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Assuming the continuum hypothesis, a set X of real numbers will

be constructed such that every compact continuous image of X is

countable, but XXX admits a uniformly continuous mapping onto

the Cantor set. This completes (modulo the continuum hypothesis

and the Ulam measure problem) the determination of whether a

product or coproduct of m Boolean algebras or fields of sets can have

an infinite free, or projective, or injective sub- or quotient object

when the factors do not [l]. The concluding construction (modulo

the hypothesis) is embarrassingly easy, but the result is unlike the

others [l]; this is the only instance of a finite coproduct creating a

remarkable subobject (viz. an infinite free subfield), and there is no

instance among these of a finite product creating a remarkable

quotient.

The use made of the continuum hypothesis seems slight. However,

Sierpiñski has pointed out that the weaker result that there is a set

of real numbers of the power of the continuum admitting no con-

tinuous mapping onto [0, l] (C5 in [2]) has not been established

without the hypothesis. On the continuum hypothesis, that is a

by-product of an important construction of Lusin, the subject of

Chapter II of [2].

We shall find X in the Cantor set C considered as an infinite power

of the compact group Z2 (written additively). By a lemma of Lavren-

tiev (Theorem 99 of [3]), any continuous mapping of a subset of C

onto [O, l] can be extended over a G¡ subset of C. There are only c

(the power of the continuum) G¡ sets, and each has only c continuous

mappings to [O, l]. Hence we can index all these mappings fa by ordi-

nals of smaller cardinal than c, and index similarly the points xa of

C. For each/a, the inverse images of points are c disjoint subsets of

C each closed in their union; so except for countably many, they are

nowhere dense. By the continuum hypothesis, C is not a union of

fewer than c such sets.

There is no difficulty in building up sets S, T, no subset of either

of which is mapped onto [O, l] by any/a, but with every xa repre-

sentable as sa-\-ta, sa in S and ta in T. Carry along expanding sets

Ha disjoint from S, Ka disjoint from T (Ho and Ka empty). Arrived
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at a, add to 77a a nowhere dense inverse set of /„ containing none

of the fewer than c earlier points sg, do likewise for Ka, and find sa

in the complement of the union of 77 a and the translate xa+Ka.

Let la—J*a~r~«a   \~~"a~~~~Set)'

SX T has the indicated mapping onto C, (s, t) to s+¿. SUT cannot

map continuously onto C, since neither 5 nor T does [l; 3.1]. That

proof works as well for [O, l] as for C; but it seems worth noting

that more is true. A subspace of C admits a continuous map onto C if

it admits a continuous map onto [0, l]. For this, cut out open-closed

sets Ai around the inverse image of the ith dyadic rational d,- and

modify the map into the e.-neighborhood of d,- so as to omit an open

neighborhood of <i,-; if 22e,-<l, the image must be a Cantor set, and

€¿—»0 is enough to secure continuity (or uniform continuity, if one

began with it). Finally, a separable metrizable space admits a con-

tinuous map onto [0, 1 ] if it has an uncountable compact (Hausdorff)

continuous image. For it has no uncountable scattered image; a non-

degenerate component would map to [0, l] (which is injective); and

a compact, dense-in-itself, totally disconnected space admits a con-

tinuous map onto C. Accordingly X = S*UT is the required example.

The referee observes that the italicized statements above differ

little from results in some textbooks. Very likely they have been

printed somewhere in at least the present generality. All remarks

after the construction of 5 and T were of course just polishing.
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