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Abstract. The paper presents a set-theoretic translation method for polymodal logics that reduces 
derivability in a large class of propositional polymodal logics to derivability in a very weak 
first-order set theory Ft. Unlike most existing translation methods, the one we propose applies 
to any normal complete finitely axiomatizable polymodal logic, regardless of whether it is first- 
order complete or an explicit semantics is available. The finite axiomatizability of f~ allows one 
to implement mechanical proof-search procedures via the deduction theorem. Alternatively, more 
specialized and efficient techniques can be employed. In the last part of the paper, we briefly 

discuss the application of set T-resolution to support automated derivability in (a suitable extension 
of) f~. 

Key words: modal logic, translation methods, set theory, theorem proving. 

1. Introduction 

In this paper, we propose a novel translation method to support derivability 

in propositional modal logic, whose basic idea is to map modal formulae into 

set-theoretic terms. Most inference systems for modal logic, are defined in the 

style of sequent or tableaux calculi, e.g., [10, 24]. As an alternative, a number 

of translation methods for modal logic into classical first-order logic have been 

proposed in the literature (for an up-to-date survey see [18]). Such methods allow 

the use of predicate calculus mechanical theorem provers to implement modal 

theorem provers. Compared with the direct approach of finding a proof algorithm 

for a specific class of modal logics, the translation methods have the advantage 

of being independent of the particular modal logic under consideration: a single 

theorem prover may be used for any translatable modal logic. 

In the standard approach, the first-order language/2 into which the translation 

is carried out contains a constant 7- denoting the initial world in the frame, a binary 

* This work has been supported by funds MURST 40 and 60%. The second author was supported 
by a grant from the Italian Consiglio Nazionale delle Ricerche (CNR). A previous version of this 
paper has appeared as a research report in the ILLC-series, ML-94-09, University of Amsterdam. 
A short version is to be presented at STACS '95 in Munich. 

** On leave at ILLC, Universiteit van Amsterdam, Plantage Muidergracht, 24, 1018 TV Ams- 
terdam, The Netherlands. 
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relation R(x, y) denoting the accessibility relation, and a denumerable number 

of unary predicates Pi (x). The translation function ~- is defined by induction on 

the structural complexity of the modal formula as follows: 

- -  7r(Pj,x) =_ P j ( x ) ;  

- re(- ,  x) commutes with the Boolean connectives; 

- x )  - v y ( x n y  y ) ) .  

Let H be a normal modal logic and ¢ be a modal formula. H is first-order 
complete if there exists a first-order sentence Axiomu, involving only equality 

and the binary relational symbol R(x, y), such that ¢ is derivable from H if and 

only if ¢ is tree in the initial world "r of all generated frames satisfying AxiomH 
[2, 12]. For these logics the following holds: 

~-H ¢ "(=:}~ AxiomH -+ 7r(¢, 7-), 

where ~- stands for derivability in classical predicate calculus. Hence, as long as 

we have AxiomH, a classical theorem prover can be used as a theorem prover 

for H. 

Efficiency concerns have motivated further investigations on the above (rela- 

tional) translation method. Such studies (e.g., [17]) suggested a "functional" 

semantics for modal logic and resulted in a family of more efficient and general 

translation methods. From the computational point of view, the functional trans- 

lation may still cause some problem when using a first-order theorem prover, as 

a result of the presence of equalities in Axiomn. A method for limiting the com- 

plexity induced by the introduction of equality using a mixed relational/functional 

translation is proposed in [16]. 

A common feature of all the methods mentioned above is that, in order to be 

applied directly, the underlying modal logic must have a first-order semantics: 

insofar as we are aware, all attempts to deal with logics not having a first-order 

semantics have required ad-hoc techniques. Moreover, if the logic has a first- 

order semantics, but it is only specified by Hilbert axioms, a preliminary step 

is necessary to find the corresponding first-order axioms. The question of auto- 

matically solving this last problem has been extensively studied and algorithms 

have been proposed, e.g., [2, 11]. 

One of the main motivations of the present work was to find a translation 

applicable to all complete modal logics, regardless of the first-order axiomatiz- 

ability of their semantics. The set-theoretic translation we propose works for all 

normal complete finitely axiomatizable modal logics. In particular, our method 

also works if the modal logic under consideration is specified only by Hilbert 

axioms. 

The basic idea is to represent any Kripke frame as a set, with the accessibil- 

ity relation modeled by using the membership relation E. Given a modal formula 

qS(Pl,..., Pn), we define its translation as the set-theoretic term ¢* (x, x l , . . . ,  x,~), 

with variables x, x l , . . . ,Xn ,  built using U, \ ,  and Pow. Intuitively, ¢*(x, 

x l , . . . ,  Xn) represents the set of those worlds (in the frame x) in which the formu- 
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la ¢ holds. The inductive definition of ¢*(5, x l , . . . ,  Xn)  is rather straightforward 

except for the case of De, whose translation is defined as (De)* = Pow(¢*) (see 

Section 2 for details). 

To achieve a computationally valid result, we want to refer to a finitely (first- 

order) axiomatizable set theory. We succeeded in carrying out our translation in 

a very weak* set theory called fL 

We prove that, for any normal modal logic H = K + ¢ ( a j l , . . .  , aj,~), where 

'~ (a j~ , . . . ,  aj,~) is an axiom schema, the following holds: 

k-H ¢ ~ f~ k Vx(Trans(x) A AxiomH(x) 

-+ _c 

and 

k Vx(Trans(x) A AxiomH(x) 

--+ VXl . . .  w n ( ,  c ¢*(5, ¢ ¢, 

where T ans(.) and stand for 

. . . .  X \ Vy (y E x--+ y C x) and Vxk, ..,Vxj,~(x C_ ~b*(x, xk, , j,~a), 

respectively, and ~ represents frame logical consequence. In the case of frame- 

complete theories H, the proposed translation captures exactly the notion of 

H-derivability. 

Instead of translating Hilbert axioms a set-theoretic semantics for H can be 

used, whenever such a semantics is available. We will study the case of G as an 

example of this approach. 

The proposed set-theoretic translation method is then generalized to polymodal 

logics. This generalization involves revising the definition of the translation func- 

tion to cope with a set of distinct modal operators instead of a single one. The 

technique we employ is similar to the one introduced by Thomason in [22]; the 

use of a set-theoretic language simplifies Thomason's approach and turns out to 

be completely symmetric. 

The translation method we propose here may also be considered from a more 

abstract point of view as a means to analyze general deduction for modal for- 

mulae. However, this issue is not addressed here, since our focus is on the 

computational aspects of the technique; an extensive discussion can be found 

in [3]. 
In the last part of the paper, we briefly describe the application of set T-reso- 

lution techniques to support derivability in ~2. In order to apply such techniques, 

it is necessary to guarantee the decidability, with respect to ~, of the class of 

ground formulae written in any language which extends the one in which the 

axioms of ~ are written with Skolem functions. We succeeded in providing such 

* Compare this theory with more classical finite axiomatizations of set theory, such as NBG [15]. 
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a decidability result in a suitable extension of f~, and the main steps of the proof 

are outlined in Section 5 (more details can be found in [8, 9]). 

The paper is organized as follows. In Section 2, we introduce the set-theoretic 

translation method and show how to apply it to the modal logic G. In this case, 

the proofs are simple and a clear description of the main features of the translation 

method is possible; moreover, G provides an example of how the method applies 

to a logic with a non-first-order semantics. In Section 3, we consider the general 

case and exploit the possibility of translating the Hilbert axioms of the logic. 

The proof of soundness of the translation is carried out by using a particular 

universe of non-well-founded sets and applies to a large class of extensions of 

fL In Section 4, we generalize the proposed method to polymodal logics using 

a set-theoretic counterpart of Thomason's technique for translating polymodal 

logics into monomodal ones [22, 23]. Finally, in Section 5, we briefly discuss 

the application of set T-resolution techniques to support derivability in a suitable 

extension of ~2. 

2. A Set-Theoretic Translation of G 

We first consider the case of the propositional modal logic G obtained by adding 

the L6b's axiom schema o([]c~ --+ c~) --+ ua to K. Our goal is to find a translation 

of G formulae in the language of set theory and a finitely axiomatizable theory ~2 

such that, for any modal formula ¢, bG ¢ if and only if f~ proves the translation 

of ¢. 

We consider the theory ~2 specified by the following axioms in the language 

with relational symbols E, C_, and functional symbols U, \ ,  Pow: 

x E y U z + + x E y V x E z ;  

x E y \ z e + x E y A x f ~ z ;  

x C y e ~ V z ( z E x - + z E y ) ;  

x E Pow(y )  +~ x C y. 

Notice that neither the extensionality axiom nor the axiom of foundation is 

in f~. In the next section, we will make an essential use of the latter fact: since 

we will model the accessibility relation by the membership relation, we will be 

forced to work in universes containing non-well-founded sets. As a matter of 

fact, it will be convenient to use universes satisfying AFA [1]. However, in the 

case of G a standard (well-founded) model of set theory is sufficient to carry out 

the proof of the soundness of the translation. 

Given a modal formula ¢(P1, • .- ,  P,~), its translation is the set-theoretic term 

¢* (x, Xl, . . . ,  xn), with variables z, x l , . . . ,  xn, inductively defined as follows: 

--  P/* ~ x i ;  

- ( ¢ v  ¢ )*  - ¢* u ¢ * ;  

- -  (¢ A ¢)* ---- ¢* FI @*; 
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- ( - ~ ¢ ) *  - x \ ¢ * ;  

- ( ¢  + ¢ ) *  - ( x \ ¢ * )  u ¢ * ;  

- ( [ ]¢)*  - P o , , ( ¢ * ) ,  

where x is different from xi for i = 1 , . . . ,  n, ¢* D ¢* stands for ¢* \ (¢* \¢*) ,  

and 0 is translated as -~u-~. 

We will show that 

FG ¢ ¢:~ f~ F V x ( T r a n s ( z )  A A x i o m a ( x )  

--+ VXl . . .VXn(X C ¢*(X, X l , . . . , x n ) ) )  , 

where T r a n s ( x )  stands for Vy(y E x --+ y __ x) (x is transitive), and A x i o m a ( x )  

represents the conjunction o f g y ( y  C x A  3z ( z  E y) -+ ~s(s  E y A Vv(v  f~ s A y ) ) )  

andVzVwVy(z E x A w C x A y E x A z E w A w E y --+ z E y) (x is well 

founded and E restricted to x is transitive, respectively). 

We prove that the proposed translation is complete and sound. The proof of 

completeness is straightforward; the proof of soundness relies on the characteri- 

zation of G using the class of all finite trees. 

THEOREM 1 (Completeness of the translation method). For each modal formu- 

la ¢ involving n propositional variables P1, . . . , pn, 

F o ¢  ~ f~ b V x ( T r a n s ( x )  A A x i o m a ( x )  

"-+ VXl . . .  V2gn(X C ¢*(X, X l t . . . , X n ) ) ) .  

Proof. The proof is by induction on the derivation of b a  ¢ ( P I , . . o , P n ) .  

The cases of tautologies and closure under modus ponens do not present any 

difficulty, and thus they are left to the reader (a proof can be found in [8]). We 

explicitly prove the result for K and LOb's axiom schemata, and for closure under 

necessitation. We first consider the axiom schema K: 

°(~ -+ 9) -+ ([]~ -+ []/3). 

Without loss of generality, we suppose that ~ and /3 involve n propositional 

variables Pl,  • • •, Pn, and show that f~ derives its translation, namely, 

f~ b V x ( T r a n s ( x )  A A x i o m a ( x )  --+ Vxt  . . . Vxn(X C (~(c~ --+/3) 

-+ (o~ -+ °/3))*)). 

By definition, (D(c~ --+/3) --+ (Dc~ --+ t~/3))* = (x \ t )Us ,  where t = Pow((x \c~*)U 

/3*) and s = (x \Pow(c~*))  U Pow(/3*) are terms on the variables x, X l , . . . ,  Xn. 

We have to prove that Vz( z  E x --+ z E ( x \ t )  U s), or, equivalently, that 

Vz( z  E x A z E ~ --+ z E s). By replacing t and s by their definitions, we 

may rewrite the last condition as: z E x and z C_ (x\c~*) U/3* implies that 

z E (x \Pow(c~*))  U Pow(/3*). To prove it, it suffices to show that z E x, 

z C (x\c~*) U/3*, and z C_ c~* implies that z _C/3*. Since z C_ c~*, for each s, if 
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s E z, then s E a*; from z C_ (x\a*) U/3", it follows that s E /3*. Notice that 

we never used the hypothesis that x satisfies Trans(x) and Axioma(x) .  

Consider now the closure under necessitation: if k-a 05, then k- c De. In this 

case, we suppose that 

f~ ~ Vx(Trans(x)  A Axioma(x)  -+ VXl. . .Vxn(X ~ ¢*)), 

and prove that 

f~ ~- V x ( T r a n s ( x )  A Axiomc(x)  ~ Vx~. . .  Vx~(x _C Row(C*))).  

For each x satisfying Trans(x) and Axiomc(x) ,  we prove that V x l , . . . ,  

Vxn(x C Pow(¢*)), that is, for each z, if z E x, then z E Pow(05*) or, equiva- 

lently, z C_ 05*. Suppose that z E x and t E z. From the validity of Trans(x),  it 

follows that z C x and thus t E x. The conclusion t E 05* directly follows from 

the hypothesis that x C 05*. 

Finally, let us show that ft proves the translation of Lhb's  axiom, that is, if 

P I , . . . ,  Pn are the n variables occurring in 05, then 

a k- Vx(Trans(x)  A Axiomg(x)  

+ Vxj . . .  vx, (x _c (o(o¢ 05) -+ o¢)*)). 

The proof is nothing but the formalization in ft  of the proof of the validity of 

LOb's axiom schema in any well-founded transitive frame (cf., e.g., [21]). 

By definition, (u(u¢ -+ 05) -+ u05)* - (x \ t )  U Pow(05*), where t stands 

for the term Pow((x\Pow(05*)) U 05*). We want to prove that, if x satisfies 

Trans(x)  A Axioma(x) ,  then Vs(s E x A s E t -+ s E Pow(05*)). This is 

equivalent to showing that there exists no set belonging to the subset y of x with 

y = x N t\Pow(05*). We consider the formula 

Vy(Vs(s E y --~ 3v(v E s n y)) --> (y g x -+ Vz(z ¢ y))), 

which can be derived from the axiom stating the well-foundedness of x, and 

show that for y = xNt \Pow(¢*)  the formula Vs(s E y --~ 3v(v E sMy))  holds. 

Since y C_ x, this proves the result. 

I f  s E y, then s E x, s E t, with t = Pow((x\Pow(05*)) U 05"), and s 

Pow(05*). From the last conjunct, we derive that 3v(v E s A v ¢ 05*). Since 

x satisfies Trans(x)  and Axioma(x)  (in particular, the transitivity of • with 

respect to x holds) and s • x, from v • s, it follows that v C_ s. Now, from s E 

Pow((x\Pow(05*))U05*) and v C s, it follows that v • Pow((x\Pow(05*))U¢*), 

that is, v E t. Finally, from v • s, s C (x\Pow(05*))U05*, and v ¢ 05*, it 

follows that v • x\Pow(05*), and then v ¢ Pow(05*). From v • x, v • t, and 

v ~ Pow(05*), we can conclude that v • x N t\Pow(05*) = y, and that proves 

the result. 
(T1) [] 
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It is worth noting that all the set-theoretic principles involved in the proof of 

completeness are those expressed by the (extremely simple) axioms of ~. 

The proof of soundness exploits the (frame) characterization theorem for G 

stating that t-G q~ if and only if ~b is valid in every finite tree, where by a finite 

tree is meant a frame (I/V,/~, r) in which W is a finite set containing the element 

r (the root), /~ is transitive and asymmetric, and the set of R-predecessors of 

any element contains r and is linearly ordered by /~  (see [21] for details). 

THEOREM 2 (Soundness of the translation method). For each modal formula 
involving n propositional variables t91,..., P~, 

f~ ~- Vx(Trans(x)  A AxiomG(x) 

-+VXl ...W:n(X C_ ¢*(x, FG 4. 

Proof. Let HF A be the structure for the language of f~ consisting of all the 

hereditarily finite sets built from atoms in A = {do, a l , . . . } ,  with the natural set- 

theoretic interpretation of the relational and functional symbols E, C_, M, U, \, and 

Pow. HF A is a model for f~ [14]. Therefore, for every term t (x0 , . . . ,  x~) and 

for every h o , . . . ,  hn in HF A, we may consider the element tHFA(ho,... , hn) in 

HF A. Moreover, if O(P1,... ,  Pn) is a modal formula, the evaluation of the term 

~b*(x, Xl,. • •, xn) over the elements h0,. .  •, hn results in an element of HE A. 

Given a finite tree (W, R, r), we determine an element W* of HF A such 

that 

1. Trans(W*) A AxiomG(W*) holds in the model HF A, and 

2. given a modal formula q~(P1,..., Pn), if 

VXl...Vxn(W* C ¢*(W*,Xl,...,Xn)) 
holds in HF A, then ¢(P1, . . . ,  Pn) is valid in (W, R, r). 

Fix an injection 7r from the leaves of W (i.e. nodes without any successor) 

to A. We define W* in I-IF A as follows: for every node w E W, let 

w* = ~ 7r(w), if w is a leaf of W, 

{v*: wt~v}, otherwise. 

Let W* be r*. For every w E W, w* E HFA; moreover, it is not difficult to 

see that Trans(W*) and AcciomG(W*) hold in HF A. 

Let ~ be a valuation of the propositional variables P1,. . . ,  Pr~ on W and, for 

i =- 1 , . . . , n ,  let 19i, = {w* 6 W*: w ~ Pi}. Since W is finite, we have that 

P~*,.. . ,  P.r~ belong to HF A. 

If the elements w* and v* are equal in HF A, then w = v (by induction on 

the height h(w) of the node w in the tree (W,/~, r)). This fact will be useful in 

proving the following lemma. 

LEMMA 3. For all w E W and for any formula ~( P1, . . . , pn ), 

w ~ ~(P1, . . . ,  P~) ¢=> w* E ~*(W*,P{ , . . . ,  P*) holds in HF A. 
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Proof. By induction on the structural complexity of the formula ¢(P1, • • •, pn). 
If ¢ ( P 1 , . . . ,  Pn) = Pi and w ~ Pi, then, by definition of P*, w* E P*. Vice 

versa, if w* E P*, then z ~ Pi for some z E W with w* = z*; hence, as we 

observed, w = z and therefore w D Pi. 

The case of Boolean connectives is straightforward. 

Now consider the formula o¢(P1, . . . ,  P~): 

~ ~¢(p~,..., p~) ¢, 
Vz ~ w (wRz  -~ z ~ ¢(P~,..., In)) ¢, 

Vz ~ W (~Rz  + z* c ¢*(W*, U , . . . ,  Pg)) ¢* 

{z*: ~Rz} c_ ¢*(W*,U, . . . ,P~)  ¢* 
w* C_ ¢*(W*,P1*,. . .  ,p*)  ¢=> 

w* e Pow*(¢*(W*,P~,.. .  ,Pn)) e~ 
w* ¢ (~¢)*(W*,P~,...,P*). 

(L3) • 

From Lemma 3, we have that ¢ ( P l , . . . ,  Pn) is valid in the model (W, R, b) if 

and only if the corresponding set W* in HF A is a subset of ¢*(W*, PI*, • • •, P*). 

From this, item 2 above easily follows. 

To conclude the proof of Theorem 2, suppose that 

f~ F Vx(Trans(x) A Axiomc(x) --+ Vxl . . .Vxn(x C ¢*(x, ~1 , . . . ,  Xn))). 

If (W, R, r) is a finite tree, the corresponding set W* in HF A satisfies Trans(W*) 
A Axiomc(W*). Hence, from 

ft F- Vx(Trans(x) A AxiomG(x) --+ Vx I ...VXn(X C ¢*)), 

it follows that, for all elements h i , . . . ,  h,~ in HF a, we have that W* C_ ¢*(W*, 

hl , . . . ,hn) .  In particular, for all valuations ~ of the propositional variables 

P1,. . . ,  Pn on W, the above is true for the sets PI*, .- . ,  P~ defined as in Lemma 

3. From the same lemma, one deduces that ¢ ( P 1 , . . . ,  PrO is valid in the model 

(W, R, ~ )  and, from the Finite Tree Completeness theorem [21], it follows that 

FG ¢. 

(T2) • 

3. The Set-Theoretic Translation Method 

In this section we generalize the translation method to any normal finitely axiom- 

atizable modal logic, possibly specified by Hilbert axioms only. 

Let ~b(o~k,... , c~j~) be an axiom schema and H be the modal logic obtained 

by adding ~b(C~jl,... ,~j,~) to K. The completeness of the translation will be 

shown with respect to derivability in H, while soundness holds with respect 
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to logical consequence. More formally, we will prove that, for any formula ¢ 

involving n propositional variables P 1 , . . - ,  P,~, 

~H ¢ ~ ~ ~ Yx(Trans(x) A AxiomH(x) 

--} V x l . . . V x n ( X  C qS*(X, X l , . . .  ,xn) ) )  

and 

~2 ~- Vx(Trans(x) A AxiomH(x) 

-+Wl c ¢*(X, ¢ PC, 

where Trans(x) is the formula Vy (y E x --+ y C_ x) and AxiomH(x) is the 

formula Vxk , . . .  ,Vxj,~(x C_ ~b*(x, xj,,  . . . ,  xj,~)). 
In case H is complete, the notions of k-H and ~ ~ coincide and modal 

derivability of a given formula in H is equivalent to first-order derivability of 

the translated formula in ~. 

THEOREM 4 (Completeness of the translation method). For each modal formu- 
la ¢ involving n propositional variables P1,.. . ,  pn, 

FH ¢ ==> ~ k Vx(Trans(x) A AxiomH(x) 

--+ Vxl...VXn(X ~ ¢*(X, Z I , . . . , X n ) ) ) .  

Proof The proof follows the same path of the proof of Theorem l, except 

for the verification of the case in which the formula ¢ is an instance of the 

axiom schema ¢ ( a k , . . .  , aj,~). For this case it is easy to check that the term 

(¢(ozA, . . . ,  o~j~))* is syntactically equal to the term ~b*(Xl/~, . . . ,Xm/~,~),  
and the result follows from AxiomH(x) and simultaneous substitution in ~. 

(T4) ! 

THEOREM 5 (Soundness of the translation method). For each modal formula 
¢ involving n propositional variables PI , . . . ,  Pn, 

-+Wl c_ 3 ¢  b0.  

Proof Hereafter, let/g denote a universe of hypersets satisfying all the axioms 

of ZF - FA (ZF except the foundation axiom) and AFA. In/g,  for any graph 

(W, R), there is a (unique) function d such that, for every w E W, the following 

holds (see [1] for details): 

d(w) = {d(v)lv E W A wt~v}. 

Actually, it can be seen that the use of AFA is not essential for this proof. 

A model falsifying foundation "whenever needed" could be used in its place. 

However, as we will see, the use of AFA will simplify our argument making 

the construction more uniform. 

We begin proving the following lemma. 
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LEMMA 6. Let ~ be an ordinal, V~ be the set of all well-founded sets of rank 
less than c~, and Lt\Vs be the universe of all hypersets not belonging to Vs. 

The structure for the language of f~ with support (domain) Lt\ Vs and inter- 

pretation function (.)' defined as follows:* 

x E~ y iff x E y; 
xU~ y = x U y ;  

x C '  y iff x \Vs  C y; 

z \y ,  if x \ y  ff Vs, 
xVY = Vs, otherwise. 

Pod'(v) : { x :  x\Vs c v}, 

is a model of fL 

Proof We first show that V, Pow', and U' are well defined over L/\Vs. 

The proof for V follows directly from its definition since either x \y  does not 

belong to Vs and then \ '  is equal to x\y,  or it is actually equal to Vs which does 

not belong to Vs. 

The case of Pow' is also straightforward: proceeding by contradiction, sup- 

pose that y • Vs and Pow' (y) E Vs. By definition, it follows that y E Pow' (y) 
and, from the hypothesis, Pow~(y) C_ Vs, since Vs is transitive. Hence y E Vc~, 

while we assumed y ~ Vs. 

Finally, for x U~y notice that x U~y is equal to x U y by definition, and 

x U y E Vs if and only if x E Vs and y E Vs. 

To complete the proof, we must show that the proposed interpretation verifies 

the axioms of f~. 

Since x U ~ y and E ~ are defined as x U y and E, respectively, the verification 

of the first axiom is trivial. 

Now consider the second axiom. Let x, y, z belong to b/\Vs. If y \ z  E Vs, 

then y\ ' z  = Vs, and thus there are no x E/g\V~ such that x E ~ yVz. Since from 

y \ z  E Vs it follows that y \ z  C Vs, there are no x E L/\Va such that x E' y and 

x ¢'  z. In case y \ z  ~ Vs we have that y\~z is equal to y\z,  and therefore the 

axiom is verified. 

For the third axiom, suppose that x, y, z belong to/g\V~. By definition, x C_ ~ y 

if and only if x\Vs  C_ y, which is equivalent to saying that for all z in/ , / \Vs,  if 

z E x then z E y, namely, that Vz(z E t x --+ z E ~ y) holds in /g \Vs.  

Finally, consider the fourth axiom. Let x belong to b/\Vs. From the definition 

of Pow'(y), it follows that x E' Pow'(y) if and only if x\V~ C y; but x\V~ c y 

if and only if x C_ ~ y, and therefore the axiom is verified. 

(L6) • 

Given a frame (W, R), we want to embed it into the universe U\Vs,  for some 

suitable o~. Let us associate a set aS in b /wi th  each world a E W. From AFA 

* We denote the defined interpretation of symbols E, U, \,  C__, P o w  in b/\V~ by E', U ~, V, c ' ,  
P o w  s, and the standard interpretation in L¢ simply by E, U, \,  C, Pow.  
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it follows that, for each a E W, there exists a unique labeled decoration * such 

that a* = {b*: aRb} U a.~ (cf. [1]). Moreover, it is possible to define a+ in such 

a manner that, for each a, b in W, a* ~ b$ and a ¢ b in W implies a* ¢ b*. For 

this purpose, let us consider a set W in b/, whose elements are wellfounded sets 

of the same rank a, and such that there exists a bijection between W and W. 

For each a E W, we denote the image of a in W by g, and define 4 =  {g}. The 

following lemma can be easily proved. 

LEMMA 7. For each a, b in W, 

(i) a* ¢ b$; 

(ii) a ~ b implies a* ~ b* ; 

(iii) a* ¢ V~+I and a*\V~+l = {b*" aRb}. 

Proof (i) If a* e b$, then b$= {b} implies that a* = b. Since ~ E aS and 

aS c a*, it follows that 5 ¢ b, which is impossible because ~ and b have the 

same rank o~. (ii) If a* = b*, then ~ E b* = {c*: bRc}Ub$. I f ~  E b$, then 

= b, contradicting a ¢ b. If ~ = c*. for a given c such that bRc, then c E a 

(contradiction). (iii) Immediate. 

(L7)., 

Now consider a valuation ~ of the propositional variables P 1 , . . . ,  Pn over the 

frame (W,R),  and let W* be equal to {a*: a E W}, where * is the labeled 

decoration previously introduced. W* does not belong to V~+I because Va+l 

is transitive and, for each a E W, a* ~ Va+l. Furthermore, let Pi* be equal 

to {a* E W*: a ~ Pi} if this set is not empty, and to Va+l otherwise. The 

following lemma holds: 

LEMMA 8. For each a E W and each formula ¢(P1,. . . ,  Pn) 

a ~ d?(P1,...,Pn) ~ a* E ¢*(W*,P~,. . . ,P~) in the universebl\V~+l. 

Proof By induction on the structural complexity of the formula ¢(P1,. . . ,  pn). 
The cases of propositional variables and Boolean combinations of formulae 

are left to the reader. 

In the case of a formula of the form De(P1, . . . ,  Pn), we have that 

a ~ o ¢ ( P 1 , . . . , P , )  *~ 

Vb E W (aRb --+ b ~ O(P1,..., P,)) ¢~ 
Vb E W (aRb--+b* E' ¢*(W*,P{, . . . ,P~))  ~=~ 

a*\v +l c ** 
a* ¢' Pow'(¢*(W*, P?, . . . ,  P~)) 

a* (o¢)*(w*, 

(L8) [] 
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From Lemma 8, it follows that a formula 4 ( P 1 , . . . ,  P~) is valid in a model 

(W,R, ~)  if and only if W* is a subset of 4*(W*,PI* , . . .  ,Pr~) in the model 

b/\V~+l. This result can be generalized to frames. 

LEMMA 9. A formula 4 ( P 1 , . . . ,  Pn) is valid in the frame (W, R) if and only 
if for the corresponding hyperset W*, 

V X l , . . . , x n ( W ,  Ct ~ , ( W , , x l , . . . , X n ) )  

holds in Z.~\ Vo~+I. 

Proof. First of all, we show that, for each a E W and x l , . . . ,  xn E l/[\Va-bl, 

a* E t 4 * ( W * , x l , . . .  , xn)  ~ a* E t 4 * ( W * , x  1 N t W * , . . . , x  n A t W*).  

The proof is by induction on the structural complexity of the formula 4. We 

only report the proof of the inductive step for 4 ~ D/3, leaving the remaining 

cases to the reader (complete details can be found in [8]): 

e' 
a* E' Pow'(/3*(W*,xl, . . . ,xn)) ¢:~ 

c_ ,z,,) ¢, 

Vb W (aRb -+ b* 9*(W*,zl , . . .  ,Zn)) 
Vb E W (aRb -+ b* E' /3*(W*,xl N' W*,. . . ,xn A' W*)) ,~ 

g 3*(W*,zl ¢, 
a* C' (of l )*(W*,xl  nt W*, . .. ,Xn nt W*).  

Given n hypersets Xl , . . . ,  xn in b/\Va+l, let ~ be a valuation of P 1 , . . . ,  Pn 
such that, for each a E W, a ~ Pi if and only if a* C t xi V/~ W*. 

It is straightforward to see that, if P~* . . . .  , P* are the hypersets defined in 

Lemma 8 on the basis of the valuation ~ ,  then P* and xi V1 t W* have the same 

elements in the model bl\Va+l. From this, it is easy to verify by induction on 4 

that 4 * ( W * , P { , . . . , P * )  and ¢*(W*,x l  N' W* , . . . , xn  A' W*) have the same 

elements. 

If a formula 4 is valid in the frame (W, R), then it is also valid in the model 

(W, R, ~ ) ,  and from Lemma 8 it follows that, for all a E W, a* E' 4*(W*, xl N' 

W*, . . . ,  xn N' W*). This allows us to conclude that a* E t 4*(W*, x l , . . . ,  xn), 
and, therefore, for all hypersets x l , . . . ,  xn in b/\Va+l, W* C_ I 4" (W*, Xl, . . . ,  Xn). 

The converse can easily be proved by associating the hypersets P~ . . . . .  P* 

(where Pi* is equal to {a* E ~ W*: a ~ /9 / }  if this set is not empty, and to Va+l 
otherwise) with each valuation ~ of P 1 , . . . ,  pn. 

(L9) • 

To conclude the proof of Theorem 5, let us suppose that 

{2 ~- Vx(Trans (x )  A A x i o . ~ ( x )  

-+ Vx~, . . .  , v ~ , ( ~  c_ ¢*(~, ~ , , . . . ,  ~n))). 
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Let (W, R) be a frame in which the formula ~b(Pk, . . .  , PJm) is valid; from Lem- 

ma 9, it follows that the formula Vxjl,.. .  , Vxjm (W* C' ~b* (W*, xjl , . . .  , xj,~)) 
is true in the universe H\T/c~+I. Furthermore, it is easy to prove that Trans(W*) 
holds as well. Since H\V~+I is an f~-model, from the hypotheses it follows that 

the formula Vx l , . . .  ,Vxn (W* C_' ¢ * ( W * , x l , . . .  ,xn)) is true in H\V~+I, and 

thus, again by Lemma 9, that the formula ¢ is valid in (W, R). 

(T5) • 

Remark 10. From the preceding proof, it should be clear that the proposed 

translation method works for any theory f/* extending g/, provided that the model 

b/\Vc~ of Lemma (6) is a model of f~*. This fact will play an essential role in 

Section 5, where we will discuss the decidability results needed to apply the 

machinery of T-theorem proving to a theory f~, somehow stronger than f~, having 

H\Vc~ as a model. One could observe that this remark does not apply to theories 

containing the extensionality and/or the foundation axioms. As far as theories 

with extensionality are concerned, it is possible to show that we can deal with 

such theories by a minor technical change in the definition of the translation 

function (.)*. The status of the axiom of foundation is more delicate, in the 

sense that, at least as long as one wants to represent the accessibility relation 

using the membership relation, some form of anti-foundation does seem to be 

the best possible choice° 

4. The Generalization to Polymodai Logics 

In this section we generalize the proposed set-theoretic translation method to 

polymodal logics. Our approach can be seen as a (completely symmetric) set- 

theoretic version of Thomason's technique [22, 23]. 

The main problem is to map a polymodal frame, consisting of a set U endowed 

with k accessibility relations <1, • • •, %, with k ~  1, into a set provided with the 

membership relation only. We solved this problem by first providing polymodal 

logics with an alternative semantics that transforms the plurality of accessibility 

relations <1, • • •, % into a single accessibility relation R together with k subsets 

U1 , . . . ,  Uk of U. 

4.1. AN ALTERNATIVE SEMANTICS FOR POLYMODAL LOGICS 

Let us introduce an alternative semantics for polymodal logics, called p-semantics, 
and the relevant notions of frame, valuation, and validity. To distinguish such 

notions from the standard ones, we add the prefix p to the usual terms (e.g., 

p-valuation, p-model, p-frame). 

DEFINITION 11. A p-frame ~ is a (k + 2)-tuple (U, U1 , . . . ,  Uk, R), where 

U, UI, • . . ,  Uk are sets and R is a binary relation on U U Ul U . . .  tO Uk, such that, 
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for all u, v, t in U U U1 U. . .  U U/~, if u E U, u R v  and vR t ,  then t C U (we will 

denote this property by Trans?-(U)). 

A p-valuation assigns a truth value to propositional variables only at worlds 

belonging to U. Formally, we state the following. 

DEFINITION 12. A p-valuation ~p  is a subset of U x/b,  where q~ is the set of 

propositional variables. 

In the case of Boolean combinations, the p-valuation ~p  may be lifted to the 

set of all polymodal formulae in the canonical fashion. In the case of u~, with 

i = 1 , . . . , k ,  for all u E U we put 

u bp ui¢ ~ Vv(uRv A v 6 Ui --~ Vt(vRt -+ t ~p ¢)). 

DEFINITION 13. A polymodal formula ¢ is pwalid in a p-frame (U, Ul, .  • •, Uk, 

R) if and only if for all p-valuations ~p  and all worlds u C U, u ~p  ¢ holds. 

On the basis of the above definitions, the following lemma holds 

LEMMA 14. Given a p-frame (U, U1, . . . , Uk, R), there exists a classical poly- 

modal frame (U, ql,  . . . , <~k), based on the set U, that validates all and only the 

formulae Cb which are p-valid in (U, Ul, . . . , U~, R). 

Proof. Let q l , . . . ,  qk be defined as follows: 

u qi v ~> 3 t ( t  C Ui A u R t  A t r y ) .  

Any p-valuation ~p  on the p-frame (U, U l , . . . ,  Uk, R) may be interpreted as 

a valuation on (U, q l , . . . ,  %),  and vice versa. 

For any u C U and any polymodal formula ¢, we show that 

The proof is by induction on ¢. We confine ourselves to the case of u/operators 

(the proof in the other cases is straightforward). 

Suppose that u ~p  ai~p. We want to prove that u ~ nigh, that is, Vw(u  qi w --+ 

w ~ @). Consider a world w such that u <ai w. By definition of <ai, we have that 

3t(t ~ U~ A uRt A tRw). Since u ~p  Di@ is defined as V v ( u R v  A v E U~ -+ 

V t ( v R t  --+ t ~p  ¢)) ,  it follows that w ~p  ¢ and hence w ~ ~b by induction. 

Suppose now that u ~ Di¢. If v E Ui is such that u R v ,  then, for all t such 

that v R t ,  it follows that u qi t. From the hypothesis, we have that t ~ ~ and, by 

induction, t ~p  ~. 

If the formula ¢ is p-valid in (U, U l , . . . ,  Uk, R), then, given any classi- 

cal valuation ~ on (U, ql , . . . ,<ak),  it follows that, for all u C U, u ~p  ¢ 

holds in the corresponding p-model (U, U L , . . . ,  Uk, R,  ~p) ,  and thus u ~ ¢ in 

(U,<~I,... ,%) .  Since this is true for all u E U and all valuations ~ ,  it follows 
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that ¢ is classically valid in the frame (U, '~l, • • •, '%). Symmetrically, it is possi- 

ble to prove that if ¢ is valid in (U, ~ l , . . . ,  '%), then it is p-valid in the p-frame 

(u, R). 
(L14) g 

LEMMA 15. For every classicat polymodal frame (U, ~1, . . . ,  ~k) there exists a 
p-frame (U, U1,. . . ,  Uk, R) that p-validates exactly the formulae that are valid 

in (U, <11,..., "~Ic). 
Proof Let U1 , . . . ,  Uk, R be defined as follows: 

- let U1 , . . . ,  Uk be pairwise disjoint sets isomorphic to U, each one disjoint 

from U (let us denote by u ~+ ui a fixed correspondence between U and 
ud; 

- for i = 1 , . . . ,  k and u, v E U, let uiRv if and only if u <ai v; 

- for a l l u E U a n d i = l , . . . , k ,  l e tuRui .  

It is easy to show that Trans2(U) holds in (U, U1, . . . ,  Uk, R). Moreover, any 

valuation ~ on (U, ~1 , . . . ,  <1tc) can be seen as a p-valuation ~p on (g, U1 , . . . ,  Uk, 
R). 

For any u C U and any polymodal formula ¢, the following holds: 

The verification for Boolean combinations is left to the reader. 

Let us consider the case in which ¢ is of the form Die. If u ~ Die, then, 

to prove that u ~p Die, take v, t in U t2 UI t2 . . .  U Uk such that v E Ui, uRv, 
and vRt. By definition of R, there exists ui E Ui such that v = ui (uRv and u 

is different from any ui), and thus vRt can be rewritten as uiRt. By definition 

of R, uiRt if and only if u ~i t. Therefore, by the hypothesis, it follows that 

t ~ ~, and, by induction, t ~p ~. 

Now suppose that u ~p @, and let v be ~i-related to u, that is, u <~i v. By 

definition of R, it follows that uRui and uiRv; thus, by definition of ~p, it 

follows that v ~p  ~, and, by induction, v ~ ~. 

The result easily follows as in Lemma 14. 

(Lt5) • 

Lemmas 14 and 15 together show that any p-frame f = (U, gl , . . . ,  Uk, J~) can 

be reduced to a p-frame 5 ct = (U, U~, . . . ,  U£, R') such that U, U~, . . . ,  U£ are 

pairwise disjoint. 

From the previous two lemmas we have the following theorem. 

THEOREM 16. If  ~, c} are polymodal formulae, then 

~b ~ 0 ¢=> ¢ is p-valid in all p-frames in which ~ is p-valid. 

Proof Apply Lemma 15 and Lemma 14. 

(T16) u 
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4.2. A SET-THEORETIC TRANSLATION METHOD FOR POLYMODAL LOGICS 

As in the soundness proof for the monomodal case, we interpret any p-frame 

(U, U1 , . . . ,  Uk, R) as a (k + 1)-tuple U*, U~ , . . . ,  U~ of "sets" in a particular 

f~-model such that, for all elements t* of the model that are E-related to U* U 

U~ U . . .  U U~, we have 

t* = {~*: tRs}. 

As in the monomodal case, every p-valuation of P 1 , . . . ,  Pn on the p-flame is 

interpreted in terms of n subsets PI*, • • •, Pn* of U*. Moreover, for each polymodal 

formula ¢, we define its translation as a term ¢* (x, Y l , . . . ,  Yk, x l , . . . ,  Xn) such 

that, for all u E U, 

u ~p ¢ ~  u* E ¢ * ( u * , u ; , . . . ,  U;,Pi,* * . . . ,  R D .  

Under this constraint, the definition of the translation of D/¢ directly follows from 

the definition of ~p (and induction): 

u ~p  q ¢  iff g v ( u R v  A v E Ui --+ Vt (vRt  -+ t ~p ¢)) iff Vv(v* C u* A v* E 

Ui* --+ Vt(t* E v* + t* E ¢*)) iff u* n U* C_ Pow(¢*)  iff u* _C ((U* U U~' U 

. . .  U U•)\U*) U Pow(¢*)  iff u* E Pow(((U* U U~ U . . .  U U;)\U*) U P(¢*)).  

Thus, the translation of the term Die(P1, . . .  , Pn) is defined as follows: 

(o~¢)* - P o w ( (  (x u yl u . . .  u vk ) \ v i )  u Po~(¢*)). 

Now let us prove the soundness and completeness of the translation method for 

polymodal logics. 

THEOREM 17 (Soundness of the translation method). Let H be a k-dimensional 

polymodal logic extending K ® . . .  ® K with the axiom schema ~b(ajl , . . .  , ozj,~). 

For any polymodal formula ¢ involving n propositional variables P1, . . . , Pn, 

F- V x V y l . . .  Vyk(TransZ(x)  A A x i o m H ( x ,  Y l , . . . ,  Yk) 

--+VXI...VXn(X ~ q~*(X, y l , . . . , y k ,  X l , . . . , X n ) ) )  

where A x i o m H ( x ,  Y l , . . . ,  Yk) ts 

Vxl . . .  V x,~(x g ¢*(x, Vl , . . . ,  vk, x , , . . . ,  x,~))), 

and Trans2(x )  stands for VyVz(y E z A z E x --+ y C x), that is, x C 

Row(Row(x) ) .  

Proof. To show that ~b ~ ¢ it is sufficient to prove that ¢ is p-valid in all 

p-flames in which ~b is p-valid (Theorem 16). 

Let (U, U1,. • •, Uk, R) be a p-frame in which ~b is p-valid. Then, we proceed 

as in the monomodal case to prove that in a model of ~2 there are k + 1 sets 
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U*, U ~ , . . . ,  U~ such that T r a n s 2 ( U  *) holds and, for any polymodal formula 

o~(Pl,. . .  , Pn ), 

V2gl, . . . , x n ( U *  C oL*(V*, U~,  . . . , U ; , 2 c l ,  . . . , z n )  ) 

holds in the model if and only if c~(P1,. •. ,  Pn)  is p-valid in (U, U1 , . . . ,  U~, R). 

Hence, A x i o m f t ( U * ,  U ~ , . . . ,  U~) holds in the model, and, by the hypothesis, 

it follows that VX l , . . . , Vxn  ( U* C_ ¢*(U*, U~ , . . . , U~ , X l , . . . , Zn ) ). This allows 

us to conclude that ¢ is p-valid in (U, U1, . . . ,  Uk, R). 

(T17) u 

THEOREM 18 (Completeness of the translation method). Let  H be a k-dimen-  

s ional  p o l y m o d a l  logic extending I f  ® • . .  ® I f  by means  o f  the ax iom schema 

~b(ctjl,. . .  , c~j,~). F o r  each p o l y m o d a l  f o rmu la  ¢ involving n propos i t ional  vari- 

ables  P1, . . . , Pn, 

F-H ¢ 

~ ~ V x V y l  . . .  V y k ( T r a n s Z ( x )  A A x i o m H ( x ,  Y l , . .  . ,  Y~) 

vx l . . ,  vxn(x c ¢*(x, yl , . . .  ,yk ,xl , . . . ,  

Proof .  The proof is by induction on the length of a derivation of ¢ in H. 

The cases of tautologies, closure under the substitution rule and modus ponens, 

and closure under the axiom H are as in the monomodal case. 

We prove the closure under the axiom K and necessitation role of the modal- 

ities Di. For the axiom I f  (Di(~ -+ /3 )  --+ (=ia --+ hi~3)), we show that f~ proves 

the formula 

g x V y l . . ,  g y k ( T r a n s 2 ( x )  A A x i o m H ( x ,  Y l , . . . ,  Y~) 

---} V x l . . .  V x n ( X  C (x \ l~ )  U ( x \ v )  U P o w ( (  (a~ U Yl U . . . U Y k ) \ Y i )  

uP(/3*))) 

where u and v stand for P o w ( ( ( x  to Yl tO. . .  tO Yk ) \Y i )  U P o w ( ( x \ ~ * )  U/3*)) and 

P o w (  ( (x  U Yl U . . . U Yk ) \Y i )  U Pow(c~*)) ,  respectively. 

Let x l , . . . ,  xn be fixed and consider x, Yl • . .  , Yk such that both T r a n s 2 ( x )  

and A x i o m g ( x ,  y l , . . .  ,Yk)  hold. Suppose that t E x, t E u, and ~ E v. We 

prove that t C_ ((x tO Yl t o ' "  tO Yk ) \Y i )  U Pow( /3*) ,  that is, if s E t, then either 

s E (x  U Yl U . . .  U Yk ) \Y i  or s E Pow( /3*) .  If s ¢ (x U Yl U . . .  U Yk) \Y i ,  then 

E u implies s C (x\c~*) tO/3*, and t E v implies s C_ o~*. 

In order to prove the closure under necessitation rule, we show that from 

f~ k- g x V y l  . . .  V y k ( T r a n s 2 ( x )  A A x i o m H ( x ,  Y l , . . .  , Yk) 

+ wn(  c_ y l , . . . ,  w, 

it follows that 

f~ F- V x V y l  . . . V y k ( T r a n s 2 ( x )  A A x i o m h r ( x ,  Yl ,  . . . , Yk) 

--+ V X l . . . V X n ( X  C (n i¢)*(X ,  y l , . . . , y k , X l , . . . , X n ) ) ) .  



334 G. D ' A G O S T I N O  ET AL.  

Let x l , . . . ,  xn be fixed and consider x, Yl . . . ,  Yk such that both Trans2(x) 
and AxiomH(x, y l , . . . , yk)  hold. By the hypothesis, x C ¢*(x, y l , . . . , yk ,  
x l , . . . , xn ) .  Hence, Pow(x) C_ Pow(¢*) c ((xUyl U.. .  Uyk)\yi) U Pow(¢*) 
and therefore Pow(Pow(x)) c_ Pow(((x U yl U ... U Yk)\Yi) U Pow(¢*)). 
From Trans2(x), it follows that x C_ Pow(Pow(x)), and, therefore, x C_ 

Po (((x u vl  u . . .  u u = 

(T18) • 

Remark 19. As in the case of monomodal logics, if H is complete then by 

Theorems 17 and 18 modal derivability of a given formula in H is equivalent to 

first-order derivability of the translated formula in ~2. 

5. On the Application of Set T-Resolution 

As we said in the introduction, on the basis of the results presented in the preced- 

ing sections it is possible to automatically test modal derivability - from modal 

theories in the specified class - using a classical first-order theorem prover. 

Recently a more specialized technique (called T-theorem proving) for auto- 

mated theorem proving in first-order theories has been proposed (see [20]). Based 

on the translation method introduced above, a suitable application of T-theorem 

proving in which the underlying theory T is f~ (or one similar to it) can now be 

considered as an alternative for automatically testing modal derivability. In this 

section we briefly discuss the problem of applying set T-resolution together with 

our translation method. 

A prerequisite to employing T-resolution in the context of a given theory T is 

the decidability, with respect to T, of the class of ground formulae written in any 

language that extends the one in which the axioms of T are written with Skolem 

(uninterpreted) function symbols. In [20], it was shown that the satisfiability 

problem with respect to any theory T of ground formulae on a given language 

/:* obtained from L;(T) by adding an arbitrary number of functional and constant 

symbols is equivalent to the T-satisfiability of the class of purely existential 

formulae written in /2(T). Therefore we are interested in this last problem in 

the case of f~, whose language (£(f~) from now on) consists of the symbols 

(~, U, \ ,  C_, E, and Pow. 
Before commenting on the above-mentioned problem, notice that the decid- 

ability of classes very similar to the one we want to deal with has already been 

proved by Cantone, Schwartz, and Ferro [4-6]. Unfortunately, the results men- 

tioned - among the most complex in the field of computable set theory - cannot 

be applied to our context, the problem being the underlying set theory on which 

they rest. Our theory f/ is very weak; in fact it can easily be verified that the 

proofs in [4, 6] make an essential use of assumptions such as regularity, exis- 

tence of the transitive closure of sets, extensionality, etc., which are certainly not 

derivable in fL 
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We succeeded in providing a proof of the decidability result we need for a 

theory f~' slightly stronger than f~ (but having essentially the same language). The 

main difference between f~ and f~' is that f~P contains as axioms some simple 

consequences - not derivable in f~ - of Cantor's theorem on the number of 

subsets of a given set [8]. 

The proof is based on a technique first introduced in [7, 19]. The main idea is 

the following: in order to establish whether there exists a model of f~' satisfying 

a formula qC(Xl,... , Xn) (an unquantified formula written in £(~T)), we assume 

that there exists a model M of f~' such that M ~ ~p(xl , . . . ,  Xn), and we con- 

centrate our attention on n elements a~ , . . . ,  an in the support of M satisfying ~. 

The goal is to show that under this hypothesis we can build another (simpler) 

n-tuple a ] ' , . . . ,  a* of elements in the support of a model M '  of f~' still satisfying 
# * 

~. The elements % , . . . ,  a n are completely described by a graph G whose size 

is bounded by a function of n, in the sense that, in order to test the existence 

. . . ,  * it is sufficient to test the existence of G, and this result of (M'  and) a~, %,  

guarantees the decidability. 

• ., * is combinatorially nontrivial. First of The problem of determining % , . .  a n 

all, notice that if in the formula 9~(Xl, • • •, xn) we had no conjuncts of the form 

Pow(x i )  = xj,  then we could define a ~ , . . . ,  a* simply as a n-tuple satisfying 

a* = {aj I aj C m a i } ,  and it would be easy to check that all our requirements 

are satisfied (recall that we do not have to deal with the extensionality axiom). 

As a matter of fact we can think of the map * as a way of marking some of the 

elements in each of the ai (the marked elements being those of the form aj) and 

then take a* as the set of (images with respect to • of) marked elements in ai. To 

deal with a literal of the form Pow(xi)  = xj, we need to mark more elements: 

at least all those elements which are subsets of the set of marked elements in ai. 

Notice that if one simply does so and marks all such elements (subsets of ai) 

without "care", new elements can turn out marked in ai, and the marking process 

may not terminate. We solved the above problem processing the ai's in an order 

compatible with their size and applying the simple consequences of Cantor's 

theorem that were forced to hold in f~' precisely for this purpose (the details of 

the proof are given in [9]). 

It may be interesting to note that it is still an open problem whether the class 

of purely existential formulae of £(f~) is decidable with respect to ~2. In other 

words it is not known whether T-theorem proving can be applied directly to [2; 

hence, up to this point, despite its simplicity, f~ seems to be a less suitable theory 

for computational purposes than a more complex one (i.e., f~*). 

Conclusions 

In this paper we proposed a new translation method mapping polymodal formulae 

into set-theoretic terms of the very week set theory f~. The method can be used for 

any normal complete finitely axiomatizable polymodal logic, possibly specified 
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with Hilbert axioms only, and applies to a large class of theories extending f~. An 

important and interesting line of investigation at this point is the generalization 

of the proposed method to first-order (poly)modal logics. 

As another line of development of the work presented here, we mention a 

systematic comparison of the approach introduced in this paper (and possibly 

suitable variations of it) with standard translations into first-order and monadic 

second-order logics [2, 18]. From a theoretical perspective, the aspects that can 

be considered are, for example, the ability to translate specific (classes of) logics 

and modal operators [3], the problems related to the correspondence between 

proofs in modal and set-theoretic systems, and the relationships with tableaux- 

like methods for modal logics [10]. From a more practical point of view, it could 

be of interest to investigate the computational costs of the set-theoretic reasoning 

mechanisms sketched in Section 5. 

We are also investigating the possibility of exploiting our translation method 

to reduce undecidable decision problems for particular propositional polymodal 

logics, e.g., [13], to the derivability problem with respect to f~ of formulae of 

type V* 3, thereby showing the undecidability of the latter problem. 
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