matrix, as follows: 

S REAL 
D DOUBLE PRECISION 
C COMPLEX 
Z COMPLEX*16 or DOUBLE COMPLEX (if available) 

Characters two and three in the name refer to the kind of matrix involved, as 
fallows: 

GE All matrices are general rectangular 
HE One of the matrices is Hermitian 
SY One of the matrices is symmetric 
TR One of the matrices is triangular 

The fourth and fifth, and in one case sixth, characters in the name denote the 
type of operation, as follows: 

MM 
RK 
R2K 
SM 

Matrix-matrix product 
Rank& update of a symmetric or Hermitian matrix 
Rank-B/z update of a symmetric or Hermitian matrix 
Solve a system of linear equations for a matrix of right-hand 
sides 

The permitted combinations are indicated in Table I. In the first column, under 
complex, the initial C may be replaced by Z. In the second column, under real, 
the initial S may be replaced by D; see Appendix B for the full subroutine calling 
sequences. 

The collection of routines can be thought of as being divided into four separate 
parts: real, double precision, complex, and complex*16 The routines can be written 
in ANSI standard Fortran 77, with the exception of the routines that use 
COMPLEX*16 variables. These routines are included for completeness and for 
their usefulness on those systems that support this data type; but because they 
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Table I 

Complex Real MM RK R2K SM 

CGE SGE * 
CSY SSY * * * 
CHE * * * 

CTR STR * * 

do not conform to the Fortran standard, they may not be available on all 
machines. However, note that rank-k updates of general matrices are provided 
by the GEMM routines. 

4. ARGUMENT CONVENTIONS 

We follow a convention for the argument lists similar to that for the Level 2 
BLAS, with the necessary adaptations. The order of arguments is as follows: 

(a) Arguments specifying options 
(b) Arguments defining the sizes of the matrices 
(c) Input scalar 
(d) Description of input matrices 

(e) Input scalar (associated with input-output matrix) 
(f) Description of the input-output matrix 

Note that not every category is present in each of the routines. 
The arguments that specify options are character arguments with the names 

SIDE, TRANSA, TRANSB, TRANS, UPLO, and DIAG. 
SIDE is used by the routines as follows: 

Value 

‘L’ 

‘R’ 

Meaning 

Multiply general matrix by symmetric, Hermitian or triangular 
matrix on the left 
Multiply general matrix by symmetric, Hermitian or triangular 
matrix on the right 

TRANSA, TRANSB, and TRANS are used by the routines as follows: 

Value Meaning 

'N' 
‘T’ 
‘C’ 

Operate with the matrix 
Operate with the transpose of the matrix 
Operate with the conjugate transpose of the matrix 

In the real case, the values ‘T’ and ‘C’ have the same meaning. 
UPLO is used by the Hermitian, symmetric, and triangular matrix routines to 

specify whether the upper or lower triangle is being referenced, as follows: 

Value Meaning 

‘II’ 
‘L’ 

Upper triangle 
Lower triangle 
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DIAG is used by the triangular matrix routines to specify whether the matrix 
is unit triangular, as follows: 

Value Meaning 

‘U’ Unit triangular 
‘N’ Nonunit triangular 

When DIAG is supplied as ‘U’, the diagonal elements are not referenced. 
Thus, UPLO and DIAG have the same values and meanings as for the Level 

2 BLAS; TRANSA, TRANSB, and TRANS have the same values and meanings 
as TRANS in the Level 2 BLAS, where TRANSA and TRANSB apply to the 
matrices A or B, respectively. 

We recommend that the equivalent lower-case characters be accepted with the 
same meaning; although, because they are not included in the standard Fortran 
character set, their use may not be supported on all systems (see Section 7 of 
[ 131 for further discussion). 

The sizes of the matrices are determined by the arguments M, N, and K. It is 
permissible to call the routines with M or N = 0, in which case the routines exit 
immediately without referencing their matrix arguments. If M and N > 0, but 
K = 0, the operation reduces to C t /3C (this applies to the GEMM, SYRK, 
HERK, SYRBK, and HERBK routines). The input-output matrix (B for the TR 
routines, C otherwise) is always m X n if rectangular, and n X n if square. 

The description of the matrix consists of the array name (A, B, or C) followed 
by the leading dimension of the array as declared in the calling (sub)program 

(LDA, LDB, or LDC). 
The scalars always have the dummy argument names ALPHA and BETA. 
The following values of arguments are invalid: Any value of the character 

arguments SIDE, TRANSA, TRANSB, TRANS, UPLO, or DIAG whose meanig 
is not specified. 

Me0 
NcO 
Kc0 

LDA < the number of rows in the matrix A. 
LDB < the number of rows in the matrix B. 
LDC < the number of rows in the matrix C. 

If a routine is called with an invalid value for any of its arguments, then it must 
report the fact and terminate execution of the routine. In the model implemen- 
tation (see Appendix B), each routine, on detecting an error, calls a common 
error handling routine XERBLA, passing to it the name of the routine and the 
number of the first argument that is in error. Specialized implementations may 
call system-specific exception-handling and diagnostic facilities. 

5. STORAGE CONVENTIONS 

All matrices are stored conventionally in a two-dimensional array with matrix- 
element ai,j stored in array-element A(1, J); there is no provision for packed 
storage for symmetric, Hermitian, or triangular matrices. 
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For symmetric and Hermitian matrices, only the upper triangle (UPLO = ‘U’) 
or the lower triangle (UPLO = ‘L’) is stored. 

For triangular matrices, the argument UPLO serves to define whether the 
matrix is upper (UPLO = ‘U’) or lower (UPLO = ‘L’) triangular. 

For a Hermitian matrix, the imaginary parts of the diagonal elements are of 
course zero, and thus the imaginary parts of the corresponding Fortran array 
elements need not be set, but are assumed to be zero. In the HERK and HERSK 
routines, these imaginary parts are set to zero on return, except when 0 = 1 and 
LY or k = 0, in which case the routines exit immediately. 

6. SPECIFICATION OF THE LEVEL 3 BLAS 

Type and dimension for variables occurring in the subroutine specifications are 
as follows: 

INTEGER M, N, K, LDA, LDB, LDC 
CHARACTER*1 SIDE, UPLO, TRANSA, TRANSB, TRANS, DIAG 

For routines whose first letter is an S: 

REAL ALPHA, BETA 
REAL A(LDA, *), B(LDB, *), C(LDC, *) 

For routines whose first letter is a D: 

DOUBLE PRECISION ALPHA, BETA 
DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *) 

For routines whose first letter is a C: 

COMPLEX ALPHA, BETA 
COMPLEX A(LDA, *), B(LDB, *), C(LDC, *) 

except that, for CHERK, the scalars (Y and p are real, so the first declaration 
above is replaced by 

REAL ALPHA, BETA 

and, for CHER2K, (Y is complex and p is real, so this is replaced by 

COMPLEX ALPHA 
REAL BETA 

For routines whose first letter is a Z: 

COMPLEX*16 ALPHA, BETA or DOUBLE COMPLEX ALPHA, BETA 
COMPLEX*16 A(LDA, *) DOUBLE COMPLEX A(LDA, *) 
COMPLEX*16 B(LDB, *) DOUBLE COMPLEX B(LDB, *) 
COMPLEX*16 C(LDC, *) DOUBLE COMPLEX C(LDC, *) 

except that, for ZHERK, the scalars 01 and p are real, so the first declaration 
above is replaced by 

DOUBLE PRECISION ALPHA, BETA 
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and, for ZHER2K, (Y is complex and p is real, so this is replaced by 

COMPLEX*16 ALPHA 
DOUBLE PRECISION BETA 

(a) General matrix-matrix products: 

-GEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, 
C, LDC) 

Operation (C is always m X n): 

TRANSA = ‘N’ TRANSA = ‘T TRANSA = ‘C’ 

TRANSB = ‘N’ C + aAB + PC CcaATB+PC C+aA”B+/3C 
AismXk,BiskXn Aiskxm,BiskXn AiskXm,Biskxn 

TRANSB = ‘T’ CtaABT+PC CtaATBT+/3C C+aAHBT+/3C 
AismXk,BisnXk AiskXm,BisnXk AiskXm,BisnXk 

TRANSB = ‘C’ C+aABH+/3C Cc aATBH + PC C + aAHBH + PC 
AismXk,BisnXk AiskXm,BisnXk AiskXm,BisnXk 

(In the real case, the values ‘T’ and ‘C’ have the same meaning.) 

(b) Matrix-matrix products where one matrix is real or complex symmetric or 
complex Hermitian: 

-SYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC) 
-HEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC) 

Operation (C is always m X n, A is symmetric for the -SYMM routines and 
Hermitian for the -HEMM routines): 

SIDE = ‘L’ SIDE = ‘R 

C!taAB+PC CtaBA+PC 

AismXm BismXn 

BismXn AisnXn 

(c) Rank-k updates of a real or complex symmetric or complex Hermitian 
matrix: 

-SYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC) 
-HERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC) 

Operation (C is always n X n). 

For -SYRK routines (C is symmetric): 

TRANS = ‘N’ TRANS = ‘T’ 

CtaAAT+PC CtaATA+@C 

AisnXk AiskXn 

For -HERK routines (C is Hermitian): 

TRANS = ‘N’ TRANS = ‘C’ 

CtaAA”+@C CtaA”A+PC 

AisnXk AiskXn 
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(In the real case, the values ‘T’ and ‘C’ have the same meaning. In the complex 
case, TRANS = ‘C’ is not allowed in -SYRK and TRANS = ‘T’ is not allowed 
in -HERK.) 

(d) Rank-2k updates of a real or complex symmetric or complex Hermitian 
matrix: 

-SYRBK (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, 
LDC) 

-HERSK (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, 
LDC) 

Operation (C is always n X n). 
For -SYRBK routines (C is symmetric): 

TRANS = ‘N TRANS = ‘T’ 

Cc aABT + aBAT + PC C t aATB + cxBTA + PC! 

A and B are n x k A and B are k X n 

For -HER2K routines (C is Hermitian): 

TRANS = ‘N’ TRANS = ‘C’ 

Cc aABH + &BAH + PC C t aAHB + GBHA + /‘XT 

A and B are n X k A and B are k X n 

(In the real case, the values ‘T’ and ‘C’ have the same meaning. In the complex 
case, TRANS = ‘C’ is not allowed in -SYR2K and TRANS = ‘T’ is not allowed 
in -HERBK.) 

(e) Triangular matrix-matrix products: 

-TRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB) 

Operation (B is always m x n, A is triangular): 

TRANSA = ‘N’ TRANSA = ‘T’ TRANSA = ‘C’ 

SIDE = ‘L’ B+LvAB B + aATB B t aAHB 

A is triangular m X m A is triangular m X m A is triangular m X m 

SIDE = ‘R BtcrBA BcaBAT B c aBAH 

A is triangular n X n A is triangular n x n A is triangular n x n 

(In the real case, the values ‘T’ and ‘C’ have the same meaning.) 
(f) Solution of triangular systems of equations: 

-TRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB) 

Operation (B is always m x n, A is triangular): 

TRANSA = ‘N’ TRANSA = ‘T’ TRANSA = ‘C’ 

SIDE = ‘L’ B c aA-‘B B + CZA-~B B c CXA-~B 
A is triangular m X m A is triangular m X m A is triangular m X m 

SIDE = ‘R’ B t aBA-’ B +-- CIBA-~ B t CYBA-~ 
A is triangular n X n A is triangular n X n A is triangular n X n 

(In the real case, the values ‘T’ and ‘C’ have the same meaning.) 
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7. NUMERICAL STABILITY 

Although it is intended that the Level 3 BLAS be implemented as efficiently as 
possible, it is essential that efficiency should not be achieved at the cost of 
sacrificing numerical stability. This is particularly important because the Level 
3 BLAS are intended to be used as building blocks in higher level algorithms of 
linear algebra. If the Level 3 BLAS themselves were unstable, they would destroy 
the stability of the algorithms that call them. 

8. RATIONALE 

In the design of all levels of BLAS, one of the main concerns is to keep both the 
calling sequences simple and the range of options limited, while at the same time 
maintaining sufficient functionality. This clearly implies a compromise, and a 
good decision is vital if the BLAS are to be accepted as a useful standard. In this 
section we discuss the reasoning behind some of the decisions we have made. 

The three basic matrix-matrix operations were chosen because they occur in a 
wide range of linear algebra applications: this is consistent with the criteria used 
for the Level 1 and Level 2 BLAS. We have again aimed at a reasonable 
compromise between a much larger number of routines, each performing only 
one type of operation (e.g., B t LTB), and a smaller number of routines with a 
more complicated set of options. There are in fact, in each precision, 6 real 
routines performing altogether 48 different combinations of options, and 9 
complex routines performing altogether 81 different combinations of options. 
The number of routines is much smaller than in the Level 2 BLAS. 

The routines that we have specified are not intended as high-level matrix 
algebra routines, but rather as building blocks for the construction of such 
routines. 

In almost every case, where appropriate, we include operations involving a 
matrix and its transpose (the only exceptions are the -SYMM and -HEMM 
routines). We could ask the user to transpose the input matrix, but feel that this 
would be an imposition, particularly if the BLAS routine is being called from 
deep within the user’s code. It would also increase the amount of data movement, 
whereas one of the aims of our proposal is to assist the development of software 
that minimizes data movement. 

It could also be argued that algorithms can be rewritten to require only one of 
the patterns of access for symmetric, Hermitian, or triangular matrices (i.e., 
upper or lower triangle), but we do not feel that the BLAS should be dictating 
this to the user. 

We do not provide routines for operations involving trapezoidal matrices; all 
our triangular matrices are square. This is consistent with the Level 2 BLAS. It 
would be possible to extend the routines for triangular matrices so that they 
could handle trapezoidal matrices, but at the cost of introducing extra arguments. 
On the other hand, a trapezoidal matrix can always be partitioned into a 
triangular matrix and a rectangular matrix. 

We have not included specialized routines to take advantage of packed storage 
schemes for symmetric, Hermitian, or triangular matrices, nor of compact storage 
schemes for banded matrices, because such storage schemes do not seem to lend 
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themselves to partitioning into blocks, and hence are not likely to be useful in 
the type of application we are aiming at. Also, packed storage is required much 
less with the large memory machines available today, and we wish to keep the 
set of routines as small as possible. 

We also have not specified a set of extended-precision routines analogous to 
the ES and EC routines in the Level 2 BLAS, since this would require a two- 
dimensional array in extended precision. 

As with the Level 2 BLAS, no check has been included for singularity, or near 
singularity, in the routines for solving triangular equations. The requirements 
for such a test depend on the application, and so we felt that this should not be 
included, but should instead be performed outside the triangular solver. 

We have tried to adhere to the convention of, and maintain consistency with, 
the Level 2 BLAS; however, we have deliberately departed from this approach in 
a few cases. The input-output matrix C in the matrix-multiply routines is the 
analogue of the vector y in the matrix-vector product routines. But here, C always 
has the same dimensions, whereas y was either of length m or n depending on 
context. In the rank-k update routines, we have included a parameter /3 which 
was not present in the Level 2 rank update routines. Here we felt that the 
parameter /3 is useful in applications, and since the matrix multiply routines can 
also be viewed as rank-k update routines, we have consistency between the MM, 
RK, and R2K routines. 

We have also added a parameter 01 to the routines involving triangular matrices. 
This was not felt to be needed in the corresponding Level 2 BLAS, since there 
would be little additional cost in a separate operation to scale the result vector 
by (Y. However, in the Level 3 BLAS, where there is a whole matrix to be scaled, 
it is advantageous to incorporate the scaling within -TRMM or -TRSM. 

Additionally, we have provided for complex symmetric, as well as complex 
Hermitian, matrices, since they occur sufficiently often in applications. 

In our proposed naming scheme, the first character (S, D, C, or Z) indicates 
the relevant Fortran data type. This conforms to the conventions already estab- 
lished for the Level 1 and Level 2 BLAS, and also other software such as Linpack. 
However, the fact that single- and double-precision versions of a BLAS routine 
have different names can be an obstacle to portability, because the actual 
precision of, say an S routine may differ considerably between machines. For 
example, SGEMM on a Cray 2 will use arithmetic with similar precision to 
DGEMM on an IBM 3090. The ideal solution would be to use generic names, 
not only for single- and double-precision versions, but also for real and complex 
versions. This option is not available in a standard Fortran 77 environment. 
However, for implementations in other environments or programming languages 
that do permit generic names, we propose that the first character of the Fortran 
77 names should simply be omitted, giving the generic names GEMM, SYMM, 
SYRK, SYR2K, HEMM, HERK, HER2K, TRMM, and TRSM. 

9. APPLICATIONS 

The primary intended application of the Level 3 BLAS is in implementing 
algorithms of numerical linear algebra in terms of operations on submatrices (or 
blocks). There is a long history of block algorithms, e.g., [l, 4, 6, 8,9, 11, 22, 291. 
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Both the NAG and the IMSL (Edition 9) libraries include such algorithms 
(FOlBTF and FOlBXF in NAG; LEQIF and LEQOF in IMSL). The earlier work 

was usually concerned with submatrices being transferred between the main 
memory and disk or tape. Similar concerns motivated work designed to exploit 
common page-swapping algorithms in virtual memory machines. Indeed, the 
techniques are similar wherever there exists any hierarchy of data storage (in 
terms of access speed). Additionally, full blocks, and hence the multiplication of 

full matrices, might appear as a subproblem when handling large sparse systems 
of equations (for example, [9, 23, 251). 

More recently, several workers have demonstrated the effectiveness of block 

algorithms on a variety of modern computer architectures, with vector-processing 
or parallel-processing capabilities, on which potentially high performance can 
easily be degraded by excessive transfer of data between different levels of 
memory (vector registers, cache, local memory, main memory, or solid-state 
disks) [2, 3, 5-7, 19-21, 24, 26, 30-321. See Demmel et al. [lo] for a proposal to 
develop a new linear algebra library using block algorithms wherever possible 
and calling Level 3 BLAS. 

Here we illustrate how the Level 3 BLAS routines can be used to implement a 
simple algorithm of numerical linear algebra, namely, Cholesky factorization. 

The strategy is to compute at each stage a block of consecutive columns of the 
result. The size of the block is a parameter, ~zb, that may be varied to suit 
the size of the problem and the architecture of the machine. (For transportable 
software, we shall need some means of determining the block size within the 
routine, but we set that issue aside here.) 

There are other ways to organize the computation: for example, it is equally 
possible to compute a block of consecutive rows at each stage. The analysis of 
Dongarra et al. [18] can easily be extended to block algorithms. We have chosen 
an organization that works by columns rather than rows, one that involves fewest 
memory references. 

Also, we have implemented the algorithms in such a way that submatrices 
passed to the Level 3 BLAS routines are kept as large as possible (once the block 
size has been fixed); this gives the greatest scope for achieving efficiency within 
the Level 3 BLAS. Alternatively, one might explicitly partition the matrix into, 
say, square blocks of size nb X nb; this would require many more calls to the 
Level 3 BLAS routines, but might allow a more precise control of memory or of 
parallelism. 

We assume that we are given a positive-definite symmetric matrix A whose 
lower triangle is stored in the lower triangle of a two-dimensional array. We wish 
to compute L, overwriting the given elements of A. 

We can partition the matrices so that 

(2; It; 2) = (2; ;; .,)ii: 2 2) 

( 

-L-G-l L-G Ll,G 
= LZlLZ LlLZ + L22L& L21G + L22G 

LLT, L31Gi + L32G2 L31G + &2-G + L&& 
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Here, L,, and L,, constitute the current block of columns of L to be computed, 
and we assume that L1,, Lzl, and Lsl constitute the blocks, if any, that have 
already been computed. Note that the blocks in the above partitioning are not 
all of equal size-the off-diagonal blocks are, in general, rectangular. 

Equating blocks, we have 

so that 

Thus the computation of one block-column of the result involves the following 
operations: 

(1) update the diagonal block: 

-42’2 + A22 - L,,L,T, 

(2) compute the Cholesky factorization of the diagonal block: 

Ai2 --+ L22G2 

(3) update the subdiagonal block: 

(4) compute the subdiagonal block of L: 

La2 t A&(L&)-’ 

To express the complete algorithm, we adopt a notation in which the matrix is 
partitioned into blocks A, of size nb X nb, with p = rn/nbl, and use Aj,l:j-l to 

denote, for example, the block row [Aj,l, Aj,2, . . . , Aj,j-11. The algorithm is 

forj= 1 top 
A,j c Ajj - Aj,1:j-~A;fi:j-~ (SYRK) 
factorize A, (unblocked algorithm) 
Aj+l:p,j + Ajt1:p.j - Aj+l:p,l:j-lA,Tl:,-l (-GEMM) 
Aj+l:p,j + Aj+l:p.,(AJ’-’ (-TRSM) 

In Appendix A, we give the Fortran code for a block Cholesky factorization 
routine DLLTB, calling Level 3 BLAS routines; and also a lower level routine 
DLLT, which is called by DLLTB and calls Level 1 and 2 BLAS routines. A 
separate lower level routine is needed, since current standard Fortran forbids 
recursion. The structure of DLLTB has been kept as similar as possible to that 
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of DLLT. The call-tree is 

APPENDIX A BLOCKED CHOLESKY FACTORIZATION 

* 
* 
* 
* 
* 

* 

* 
* 
* 

* 
* 
* 
* 

+ 

* 
* 
* 

* 
* 
* 

SUBROUTINE DLLTB(N.A,LDA,INFO) 

Computes an L*L**T factorization of a symnctric positive-dctinitc 
matrix A. 
Blocked version, calling Level 3 BLAS. 

INTEGER INFO, LDA, N 
DOUBLE PRECISION A(LDA,*) 
INTEGER J, JB 
INTEGER NB 
PARAMETER (NB=64) 
EXTERNAL DGEhM. DLLT, DSYRK, DTRSM 

INFO = 0 
DO 10 J = I. N. NB 

JB = MIN(NB;N-J+l) 

Update diagonal block. 

CALL DSYRK(‘Lower’.‘No transpose’ .JB,J-I,-I.ODO.A(J.l),LDA, 
l.ODO.A(J,J),LDA) 

Factorize diagonal block and test for 
non-positive-definiteness. 

CALL DLLT(JB.A(J,J).LDA,INFO) 
IF (INFO.NE.0) GO TO 20 

IF (J+JB.LE.N) THEN 

Update subdiagonal block. 

CALL LXZIvM(‘No transpose’.‘Transpose’,N-J-JB+l.JB.J-1. 
-I.ODO.A(J+JB,1),LDA,A(J.1),LDA,1.ODO,A(J+JB,J). 
LDA) 

Compute subdiagonal block of L. 

CALL DTRSM(‘Right’.‘Lower’,‘Transpose’.’Non-unit’,N-J-JB+l, 
JB,l.ODO.A(J,J),LDA,A(J+JB,J),LDA) 

END IF 
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10 

* 
20 

CONTINUE 
RETURN 

INFO = INFO + J - 1 
RETURN 
END 
SUBROUTINE DLLT(N,A.LDA,INFO) 

Computes an L*L**T factorization of a synxnetric positive-dehnitc 
matrix A. 
Unblocked version, calling Level 2 and Level 1 BLAS. 

INTEGER INFO, LDA, N 
DOUBLE PRECISION A(LDA.*) 
INTEGER 
DQUBLE PRECISION ;DClT 
EXTERNAL DDQT 
EXTERNAL DGEMV, DSCAL 

INFO = 0 
DO 10 J = 1, N 

Update a(j,j). 

A(J.J) = A(J,J) - DDQT(J-l,A(J.l).LDA,A(J.l),LDA) 

Compute I(j,j) and test for non-positive-degniteness. 

IF (A(J,J).LE.O.ODO) Go TO 20 
A(J.J) = SQRT(A(J.J)) 

IF (J.LT.N) THEN 

Update elements j+l:n of j-th column. 

CALL DCEMV(‘No transpose’ ,N-J.J-I,-l.ODO,A(J+l,l),LDA, 
s A(J,l),LDA,l.ODO.A(J+l,J),l) 

Compute elements j+l:n of j-th column of L. 

CALL DSCAL(N-J.l.ODO/A(J.J).A(J+l,J),l) 
END IF 

10 CONTINUJZ 
RETURN 

20 INFO = J 
RETURN 
END 

APPENDIX B CALLING SEQUENCES FOR ALL THE LEVEL 3 BLAS 

” ame opl ions dim scalar matrix matrix scalar matrix 

-GM ( TRANSA. TRANSB. M. N. K. ALPIM. A, LDA. B. LDB. BETA, C. LDC) 

-SYlM (SIDE, UPLO. M. N. ALPHA. A. LDA. B. LDB. BETA, C. LLX) 

JIM4 (SIDE, UPLO. M. N. ALPHA. A. LDA. B. LDB. BETA, C, LDC) 

3-= ( UPLO. TRANS ( N. K. ALPHA. A. LDA. BETA, C. LX) 

~1ERK ( UPLO. TRANS ( N. K. ALPHA. A. LDA. BETA. C. LDC) 

-SYRZK( UPLO. TRANS ) N. K, ALPHA, A, LDA, B. LDB. BBTA. C. LDC) 

-IIERZK( UPLO. TRANS ) N. K. ALPHA. A. LDA. B. LDB. BETA, C. LDC) 

-TRW4 (SIDE, UPLO. TRANSA, DIAG. M. N. ALPHA. A. LDA. B. LDB) 

-TRSM (SIDE. UPLO. TRANSA, DIAG. M. N. ALPHA. A. LDA. B. LDD) 
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