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A Setup for Active Fault Diagnosis

Henrik Niemann

Abstract—A setup for active fault diagnosis (AFD) of parametric faults
in dynamic systems is formulated in this note. It is shown that it is possible
to use the same setup for both open loop systems, closed-loop systems based
on a nominal feedback controller as well as for closed-loop systems based
on a reconfigured feedback controller. This will make the proposed AFD
approach very useful in connection with fault tolerant control (FTC). The
setup will make it possible to let the fault diagnosis part of the fault tolerant
controller remain unchanged after a change in the feedback controller. The
setup for AFD is based on the Youla—Jabr-Bongiorno—Kucera (YJBK) pa-
rameterization of all stabilizing feedback controllers and the dual YJBK
parameterization. It is shown that the AFD is based directly on the dual
YJBK transfer function matrix. This matrix will be named the fault signa-
ture matrix when it is used in connection with AFD.

Index Terms—Active fault diagnosis (AFD), controller reconfiguration,
dual Youla—Jabr-Bongiorno—Kucera (YJBK) parameterization, feedback
control systems.

I. INTRODUCTION

The interest in using active fault diagnosis in dynamic systems
has been increasing doing recent years; see, e.g., [2]-[5], [9], [10],
[13], [14].

In the active fault diagnosis approach, parametric faults/system vari-
ations are detected by using an auxiliary input vector. The detection/
isolation is derived by using an associated residual vector. One of the
advantages by using active fault diagnosis (AFD) is that it can give a
much faster detection compared with a passive fault detection and iso-
lation (FDI) approach. In the passive FDI approach, the detection is
based on external random inputs or reference inputs on the system. As
a result of this, the faults are not detected until they are excited by dis-
turbance or reference inputs. In the active approach, the auxiliary inputs
can be designed to excite specified possible faults with a minimal effect
on the complete system. The AFD approach has mainly been applied
on open-loop systems [2], [3], [5], [13], and [14], but in [9] and [10]
the AFD approach has been applied in connection with closed loop sys-
tems. It has been shown in [9], [10] that using AFD on a closed loop
system is very closely related to the YJBK and the dual YJBK parame-
terization. It is shown that the fault diagnosis is derived directly on the
dual YJBK transfer function. It is also called the fault signature matrix
when it is used in connection with AFD.

The focus in [2]-[5] is on the design of optimal auxiliary input sig-
nals and evaluation of the measurement signals with respect to a fast
model selection/fault detection. The methods can be applied on both
open and closed loop systems.

The main focus in this note is to extend the AFD setup for closed
loop systems to both open loop systems as well as closed loop
systems where the feedback controller is another than the nominal
feedback controller. This is important, especially in connection with
fault tolerant control (FTC), where the fault diagnosis part of the FTC
should still be running after the first fault(s) has been detected/isolated
and the controller has been reconfigured. Using the AFD approach,
the FDI block will depend on the applied feedback controller. This
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means that the FDI block also needs to be changed when the feedback
controller is modified.

The main result of this note is that it is possible to apply the same
setup for AFD on both open-loop systems as well as on closed loop sys-
tems. Based on this setup, it is shown that it is possible to lay down con-
ditions for fault isolation using the AFD approach independent of the
applied feedback controller. The limitation here is the maximal number
of faults that may occur simultaneuosly, bounded by the number of con-
trol signals or measurement signals minus one.

II. SYSTEM SETUP

The general systems applied in connection with fault diagnosis and
fault tolerant control will now be described. Consider the following
generalized nominal system including parametric faults:

z = G;wu’ + G—;dd + G;uu
Ypi¢e=Geww+ Geagd+ Geyu (1)
y = Gyuw + Gyad + Gyuu

where d € R" is a disturbance signal vector, u € R™ the control
input signal vector, ¢ € R? is the external output signal vector to be
controlled, y € R? is the measurement vector, w € R* and z € RF
are external input and output vectors. It is not assumed that it should
be a continuous-time system or a discrete-time system. Both types of
systems can be handled by using the system setup given by (1).

The connection between the external output and input is given by

w=~0z
where 6 is a diagonal matrix given by

9:diag(91....,9,‘,...

79]{)

representing the parametric faults in the system. We will use the nota-
tion #; # 0 as a short form for # = diag(0,...,0,6;,0,...,0).

Further, let us denote the set of all possible parametric faults by
k = {1,...,k}. Based on the available information as what para-
metric faults could occur simultaneously at any time and what cannot,
one divides the set of all possible faults into a number of fault sets.
Let k be partitioned into ¢ mutually exclusive and exhaustive sets, €2,
i=1,2,...,{,including k;,7 = 1,2, ...,/ faults each fault set. That
is,let2; N Q2; = Dfori # j,and 2, U U...Qp = k; see, e.g.,
[15]. Tt is assumed that only faults from a specific fault set {2; can occur
simultaneoulsy. Let the parametric fault matrix ¢ be arranged in such
a way that the first &, faults belong to the first fault set £2;, the next k2
faults belong to the second fault set (22, etc.

Closing the loop from w to z in ¥ p by using ¢, can be realized by
an upper linear fractional transformation (LFT) in # given by

Ypo=Fu(Xp,0)

where ¥p is given by

Spg: {(3 = ch(e)d + Geu(('))“' (2)

y = Gya(9)d + Gyu(0)u.

Further, let the system be controlled by a stabilizing feedback con-
troller given by

Yk {u=Ky. 3)

0018-9286/$20.00 © 2006 IEEE
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III. THE YJBK PARAMETERIZATION

Let a coprime factorization of the system G, from (1) and a stabi-
lizing controller I’ from (3) be given by

Gpu=NM"'"=M'N K=UV'=vV"'U 4)

where N, M, N, ANI, U,v, ﬁ, andV € R'H  must satisfy the double
Bezout equation given by (see [17])

I 0\ (V -U\(M U

0 1) \-N M)\N V

M U Vo U
- <N V) <—N M > )
Based on the previous coprime factorization of the system G, and
the controller /', we can give a parameterization of all controllers that

stabilize the system in terms of a stable transfer function @, i.e., all
stabilizing controllers are given by [17], [18]

KQ) =U+MQV+NQ™, QERH~ (6

or by using a left factored form

KQ)=V+QN) YU +QM), Q€eRHw. ()

Using the Bezout equation, the controller given either by (6) or by
(7) can be realized as a lower LFT in the parameter ()

K(Q)=F(Ik.Q) ®)
where J is given by
vy f/—l
Ik = ( ol _V_1N)- O]

In the same way, it is possible to derive a parameterization in terms
of a stable transfer function .S of all systems that are stabilized by one
controller, i.e. the dual YJBK parameterization. The parameterization
is given by [17]

Guu(S) = (N+VSM+US)™,  SeRH.  (10)
or by using a left factored form
Gyu(S)= (M4 SU) " (N+SV), SERH~. (1)

An LFT representation of (10) or (11) is given by

, NM~!

M S)=Fx0a.9). (12
-MTyp)T) T

It has been shown in, e.g., [17], that the dual YJBK transfer function
S can be calculated by using the primary YJBK parameterization, S is
given by

S = Fu(Jr,Gyul(5)). (13)
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Fig. 1. Setup for AFD in closed loop systems. A pre-filter has been placed at
the input vector 7 and a post-filter has been placed at the output vector r.

IV. ACTIVE FAULT DIAGNOSIS FOR CLOSED-LOOP SYSTEMS

Active fault diagnosis for closed-loop systems has been considered
in detail in [9]. An example of using AFD in closed loop systems is
given in [10]. Some preliminary results from [9] are given later, to-
gether with the introduction of the fault signature matrix.

As a residual vector r in the AFD case, we use the same vector as in
the passive FDI approach given by [6]

rg = Qo(f\jfy - Nu) = Qor (14)
where Qo is a stable and proper filter of suitable order. Note that r is
also the input vector to the YJBK transfer function.

The residual generator given by (14) is a parameterization of all
residual generators in terms of (o, see [6]. The residual generator
should be designed such that the residual r or r, vanishes or is close
to zero in the fault free case. If the residual is nonvanishing indicate a
difference between the real system and the model due to model uncer-
tainty or faults. Statistical methods such as CUSUM or GLR test are
used for the evaluation of the residual vector in the passive approach
[1]. The faultisolation is obtained, if possible, by designing the residual
generator such that some of the residual signals are sensitive to a spe-
cific fault and other signals are insensitive to the fault.

Let the auxiliary input vector for AFD be named 7 or 7, when a filter
is included. It can be shown that all residual generators for active fault
diagnosis are given by the system setup shown in Fig. 1, where Japp =
Jr is given by (9). Qr and Qo are pre- and postfilters, respectively,
that are free for design.

From (9), we have that # is equivalent to the output from the YJBK
transfer function (). Further, using (13), we get directly that the transfer
function from 7 to r is the dual YJBK transfer function, i.e.,

r = Sa(f)n (15)
or

re = QoSa(0)Qrg = Sq.a(8)n,

when the pre- and postfilters are included. From [8], we have that the
dual YJBK parameter is given by

Sa(8) = MGyub(I — Tep.ab)” ' Geu M (16)

where 7', 1 is the closed loop transfer function from w to z given by

Tzw,cl = sz + qu []Aj[Gyw-
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Fault detection and isolation can then be derived based on S.:(8),
considered in Section VII. Here, it is shown that the two filters (27 and
o is applied in connection with fault isolation.

As it can be seen from (16), Sc1(6) is very important in connection
with AFD. Equivalent to the definition of fault signature for additive
faults [17], Sa(6) will be called the fault signature matrix for para-
metric faults.

In Fig. 1, the auxiliary input # is injected directly in the controller.
However, it is also possible to inject the 77 at other available signals/vec-
tors. This mean that » can, e.g., also be injected in connection with the
control input v or the measurement output y, i.e., outside the controller.
These cases are also included in the setup shown in Fig. 1. Injecting n
in connection with the measurement vector y is equivalent by using
Qr = U in the setup shown in Fig. 1. Equivalent, an injection at the
output of the controller can be obtained by using )7 = V in the gen-
eral setup.

V. ACTIVE FAULT DIAGNOSIS FOR OPEN LOOP SYSTEMS

Now, let us consider AFD in connection with open loop dynamic sys-
tems. The main difference between AFD for closed open systems and
open loop systems is the stability aspect. This aspect cannot be consid-
ered in connection with an open loop setup for AFD. The stability of
the faulty closed loop system can be validated directly by a validation
of the stability of the fault signature matrix Sci(6).

AFD for open-loop systems follows almost the same setup as for the
closed-loop systems, apart from that the only available input vector is
the control input u. The residual vector r given by (14) is used as the
output vector again.

The open loop system setup can be derived from the closed-loop
setup in Fig. 1 by removing the feedback controller. The input injection
point for n from the closed-loop system does not exist in the open-loop
case. Instead, the control input need to be applied. To get the same
structure as in the closed-loop case, now let the control input be given
by

uw= Mn
and let the residual vector » be given by (14), i.e.,
r=M Yy — Nu= 1’\7Iy - NM 7).

This together gives Jarp take the following form:

oo (0 M
ARD =N - NM

Jarp can also be derived from J in (9) and the double Bezout equa-
tion in (5) with U = U = 0 when the system is open-loop stable.

Based on the system description in (2), the transfer function between
the auxiliary input vector 5 and the residual vector r is given by

a7

r= (M@,,, (6) — N)Mn = MGyul(I — Gowb) ™' Gu My (18)

which gives directly the following transfer function Sopen () between
the input n and the residual vector 7:
Sopen(#) = MGyu8(I — G=f) ™' G. M. (19)

Including the two filters in the setup, the transfer function from 7, to
rq take then the following form:

Sq.open(#) = QoSopen(#)Q1. (20)
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The transfer function matrix Sopen(f) given by (19) is completely
equivalent to the fault signature matrix S.(#) given by (16) for the
closed-loop case. As a consequence of this equivalence between the
open-loop and the closed-loop case, it is therefore natural to name
Sopen given by (19) as the open-loop fault signature matrix.

VI. ACTIVE FAULT DIAGNOSIS FOR RECONFIGURED CLOSED
LooP SYSTEMS

In connection with FTC, the feedback controller is normally recon-
figured after a parametric fault has been detected and/or isolated in
the system [11]. This reconfiguration can be done by using the YJBK
transfer function ). The open loop transfer function from # to » in
Fig. 1 is closed by a (. A detailed description of controller reconfigu-
ration by using the YJBK parameterization is given in [11].

Including a feedback controller ) from r to 7, Jopp takes then the
following form:

(V4 QN) !

K(Q)
—(‘/7+A’T\ITQ)7IJV> . (21)

Jarp = ((V +NQ)

Based on the Jarp given in (21), it is possible to calculate the
transfer function from # to r given by Sicc(f). The transfer function
is given by

Seec(0) = MGyub (I — Ter.at(Q)0)™" G M (22)

where
Tzw,cl(@) = Tzw,cl + qu[\lQﬁleyw-

Again, including the pre- and postfilter at the input 5 and output r gives
the following transfer function:
SQ,rec(H) = QOSrec(H)CJI- (23)
In line with the nominal feedback case and the open-loop case, S;ec(8)
is then the fault signature matrix for the reconfiguraded feedback
system.
Further, note that the fault signature matrix given by (22) can also be
written as
Stec(#) = Sa(8) (I — QSa(6))™ 24)
where S.1(#) is the fault signature matrix for the nominal controller
case given by (16). (24) can be derived directly by using the fact that
the transfer function from 7 to » given by Sc1(#) is closed by using Q.
The above results are also valid for more direct controller changes,
i.e., where a nominal feedback controller I is directly changed by
a new controller I{'; without using the YJBK architecture. Using the
results from [12], it is shown how to calculate the equivalent YJBK
transfer function for such a controller switching. This means that there

will always be a related YIBK transfer function that can describe a con-
troller change.

VII. AFD BASED ON THE FAULT SIGNATURE MATRIX
As it can be seen from this, the fault signature matrix S(6) has the
same structure for all three cases. The general fault signature matrix .S
can be given by

S(0) = MGyub(I-T6) 'G..M (25)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 14:44 from |IEEE Xplore. Restrictions apply.
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where T is an open-loop or a closed-loop transfer function from w to
z depending on the case. The general fault signature matrix given by
(25) then takes the following form depending on 7T':

S = Sopen forT = sz
S =S. forT =T.. el
S = Siec forT =T.pc1 + Goa MQM Gy

Note that this requires that the applied M and M in the open-loop
case satisfy the double Bezout equation in (5) for the nominal feedback
controller.

Fault detection based on S(#) given by (25) is given directly by

* Fault detection

S(8) =0,
S(8) #0,

By a simple test, it is possible to detect parametric faults. This can
be done by using a periodic auxiliary input 7 on the system and, e.g., a
dedicated CUSUM test on the residual vector r. For more details, see
Section VIII and [10].

The fault isolation case is more complicated. The main reason is that
in general all elements in S(#) will depend on all parametric faults.
This means that it will be impossible to isolate the single parametric
faults by evaluating the single elements in S(8), i.e., direct fault iso-
lation. Further, it will also depend on which parametric faults that can
occur simultaneously and which cannot.

Let us consider the fault signature matrix given by (25), where the
pre- and postfilters ()1 and (Do, have been included. The design of Q1
and () must be done in such a way that an isolation (separation) of the
parametric faults can be done directly by considering S¢ (6), when it
is possible. Using the fact that both ﬂ:IGyw and G.. M are two stable
transfer functions, it is possible to design ()7 and (o in such a way
that

ford =0
for 6 # 0.

G..MQr = <ZI> QoMGy., = (Eo Ho) (26)
1

where =; and Z¢ are two stable diagonal matrices of dimension m X m
and p X p, respectively, and H;, Ho are two stable transfer matrices
of suitable dimension. Note that if G.,, M is right invertible, i.e., k <
m, we can obtain a diagonalization of G., M by the design of Q).
Equivalent, if ﬂj[Gyw is left invertible, i.e. & < p, a diagonalization of
MG, can be obtained by the design of Qo.

Using the (7 and Qo satisfying (26) in (25) gives directly

So(#)= (2o Ho)§(I —TH)™" (E’>. 27
H,

As it can be seen from (27), it will not in the general case be possible
to obtain a complete diagonalization of the input and/or output transfer
functions. If it is not possible to diagonalize either the input or the
output transfer functions by the design of J; or Q¢, it will not be
possible to obtain a complete fault separation in S¢ ().

Ifp > 2 orm > 2, fault isolation for some type of fault sets is
still possible. Assume that p > m, i.e., the number of measurement
signals is larger than or equal to the number of control signals. It is
then possible to get fault isolation if the number of faults k; in the fault
sets £2;,7 = 1,...0 is maximal p — 1.

Using a (Qo,1 satisfying (26) with respect to the first fault set €2,
gives the following fault signature matrix:

Sg.a,(8)=(E0 Ho)(I—-T8)""'G..MQs. (28)

1575
Let S¢,0, (#) be partitioned into
S50.0,,1,1(0)
S 6 :
5(3191(9) = ( Q,QLI( )) — . (29)
S 2(f) 5Q.01.1.4:1(0)
5q.0,,2(0)

where S¢,0,,1(0) is the first k1 rows in Sg.o,(8) and So o, ,2(0) is
the last p — k1 rows in S¢,0, ().

Based on the partition of Sg in (29), it is possible to isolate the fault
set wherein faults has occurred. Assume that faults has occurred in the
system, we have then that the faults belong to the fault set €2, if and
only if

5q,0,,2(0) =0,

0#£0, e

Further, the faults belong to another fault set than €2; if and only if

Sa.0,,2(8) #0, 0#£0, 0¢&
In the same way, a Qo 2 is designed with respect to the second fault,
etc.

All together, we have a three step procedure: First, a fault detection.
Second, a fault set isolation and finally a fault isolation in the specific
fault set. The three steps are as follows.

¢ Fault detection

So(f)=0 foré =0
So(8) #£0 forb #0.

¢ Fault isolation of the fault set €2;

5q.0,2(0)=0 0#£0,0€Q,
So,2(0)#0 #40,6¢Q.

* Fault isolation of the faults in the fault set €2;.
The j'th fault in the fault set €2; occurs in the system if and only
if:
Sg.1;0)#0 6, #0,  j=1,... k.
The j'th fault in the fault set §2; does not occur in the system if
and only if

Sq0,140)=0  6;=0,

where S¢ o, ,1,;(#) is the j’th row of S¢) 2,1 (6) given in (29).

From the definition of the fault sets, the fault related to the last row(s)
in S¢ o, (8) will not belong to the specific fault set. Further, note that
faults which do not belong to the specified fault set will always result
in a nonzero row(s) of S «,,2(#) and maybe also in nonzero rows of
S¢.9,,1(8). The reason is that if the faults in § are isolable, then faults
that does not belong to the specific fault set will affect the nondiagonal
matrix Hy. As a result of this, a single fault that does not belong to the
specific fault set can, therefore, affect all rows in S¢ o,,1(f).

It is important to point out that the above AFD allow to detect and
isolate an unlimited number of faults, as long as the faults can be par-
titioned into fault sets that can be isolated.

It should be pointed out that the principle behind the above AFD
scheme can also be applied in connection with FDI for additive faults.
In [16], a fault signal estimation scheme for additive faults based on
this concept has been applied.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 14:44 from |IEEE Xplore. Restrictions apply.
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VIII. DISCUSSION OF DESIGN OF AUXILIARY INPUT

The selection of the auxiliary input 7 (or 1,) and the evaluation of
the residual vector r (or r4) has not been considered in this note. Some
comments are given in this section with respect to these aspects.

The design of optimal auxiliary input vectors has been considered
in details in [2]-[5]. These methods can be applied directly in connec-
tion with the results presented in this note. Also the evaluation of the
residual vectors can be done by using the methods from [2]—-[5] or by
using a CUSUM or GLR test, [1].

Another way to select the auxiliary input vector has been done in
[10]. Here, a sinusoid signal has been applied as the auxiliary input
signal. The advantage for using such a simple signal is that the detection
is quite simple. Here, we only need to evaluate the residual vector at a
signal frequency, the frequency of the sinusoid. This is a simple way
to detect if a fault signature matrix is zero or non-zero. Combining this
with the separation results given in this note, it is possible both to detect
and isolate parametric faults in a simple way.

A disadvantage by using a simple signal as a sinusoid signal as the
auxiliary input signal is that the detection time might be quite large. The
detection time will depend on both the selected frequency for the sinu-
soid signal as well as on the amplitude. The amplitude and frequency
must be selected with respect to the effect from the auxiliary input is
maximized on the residual signal and minimized on the external output
vector e. The application of simple auxiliary input vectors is also con-
sidered in the example given in Section IX.

IX. EXAMPLE

The example is a two mass spring system with two measurement
signals given by Gy = (4, B, C), [18]

0 0 1 0 0
0 0 0 1 0
-1 1 -0.2 0.2 1
0.5 =25 01 -0.15 0

100 0
C‘<0100>‘

An observer based feedback controller is applied to the system with
the following state feedback gain F’ and observer gain L:

(A]B) =

(30)

F =(-0.6886 —1.1124 —0.6288 0.0837)
—-8.3733  16.2211

I —-0.3220 —=5.2795
2.1388  —70.0381
53.0028 —195.6965

Two sensor faults can occur in the system. The two sensor faults can
occur simultaneously. The system is then given by

G.w@) = (I + B)Gy“

where 0 = diag(61,02) with#; € [-1,0] and 8> € [-1,0].6; = -1
and #> = —1 indicate a complete loss of sensors 1 and 2, respectively.

Now let us consider both fault detection and fault isolation in the
open loop system as well as in the closed-loop system. From the defi-
nition of the fault signature matrix, it is clear that S(#) is nonzero for
all values of § # 0. This is the case for both the open-loop as well as
for the closed-loop case.

The faultisolation case is more complex. However, when the number
of faults is equal to the number of measurement signals, a complete
separation of the fault signature matrix is possible.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006

Sopen,q, 1 for fault at sensor 1

V% ;
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7
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o
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Fig. 2. Bode plot of S,pen,q,1(f) as a function of 61, i.e., fault at the first
Sensor.

Sopen,q,2 for fault at sensor 2

. %

47
%%

g .

Yy . %777
-y, |
My . GG

-‘E e . ////// % % % 4

& 1004 : .

= =

Frequency logqo(®)

Fig. 3. Bode plot of S, pen,,2(0) as a function of 6, i.e., fault at the second
Sensor.

From the system setup, we have that A]Gyw = M because Gyw =
I. A simple choice for Qo, such that (26) is satisfied, is to use Qo =
M~ because M~ is stable. By using this output weight function, the
fault signature matrix is then given by

s = (30200))

i.e., a complete separation between the two parametric faults. The Bode
plots of the fault signature matrix S¢ (6) is shown for both the open-
loop case as well as for the closed-loop case. The open-loop case is
shown in Figs. 2 and 3, and the closed-loop case is shown in Figs. 4
and 5, respectively. The open-loop case is derived by using the same
coprime factorization as for the closed-loop system.

From these figures, it is clear that the feedback controller has an ef-
fect on the fault signature matrix. However, the applied feedback con-
troller does not change the structure of the S (#) so much in this ex-
ample. The fault signature matrix has an maximum for both the open
loop as well as for the closed loop system around w = 1.0 rad/s.
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Sg1,q,1 for fault at sensor 1
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Fig.4. Bodeplotof S, q,1 (3) as a function of 8, i.e., fault at the first sensor.

Sq .2 for fault at sensor 2
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Fig. 5. Bode plot of S.;,q,2(#) as a function of -, i.e., fault at the second
SEnsor.

The system is now simulated. Random uniform distributed distur-
bance with maximal gain 0.05 has been been included in the control
signal «. The auxiliary input vector has been selected as

n = 0.05sin(wot) wo = 0.02 rad/s.

The amplitude and the frequency are selected with respect to minimize
the effect from 7 on the output ¢ = y of the system and maximize
the detection/isolation time. From Figs. 2-5, a natural selection of the
frequency of the sin function is 1.0 rad/s, i.e., where the amplitudes of
S¢ are maximal. A more detailed analysis show that it will give a much
faster fault detection/isolation by using a much smaller frequency for
7. Further, the effect on the output from » will also be reduced.

A CUSUM or GLR detector has not been included in the simulation.
To verify detection and isolation in the simulations, the following illus-
tration signal 6 has been applied:

T

6= /'I'GJ“’Otdt .
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Fig. 6. Illustration signals é; (solid line) for fault at sensor no. 1 and 6, (dashed
line) for sensor no. 2, when the system is simulated in closed loop.
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Fig. 7. Output signals y; (solid line) and y- (dashed line) when the system is
simulated in closed loop.

The simulations are derived in the following way: The auxiliary input

signal is started at £ = 0. A parametric fault given by §; = —0.25 at
sensor no. 1 is introduced at t = 100 sec. and a parametric fault given
by #2 = —0.25 at sensor no. 2 is introduced at t = 200 sec.

The illustration signals é are shown in Fig. 6 for the closed-loop
system (a simulation of the open loop system gives an equivalent set of
curves). It can be seen from the curves that 6 start increasing just after
the fault at sensor no. 1 has occur at ¢ = 100 s. Further, fault at sensor
no. 1 does not affect 6. Equivalently, 62 stay small until fault at sensor
no. 2 occur at t = 200 sec. At the same, fault at sensor no. 2 does not
affect 6;. In Fig. 7, the effect from the auxiliary signal 7 in the output
y is shown for the closed-loop case.

Simulation of both the open loop system and by uing a reconfigurated
controller will give the same results.

X. CONCLUSION

A setup for active fault diagnosis of parametric faults has been for-
mulated. In connection with the setup, the fault signature matrix has
been introduced and the relation with the dual YJBK transfer function
has been considered.
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It has been shown that if fault isolation can be derived based on a
separation in the fault signature matrix, the fault isolation will not be af-
fected by the inclusion of a feedback controller in the loop, or the feed-
back controller is reconfigured by using the YJIBK parameterization.

In the case where an exact decoupling of the parametric faults via
S(8) is not possible, the fault isolation must be carried out through the
difference in the dynamic characteristic from the parametric faults. In
this case, the fault isolation will depend strongly on the applied feed-
back controller.
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Fault Accommodation for Nonlinear Dynamic Systems

Bin Jiang, Marcel Staroswiecki, and Vincent Cocquempot

Abstract—This note investigates process fault accommodation in a class
of nonlinear continuous-time systems. A new fault estimation module,
based on an adaptive estimator, is first proposed. The fault tolerant
controller is constructed to compensate for the effect of the faults by
stabilizing the closed-loop system. A flexible joint robotic example is given
to illustrate the efficiency of the proposed approach.

Index Terms—Active fault-tolerant control (FTC), adaptive estimator,
fault estimation, nonlinear continuous-time systems.

I. INTRODUCTION

In complex systems, dependability is as important as performances.
Faults may drastically change the system behavior, ranging from
performance degradation to instability. Fault tolerant control (FTC) is
needed in order to reach the system objectives, or if this turns to be
impossible, to assign new (achievable) objectives to avoid catastrophic
behaviors. While passive fault tolerance considers systems faults as a
special kind of uncertainties, active fault tolerance is based on fault
detection and isolation (FDI).

Active FTC is obtained by fault accommodation (FA), which con-
trols the faulty system, or by system reconfiguration (SR), which con-
trols the healthy (reconfigured) part of the system [27]. Therefore, in
FA, the FDI module must detect and isolate the faults, as well as esti-
mate them, in order for the FTC algorithm to determine the appropriate
control law [19]. “Appropriate” is meant with respect to given objec-
tives which depend on the application, but which in all cases must pre-
serve stability. During the last decades, different approaches to FA have
been reported: pseudo-inverse [10], adaptive control [4], [14], [29],
eigenstructure assignment [15], and compensation via additive input
design [22]. The survey papers [2] and [23] give the state of the art in
the field of FTC, and recent advances are reported in [3].

In most of the existing literature, FDI is addressed separately [5],
[11], although some works provide integrated FDI and FTC schemes;
for example, see [33] and [34] for FA, and [9] and [21] for integra-
tion of FTC and FDI. In this note, a framework for the design of inte-
grated FDI and FTC for a class of nonlinear systems is provided. First,
an adaptive estimator is constructed for the simultaneous estimation of
the system state and the process fault(s). The fault estimate is then used
to construct a fault-tolerant controller, which stabilizes the closed-loop
system. Compared to existing works, the contributions of this note are
in two aspects: i) A new approach for the estimation of time-varying
process faults in a class of nonlinear systems; and ii) A composite fault
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