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A set theory based similarity measure 
for text clustering and classi�cation

Ali A. Amer1*  and Hassan I. Abdalla2

Introduction

In information retrieval and machine learning, a good number of techniques utilize the 

similarity/distance measures to perform many different tasks [1]. Clustering and classi-

fication are the most widely-used techniques for the task of knowledge discovery within 

the scientific fields [2–10]. On the other hand, text classification and clustering have 

long been vital research areas of information retrieval (IR). While text classification is 

the process of classifying the text/document into its actual class by utilizing a similar-

ity measure and a proper classifier. �e clustering, on the other hand, is the process of 

grouping similar texts into similar groups called clusters. As a matter of fact, with the 

ever-piling amount of data and information on the internet, the necessity for a highly 

effective classification algorithm is urgent. Nevertheless, the enhancement of classifica-

tion performance has still been the main task for researchers in the text mining field. 

Abstract 

Similarity measures have long been utilized in information retrieval and machine learn-

ing domains for multi-purposes including text retrieval, text clustering, text summari-

zation, plagiarism detection, and several other text-processing applications. However, 

the problem with these measures is that, until recently, there has never been one 

single measure recorded to be highly effective and efficient at the same time. Thus, 

the quest for an efficient and effective similarity measure is still an open-ended chal-

lenge. This study, in consequence, introduces a new highly-effective and time-efficient 

similarity measure for text clustering and classification. Furthermore, the study aims to 

provide a comprehensive scrutinization for seven of the most widely used similarity 

measures, mainly concerning their effectiveness and efficiency. Using the K-nearest 

neighbor algorithm (KNN) for classification, the K-means algorithm for clustering, and 

the bag of word (BoW) model for feature selection, all similarity measures are carefully 

examined in detail. The experimental evaluation has been made on two of the most 

popular datasets, namely, Reuters-21 and Web-KB. The obtained results confirm that 

the proposed set theory-based similarity measure (STB-SM), as a pre-eminent measure, 

outweighs all state-of-art measures significantly with regards to both effectiveness and 

efficiency.
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Given the fact that the similarity/distance measures are the core component of the clas-

sification and clustering algorithm, their efficiency and effectiveness directly impact 

techniques’ performance in one way or another. �erefore, the selection of the best simi-

larity measure for the techniques in question is still an open-ended challenging task.

Even though there have been several proposed works in IR literature to compare the 

similarity/distance measures for clustering and classification purposes [2, 3, 11–16], 

these studies are still incapable of providing a comprehensive preview of the actual per-

formance of similarity measures. Besides, some of those works have presented an effi-

cient similarity measure while ignoring effectiveness [17, 21]. While the others have 

presented only an effective similarity measure while ignoring efficiency [2–4]. Conse-

quently, this work comes to cover this critical limitation by introducing a compromised 

(effective and time-efficient) similarity measure while the most widely used similar-

ity measures are elegantly investigated in a thorough pattern under numerous circum-

stances. Using the K-nearest neighbor classifier (KNN), K-means clustering algorithm, 

and the bag of words (BoW) representation model [17–19] for feature selection, the 

similarity measures are examined in details. �e K values (in KNN) is varied from (1) to 

(120) and the number of features is set to be in (50, 100, 300, 1000, 3000, 6000, and the 

whole number of features of the considered dataset). In doing so, the superiority of STB-

SM measure is emphasized, and each measure is tested under several circumstances 

so the desired effectiveness including accuracy is being obtained in certain K values 

on several features. �ese measures are evaluated against low dimensional datasets (by 

studying their performance on 50, 100, 200, and 350) and high dimensional datasets (by 

studying their performance on 3000, 6000, and the number of all features of the dataset). 

�e measures’ behavior has been analyzed to determine which measure gives the best 

results in certain K values on a specific number of features. Furthermore, for the cluster-

ing performance analysis, five evaluation metrics were employed with two of them are 

internal and three are external. �e key objective of this work is to present a new com-

petitive measure, compare and benchmark the similarity measures performance on the 

targeted datasets on both the low and the high-dimensional datasets. Briefly, the main 

contributions of this work are listed below:

1. Introducing a novel similarity measure for text retrieval that basically behaves based 

on the set theory mechanism. �is measure has been named a set theory based 

similarity measure for text retrieval (STB-SM). In accordance with the experimental 

results of both classification and clustering, STB-SM has been shown to be a promis-

ing measure with its being superior over the existing state-of-the-art measures.

2. Along with proposing the STB-SM, seven similarity measures, that are com-

monly applied for text retrieval and machine learning purposes, are thoroughly 

investigated and evaluated to benchmark their impact on text retrieval. They are 

comprehensively tested on two of the most publicly available datasets (namely, 

web-KB and Reuters-21). Using BoW, a thorough comparative analysis for these 

measures, in terms of their effectiveness and efficiency, are drawn. While the 

classification effectiveness includes six evaluation factors, namely; accuracy, pre-

cision (PRE), recall (REC), F-Measure (FM), G-Measure (GM) and Average Pre-

cision Mean (AMP). The clustering effectiveness includes five evaluation met-

rics namely, Purity, Completeness and Rand Index as the external metrics, along 
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with Calinski-Harabasz index and Davies-Bouldin index as the internal metrics. 

Moreover, for both classification and clustering efficiency, the run time, taken by 

each measure to find the similarity degree, is rigorously observed.

3. �e scope of this work concentrates on promoting the performance of text clus-

tering and classification through a new measure along with a detailed compara-

tive analysis for the proposed measure against the state-of-art BoW-based simi-

larity measures. �e drawn analyses would provide an influential guide for the 

selection of similarity measures in terms of considered datasets as well as helping 

researchers in fully understanding the present and future challenges linked with 

text retrieval.

�e rest of this paper is structured as follows: the most relevant similarity measures 

for this study are concisely presented in Sect. “Related work”. Section “�e set theory” 

briefly describes the basics and definitions of set theory in the context of text retrieval. 

Section “�e proposed similarity measure (STB-SM)” defines, formulates, and analyzes 

the proposed similarity measure in the context of the set theory. �e experimental setup 

is drawn in Sect. “Experimental setup”. �e results of the work are given in Sect. “Experi-

mental results”. �e discussion is profoundly detailed in Sect. “Discussion”. Finally, con-

clusions and future work recommendations are presented in Sect.  “Conclusions and 

future work”.

Related work

Vector Space Model (VSM) has long been used to represent document(s) when dealing 

with text retrieval. In VSM, each document is drawn as an N-dimensional vector. Each 

dimension represents a vocabulary term/feature. In information retrieval (IR) literature, 

there are a good number of similarity measures to compute the pairwise document simi-

larity using VSM. While there have been some works that have been proposed in the 

IR literature to perform the clustering along with the classification using the similarity/

distance measures [2–4, 11–16]. �ese works lack the comprehensive preview of the 

actual performance of similarity measures. Moreover, some of them have proposed effi-

cient similarity measures irrespective of their effectiveness [21, 22]. Other works, how-

ever, have presented only effective similarity measures without consideration to their 

efficiency [2–4].

Euclidean and Manhattan distances are among the most famous geometric measures 

which have been utilized to find the distance between each vector pair [2, 20]. Similarly, 

Cosine similarity finds similarity between each document pair using the angle between 

their vectors [10]. �e triangle distance is also looked at as the Cosine of a triangle 

between vector pair [10]. �e value of this measure range between 0 and 2. On the other 

hand, for 0–1 vectors, the Hamming distance [4] is used to give the number of positions 

at which the feature weights are not equal. Kullback–Leibler divergences [23, 24], KLD, 

as a non-symmetric measure was used in [24] to compute the similarity between each 

vector pair using the probability distribution that is associated with the both vectors. 

In [4], a similarity measure for text processing, named SMTP, was found to calculate 

the similarity between document pair. An Information-�eoretic measure (IT-Sim), was 

proposed based on information theory in [18] for document Similarity purposes. In [3], 
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a new similarity measure called Improved Sqrt-Cosine (ISC) was proposed. Meanwhile, 

Bhattacharya coefficient was invented in [21] to approximately calculate the overlap rate 

between each statistical sample pair. Jaccard coefficient was developed in [25] to find 

similarity using the ratio of the number of features existing in both documents to the 

number of features existing in at least one of them. Subsequently in [2], a new similar-

ity measures named pairwise document similarity measure based on present term set 

(PDSM), was presented based on the feature weights as well as the number of features 

that existed in at least one of the considered documents.

Some of these measures have shown to be highly effective such as the PDSM [2], the 

ISC [3], and the SMTP [4], yet unfortunately time-inefficient. In contrast, some meas-

ures are not effective yet highly efficient notably the Euclidean and Manhattan. Cosine, 

on the other hand, has been seen as a compromised solution as an effective and highly 

efficient measure. Furthermore, as reported in IR literature, almost all of these measures 

were tested in the context of text classification and clustering. For example, PDSM was 

compared in [2] with five similarity measures in terms of classification and near dupli-

cate application. Likewise, ISC [3] and SMTP [4] were evaluated against several similar-

ity measures concerning text classification and clustering. Similarly, our proposed paper 

of this work has been evaluated against some of the most widely used similarity meas-

ures in machine learning and information retrieval literature, particularly with respect 

to text classification and clustering. Finally, [7] assessing the clustering performance of 

several measures on three collections of web documents. �e experimental results of 

their experiment revealed that Cosine similarity outweighs both the Jaccard coefficient 

and the Euclidean distance.

The most relevant similarity measures

In this sub-section, the similarity measures that are considered to conduct this study are 

presented. Seven similarity measures are introduced as the most widely used measures 

for text clustering and classification [2, 20–24]. �ese similarity measures work by con-

sidering the terms’ presence and absence, or by evaluating the angle between each vector 

pairs or by finding the distance. Assuming that we have two documents doc1 and doc2 

that have two vectors d1 and d2, the aim is to find how much similarities are there when 

using the intended similarity measure as follows;

Euclidean distance (ED)

Every document is drawn as a point in 2D space depending on the term frequency of N 

terms that would represent the N dimension. ED finds the similarity between each point 

pair in N-dimensional space using their coordinate based on the following equation:

Manhattan

Manhattan distance (known as sum-norm) finds the sum of absolute differences between 

the targeted coordinates of each document pair vectors as follows:

(1)

DEuc(doc1, doc2) =

∑

√

(doc11−doc12)
2 + (doc21−doc22)

2 + . . . (docn1−docn2)
2
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Cosine similarity measure

�e Cosine similarity calculates the pairwise similarity between the document pairs 

using the dot product and the magnitude of both vectors of both documents. It is mostly 

utilized within the scientific fields including the IR field [20], and is defined as follows:

�e union is used to normalize the inner product.

Jaccard similarity measure

�is coefficient was invented in [25] to divide the intersection of the points by their 

unions, and the value of coefficient ranges between 0 (there is no similarity between the 

documents) and 1 (both documents are identical). �e Jaccard similarity is given by the 

next equation:

Bhattacharya coe�cient

�e Bhattacharyya coefficient is used to approximately calculate the overlap rate 

between each statistical sample pair [21]. In our works, however, these samples are 

thought of as documents. �is coefficient is being utilized to find the approximate close-

ness of each document pair.

Kullback–Leibler divergence

It is also known as a “relative entropy” [23, 24]. It is used to measure the difference 

between probability distributions. Simply, when this measure reaches 0, it signals that 

the intended distributions pair is identical, following that, its equation is then drawn as 

follow;

PDSM

�is measure has been introduced in [2] to tackle the limitation of the-state-of-art meas-

ures which included a number of present terms into account. PDSM was seen effective 

(2)Manhattan − distance(doc1, doc2) =

n
∑

i=1

∣

∣doc1w1 − doc2w2

∣

∣

(3)SimCos(doc1, doc2) =

∑

n

i=1(doci1 ∗ doci2)
√

∑

n

i=1 doc
2
i1

∗

√

∑

n

i=1 doc
2
i2

(4)Simjaccard(doc1, doc2) =
doc1 ∩ doc2

doc1
⋃
doc2

(5)SimBhatta(doc1, doc2) = 1 − log
(

∑n

i=1

√

doci1∗doci2

)

(6)SimKL(doc1, doc2) =

n
∑

i=1

(doci1) ∗ log

(

doci1

doci2

)
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according to the experimental results of [2] as well as the experimental results of our 

current work. �e PDSM equation is formulated as follows

where

where PF(doci1doci2) represents the number of present terms and AF(doci1doci2) repre-

sents the number of absent terms and M is the total number of documents.

The set theory

Before introducing the proposed measure, some basics and definitions (upon which our 

measure behaves) for the set theory in the context of text retrieval should be conceived. 

So, in this section, the main objective is to introduce the relative set theory operations 

upon which our proposed measure behaves.

Generally speaking, the set theory is a vital component of modern mathematics and 

is widely used in all formal descriptions. �e set can be a collection, a group, or even a 

cluster of points that are named members of that set. For instance, a set of documents is 

a collection of documents, or a set of people is a group of people, etc. For each point to 

be a member of that set, its membership shall be defined clearly. However, sometimes, 

due to the lack of information, membership definition is a difficult task and may even 

be a vague. So, if the membership definition is vague for some collection, the collection 

is then cannot be called a set. Simply put, if there has been a set S and its two members 

X and Y, then it shall not be unknown whether X = Y or they are not. Strictly speaking, 

the set can be either finite, infinite, or empty. In the following, some basic definitions 

and key operations are introduced to further understand the basics upon which STB-SM 

measure behaves.

Definition 1 If we have two sets S1 and S2, both sets are equal if and only if they 

have the same points, and then every X ∈ S1 ⇔ X ∈ S2. For example, in the context of 

text retrieval, if we have Doc1{Ali, Jun, Sarah} and Doc2{Jun, Sarah, Ali}. �en, we can 

say that Doc1 = Doc2, and they are both identical as every word belongs to Doc1 also 

belongs to Doc2.

Definition 2 If we have two sets S1 and S2, S1 is “a proper” subset of S2 (S1 ⊆ S2) if 

there has been X ∈ S1 and also X ∈ S2 as well. For example, in the context of text retrieval, 

if we have Doc1{Ali, Hassan, Sarah} and Doc2{Hassan, Sarah, Ali, Mark, Farah}. �en, 

we can say that Doc1 ⊆ Doc2, and Doc1 is a proper subset of S2 as every word belongs to 

Doc1 also belongs to Doc2.

Definition 3 he document doc is a collection of terms of vectors that holds these 

terms, that is, any subset of C, when C is the document collection, (involving C itself ).

(7)Dpdsm(doc1, doc2) =
doci1 ∩ doci2

doci1Udoci2
∗

PF(doci1doci2)

M − AF(doci1, doci2) + 1

doci1 ∩ doci2 = min(doci1, doci2)

doci1Udoci2 = max(doci1, doci2)
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Let doc be a document, a subset of C. We say that doc exists as a vector if the terms of 

doc exist in the doc itself. First, let us define the key relationships between each docu-

ment pair doc1 and doc2 in the collection C, as follows;

So, for the given document pair doc1 and doc2, the following set of operations are held 

as follows;

Operation 1—union

�e union of two sets S1 and S2 (S1 ∪ S2), is the set that contains all the elements of both 

sets S1 and S2 with the removal of duplication.

In the context of text retrieval, the Union operation of doc1 and doc2, doc1 ∪ doc2, is the 

group of terms {t1,…,  tn} where n is the number of addressed terms in both documents, that 

are involved in either doc1, doc2 or both:

Operation 2—intersection

�e Intersection of two sets S1 and S2 (S1 ∩ S2), is the set that contains shared elements of 

sets S1 and S2.

In the context of text retrieval, the Intersection operation of doc1 and doc2, doc1 ∩ doc2, 

is the group of terms {t1,…,  tn} where n is the number of addressed terms in both docu-

ments, that are involved in both documents doc1 and doc2 at the same time:

Operation 3—negation

�e negation operation of doc1 or doc2, doc1/doc2 or doc2/doc1, is the group of terms that 

are either belongs to doc2/doc1 or doc1/doc2:

doc1 ⊂ doc2 ⇔ T ∈ doc1 ⇒ T ∈ doc2(containment)

doc1 = doc2 ⇔ doc1 ⊂ doc2anddoc2 ⊂ doc1
(

equality
)

S1 ∪ S2 = {X |X ∈ S1orX ∈ S2}

doc1 ∪ doc2 =

{

t : t ∈ doc1or t ∈ doc2
}

.

S1 ∩ S2 =
{

X |X ∈ S1andX ∈ S2
}

doc1 ∩ doc2 =

{

t : t ∈ doc1and t ∈ doc2
}

.

doc1\doc2 =
{

t : t /∈ doc2
}

.

doc2\doc1 =
{

t : t /∈ doc1
}

.
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The proposed similarity measure (STB‑SM)

The formulation of STB-SM similarity measure

Suppose we have a document pair doc 1 and doc2. Let doc1 = (w11,  w12,…) and 

doc2 = (w21,  w22,…) be the weighting vectors (using BoW model) of the term sets for 

document 1 and document 2, respectively. Let  T1 {t11,  t12,…  t1n} and  T2 {t21,  t22,…  t2n} be 

the sets of items that are contained by doc1 and doc2, respectively. For the sake of sim-

plicity, the following is the proposed STB-SM equations:

where the notations “∩” and “\” denote the intersection and complement operators in 

the set theory, and  Wij is the weighting value. To further understand the mechanism of 

this measure and briefly clarify some deficit of the state-of-the-art measures, we have 

provided three examples as follows:

Example 1 Assuming we have doc1 (2, 5, 7, 8, 0, 9) and doc2 (9, 0, 0, 6. 5, 1), then STB-

SM will work as follows; (for simplicity, X is x1 and x2; Y is y1 and y2, Z is z1 and z1,  Ti.w 

suggests weighting of the term i)

T1.w T2.w T3.w T4.w T5.w T6.w

Doc1 2 5 7 8 0 9

Doc2 9 0 0 6 5 1

X1 = 2+8 + 9=19; X2 = 9+6 + 1=16; Z1 = 2+5 + 7+8 + 9=31; Z2 = 9+6 + 5+1 = 21; 

Y1 = 5+7 = 12; Y2 = 5

While STB-SM yielded (0.47 * 0.91 = 0.43) Cosine and Jaccard yielded (0.42) and (0.22) 

respectively.

Example 2 Assuming we have doc1 (02, 1, 1, 0, 1) and doc2 (3, 1, 1, 1, 1, 0), then STB-

SM will work as follows;

(8)X =





�

t∈doc1∩doc2

W1j



 ∗





�

t∈doc1∩doc2

W2j





(9)Y =





�

t∈doc1\doc2

W1j



 ∗





�

t∈doc\doc

W2j





(10)Z =





�

t∈doc1

W1j



 ∗





�

t∈doc2

W2j





(11)STB − SM(doc1, doc2) =

X

Z
∗

(

1 −

Y

Z

)
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T1.w T2.w T3.w T4.w T5.w T6.w

Doc1 0 2 1 1 0 1

Doc2 3 1 1 1 1 0

X1 = 4 X2 = 3 Z1 = 5 Z2 = 7 Y1 = 1 Y2 = 4

While STB-SM yielded (0.34 * 0.89 = 0.30), Cosine and Jaccard yielded (0.42) and 

(0.50) respectively.

Example 3 Assuming we have doc1 (1, 1, 3) and doc2 (1, 0, 2), then STB-SM will work 

as follows;

T1.w T2.w T3.w

Doc1 1 1 3

Doc2 1 0 2

X1 = 4 X2 = 3 Z1 = 5 Z2 = 3 Y1 = 1 Y2 = 0

While STB-SM yielded (0.80), Cosine and Jaccard yielded (0.94) and (0.25) 

respectively.

As seen from the drawn examples above, Cosine occasionally finds a good similarity 

as indicated in example (1). However, the Cosine similarity gives the same value for both 

examples (1 & 2) albeit the clear difference between both vectors, and to further exac-

erbate the issue the similarity value is highly exaggerated in example 3. It is worth indi-

cating that one novelty of STB-SM measure, is that the similarity value has never been 

exaggerated as shown in example (3) for Cosine, or the more state-of-the-art measure. 

STB-SM measure enables non-zero/non-shared features to have an explicit contribution 

to the similarity computation. �erefore, STB-SM takes the presence and absence of all 

features into consideration effectively.

On the other hand, Jaccard occasionally produces a good similarity as shown 

in example (2), but more frequently the Jaccard similarity is poor, as indicated in 

examples (1 & 3). Our proposed measure, therefore, comes to find a compromised 

solution where the desired effect is being detected. Examples (1 & 3) show a better 

and more accurate similarity found by STB-SM in comparison with the Cosine and 

Jaccard.

STB-SM analysis

In this subsection, we concisely as well as informatively analyze the cases of the pro-

posed measure as follows;

�e worst-case:

�is case occurs when there is not even one shared feature between the document 

vectors.

Example (worst case): Assuming we have doc1 (3, 0, 1) and doc2 (0, 2, 0). By apply-

ing the worst-case scenario, we find that X1 = 0, X2 = 0; Z1 = 4, z2 = 2, y1 = 4, y2 = 2; 
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because X = zero. Accordingly, STB-SM = zero, for both documents (1, 0, 1) and (0, 1, 

0), which is logically true since there is no shared feature exist.

�e average case:

�is occurs when there has been at least one shared feature(s) as given in the drawn 

above examples (1–3). In this case, STB-SM would have a value in the range [0–1].

�e best case:

�is occurs when both vectors are completely equivalent.

Example (best case): Assuming we have doc1 (4, 4, 4) and doc2 (4, 4, 4), or doc1 (1, 

1, 1) and doc2 (1, 1, 1). By applying the best-case scenario, we find that x1 = 9, x2 = 9, 

z1 = 9, z2 = 9, y1 = 0, y2 = 0. Accordingly, STB-SM = 1 which is logically true as both 

documents are identical.

The properties of similarity measures

According to [2, 4], six vital properties every similarity measure should have for the 

relative measure to be considered an optimal measure. �e following properties are 

listed below;

Property 1: �e existence or non- existence of the intended feature is more vital than 

the difference between the values linked with the existing feature. According to the calcu-

lated-above examples, STB-SM explicitly takes the presence and absence of features into 

consideration.

Property 2: �e value of similarity should be grown as the difference between the val-

ues of non-zero features values decline. For instance, if we have f1 and f2 as two features 

belong to doc1 and doc2 respectively. �en, for doc1 and doc2, the value of similarity 

between f1 = 12 and f2 = 6 is higher than the similarity between f1 = 20 and f2 = 6. �is 

property is also clearly shown in example 3, along with the worst-case example.

Property 3: �e value of similarity should be reduced as the number of existent or 

non- existent features rises. �is was showcased in both the worst and best case examples, 

clearly indicating the applicability of his property.

Property 4: Any pair of documents is low similar to each other if there have been many 

non-zero-valued features corresponding to many zero-valued features in the same pair. 

For instance, if we have two vectors for two documents doc1(f1,f2) = (1,0) and doc2(f3, 

f4) = (1,1). �en, doc1.f2 and doc2.f4 are the key cause for lowering the similarity between 

both documents as f2 X f4 = 0 and, at the same time, f2 + f4 > 0. Example 2 supports the 

applicability of this property.

Property 5: �e similarity measure should possess asymmetrical features. For instance, 

the similarity between both doc1 (1, 1, 0) and doc2 (1,1,1) must be the same when doc 

2(1,1,1) and doc 1(1, 1, 0) are considered. According to the drawn above examples, STB-

SM enjoys this property completely.
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Property 6: �e distribution value should have a contribution to the similarity between 

every two documents. �at means features with higher spread (standard deviation) con-

tribute more in similarity than that of a lower spread.

Experimental setup

Text pre-processing

Some operations were carried out normally for the text to be transformed into text vectors 

for processing. �e text was converted from the lower case to upper case, numbers, punc-

tuations, and stop words (common words), in addition to that extra white space were all 

removed, and some particular symbols (such as $,  %)were converted into spaces.

Text representation

�e bag of words (BoW) model [26, 27] was used to represent documents that were in 

the vector space model (VSM). �e BoW model represents each document as a word 

collection disregarding the grammar and word order [28].

Given the fact that we have used a python to run the text pre-processing, the pre-

processing was performed using the Ntlk (Natural language toolkit) library of python as 

follows;

• Tokenization: using the ntlk word tokenizer

• Converting all the words to lower case: using the lower() python string function

• Lemmatizing: using the ntlk stem WordNetLemmatizer

• Stopword Removal: using the ntlk stopwords

• Considering words with only 4 or more letters

The comparison mechanism of classi�cation

After pre-processing, all of the documents were represented using the BoW model in 

VSM in order for the classification process to start smoothly. Following that, the perfor-

mance of every similarity measured across the different kinds of documents was com-

pared and evaluated against each other. Six evaluation measures were used to evaluate, 

namely, accuracy, precision, recall, F-measure, G-measure, and average mean precision. 

For each criterion, the KNN algorithm runs from K = 1 to K = 120 over each number of 

features of each dataset, and the averaged results were accumulated and drawn as given 

in the Tables below (5, 6, 7, 8, 9, 10, 11, 12, 13). Number of features (NF) was varied from 

NF = 10, NF = 50; NF = 100, NF = 200; NF = 350, NF = 3000, NF = 6000 and NF = the 

whole number of features (see Appendix samples). In consequence, we have eight runs 

for the KNN algorithm over two datasets to test and examine six criteria using eight 

similarity measures. �e final number of implementations performed to have the results 

below were (8 × 2 × 6 × 8 = 768) runs. If we also consider the sixty (60) values of K that 

have been tested in each KNN cycle, the total runs would be 46080.
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Term weighting

We adopted the most widely used Term Frequency (TF) technique of weighting which 

simply gives the occurrence of each word in the relative document [29, 30].

K-nearest neighbor classi�er

�e K-nearest neighbor algorithm (k-NN) is most widely used, in the IR literature, to 

perform document classification. Although it is a lazy algorithm [27], it is nonpara-

metric, simple, and believed to be amongst the top ten algorithms in data mining [31]. 

It works based on selecting the nearest points to the point at the question. �e con-

cept of K-NN is that the points that exist in the same class are highly likely to be close 

to one another depending on the used similarity measure. KNN assumes the next: (1) 

Points in the feature space have a specific distance between each other and that dis-

tance is used as a metric to gauge closeness, (2) Each point in the training points has 

its vector and class label. Later, a certain number “k” is determined to draw the neigh-

boring area of the point in question.

K-means clustering algorithm

Generally speaking, the clustering of a huge text dataset can be efficaciously made 

through utilizing the algorithms of partitional clustering. One of the most-popular 

partitional clustering algorithms is the K-means algorithm. It is widely known in the 

literature to be the best-fit approach for handling huge volumes of datasets [8, 32]. 

Similarly to any clustering algorithm, K-means leverages a similarity measure that 

finds the similarity between each document and the document representative of the 

cluster (head of the cluster). �e similarity measure represents the core of the clus-

tering process by which clustering algorithm performance is analyzed. However, the 

most suitable similarity measure to effectively perform clustering is still an open-

ended challenge. In our work, for the clustering performance analysis, we ran the 

K-means for each similarity measure, as well as the values of evaluation of metrics 

(external metrics including purity, completeness and rand index, and internal met-

rics including the Calinski-Harabasz index and Davies-Bouldin index) were drawn 

accordingly. We used the voting technique to determine the best similarity measure 

that would best fit the K-means algorithm. �e voting technique worked by enumer-

ating how many metrics each similarity measure had achieved its best values. �e big-

ger number of metrics is the best fit which is the similarity measure. According to the 

experimental results of the clustering process, our proposed measure (STB-SM) has 

been seen as the best fit in most cases. It has achieved (11) out of the (20) points by 

being the best in four metrics out of five. Unfortunately, in the K-means algorithm, 

the number of clusters is still an ill-posed problem as stated in [32, 33]. �erefore, in 

this study, we have picked numbers (4 and 8) to be the number of clusters just to ana-

lyze and emphasize the behavior of all the similarity measures. It is worth referring 

that we are not arguing that (K = 4 or K = 8) is optimal or the best value for the num-

ber of clusters. It is just chosen as the number of actual classes in each dataset [34] to 

draw the performance analysis of K-means using the considered similarity measures. 

In the follow-up work, we plan to further examine the performance analysis with 
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several K numbers of clusters, and at the same time, with other clustering algorithms, 

like hierarchical clustering algorithms.

Machine description

Table 1 displays the machine and environment descriptions used to perform this work.

Dataset description

Reuters Dataset (Table 2): Reuters-R8 Dataset holds the eight most frequent classes of 

the original ninety classes in Reuter’s dataset. After applying pre-processing, a total of 

18308 features were extracted.

Web-kb dataset (Table  3): it consists of web pages of the computer science depart-

ment from the following universities: Cornell, Texas, Washington, and Wisconsin. It was 

obtained from the World Wide Knowledge Base project of the CMU text learning group. 

After applying the pre-processing, a total of 33,025 features were extracted. �e data in 

both datasets were divided into training and testing in ratio 2:1 (67%: 33%). To overcome 

the over-fitting or under-fitting issue, instead of dividing the whole data randomly in 

the training and testing data, each group was divided individually and then combined as 

training and testing data. Both datasets are read directly from Python platform as they 

are already integrated with python.

Table 1 Machine and environment description

Task Tool Speci�cation

Classification Language Python 3, development Software: Jupyter Notebook

OS Windows 7 (64 bit)

Memory RAM 4 GB

CPU Intel Core i5-3320 M (2.6 GHz)

Dataset Reuters and Web-KB

Clustering Language Python 3, Development Software: Jupyter Notebook

OS Windows 10 (64 bit)

Memory RAM 32 GB

CPU Intel (R) Core ™ (i9-8950 HK CPU 2.90 GHz/32/2TBSSD/4 GB)

Dataset Reuters and Web-KB

Table 2 Splitting of documents among eight classes in Reuters‑R8 dataset

Class Samples

Cq 2292

Crude 374

Earn 3923

Grain 51

Interest 271

Money-fix 293

Ship 144

Trade 326

Total 7674
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The classi�cation evaluation criterions

�is subsection holds the evaluation criterions used for classification as follows;

Accuracy (ACC)

ACC checks the total of samples that are correctly classified out of the whole sample col-

lection. ACC is defined in the next equation.

Precision (PRE)

PRE checks the total number of items that are correctly identified as positive out of the 

total items identified as positive.

Recall (REC)

REC checks the total number of items that are correctly identified as positive out of the 

actual positive.

F-measure or F-Score (FM)

FM is the harmonic mean of precision and recall. It is useful when classes are not dis-

tributed evenly.

G-method or G-Score (GM)

GM is the geometric mean of precision and recall. It is also used when classes are not dis-

tributed evenly.

(12)ACC =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

(13)PRE =
True Positive

True Positive + False Positive

(14)REC =
True Positive

True Positive + False Negative

(15)FM = 2 ∗
Precision*Recall

Precision + Recall

(16)
GM =

True Positive
√

(True Positive + False Positive) ∗
(

True Positive + False Negative
)

Table 3 Splitting of documents among four classes in Web‑KB dataset

Class Samples

Project 504

Course 930

Student 1641

Faculty 1124

Total 4199
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Average mean precision (AMP)

AMP is the mean of the average precision of all classes. �is is used to evaluate how pre-

cisely the classifier is performing.

where  Pn and  Rn are the precision and recall at the nth threshold. Finally, True Positive, 

True Negative, False Positive and False Negative are defined as follow;

True positive: the number of class1 testing documents that are correctly identified into 

class1.

True negative: the number of instances of class2, class3,…., classN correctly identified 

as class2, class3.. classN respectively.

False positive: the number of class1 testing documents that are incorrectly identified 

into class2, class3,….., classN.

False negative: the number of class2, class3,….., classN testing documents that are 

incorrectly identified into class1.

The clustering evaluation criterions

�is subsection holds the evaluation criterions used for clustering. While the external 

metrics require actual labels to assess the cluster quality (see Eqs. 18, 19, 20), the internal 

metrics do not require actual labels to assess the cluster quality (see Eqs. 21, 22).

Accuracy (also known as Purity)

It is used to check the index to which a cluster is pure. Particularly, every cluster has only 

one class and different clusters have different classes. In other words, this metric evalu-

ates the coherence of a cluster. It is defined by the following equation.

Where N is the number of objects(data points), k is the number of clusters,  ci is a cluster 

in C, and  tj is the classification which has the max count for cluster  ci.

Completeness

To check whether all members of a given class are assigned to the same cluster.

where

(17)AMP =

∑

n

(Rn − Rn−1)Pn

(18)Purity =
1

N

k
∑

i=1

maxj
∣

∣ci ∩ tj
∣

∣

(19)H =

{

1 if H(K,C) = 0

1 −
H(K |C)

H(K )
else

H(K|C) = −

|C|∑

c=1

|K |∑

k=1

ack

N
log

ack
∑|K |

k=1
ack

H(K) = −

|K|∑

k = 1

∑|C|

c = 1 ack

n
log

∑|C|

c = 1 ack

n
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Rand index

It is used to check how many points are correctly predicted.

where n is the total number of samples, and (a + b) is the agreement between real and 

the assigned cluster label.

Calinski-Harabasz index

It is used to measure the ratio between cluster dispersion and inter cluster dispersion.

where

where Cq is the set of points in cluster q, cq is the center of cluster q,  cE the center of E, 

and  nq is the number of points in cluster q.

Davies-Bouldin index

�is index signifies the average ‘similarity’ between clusters, where the similarity is 

a measure that compares the distance between clusters with the size of the clusters 

themselves.

where

where  si is the average distance between each point of cluster i and the centroid of that 

cluster,  dij is the distance between cluster centroids i and j. Finally, the best and worst 

values and the range of each measure are drawn in Table 4.

(20)R =
(a + b)

nC2

(21)s =

tr(Bk)

tr(Wk)
∗

nE − k

k − 1

Wk =

k
∑

q=1

∑

x∈Cq

(

x − cq
)

(x − cq)
T

Bk =

k
∑

q=1

nq
(

cq − cE
)

(cq − cE)T

(22)DB =
1

k

k∑

i=1

max
i �=j

Rij

Rij =
si + sj

dij
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Experimental results

Classi�cation results

�is work investigated all considered measures comprehensively based on six criterions for 

performance evaluation which is the first study of its type to do such investigation in the 

information retrieval field with respect to text classification. �e K values of KNN were var-

ied from (1) to (120) with an increment of value (2) in each cycle (see Appendix samples). 

�e number of features of each dataset was diversified (10, 50, 100, 200, 350, 3000, 6000, NF) 

to clearly draw the best performance of each measure under several circumstances. �en, for 

each measure, the results were averaged for all K values on each NF to yield the results drawn 

in Tables (5, 6, 7, 8, 9, 10, 11, 12, 13). In other words, the following tables contain the results 

of each similarity measure which were averaged on each Number of Features (NF) over all K 

values in the range [1…120] as drawn in the appendix. In each table, the averaged results of 

all K values for each performance criterion is displayed. Table 5 displays the averaged results 

of all criterions when NF = 10. For simplicity, we draw the averaged results of all measures 

while analyzing briefly three criterions, namely, ACC, FM, and AMP.

As shown in Table 5, for the Reuters dataset, Euclidean, followed by STB-SM and Cosine, 

met the highest accuracy. However, STB-SM, followed by Euclidean and kullback–Lei-

bler, outperformed all measures on both FM and AMP criterions. On the other hand, on 

the Web-KB dataset, PDSM, followed by STB-SM and Cosine, outperformed all similarity 

measures in ACC. In regard to FM and AMP, Cosine, followed by STB-SM and PDSM, out-

weighed all measures with STB-SM being superior to PDSM on FM and PDSM being supe-

rior to STB-SM on AMP. So, the best measures, when NF = 10, were Euclidean, STB-SM, 

and Cosine on Reuters, and PDSM followed by STB-SM and Cosine on Web-KB.

Tables 6, 7, 8 9, 10, show that, for both Reuters and Web-KB, STB-SM, followed by PDSM, 

and Cosine, achieved the highest ACC, FM and AMP respectively. However, two exceptions 

are noted as follows; the first exception is when NF = 350, Cosine outweighed PDSM in terms 

of FM and AMP on both Reuters and Web-KB. �e second exception is that when NF = 3000, 

Cosine outperformed PDSM in terms of FM and AMP on Reuters only. Nevertheless, the top 

performer measures, when NF in the range [50-3000], were STB-SM, PDSM, and Cosine.

Reuters in Tables  11, 12, similarly to Table  (10), STB-SM, followed by PDSM and 

Cosine, had been superior with the highest ACC, FM, and AMP respectively. Moreover 

Cosine outweighed PDSM in terms of FM and AMP. In contrast, on Web-KB, PDSM, 

followed by STB-SM and Jaccard, had been superior in terms of ACC and AMP. How-

ever, Cosine had been superior to Jaccard in terms of FM only. So, the top performer 

measures, when NF in the range [6000-All features], were STB-SM, PDSM, Cosine, and 

Table 4 The best and worst values and the range of each metric

Name Best value Worst value Range

Accuracy/purity 1 0 0–1

Completeness 1 0 0–1

Rand Index 1.0 − 1.0 − 1.0–1.0

Calinski-Harabasz index (Lower value is better) – –

Davies-Bouldin index 0 _ 0–1
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Jaccard. It is worth mentioning that from Table 6 , 7, 8, 9, 10, 11, 12, results have been 

almost the same. In other words, results have been noted in stable condition.

Finally in Table 13, when the average of averaged results has been taken, it is clear 

that, for both Reuters and Web-KB, STB-SM, PDSM, and Cosine have been the best 

measures for all criterions. �us, in conclusions, the top performer measures, when 

the average results have been taken, are STB-SM, PDSM, and Cosine.

Clustering results

In this subsection, we have evaluated and compared the impact of all considered similar-

ity measures on the behavior of the K-means clustering algorithm. Fixing K on (4 and 8) 

and using the presented-above evaluation metrics for clustering (see Table 4), the exper-

iments have been conducted on both datasets (Reuters and Web-KB) to experimen-

tally identify and distinguish which measure would be the best fit for K-means. Either 

positively or negatively, the experiments could clearly signify the selection of similar-

ity measure impact on clustering quality. All features of both datasets were considered 

when the clustering process has been running (Reuters = 18,308, Web-KB = 33,025 fea-

tures). As stated earlier, we have used two internal metrics, and three external metrics 

for clustering evaluation of K-means under the umbrella of all considered similarity 

measures. As for the stopping condition, the K-means was allowed to stop after running 

(50) iterations to obtain the best performance, or alternatively, the algorithm reached 

the stability situation for two consecutive cycles. �e stability situation is the case in 

which K-means clusters were recorded stable (unchanged) for two consecutive cycles. 

Centroids of clusters were chosen randomly in each iteration. We have used the voting 

technique (see Table 20) to decide the best fit similarity measure using which the perfor-

mance of K-means has been noted to be the highest. According to the results drawn in 

Tables (14, 15, 16, 17, 18), STB-SM, followed by PDSM and Euclidean, has been the best 

fit in this study. �e bolded values in Tables (14, 15, 16, 17, 18) signify the best values 

each measure had achieved on the corresponding metric.

Table 14 External Metric‑Purity (mostly known as “Accuracy”)‑K‑means performance

Italic values indicate the highest values that top measures achieved for corresponding evaluation metrics

Similarity 
measure/
metric

K = 4 K = 8

Reuters–18308 
features

Web-KB-33025 
features

Reuters–18308 
features

Web-KB-33025 
features

Euclidean 0.6745546742946301 0.4420100023815194 0.6651930828240801 0.5363181709930936

Cosine 0.6300871148095176 0.5651345558466302 0.5161877519178261 0.5710883543700881

Jaccard 0.5418021063580809 0.4060490592998333 0.5631257313743336 0.42462491069302216

Bhattacharya 0.6602522428812898 0.550845439390331 0.6573917565986218 0.3908073350797809

kullback–Lei-
bler

0.5103367572487323 0.39104548702071923 0.5103367572487323 0.39175994284353416

Manhattan 0.528799895982317 0.3912836389616575 0.5342608243401378 0.40128602048106693

PDSM 0.6628526849564426 0.4165277447011193 0.6329476010921856 0.40533460347701833

STB-SM 0.626706540111819 0.6110978804477256 0.6059030035105968 0.571802810192903
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Table 15 External metric—completeness‑K‑means performance

Italic values indicate the highest values that top measures achieved for corresponding evaluation metrics

Similarity 
measure/
Metric

K = 4 K = 8

Reuters–18308 
features

Web-KB-33025 
features

Reuters–18308 
features

Web-KB -33025 
features

Euclidean 0.199511647995826 0.0673834489462676 0.179814979894203 0.15452274170402275

Cosine 0.176068659196536 0.2225985559938000 0.049343505745102 0.1665642553582776

Jaccard 0.055007933247357 0.0318290213093328 0.050929724394223 0.03093748911398607

Bhattacharya 0.161670093558948 0.3071187147856372 0.212872136220606 0.04952824171446496

kullback–Leibler 0.138798782038987 0.0661952142325757 0.08238615904440288 0.09274073186745294

Manhattan 0.140585609897670 0.0776936270894379 0.162146390404297 0.2204324456530784

PDSM 0.224510552205581 0.0377046283518796 0.199091523319667 0.07172116609953971

STB-SM 0.267581280659119 0.2935685999112778 0.220934861375524 0.17402803377334777

Table 16 External metric—Rand index‑K‑means performance

Italic values indicate the highest values that top measures achieved for corresponding evaluation metrics

Similarity 
measure/
Metric

K = 4 K = 8

Reuters–18308 
features

Web-KB-33025 
features

Reuters–18308 
features

Web-KB-33025 features

Euclidean 0.18579386266996 0.07259267580718086 0.134417241084232 0.13997725114650594

Cosine 0.13679798891326 0.19584148736739818 0.038271439259564 0.1388214135942175

Jaccard 0.03156196525375 0.03337323105349306 0.03325438109622 0.02868306344839796

Bhattacha-
rya

0.10437193466823 0.21881970871431122 0.037753839600227 − 0.00837183862883132

kullback–
Leibler

− 6.969300641e-05 − 0.0003339640498897 − 0.00089845850765 − 0.00025681169419640

Manhattan − 0.0456795771624 0.05064565361647291 − 0.02973126512374 0.003861173313610305

PDSM 0.10879494053512 0.00359089370980009 0.116230029219350 − 0.00999313066207844

STB-SM 0.17377955245469 0.23459410623220853 0.108893811930251 0.17012239790902425

Table 17 Internal Metric‑Calinski‑Harabasz Index–K‑means performance

Italic values indicate the highest values that top measures achieved for corresponding evaluation metrics

Similarity 
measure/
metric

K = 4 K = 8

Reuters–18308 
features

Web-KB-33025 
features

Reuters–18308 
features

Web-KB-33025 
features

Euclidean 282.616242361247 733.8545918925699 175.69520099100788 376.55783811163883

Cosine 158.059649581219 41.1205304663345 36.67050378019272 22.764647326363253

Jaccard 10.76166549332125 5.452237604387431 12.590273044103254 4.818955513623545

Bhattacharya 142.1019959257336 18.169867898545604 125.70926440159229 7.864068171394914

kullback–Lei-
bler

0.6047659734858815 0.16973494233360648 0.3996948922364028 0.21630702269179736

Manhattan 222.98925272777933 687.1305760147841 96.46528179432781 338.1631503564861

PDSM 132.7979522566384 6.947310633285274 87.3385616551679 7.265095316386779

STB-SM 127.69695325126817 37.83093841884232 92.69694747153109 36.67724243309815



Page 29 of 43Amer and Abdalla  J Big Data            (2020) 7:74  

Discussion

�e discussion revolves around two key points. First, the measure performance sta-

bility over both datasets. Second, in which the number of features each measure has 

performed the best in terms of accuracy (ACC), f-measure (FM), and average mean 

precisions (AMP).

Classi�cation- performance stability

Based on the results given in Tables  (5, 6, 7, 8, 9, 10, 11, 12, 13), 19 observed that the 

most stable measures on both datasets based on the points every measure has achieved 

on each number of features. It is concluded that the more points each measure achieves, 

the more stable it is. In the next Table, R and W indicate Reuters and Web-KB datasets 

respectively.

Table 19 shows that the most stable measures were STB-SM PDSM and Cosine with 

48, 45, and 45 points respectively. While PDSM was more stable on web-kb than Cosine, 

Cosine was more stable on Reuters than PDSM. However, while Table 19 gives the stable 

measures according to its giving one plus for each measure when a measure has been 

superior in terms of specific criterions (out of three criterions, namely, ACC, FM, and 

AMP) on each dataset, the real numbers in results drawn in Tables (5, 6, 7, 8, 9, 10, 11, 

12, 13) also showed indisputably that the top performer measures are also STB-SM, 

PDSM, Cosine, and Jaccard. It can also be deduced from the results that, unlike Reu-

ters upon which measures have unstable performance, all measures on web-kb have 

almost stable performance, chiefly the top performers. On Reuters, the competition was 

held between STB-SM, PDSM, and Cosine. Moreover, from Table 13, based on points 

recorded on each NF, it can be concluded that STB-SM, PDSM, Cosine, and Jaccard can 

be used effectively for low, middle and high dimensional datasets as these measures per-

formed well on each NF value. Euclidean and Manhattan also performed well on low 

dimensional datasets (NF in [10–200] features). Bhattacharya was observed to behave 

well on middle and high dimensional datasets (NF in [200-N] features).

Strictly speaking, the highest performance over both datasets was seen for both STB-

SM and PDSM as both measures showed almost stable and close performance on all val-

ues of NF when the poor performance was seen for kullback–Leibler, Manhattan and 

Euclidean chiefly on high dimensional datasets.

Table 18 Internal metric—Davies‑Bouldin Index–K‑means performance

Italic values indicate the highest values that top measures achieved for corresponding evaluation metrics

Similarity 
measure/metric

K = 4 K = 8

Reuters–18308 
features

Web-KB-33025 
features

Reuters–18308 
features

Web-KB-33025 
features

Euclidean 4.186722232186011 4.485270517901569 4.138785792328177 4.414646698351782

Cosine 4.974207600701769 5.184748331594617 5.120474137629764 6.511148800037687

Jaccard 13.633300152033158 15.865256973163703 14.42610495247111 15.858516305005779

Bhattacharya 4.597427791367133 4.893369736545789 3.280451019807807 5.177469928065736

kullback–Leibler 1.872529736499688 2.8045629002126167 2.266827595447801 2.1725394033652123

Manhattan 2.627533355357464 2.9998709693117767 2.1237224749990613 1.6587667141935847

PDSM 3.7833377396816443 7.519681593999572 5.179788734900043 5.386991923494522

STB-SM 5.764560759902967 5.85720075727297 5.391258478217752 5.654144650340377
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Classi�cation-performance climax

Second, in which the number of features, the similarity measure performance was at its 

climax in terms of accuracy, f-measure, and average mean precisions.

Performance analysis-reuters

�e next Figs. (1, 2, 3) hold the map of the criterions movements (results were averaged) 

for all measures over several NF values.

Figure  1-a depicts that Manhattan followed by Euclidean and kullback–Leibler did 

not have a stable accuracy and performed the worst as NF grew. In contrast, STB-SM, 

PDSM, and Bhattacharya had the most stable performance. �e Cosine and Jaccard 

showed a punctuated accuracy while NF grew from 10 to 3000, and then started to be 

slightly declined as NF grew. Figure 1b draws the top competitors which were STB-SM, 

PDSM, and Cosine with STB-SM being superior.

Figure 2a shows that Euclidean and Manhattan had a higher FM when NF was in the 

range of [10–100]. However, their performance started deteriorating as NF grew. Like 

accuracy movement, STB-SM, PDSM, Cosine, Bhattacharya, and Jaccard yielded an 

almost stable FM while NF grew from 10 to N, with STB-SM and PDSM being the best, 

and Bhattacharya bettered Jaccard. Bhattacharya’s performance declined slightly for the 

favor of STB-SM, PDSM, and Cosine, though. Finally, kullback–Leibler was shown to 

perform the worst. Figure 2b draws the top competitors which were STB-SM, Cosine, 

and PDSM with STB-SM being superior over all of them, and Cosine superior over 

PDSM.

Finally, from Fig. 3a, it is noted that Euclidean followed by Manhattan and kullback–

Leibler had the worst performance in terms of AMP. On the other hand, STB-SM, 

PDSM, Cosine, and Bhattacharya drew the best performance. �e Jaccard measure was 

seen to represent a middle ground between those of the highest AMP and those of low-

est AMP. It is worth noting that all measures of the highest performance were seen effec-

tive from NF = 10 till NF = 3000, and their effectiveness keeps improving on all features. 

Table 19 Measure stability points

Italic values indicate the most stable similarity measures

NF/
Measure

Euclidean Cosine Jaccard Bhattacharya kullback–
Leibler

Manhattan PSDM STB-SM

R W R W R W R W R W R W R W R W

10 2 2 3 2 1 3 3 3

50 3 3 3 3 3 3

100 3 3 3 3 3 3

200 3 3 3 3 3 3

350 3 3 3 3 3 3

3000 3 3 3 3 3 3

6000 3 1 2 3 3 3 3

The whole 
features

3 1 2 3 3 3 3

Sum 2 23 22 4 2 1 21 24 24 24

Stable 
points

2 45 4 3 45 48
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However, as NF surpassed 3000 to reach 6000 or bigger, their performance started to 

lower slightly as shown in Fig. 3b.

Performance analysis-web-Kb

�e next Figs. (4, 5, 6) hold the map of the criterions movements (results were averaged) 

for all measures over several NF values.

From Fig.  4a, it can be seen that Manhattan followed by kullback–Leibler had got 

an almost stable accuracy albeit the fact that they performed poorly as NF grew. STB-

SM, PDSM, Cosine, and Jaccard showed a clear stable higher accuracy while NF grew 

from 10 to all features, with STB-SM and PDSM being highly superior. While STB-SM 

outweighed PDSM when NF is in the range [50–3000], PDSM outweighed STB_SM 

from 6000 to all features as shown in Fig.  4b both measures intersected at 3000 fea-

tures, though. In addition, on average, STB-SM was still taking the lead. Manhattan and 

Euclidean had a close performance from each other when NF was in the range [10–200]. 

Fig. 1 a Accuracy over all Measures on all NF values– Average results (K = 1–120; + 2)—Reuters. b Accuracy 

over competitive measures on all NF values– Average results (K = 1–120; +2)–Reuters

Fig. 2 a F-measure over all Measures on all NF values– Average results (K = 1–120; + 2)—Reuters. b 

F-measure over competitive measures on all NF values–Average results (K = 1–120; +2)–Reuters

Fig. 3 a AMP over all Measures on all NF values– Average results (K = 1–120; +2)–Reuters. b AMP over 

competitive measures on all NF values– Average results (K = 1–120; +2)–Reuters
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However, as NF grew, Euclidean outperformed Manhattan, while seen more closely to 

Bhattacharya when NF in [350–33,025].

From Fig. 5a, it is shown that Manhattan and kullback–Leibler had the worst perfor-

mance albeit the fact that kullback–Leibler was seen closer to Cosine when NF = 10. It 

was a rare case, though. Similarly to Fig. 4b, PDSM, Fig. 5b exhibits that PDSM, STB-SM 

and Cosine were the best performance with PDSM and STB-SM being fiercely rivals. On 

the other hand, Jaccard, and Euclidean outperformed Manhattan and kullback–Leibler 

and Bhattacharya as NF was in the range [50–6000]. However, as NF grew bigger, Bhat-

tacharya started to show a gradually-increasing performance over Euclidean.

Finally, from Fig.  6a, it is clear that Manhattan, Bhattacharya followed by kullback–

Leibler had the worst performance in terms of AMP albeit the fact that Manhattan had 

higher AMP when NF was in [10-100]. When NF was in the range [50-200], Bhattacharya 

followed by kullback–Leibler were seen to have the worst AMP values. As NF grew, Bhat-

tacharya started to have better performance over Manhattan, though. Similarly, Euclid-

ean outweighed Jaccard as NF was in the range [10–350]. However, as NF grew, Jaccard 

behaved better than Euclidean. Similar to Fig. 5b, Fig. 6b exhibited that PDSM, STB-SM 

and Cosine had the best performance with PDSM and STB-SM being highly rivals.

Fig. 4 a Accuracy over all Measures on all NF values– Average results (K = 1–120; + 2) – Web-KB. b Accuracy 

over competitive measures on all NF values– Average results (K = 1–120; + 2)–Web-KB

Fig. 5 a F-measure over all Measures on all NF values–average results (K = 1–120; +2)–Web-KB. B F-measure 

over competitive measures on all NF values– Average results (K = 1–120; +2)–Web-KBB F-measure over 

competitive measures on all NF values– Average results (K = 1–120; +2)–Web-KB



Page 33 of 43Amer and Abdalla  J Big Data            (2020) 7:74  

Classi�cation-execution time analysis

Finally, the time consumed by each measure on each dataset over each NF was accu-

mulated and averaged to show which one runs the fastest and which one runs the slow-

est. A certain measure could give higher accuracy and desired performance while it ran 

slower compared with others and vice versa. �e next Figures map the time taken by 

each measure to produce the results. According to execution time drawn in Figs. 7, 8, it 

is abundantly clear that all measures share one fact: the execution time is growing stead-

ily as NF increases, PDSM in particular. It is worth mentioning that time was calculated 

as the similarity measure run on all evaluation metrics (six metrics) of classification.

Figure  7 clearly shows that Bhattacharyya and Manhattan were the fastest similar-

ity measures with Manhattan being much faster on all features. However, this came at 

the expense of the drawn-above results by both measures as it occupied the second and 

third-worst measures after kullback–Leibler. Euclidean had been observed to be the 

middle ground in terms of speed between the first group (Bhattacharyya, Manhattan) 

and the second group (PDSM, kullback–Leibler, Jaccard, Jaccard, Cosine, and STB-SM). 

Surprisingly, when all features addressed, Manhattan was the fastest measure and PDSM 

was the slowest measure as it took roughly 1493.85 min on Reuters when NF = all fea-

tures. On the other hand, closer to Bhattacharyya, Euclidean recorded worse results 

when compared with Cosine, Jaccard, STB-SM, and PDSM. Jaccard, on the other hand, 

was faster than Cosine and STB-SM, and Cosine was slower than STB-SM. In order, 

PDSM, Jaccard followed by Cosine, and STB-SM were all observed to be the slower 

measures comparing with the first group, though. In fact, PDSM has been seen to be the 

slowest measure.

Similarly to Fig. 7,  8 clearly shows that Bhattacharyya and Manhattan were also the 

fastest similarity measure with Manhattan being subtly faster on all features. However, 

similar to Reuters, this came at the expense of the drawn-above results by both measures 

as it occupied the second and third-worst measure after kullback–Leibler. Euclidean, on 

the other hand, had been observed to be the fastest metric when all features considered, 

and PDSM was seen to be the slowest ever as it took almost 1001.067 min on all fea-

tures–Web-KB. However, like Bhattacharyya, Euclidean recorded to have worse results 

compared with Cosine, Jaccard, PDSM, and STB-SM. Meanwhile, Cosine was faster 

than Jaccard and STB-SM in all NF cases except for the case in which all features were 

addressed. In this case, Jaccard was faster than both Cosine and STB-SM. In general, in 

order, PDSM, kullback–Leibler, Jaccard, STB-SM, and Cosine were the slowest measures 

with PDSM being the slowest ever.

Fig. 6 a AMP over all Measures on all NF values–average results (K = 1–120; +2)–Web-KB. B AMP over 

competitive measures on all NF values–Average results (K = 1–120; +2)–Web-KB
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Clustering analysis

Based on the results drawn in Tables 14, 15, 16, 17, 18, the analysis is done briefly in 

Table (20) across counting the points each similarity measure had achieved on each met-

ric. �e point is counted for measure if it is being bolded as higher value, in Tables 14, 

15, 16, 17, 18. �e total number of points are 20 points as we have two datasets and 

five metrics on two values of clustering variable (K = 4, K = 8). In each Table, there has 

been four points each measure could achieve based on the drawn results. For example 

Euclidean in Table 4 got 4 points as its results are spotted as top values for purity metric 

on both datasets on both K (4 and 8). �e next Table draws the points recorded for each 

measure on each metric (Tables 14, 15, 16, 17, 18), and the points in total and rank as 

well. �e bolded values in Table 22 suggest the highest values in Table 20, which reflect 

the optimality of each measures on the corresponding metric.

In general STB-SM behaves better than PDSM on web-kb clustering chiefly when 

k grows. That means STB-SM could work optimally on big data, and STB-SM enjoys 

the scalability properties. The scalability case is the case in which dataset grow larger 

Fig. 7 Execution Time–Reuters

Fig. 8 Execution Time–Web-KB
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and larger in terms of data, for example. Ironically, unlike classification, PDSM 

works better than STB-SM on Reuters, though. Briefly, according to Tables (14, 15, 

16, 17, 18), the order of top performer measures on Reuters was: Euclidean PDSM, 

Cosine and STB-SM, On the other extreme, the order of top performer measures on 

Web-KB was: STB-SM, Cosine, Euclidean and PDSM. Strictly speaking, the compe-

tition process is fiercely held between STB-SM, Euclidean, Cosine and PDSM with 

STB-SM being maximally superior. In other words, according to the real numbers 

drawn in results (Tables 14, 15, 16, 17, 18), STB_SM has better values than all meas-

ures in most cases. For example, in purity web-kb, completeness and Rand Index of 

both datsets, the result values of STB-SM are much bigger than those values of other 

measures. Thus, it can be confidently said that STB-SM outperformed all similarity 

measures significantly in most cases of clustering evaluation metrics.

Clustering–execution time analysis

Based on the time drawn in Tables (21, 22), PDSM was the slowest measure and Manhat-

tan was the fastest measure. As given in Tables (14, 15, 16, 17, 18; 21, 22), our proposed 

STB-SM measure came as a compromised solution for both efficiency and effectiveness. 

It is worth referring that the clustering time has been calculated while K-mean run on 

nine evaluation metrics. However, in this work, we just used five metrics. So, this time 

(drawn time in Tables 21, 22) would be shorter (either slightly or significantly) than the 

expected time when the K-means is running on only these five metrics. �at is because 

adding each metric in clustering often takes extra time, and consequently increase clus-

tering time either slight or significantly. Nevertheless, this claim has not refuted or 

contradicted the final conclusion drawn in this paper on the speed or slowness of each 

similarity measure.

Table 20 Rank of similarity measures based on clustering results

Italic values indicate the high-ranking similarity measure

Measure/table Purity Completeness Rand index -Calinski-
Harabasz 
Index

Davies-
Bouldin 
Index

Point Total 
out of 20

Rank

Euclidean 4 2 2 0 2 10 2

Cosine 3 2 3 1 0 9 4

Jaccard 0 0 0 4 0 4 7

Bhattacharya 1 3 1 0 1 6 6

kullback–Leibler 0 0 0 4 4 8 5

Manhattan 0 0 0 0 4 4 7

PDSM 2 2 2 2 1 9 3

STB-SM 2 4 4 1 0 11 1

Table 21 Reuters–run time in (hour: minute: second)

K/measure Euclidean Cosine Jaccard Bhattacharya kullback–
Leibler

Manhattan PDSM STB-SM

K = 4 0:8:18 0:9:06 0:8:04 0:07:56 0:13:13 0:7:04 2:26:14 0:10:18

K = 8 0:15:03 0:16:37 0:15:00 0:15:05 0:25:04 0:12:59 4:44:16 0:41:58
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The applicability of proposed measure (STB‑SM) on big data environment

Since the advent of Internet, the size of textual information keeps growing because of 

the continuous evolution of information technologies. �ese technologies have allowed 

massive volumes of data to be exponentially increasing across the online contents like 

all kinds of webpages (academic, scientific, news, medical, etc.), blogs, social network-

ing like Facebook and twitter, and Youtube. In daily basis, trillions of bytes of data are 

generated that 90% of data in the world was thought to be existed in last couple of years 

[34, 35]. Consequently, this fast growing of data volumes has led to a critical informa-

tion retrieval problems. Among these problems is how to get the relevant document(s) 

of interest amid such gigantic volumes of textual data and information. To solve such 

problem, the clustering as a data mining technique come for analyzing these massive 

volumes of data which is called “Big Data”. Without the clustering and classification, it 

is challenging to manage and discover the knowledge in the environment of big data. 

However, there have been difficulties for implementing clustering algorithms to big data 

as clustering algorithms accompanied with high computational costs and complexity. To 

make it worse, recently, emanation of big data (with all its characteristics including vol-

umes, variety, velocity, variability and complexity) draws more difficulties to this issue 

which pushes more studies and research to find every possible way to improve clustering 

algorithms.

�at lead us to the question of how to overcome this dilemma, and how to apply clus-

tering algorithms to big data while obtaining the results in a reasonable time. One pos-

sible solution to improve the performance of clustering to get results of higher accuracy 

in reasonable time is to use the well-designed time-efficient similarity measure. In fact, 

the performance of clustering and classification is maximally dependent on the similarity 

measure in use as we have seen in this work in PDSM and STB-SM cases. Despite the fact 

that both measures are effective, PDSM is seen time-inefficient chiefly when used to clus-

tering purpose. Unlike PDSM, STB-SM is time-efficient making it a promising measure for 

scalability of clustering.

Presently, similarity measure have been sought to mainly promote the accuracy of 

classification and clustering as well as the efficiency with the intended techniques like 

KNN classifier and k-means clustering algorithm. �erefore, in this work, we proposed 

a similarity measure which is thought to be capable of handling the big data analysis 

effectively and efficiently. Based on the results drawn for both classification and cluster-

ing in particular, we believe that our proposed measure (STB-SM) is promising to be 

an effective technique to process voluminous data in reasonable time with higher accu-

racy. When we applied STB-SM on all features of each dataset to perform clustering, 

STB-SM drew highly competitive results in a reasonable time comparing with all state of 

art. �at means STB-SM enjoys it is being significantly effective and maximally efficient 

and would add a valued-contribution to the field of information retrieval (which is vital 

Table 22 Web‑KB – Run Time in (Hour: Minute: Second)

K/Measure Euclidean Cosine Jaccard Bhattacharya kullback–Leibler Manhattan PDSM STB-SM

K = 4 0:6:36 0:7:26 0:7:01 6:42.98 0:11:14 0:5:55 2:33:09 0:8:54

K = 8 0:12:09 0:13:50 0:12:40 0:12:22 0:21:08 0:10:41 6:21:26 0:17:10
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part of big data) in particular and machine learning in general. In fact, while designing 

STB-SM, our focus has been on drawing the measure that would help scale up and expe-

dite clustering algorithm without sacrificing results quality. In doing so, the clustering 

process will enjoy flexibility and provide faster response time at the same time. In other 

words, with the proposed measure (STB-SM) being effective and efficient, the cluster-

ing for big data (including document clustering) can be efficaciously implemented to 

enhance the speed of search, precision, recall, search engines, and so on.

Conclusions and future work

Using the BoW model, KNN classifier, and K-means algorithm, in the context of text 

classification and clustering, this paper introduces a new similarity measure that is based 

on the set theory mechanism and is named the STB-SM. Besides the STB-SM, a compar-

ative study has thoroughly been carried out on seven similarity measures using six clas-

sification criterions and five clustering metrics. �e obtained results demonstrated that 

STB-SM similarity measure achieved almost the best performance on all classification 

and clustering criterions on both datasets (Reuters-21 or Web-KB). Moreover, to stress 

proposed measure superiority, it was imperative to utilize more than one performance 

criterion to effectively assess all similarity measures. In fact, it was difficult to deter-

mine which measure was the optimal one for any dataset and/evaluation criterion unless 

they are all evaluated against each other comprehensively. Because of that, each data-

set displayed different characteristics when classification or clustering were performed 

on them. Nonetheless, from the obtained results, it can be concluded that STB-SM, 

PDSM, Cosine, and Jaccard showed superiority over other measures, and obtained the 

most stable performance trends on both datasets for all K values, compared to Euclid-

ean, Manhattan, and kullback–Leibler measures with Manhattan and kullback–Leibler 

being noted to have the worst results. On the other extreme, Euclidean and Bhattacharya 

had a fluctuating performance which can be classified as a middle-ground between high 

performance and poor performance measures.

Additionally, using the K-means clustering algorithm, all similarity measures were 

involved in a fierce clustering competition. All similarity measures were individually 

used to evaluate K-means performance with respect to five evaluation metrics from 

which three metrics are external and the last two are internal metrics. �e STB-SM, 

PDSM, and Euclidean were observed to be the top performers in terms of cluster-

ing. �e STB-SM has outperformed Euclidean and PDSM in most stages of evaluation 

metrics. It worth mentioning that all these results of clustering were collected and 

analyzed for the case in which the number of clusters K is taken as number of actual 

classes in both datasets (4 and 8). �us, in the follow-up work, to avoid and biased-

ness and get a deeper insight into clustering performance, an exhaustive analysis with 

several K values on different clustering algorithms will be carried out.

All these measures were rigorously examined with regard to their execution time 

when classification and clustering are run on either dataset. For classification, results 

has shown that some measures met the highest speed but at the expense of their 

overall performance, such as the Bhattacharyya, Manhattan, and Euclidean. On the 

other hand, and to confirm the fact that the trade-off is un-escapable, PDSM had been 

able to achieve better effectiveness results but again at the expense of its efficiency as 
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this measure in particular was the slowest measure. Nevertheless, the STB-SM, Jac-

card, and Cosine measures were a suitable compromised solution between the fast-

est measures (the Bhattacharyya, Manhattan, and Euclidean) and the slowest measure 

(the PDSM). �ey were not only faster than the PDSM but they were also closer to the 

speed of the fastest measures. On the other hand, for clustering, the PDSM was also 

the slowest measure and Manhattan was the fastest measure. As a compromised solu-

tion for both effectiveness and efficiency on both the classification and the clustering, 

our proposed measure the STB-SM has shown superiority with regard to clustering as 

well as classification. Finally, this work briefly described the applicability of the STB-

SM to big data scenarios. In the future work, we plan to broaden the current work 

to involve more state-of-the-art measures such as that described in [3, 4]. Moreover, 

the behavior of all these measures will thoroughly be examined on different machine 

learning tasks such as text summarization [36] and plagiarism detection.
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Appendix 1

https://github.com/aliamer/Information-Retrieval---A-Set-Theory-Based-Similarity-Measure-for-Text-Clustering-and-Classification
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�e code is now publically available on GitHub.

Appendix 2

In order for readers/researchers to absorb the idea of this work, we just provide a sam-

ple for accuracy Tables of STB-SM and PDSM similarity measures that would be simi-

larly produced for all similarity measures when the code of this work is used.

See Tables 23, 24

Table 23 STB‑SM Accuracy when NF = 6000 on both datasets

No. of features Metric Measure k Reuters-8 Web-Kb

6000 STB_SM Accuracy 1 0.9255733448723497 0.7456418383518225

3 0.9363911726525314 0.777337559429477

5 0.9333621808740805 0.786053882725832

7 0.9316313284292514 0.7868462757527733

9 0.9294677628732151 0.7828843106180665

11 0.927736910428386 0.7884310618066561

13 0.9303331890956296 0.7939778129952456

15 0.9264387710947641 0.7995245641838352

17 0.9264387710947641 0.7995245641838352

19 0.927736910428386 0.8042789223454834

21 0.927736910428386 0.805863708399366

23 0.9255733448723497 0.8082408874801902

25 0.9242752055387278 0.7995245641838352

27 0.9273041973171787 0.803486529318542

29 0.9242752055387278 0.8019017432646592

31 0.9255733448723497 0.8066561014263075

33 0.9242752055387278 0.8019017432646592

35 0.9251406317611424 0.7995245641838352

37 0.9247079186499351 0.8019017432646592

39 0.9225443530938987 0.8019017432646592

41 0.9212462137602769 0.803486529318542

43 0.9225443530938987 0.8019017432646592

45 0.9212462137602769 0.8026941362916006

47 0.9208135006490696 0.8011093502377179

49 0.9208135006490696 0.7971473851030111

51 0.9186499350930333 0.8011093502377179

53 0.9173517957594115 0.8003169572107766

55 0.9177845088706188 0.8003169572107766

57 0.9182172219818261 0.8011093502377179

59 0.9160536564257897 0.7971473851030111

61 0.9151882302033751 0.7971473851030111

63 0.9130246646473388 0.794770206022187

65 0.9138900908697534 0.7955625990491284

67 0.9134573777585461 0.7923930269413629

69 0.9134573777585461 0.7908082408874801

71 0.9130246646473388 0.7908082408874801

73 0.9121592384249243 0.7876386687797148
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Table 23 (continued)

No. of features Metric Measure k Reuters-8 Web-Kb

75 0.9112938122025097 0.7884310618066561

77 0.911726525313717 0.7908082408874801

79 0.911726525313717 0.7923930269413629

81 0.9086975335352662 0.7900158478605388

83 0.9095629597576806 0.7892234548335975

85 0.9086975335352662 0.7892234548335975

87 0.9086975335352662 0.7876386687797148

89 0.906966681090437 0.7876386687797148

91 0.9078321073128516 0.786053882725832

93 0.9073993942016443 0.7844690966719493

95 0.9065339679792298 0.786053882725832

97 0.906966681090437 0.783676703645008

99 0.9095629597576806 0.783676703645008

101 0.9065339679792298 0.7844690966719493

103 0.9061012548680225 0.7852614896988906

105 0.9048031155344007 0.783676703645008

107 0.9030722630895716 0.7844690966719493

109 0.9043704024231934 0.7852614896988906

111 0.9026395499783644 0.7876386687797148

113 0.9022068368671571 0.7884310618066561

115 0.9022068368671571 0.7828843106180665

117 0.900475984422328 0.7797147385103012

119 0.8991778450887062 0.7828843106180665

Average 0.9163781912591951 0.792247754886423
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Table 24 PDSM Accuracy when NF = 6000 on both datasets

No. of features Metric Measure k Reuters-8 Web-Kb

6000 PSDM Accuracy 1 0.9381220250973604 0.7955625990491284

3 0.938987451319775 0.8335974643423137

5 0.9394201644309823 0.8248811410459588

7 0.9376893119861531 0.8335974643423137

9 0.9398528775421895 0.8280507131537242

11 0.9376893119861531 0.8312202852614897

13 0.9368238857637387 0.8280507131537242

15 0.9350930333189096 0.8240887480190174

17 0.9324967546516659 0.8264659270998416

19 0.9303331890956296 0.8193343898573693

21 0.9294677628732151 0.8225039619651348

23 0.9268714842059714 0.8232963549920761

25 0.926006057983557 0.820919175911252

27 0.9268714842059714 0.8177496038034865

29 0.926006057983557 0.8169572107765452

31 0.9264387710947641 0.8137876386687797

33 0.922977066205106 0.812202852614897

35 0.9199480744266552 0.8090332805071315

37 0.9186499350930333 0.8050713153724247

39 0.9169190826482042 0.8082408874801902

41 0.9186499350930333 0.8066561014263075

43 0.9160536564257897 0.8042789223454834

45 0.9138900908697534 0.8050713153724247

47 0.9156209433145824 0.8019017432646592

49 0.9169190826482042 0.8019017432646592

51 0.9156209433145824 0.8026941362916006

53 0.9125919515361316 0.7979397781299524

55 0.9104283859800952 0.7987321711568938

57 0.9091302466464734 0.7987321711568938

59 0.9095629597576806 0.7979397781299524

61 0.9099956728688879 0.7971473851030111

63 0.9086975335352662 0.7987321711568938

65 0.9086975335352662 0.7963549920760697

67 0.9086975335352662 0.7963549920760697

69 0.9073993942016443 0.7955625990491284
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