
A Seven-Dimensional Analysis of Hashing Methods and its
Implications on Query Processing

Stefan Richter
Information Systems Group

Saarland University

stefan.richter@infosys.uni-
saarland.de

Victor Alvarez
∗

Dept. Computer Science
TU Braunschweig

alvarez@ibr.cs.tu-bs.de

Jens Dittrich
Information Systems Group

Saarland University

dittrich@cs.uni-
saarland.de

ABSTRACT

Hashing is a solved problem. It allows us to get constant time ac-

cess for lookups. Hashing is also simple. It is safe to use an arbi-

trary method as a black box and expect good performance, and opti-

mizations to hashing can only improve it by a negligible delta. Why

are all of the previous statements plain wrong? That is what this pa-

per is about. In this paper we thoroughly study hashing for integer

keys and carefully analyze the most common hashing methods in a

five-dimensional requirements space: () data-distribution, () load

factor, () dataset size, () read/write-ratio, and () un/successful-

ratio. Each point in that design space may potentially suggest a dif-

ferent hashing scheme, and additionally also a different hash func-

tion. We show that a right or wrong decision in picking the right

hashing scheme and hash function combination may lead to sig-

nificant difference in performance. To substantiate this claim, we

carefully analyze two additional dimensions: () five representa-

tive hashing schemes (which includes an improved variant of Robin

Hood hashing), () four important classes of hash functions widely

used today. That is, we consider 20 different combinations in total.

Finally, we also provide a glimpse about the effect of table mem-

ory layout and the use of SIMD instructions. Our study clearly

indicates that picking the right combination may have considerable

impact on insert and lookup performance, as well as memory foot-

print. A major conclusion of our work is that hashing should be

considered a white box before blindly using it in applications, such

as query processing. Finally, we also provide a strong guideline

about when to use which hashing method.

1. INTRODUCTION
In recent years there has been a considerable amount of research

on tree-structured main-memory indexes, e.g. [17, 13, 21]. How-

ever, it is hard to find recent database literature thoroughly exam-

ining the effects of different hash tables in query processing. This

is unfortunate for at least two reasons: First, hashing has plenty of

applications in modern database systems, including join process-

ing, grouping, and accelerating point queries. In those applica-

tions, hash tables serve as a building block. Second, there is strong

∗Work done while at Saarland University.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150­8097/15/11.

evidence that hash tables are much faster than even the most re-

cent and best tree-structured indexes. For instance, in our recent

experimental analysis [1] we carefully compared the performance

of modern tree-structured indexes for main-memory databases like

ARTful [17] with a selection of different hash tables1. A central

lesson learned from our work [1] was that a carefully and well-

chosen hash table is still considerably faster (up to factor 4-5x)

for point queries than any of the aforementioned tree-structured in-

dexes. However, our previous work also triggered some nagging

research questions: () When exactly should we choose which hash

table? () What are the most efficient hashing methods that should

be considered for query processing? () What other dimensions af-

fect the choice of “the right” hash table? and finally () What is the

performance impact of those factors. While investigating answers

to these questions we stumbled over interesting results that greatly

enriched our knowledge, and that could greatly help practitioners,

and potentially also the optimizer, to take well-informed decisions

as of when to use what hash table.

1.1 Our Contributions
We carefully study single-threaded hashing for 64-bit integer

keys and values in a five-dimensional requirements space:

1. Data distribution. Three different data distributions: dense,

sparse, and a grid-like distribution (think of IP addresses).

2. Load factor. Six different load factors between 25- and 90%.

3. Dataset size. We consider a variety of sizes for the hash ta-

bles to observe performance when they are rather small (they

fit in cache), and when they are of medium and large sizes

(outside cache but still addressable by TLB using huge pages

or not respectively).

4. Read/write-ratio. We consider whether the hash tables are

to be used under a static workload (OLAP-like) or a dynamic

workload (OLTP-like). For both we simulate an indexing

workload — which in turn captures the essence of other im-

portant operations such as joins or aggregates.

5. Un/successful lookup ratio. We study the performance of

the hash tables when the amount of lookups (probes) varies

from all successful to all unsuccessful.

Each point in that design space may potentially suggest a differ-

ent hash table. We show that a right/wrong decision in picking the

1We use the term hash table throughout the paper to indicate that
both the hashing scheme (say linear probing) and the hash function
(say Murmur) are chosen.

96

right combination 〈hashing scheme, hash function〉 may lead to an

order of magnitude difference in performance. To substantiate this

claim, we carefully analyze two additional dimensions:

6. Hashing scheme. We consider linear probing, quadratic prob-

ing, Robin Hood hashing as described in [5] but carefully en-

gineered, Cuckoo hashing [19], and two different variants of

chained hashing.

7. Hash function. We integrate each hashing scheme with four

different hash functions: Multiply-shift [8], Multiply-add-

shift [7], Tabulation hashing [20], and Murmur hashing [2],

which is widely used in practice. This gives 24 different

combinations (hash tables).

Therefore, we study in total a set of seven different dimen-

sions that are key parameters to the overall performance of a hash

table. We shed light on these seven dimensions focusing on one of

the most important use-cases in query processing: indexing. This

in turn resembles very closely other important operations such as

joins and aggregates — like SUM, MIN, etc. Additionally, we also

offer a glimpse about the effect of different table layout and the use

of SIMD instructions. Our main goal is to produce enough results

that can guide practitioners, and potentially the optimizer, towards

choosing the most appropriate hash table for their use case at hand.

To the best of our knowledge, no work in the literature has con-

sidered such a thorough set of experiments on hash tables.

Our study clearly indicates that picking the right configuration

may have considerable impact on standard query processing tasks

such as main-memory indexing as well as join processing, which

heavily rely on hashing. Hence, hashing should be considered as a

white box method in query processing and query optimization.

We decided to focus on studying hash tables in a single-threaded

context to isolate the impact of the aforementioned dimensions. We

believe that a thorough evaluation of concurrency in hash tables is a

research topic in its own and beyond the scope of this paper. How-

ever, our observations still play an important role for hash maps

in multi-threaded algorithms. For partitioning-based parallelism

— which has recently been considered in the context of (partition-

based hash) joins [3, 4, 16] — single-threaded performance is still

a key parameter: each partition can be considered an isolated unit

of work that is only accessed by exactly one thread at a time, and

therefore concurrency control inside the hash tables is not needed.

Furthermore, all hash tables we present in the paper can be ex-

tended for thread safety through well-known techniques such as

striped locking or compare-and-swap. Here, the dimensions we

discuss still impact the performance of the underlying hash table.

This paper is organized as follows: In Sections 2 and 3 we briefly

describe each of the five considered hashing schemes and the four

considered hash functions respectively. In Section 4 we describe

our methodology, setup, measurements, and the three data distribu-

tions used. We also discuss why we have narrowed down our result

set — we present in this paper what we consider the most relevant

results. In Sections 5, 6, and 7 we present all our experiments along

with their corresponding discussion.

2. HASHING SCHEMES
In this paper, we study the performance of five different hash-

ing schemes: () chained hashing, () linear probing, () quadratic

probing, () Robin Hood hashing on linear probing, and () Cuckoo

hashing — the last four belong to the so-called open-addressing

schemes, in which every slot of the hash table stores exactly one

element, or stores special values denoting whether the correspond-

ing slot is free. For open-addressing schemes we assume that the

tables have l slots (l is called capacity of the table). Let 0 ≤ n ≤ l
be the number of occupied slots (we call n the size of the table)

and consider the ratio α = n

l
as the load factor of the table. For

chained hashing, the concept of load factor makes in general lit-

tle sense since it can store more than one element in the same slot

using a linked list, and thus we could obtain α > 1. Hence, when-

ever we discuss chained hashing for a load factor α, we mean that

the presented chained hash tables are memory-wise comparable to

open-addressing hash tables at load factor α — in particular, the

hash tables contain the same number n of elements, but their direc-

tory size can differ. We elaborate on this in Section 4.5.

Finally, one fundamental question in open-addressing is whether

to organize the table as array-of-structs (AoS) or as a struct-of-

arrays (SoA). In AoS, the table is stored in one (or more in case of

Cuckoo hashing) arrays of key-value pairs, similar to a row layout.

In contrast to that, SoA representation keeps keys and correspond-

ing values separated in two corresponding, aligned arrays - similar

to column layout. We found in a micro-benchmark that AoS is su-

perior to SoA in most relevant cases for our setup and hence apply

this organization in all open-addressing schemes in this paper. For

more details on this micro-benchmark see Section 7. We now pro-

ceed to briefly describe each considered hashing scheme in turn.

2.1 Chained Hashing
Standard chained hashing is a very simple approach for collision

handling, where each slot of table T (the directory) is a pointer to a

linked list of entries. On inserts, entries are appended to the list that

corresponds to their key k under hash function h, i.e., T [h(k)]. In

case of lookups, the linked list under T [h(k)] is searched for the en-

try with key k. Chained hashing is a simple and robust method that

is widely used in practice, e.g., in the current implementations of

std::unordered map in C++ STL or java.util.HashMap

in Java. However, compared to open-addressing methods, chained

hashing has typically sub-optimal performance for integer keys w.r.t.

runtime and memory footprint. Two main reasons for this are:

() the pointers used by the linked lists lead to a high memory

overhead and () using linked lists leads to additional cache misses

(even for slots with one element and no collisions). This situation

brings different opportunities for optimizing a traditional chained

hash table. For example, we can reduce cache misses by mak-

ing the directory wide enough (say 24-byte entries for key-value-

pointer triplets) so that we can always store one element directly in

the directory and avoid following the corresponding pointer. Colli-

sions are then stored in the corresponding linked list. In this version

we potentially achieved the latency of open-addressing schemes

(if collisions are rare) at the cost of space. Throughout the paper

we denote the two versions of chained hashing we mentioned by

ChainedH8, and ChainedH24 respectively.

In the very first set of experiments we studied the performance of

ChainedH8, and ChainedH24 under a variety of factors, as to better

understand the trade-offs they offer. One key observation that we

would like to point out at this point is: We observed that entry al-

location in the linked lists is a key factor for insert performance in

all our variants of chained hashing. For example, a naive approach

with dynamic allocation, i.e., using one malloc call per insertion,

and one free call per delete, lead to a significant overhead. For

most use cases, an alternative allocation strategy provides a consid-

erable performance benefit. That is, for both chained hashing meth-

ods in our indexing experiments, Sections 5 and 6, we use a slab

allocator. The idea is to bulk-allocate many (or up to all) entries

in one large array and store all map entries consecutively in this ar-

rays. This strategy is very efficient in all scenarios where the size of

the hash table is either known in advance or only growing. We ob-

97

served an improvement over traditional allocation in both: memory

footprint (due to less fragmentation and less malloc metadata) as

well as raw performance (by up to one order of magnitude!).

2.2 Linear Probing
Linear probing (LP) is the simplest scheme for collision han-

dling in open-addressing. The hash function is of the following

form: h(k, i) = (h′(k) + i) mod l, where i represents the i-th
probed location and h′(k) is an auxiliary hash function. It works

as follows: First, try to insert each key-value pair p = 〈k, v〉 with

key k at the optimal slot T [h(k, 0)] in an open-addressing hash ta-

ble T . In case h(k, 0) is already occupied by another entry with

different key, we (circularly) probe the consecutive slots h(k, 1) to

h(k, l − 1). We store p in the first free slot T [h(k, i)], for some

0 < i < l, we encounter2. We define the displacement d of p
as i, and the sum of displacements over all entries as the total dis-

placement of T . Observe that the total displacement is a measure

of performance in linear probing since a high value implies long

probe sequences entries during lookups.

The rather simple strategy of LP has two advantages: () Low

code complexity which allows for fast execution and () Excel-

lent cache efficiency due to the sequential linear scan. However,

on high load factors > 60%, LP noticeably suffers from primary

clustering, i.e., a tendency to create long sequences of filled slots

and hence high total displacement. We will address those areas of

occupied slots that are adjacent w.r.t. probe sequences as clusters.

Further, we can also observe that unsuccessful lookups worsen the

performance of LP since they require a complete scan of all slots

up to the first empty slot. Linear probing also requires dedicated

handling of deletes, i.e., we can not simply remove entries from the

hash table because this could disconnect a cluster and produce in-

correct results under lookups. One option to handle deletes in LP

are the so called tombstones, i.e., a special value (different from

the empty slot) that marks deleted entries so that lookups continue

scanning after seeing one tombstone — yielding correct results.

Using tombstones makes deletes very fast. However, tombstones

can have a negative impact on performance, as they potentially con-

nect otherwise unconnected clusters, thus building larger clusters.

Inserts can replace a tombstone that is found during a probe af-

ter confirming that the key to insert is not already contained. An-

other strategy to handle deletes is partial cluster rehash: we delete

the entry from the slot and rehash all following entries in the same

cluster. For our experiments we decided to implement an optimized

version of tombstones which will only place tombstones when re-

quired to keep a cluster connected (i.e. only if the next slot from the

deleted entry is occupied). Placing tombstones is very fast (faster in

general than rehashing after every deletion), and the only negative

point about tombstones are lookups after a considerable amount of

deletions — in such a case we could shrink the hash table and per-

form a rehash anyway.

One of our main motivations to study linear hashing in this paper

is not only that it belongs to the classical hashing schemes, which

dates to the 50’s [15], but also the recent developments regarding

its analysis. Knuth was the first [14] to give a formal analysis of

the operations of linear probing (insertion, deletions, lookups) and

he showed that all these operation can be performed in O(1) us-

ing truly random hash functions3. However, very recently [20] it

was shown that linear probing with tabulation hashing (see Sec-

tion 3.3) as a function matches asymptotically the bounds of Knuth

in expected running time O(1
ε2
), where the hash table has capacity

2Observe that as long as the table is not full, an empty slot is found.
3Which map every key in a given universe of keys independently
and uniformly onto the hash table.

l = (1 + ε)n. That is, from a theoretical point of view, there is no

reason to use any other hashing table. We will see in our experi-

ments, however, that the story is slightly different in practice.

2.3 Quadratic Probing
Quadratic probing (QP) is another popular approach for collision

handling in open-addressing. The hash function in QP is of the

following form: h(k, i) = (h′(k)+c1 · i+c2 · i
2) mod l, where i

represents the i-th probed location, h′ is an auxiliary hash function,

and c1 ≥ 0, c2 > 0 are auxiliary constants.

In case that the capacity of the table l is a power of two and

c1 = c2 = 1/2, it can be proven that quadratic probing will con-

sider every single slot of the table one time in the worst case [6].

That is, as long as there are empty slots in the hash table, this partic-

ular version of quadratic probing will always find them eventually.

Compared to linear probing, quadratic probing has a reduced ten-

dency for primary clustering and comparably low code complexity.

However, QP still suffers from so-called secondary clustering: if

two different keys collide in the very first probe, they will also col-

lide in all sub-sequent probes. For deletions, we can apply the same

strategies as in LP. Our definition of displacement for LP carries

over to QP as the number of probes 0 < i < l until an empty slot

is found.

2.4 Robin Hood Hashing on LP
Robin Hood hashing [5] is an interesting extension that can be

applied to many collision handling schemes, e.g., linear probing [23].

For the remainder of this paper, we will only talk about Robin Hood

hashing on top of LP and simply refer to this combination as Robin

Hood hashing (RH). Furthermore, we introduce a new tuned ap-

proach to Robin Hood hashing that improves on the worst-case sce-

nario of LP (unsuccessful lookups on high load factors) at a small

cost on inserts, and very high rates of successful lookups (close to

100%, best-case scenario).

In general, RH is based on the observation that collisions can

be resolved in favor of any of the keys involved. With this addi-

tional degree of freedom, we can modify the insertion algorithm of

LP as follows: On a probe sequence to insert a new entry enew,

whenever we encounter an existing entry eold with displacement

d(enew) > d(eold)
4, we exchange eold by enew and continue the

search for an empty slot with eold. As a result, the variance in dis-

placement between all entries (and hence their variance in lookup

times) is minimized. While this approach does not change the total

displacement compared to LP, we can exploit the established or-

dering in other ways. In this sense, the name Robin Hood was mo-

tivated by the observation that the algorithm takes from the“rich”

elements (with smaller displacement) and gives to the “poor” (with

higher displacement). Thus distributing the “wealth” (proximity to

optimal slot) more fairly across all elements without changing the

average “wealth” per element.

It is known that RH can reduce the variance in displacement sig-

nificantly over LP. Previous work [23] suggests to exploit this prop-

erty to improve on unsuccessful lookups in several ways. For ex-

ample, we could already start searching for elements at the slot with

expected (average) displacement from their perfect slot and probe

bidirectional from there. In practice, this is not very efficient due to

high branch misprediction rates and/or unfriendly access pattern.

Another approach introduces an early abort criterium for unsuc-

cessful lookups. If we keep track of the maximum displacement

dmax among all entries in the hash table, a probe sequence can al-

ready stop after dmax iterations. However, in practice we observed

4If d(enew) = d(eold) we can compare the actual keys as tie
breaker to establish a full ordering.

98

that dmax is often still too high5 to obtain significant improvements

over LP. We can improve on this method by introducing a different

abort criterion, which compares the probe iteration i with the dis-

placement of currently probed entry d(ei) in every step and stops

as soon as d(ei) < i. However, comparing against d(ei) on each

iteration requires us to either store displacement information or re-

calculate the hash value. We found all those approaches to be pro-

hibitively expensive w.r.t. runtime and inferior to the plain LP in

most scenarios. Instead, our approach applies early abortion by

hash computation only on every m-th probe, where a good choice

of m is slightly bigger than the average displacement in the table.

As computing the average displacement under updates can be ex-

pensive, a good sweet spot for most load factors is to check once at

the end of each cache-line. We found this to give a good tradeoff

between an overhead for successful probes and the ability to stop

unsuccessful probes early. Hence, this is the configuration we use

for RH in our experiments. Furthermore, our approach to RH ap-

plies partial rehash for deletions which turned out to be superior to

tombstones for this table. Notice that tombstones in RH would, for

correctness, require to store information that allow us to reconstruct

the displacement of the deleted entry.

2.5 Cuckoo Hashing
Cuckoo hashing [19] (CuckooH) is a another open-addressing

scheme that, in its original (and simplest) version, works as fol-

lows: There are two hash tables T0, T1, each one having its own

hash function h0 and h1 respectively. Every inserted element p is

stored at either T0[h0(p)] or T1[h1(p)] but never in both. When

inserting an element p, location T0[h0(p)] is first probed, if the lo-

cation is empty, p is stored there, otherwise, p kicks out the element

q already found at that location, p is stored there, and q is tried to

be inserted at location T1[h1(q)]. If this location is free, q is stored

there, otherwise q kicks out the element therein, and we repeat: in

iteration i ≥ 0, location Tj [hj(·)] is probed, where j = i mod 2.

In the end we hope that every element finds its own “nest” in the

hash table. However, it may happen that this process enters a loop,

and thus a place for each element is never found. This is dealt with

by performing only a fixed amount of iterations, once this limit is

achieved, a rehash of the complete set is performed by choosing

two new hash functions. The advantages of CuckooH are () For

lookups, traditional CuckooH requires at most two tables accesses,

which is in general optimal among hashing schemes using linear

space. In particular, the load factor has only a small impact on

the lookup performance of the hash table. () CuckooH has been

reported [19] to be competitive with other good hashing schemes,

like linear and quadratic probing, and () CuckooH is easy to im-

plement. However, it has been empirically observed [19, 12] that

the load factor of traditional CuckooH with 2 tables should stay

slightly below 50% in order to work. More precisely, below 50%
load factor creation succeeds with high probability, but it starts fail-

ing from 50% on [11, 18]. This problem can be alleviated by gener-

alizing CuckooH to use more tables T0, T1, T2 . . . Tk, each having

its own hash function hk, k > 1. For example, for k = 4 the

load factor (empirically) increases to 96% [12]. All this at the ex-

pense of performance, since now lookups require at most four table

lookups. Furthermore, Cuckoo hashing is very sensitive to what

hash functions are used [19, 10, 20] and requires robust hash func-

tions. In our experiments we only consider Cuckoo hashing on four

tables (called CuckooH4) since we want to study the performance

of hash tables under many different load factors, that go up to 90%,

5For high load factor α, dmax can often be an order of magnitude
higher than the average displacement.

and CuckooH4 is the only version of traditional Cuckoo hashing

that offers this flexibility.

3. HASH FUNCTIONS
In our study we want to investigate the impact of different hash

functions in combination with various hashing schemes (Section 2)

under different key distributions. Our set of hash functions cov-

ers a spectrum of different theoretical guarantees that also admit

very efficient implementations (low code complexity) and thus are

also used in practice. We also consider one hash function that is,

in our opinion, the most representative member of a class of en-

gineered hash functions6 that do not necessarily have theoretical

guarantees, but that show good empirical performance, and thus

are widely used in practice. We believe that our chosen set of

hash functions is very representative and offers practitioners a good

set of hash functions for integers (64-bit in this paper) to choose

from. The set of hash functions we considered is: () Multiply-

shift [8], () Multiply-add-shift [7], () Tabulation hashing [20],

and () Murmur hashing [2]. Formally, () is the weakest and ()

is the strongest w.r.t. randomization. The definition and properties

of these hash functions are as follows:

3.1 Multiply­shift
Multiply-shift (Mult) is very well known [8], and it is given here:

hz(x) = (x · z mod 2w) div 2w−d

where x is a w-bit integer in {0, . . . , 2w − 1}, z is an odd w-bit

integer in {1, . . . , 2w − 1}, the hash table is of size 2d, and the

div operator is defined as: a div b = ⌊a/b⌋. What makes this

hash function highly interesting is: () It can be implemented ex-

tremely efficiently by observing that the multiplication x · z is na-

tively done modulo 2w in current architectures for native types like

32- and 64-bit integers, and the operator div is equivalent to a right

bit shift by w − d positions. () It has been proven [8] that if

x, y ∈ {0, . . . , 2w − 1}, with x 6= y, and if z ∈ {1, . . . , 2w − 1}
chosen uniformly at random, then the collision probability is 1

2d−1
.

This also means that the family of hash functions Hw,d = {hz |
0 < z < 2w and z odd} is the ideal candidate for simple and rather

robust hash functions. Multiply-shift is a universal hash function.

3.2 Multiply­add­shift
Multiply-add-shift (MultAdd) is also a very well known hash

function [7]. It’s definition is very similar to the previous one:

ha,b(x) = ((x · a+ b) mod 22w) div 22w−d

where again x is a w-bit integer, a, b are two 2w-bit integers, and

2d is the size of the hash table. For w = 32 this hash function can

be implemented natively under 64-bit architectures, but w = 64
requires 128-bit arithmetic which is still not widely supported na-

tively. It can nevertheless still be implemented (keeping its formal

properties) using only 64-bit arithmetic [22]. When a, b are ran-

domly chosen from {0, . . . , 22
w

}, it can be proven that collision

probability is 1
2d

, and thus is stronger than Multiply-shift — al-

though it also incurs into heavier computations. Multiply-add-shift

is a 2-independent hash function.

3.3 Tabulation hashing
Tabulation hashing (Tab) is the strongest hash function among

all the ones that we consider and also probably the least known.

It became more popular in recent years since it can be proven [20]

6Like FNV, CRC, DJB, CityHash for example.

99

that tabulation and linear probing achieve O(1) for insertions, dele-

tions, and lookups. This produces a hash table that is, in asymptotic

terms, unbeatable. Its definition is as follows (we assume 64-bit

keys for simplicity): Split the 64-bit keys into c characters, say

eight chars c1, . . . , c8. For every position 1 ≤ i ≤ 8 initialize a ta-

ble Ti with 256 entries (for chars) with truly 64-bit random codes.

The hash function for key x = c1 · · · c8 is then:

h(x) =

8
⊕

i=1

Ti[ci]

where
⊕

denotes the bitwise XOR. So a hash code is composed

by the XOR of the corresponding entries in tables Ti of the char-

acters of x. If all tables are filled with truly random data, then it

is known that tabulation is 3-independent (but not stronger), which

means that for any three distinct keys x1, x2, x3 from our universe

of keys, and three (not necessarily distinct) hash codes y1, y2, y3 ∈
{0, . . . , l} then

Pr[h(x1) = y1 ∧ h(x2) = y2 ∧ h(x3) = y3] ≤
1

l3

which means that under tabulation hashing, the hash code h(xi)
is uniformly distributed onto the hash table for every key in our

universe, and that for any three distinct keys x1, x2, x3, the corre-

sponding hash codes are three independent random variables.

Now, the interesting part of tabulation hashing is that it requires

only bitwise operations, which are very fast, and lookups in tables

T1, . . . , T8. These tables are as heavy as 256 · 8 · 8 B = 16 KB.

Which mean that they all fit comfortably in the L1 cache of proces-

sors, which is 32 or 64 KB in modern computing servers. That is,

lookups in those tables incur in potentially low latency operations,

and thus the evaluation of single hash codes is potentially very fast.

3.4 Murmur hashing
Murmur hashing (Murmur) is one of the most common hash

functions used in practice due to its good behavior. It is relatively
fast to compute and it seems to produce quite good hash codes. We
are not aware of any formal analysis on this, so we use Murmur
hashing essentially as is. As we limit ourselves in this paper to
64-bit keys, we use Murmur3’s 64-bit finalizer [2] as shown in the
code below.

uint64_t murmur3_64_finalizer(uint64_t key) {

key ˆ= key >> 33;

key *= 0xff51afd7ed558ccd;

key ˆ= key >> 33;

key *= 0xc4ceb9fe1a85ec53;

key ˆ= key >> 33;

return key;}

4. METHODOLOGY
Throughout the paper we want to understand how well a hash

table can work as a plain index for a set of n 〈key, value〉 pairs

of 64-bit integers. The keys obey three different data distributions,

described later on in Section 4.3. This scenario, albeit generic, re-

sembles very closely other interesting uses of hash tables such as

in join processing or in aggregate operations like AVERAGE, SUM,

MIN, MAX, and COUNT. In fact, we performed experiments simu-

lating these operations, and the results were comparable those from

the WORM workload.

We study the relation between (raw) performance and load fac-

tors by performing insertions and lookups (successful and unsuc-

cessful) on hash tables at different load factors. For this we con-

sider a write-once-read-many (WORM) workload, and a mixed

read-write (RW) workload. These two kinds of workload simulate

elementary operational requirements of OLAP and OLTP scenar-

ios, respectively, for index structures.

4.1 Setup
All experiments are single-threaded and all implementations are

our own. All hash tables have map semantics, i.e., they cover both

key and value. All experiments are in main memory. For the ex-

periments in Sections 5 and 6 we use a single core (one NUMA

region) of a dual-socket machine having two hexacore Intel Xeon

Processors X5690 running at 3.47 GHz. The machine has a to-

tal of 192 GB of RAM running at 1066 MHz. The OS is a 64-

bit Linux (3.2.0) with page size of 2 MB (using transparent huge

pages). All algorithms are implemented in C++ and compiled with

gcc-4.7.2 with optimization -O3. Prefetching, hyper-threading

and turbo-boost are disabled via BIOS to isolate the real character-

istics of the considered hash tables.

Since our server does not support AVX-2 instructions, we ran

the layout and SIMD evaluation, Section 7, on a MacbookPro with

Intel Core i7-4980HQ running at 2.80GHz (Haswell) with 16 GB

DDR3 RAM at 1600 MHz running Mac OS X 10.10.2 in single-

user mode. Here, the page size is 4 KB and pre-fetching is acti-

vated since we could not deactivate it as cleanly as for our linux

server. All binaries are compiled with clang-600.0.56 with

optimization -O3.

4.2 Measurement and Analysis
For all indexing experiments of Sections 5 and 6 we report the

average of three independent runs (three different random seeds for

the generation and shuffling of data). We performed an analysis of

variance on all results and we found that, in general, the results are

overall very stable and uniform. Whenever variance was notice-

able, we reran the corresponding experiment with the same setting

to rule out machine problems. As variance was very insignificant,

we decided that there is no added benefit in showing it in the plots.

4.3 Data distributions
Every indexed key is 64 bits. We consider three different kinds

of data distributions: Dense, Sparse, and Grid. In the dense dis-

tribution we index every key in [1 : n] := {1, 2, . . . , n}. In the

sparse distribution, n ≪ 264 keys are generated uniformly at ran-

dom from [1 : 264 − 1]. In the grid distribution every byte of every

key is in the range [1 : 14]. That is, the universe under the grid

distribution consists of 148 = 1, 475, 789, 056 different keys, and

we use only the first n keys (in the sorted order). Thus, the grid

distribution is also a different kind of dense distribution. Elements

are randomly shuffled before insertion, and the set of lookup keys

is also randomly shuffled.

4.4 Narrowing down our result set
Our overall set of experiments contained the combinations of

many different dimensions, and thus the amount of raw informa-

tion obtained exceeds legibility easily and makes the presentation

of the paper very difficult. For example, there are in total 24 dif-

ferent hash tables (hashing scheme + hash function). Thus, if we

wanted to present all of them, every plot would contain 24 different

curves, which is too much information for a single plot. Thus, we

decided to present in this paper only the most representative set of

results. We will make the complete set of results available in a tech-

nical report version of this paper. Therefore, although we originally

considered four different hash functions Mult, MultAdd, Tab, and

Murmur, see Section 3, the following observations were uniform

across all experiments: () Mult is the fastest hash function when

integrated with all hashing schemes, i.e., producing the highest

throughputs and also of good quality (robustness), and thus it

definitely deserves to be presented. () MultAdd, when integrated

with hashing schemes, has a robustness that falls between Mult and

100

Murmur — more robust than Mult but less than Murmur. In terms

of speed it was slower (in throughput) than Murmur. Thus we de-

cided not to present MultAdd here and present Murmur instead. ()

Tabulation was indeed the strongest, most robust hash function of

all when integrated with all hashing schemes. However, it is also

the slowest, i.e., producing the lowest throughput. By studying the

results provided by Mult and Murmur, we think that the trade-off

for by tabulation (robustness instead of speed) is less attractive in

practice. Hence we do not present results for tabulation here.

In the end, we observed the importance of reducing operations

during hash code computations as much as possible. Mult, for ex-

ample, requires only one multiplication and one right bit shift —

it is by far the lightest to compute. MultAdd for 64-bit keys with-

out 128-bit arithmetic [22] (natively unsupported on our server) re-

quires two multiplications, six additions, plus a number of logical

ANDs and right bit shifts, which is more expensive than Murmur’s

64-bit finalizer which requires only two multiplications and a num-

ber of XORs and right bit shifts. As for tabulation, the eight table

lookups per key ended up dominating its execution time. Assum-

ing all tables remain in L1 cache, the latency of each table lookup

is around 5-10 clock cycles. One addition requires one clock cycle

and one multiplication at most five clock cycles (on Intel architec-

tures). Thus, it is very interesting to observe and understand that,

when hash code computation is part of hot loops during a workload

(as in our experiments), we should really be concerned about how

many clock cycles each computation costs — we could observe the

effect of even one more instruction per hash code computation. We

want to point out as well that the situation of MultAdd changes if

we use native 128-bit arithmetic, or if we use 32-bits keys with

native 64-bit arithmetic (one multiplication, one addition, and

one right bit shift). In that case we could use MultAdd instead

of Murmur for the benefit of proven theoretical properties.

4.5 On load factors for chained hashing
As we mentioned before, the load factor makes almost no sense

for chained hashing since it can exceed one. Thus, throughout the

paper we refrain ourselves from using the formal definition of load

factor together with chained hashing. We will instead study chained

hashing under memory budgets. That is, whenever we compare

chained hashing against open-addressing schemes at a given load

factor α = n
l

, what we do is that we modify the size of the directory

of the chained hash table so that its overall memory consumption

does not exceeds 110% of what open-addressing schemes require.

In such a comparison, all hash tables will contain the exact same

number n of elements. Thus, all hash tables compute the exact

same number of hashes. In this regard, whether or not a chained

hash table stays within memory constraints depends on the number

of chained entries. Both variants of chained hashing considered by

us can not place more than a fraction of 16/24 < 0.67 of the total

of elements that an open-addressing scheme could place under the

same memory constraint. If we take the extra 10% we grant to

chained hash tables into account, this fraction grows to roughly

0.73. However, in practice this threshold is smaller (< 0.7) due to

how collisions distribute over the table. This already strongly limits

the usability of chained hashing under memory constraints and also

brings up the following interesting situation. If chained hashing

has to work under memory constraints, we can also try an open-

addressing scheme for the exact same task under the same amount

of memory. This potentially means lower load factors (< 0.5) for

the latter. Depending on the hash function used, collisions might

thus be rare, and the performance might become similar to a direct-

addressing scheme — which is ideal. This might render chained

hashing irrelevant.

5. WRITE­ONCE­READ­MANY (WORM)
In WORM we are interested in build and probe times (read-only

structure) under six different load factors 25%, 35%, 45%, 50%,
70%, 90%. These load factors are w.r.t. open addressing schemes

on three different pre-allocated capacities7: 216 (small — 1 MB),

227 (medium — 2 GB) and 230 (large — 16 GB). This gives a total

of up to 54 different configurations (three data distributions, six

load factors, and three capacities) for each of the 24 hash tables.

Due to the lack of space, and by our discussion offered on the load

factors of chained hashing, we present here only the subsets of the

large capacity presented in Figure 1.

Large capacity

Load factors

25%, 35%, 45%

70%, 90%

Hash tables

ChainedH8, ChainedH24,

LP

ChainedH24, LP, QP, RH,

CuckooH4

50%

LP, QP, RH, CuckooH4

Figure 1: Subset of results for WORM presented in this paper.

The main reason for presenting only the large capacity is that

“big” datasets are nowadays of primary concern and most obser-

vations can be transferred to smaller datasets. Also, we divided

the hash tables this way because, by our explanation before, at

low load factors collisions will be rare and performance of open-

addressing schemes will be chiefly dominated by the simplicity of

the used hash table — i.e., low code complexity. Thus we decided

to compare the two variants of chained hashing against the sim-

plest open-addressing scheme (linear probing)8. At a load factor

of 50%, collision resolution of different open-addressing schemes

start becoming apparent and thus from that point on we include all

open-addressing schemes considered by us. For chained hashing

we consider only the best performing variant. For higher load fac-

tors (≥ 70%), however, both variants of chained hashing could not

place enough elements in the allocated memory. Thus we removed

them altogether and study only open-addressing schemes.

5.1 Low load factors: 25%, 35%, 45%
In our very first set of experiments we are interested in under-

standing () the fundamental difference between chained hashing

and open-addressing and () the trade-offs offer by the two differ-

ent variants of chained hashing. The results can be seen in Figure 2.

Discussion. We start by discussing the memory footprints of all

structures, see Figure 3. For linear probing, the footprint is con-

stant (16 GB), independent of the load factor, and easily determined

only be the size of the directory, i.e., 230 slots of 16 B each. In

ChainedH8, the footprint is calculated as size of directory, i.e. 230

or 229 slots, times the pointer size — 8 B. In addition to that come

24 B for each entry in the table. The footprint of ChainedH24 is

computed as directory size, 229, times 24 B, plus 24 B for each

collision. From this data we can obtain the amount of collisions

for ChainedH24. For example, at load factor 35%, ChainedH24

requires 12 GB for the directory, and all that goes beyond that is

due to collisions. Thus, for the sparse distribution for example,

ChainedH24 deals with ≈ 28% rate of collisions. But under the

dense distribution, it deals only with ≈ 3% collision rate using

Mult as hash function.

For performance results, let us focus on multiplicative hashing

(Mult). Here, we can see a clear and stable ranking among the

7WORM is a static workload. This means that the hash tables never
rehash during the workload.
8For insignificant amounts of collisions, the performance of LP,
RH, and QP is essentially equivalent.

101

0

10

20

30

40

50

60

70

D
e
n
s
e
 d

is
tr

ib
u
ti
o
n

(a)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

Insertions

(b)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

Lookups (Hash tables at 25% load factor)

(c)

Lookups (Hash tables at 35% load factor)

(d)

Lookups (Hash tables at 45% load factor)

0

10

20

30

40

50

60

G
ri
d
 d

is
tr

ib
u
ti
o
n

(e)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

(f)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

(g) (h)

0

10

20

30

40

50

60

25 35 45

S
p
a
rs

e
 d

is
tr

ib
u
ti
o
n

(i)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

Load factor (%)

0 25 50 75 100

(j)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

Unsuccessful queries (%)

0 25 50 75 100

(k)

Unsuccessful queries (%)

0 25 50 75 100

(l)

Unsuccessful queries (%)

ChainedH8Mult
ChainedH8Murmur

ChainedH24Mult
ChainedH24Murmur

LPMult
LPMurmur

Figure 2: Insertion and lookup throughputs, comparing two different variants of chained hashing with linear probing, under three different distributions at
load factors 25%, 35%, 45% from 230 for linear probing. Higher is better.

0.0*10

5.0*10
3

1.0*10
4

1.5*10
4

2.0*10
4

25 35 45

M
e

m
o

ry
 f

o
o

tp
ri
n

t
[M

B
]

Load factor (%)

Dense distribution

ChainedH8Mult

ChainedH8Murmur

ChainedH24Mult

ChainedH24Murmur

LPMult

LPMurmur

Figure 3: Memory usage under the dense distribution of the hash tables
presented in Figure 2. This distribution produces the largest differences in
memory usage among hash tables. For the sparse and grid distributions,
memory of ChainedH24Mult matches that of ChainedH24Murmur, and the
rest remain the same. Lower is better.

methods. For inserts, ChainedH24 performs better than ChainedH8.

This is expected as the inlining of ChainedH24 helps to avoid caches

misses for all occupied slots. Linear probing is, however, the top

performer. This is because low load factors allow for many in-place

insertions to the perfect slot.

In terms of lookup performance, we can also find a clear ranking

among the chained hashing variants. Here, ChainedH24 performs

best again. The superior performance of ChainedH24 is again eas-

ily explainable by the lower amount of pointer-chasing in the struc-

ture. We can also observe that between LP and ChainedH24, in

all cases, one of the two structures performs best — but each in

a different case and the order is typically determined by the ratio

of unsuccessful queries. For all successful lookups, LP outper-

forms, in all but one case, all variants of chained hashing. The

only exception is under the dense distribution at 25% load factor,

Figure 2(b). There, both methods are essentially equivalent be-

cause the amount of collisions is essentially zero. The difference

we observe is due to variance in code complexity and different di-

rectory sizes — smaller directories lead to better cache behavior.

Otherwise, in general, LP improves significantly over ChainedH24

if most queries are successful. In turn, ChainedH24 improves over

LP, also by a significant amount in general, if most lookups are un-

successful. We typically find the crossover point at around 50%
unsuccessful lookups. Interestingly, in some cases we can even

observe ChainedH8 performing slightly better than LP for 100%

unsuccessful lookups. This is explainable because even when colli-

sions are rare, primary clusters can build up in linear probing (think

of a continuous sequence of perfectly placed elements). For ev-

ery unsuccessful query, LP has to scan until it finds an empty slot,

and as the amount of unsuccessful queries increases, LP becomes

considerably slower. If the unsuccessful query falls into a primary

cluster, chained hashing answers right away if it detects and empty

slot, or it will follow the linked list until the end. However, linked

lists are very short on average. The highest observed collision rate

is ≈ 34% (sparse distribution at 45% load factor). This means that,

at most, roughly one-third of the elements are outside the directory.

Under the probabilistic properties of Mult, it can be argued that the

linked list in chained hashing are in expectation of length at most 2,

and thus chained hashing follows on average at most two pointers.

We can conclude that, at low load factors (< 50%), LPMult

is the way to go if most queries are successful (≥ 50%), and

ChainedH24 must be considered otherwise.

102

0

10

20

30

40

50

60

70

D
e
n
s
e
 d

is
tr

ib
u
ti
o
n

(a)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

Insertions

ChainedH24Mult
ChainedH24Murmur

CuckooH4Mult
CuckooH4Murmur

LPMult
LPMurmur

QPMult
QPMurmur

RHMult
RHMurmur

(b)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

Lookups (Hash tables at 50% load factor)

(c)

Lookups (Hash tables at 70% load factor)

(d)

Lookups (Hash tables at 90% load factor)

0

10

20

30

40

G
ri
d
 d

is
tr

ib
u
ti
o
n

(e)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

(f)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

(g) (h)

0

10

20

30

40

50 70 90

S
p
a
rs

e
 d

is
tr

ib
u
ti
o
n

(i)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

Load factor (%)

0 25 50 75 100

(j)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

Unsuccessful queries (%)

0 25 50 75 100

(k)

Unsuccessful queries (%)

0 25 50 75 100

(l)

Unsuccessful queries (%)

Figure 4: Insertion and lookup throughputs, open-addressing variants and chained hashing, under three different distributions at load factors 50%, 70%, 90%

from 230. Higher is better. Memory consumption for all open-addressing schemes is 16 GB, and 16.4 GB for ChainedH24.

5.2 High load factors: 50%, 70%, 90%
In our second set of experiments we study the performance of

hash tables when space efficiency is required, and thus we are not

able to use hash tables at low load factors. That is, we stress the

hash tables to occupy up to 90% of the space assigned to them

(chained hashing is allowed up to 10% more). We decided to use

Cuckoo hashing on four tables, rather than on two or three tables,

because this version of Cuckoo hashing is known to achieve load

factors as high as 96.7% [9, 12] with high probability. In contrast,

Cuckoo hashing on two and three tables have stable load factors of

< 50 and up to ≈ 88% respectively [18]. This means that if in

practice we want to consider very high load factors (≥ 90%), then

Cuckoo hashing on four tables is the best candidate. An overview

of the absolute best performers w.r.t. the other two capacities (small

and medium) is given as a table in Figure 6.

Discussion. Let us first start with a general discussion about the im-

pact of distributions and hash functions on both, insert and lookup

performance across all tables. Our first important observation is

that Multiply-shift (Mult) performs essentially always better than

Murmur hashing in this experiment. We can conclude from this

that, overall, the improved quality of Murmur over Mult does not

justify the higher computational effort. Mult seems already good

enough to drive our five considered hash tables: ChainedH24, LP,

QP, RP, and CuckooH4 up to the significantly high load factor of

90% — observe that no hash table is the absolute best using Mur-

mur, see all plots of Figure 4. Another interesting observation is

that, while we can see a significant variance in throughput under

Mult across different data distributions — compare for example

the throughputs of dense and sparse distributions under Mult —

this variance is minimal under Murmur. This indicates that Mur-

mur provides a very good randomization of the input data, basi-

cally transforming all input distribution into a distribution that is

very close to uniform, and hence the distribution seems not to have

much effect under Murmur 9. However, sensitivity of a hash func-

tion to certain data distributions is not necessarily bad. For exam-

ple, under the dense distribution10 Mult is known [15] to produce an

approximate arithmetic progression as hash codes, which reduces

collisions. For a comparison, just observe that the dense distribu-

tion achieves higher throughputs than the sparse distribution that is

usually considered as an unbiased reference of speed. We have ob-

served that the picture does not easily change, even in the presence

of a certain degree of gaps in the sequence of dense keys. Overall

this makes Mult a strong candidate for dense keys, which appear

very often in practice, e.g., for generated primary keys. In contrast

to that, Mult is slightly slower on the grid distribution compared

to the sparse distribution. We could observe that Mult produces

indeed more collisions than the expected amount on uniformly dis-

tributed keys. However, this larger amount of collisions does not

get highly reflected in the observed performance. Thus, we con-

sider Mult as the best candidate to be used in practice when

quality results on high throughputs is desired, but at the cost of

a high variance across data distributions.

Let us now focus on the difference between the hash tables.

In general, it can immediately be seen that all open-addressing

schemes, except CuckooH4, are better than ChainedH24 in almost

all cases for up to 50% unsuccessful lookups, see Figure 4 (a, b,

9We observed the same for Tab.
10Actually under a generalized dense distribution of keys following
an arithmetic progression k, k + d, k + 2d, . . .

103

e, f, i, j). And only for the degenerated case of 100% unsuccessful

lookups, ChainedH24 is the overall winner — for the same reasons

as for low load factors. ChainedH24 is removed from the compari-

son for load factors > 50% because it exceeds the memory limit.

Between open-addressing schemes, things are more interesting.

On insertions (leftmost column of Figure 4), we can observe a

rather clear ranking among methods that holds across all distribu-

tions and load factors. CuckooH4 is showing a very stable insert

performance that is only slightly affected by increasing load fac-

tors. However, this performance is rather low. We can explain this

result by the expensive reorganization that happens during Cuckoo

cycles, and can often incur into several cache misses (whenever an

element is moved between the tables) for a single insert. Unsurpris-

ingly, LP, QP, and RH show rather similar insert performance char-

acteristics because their insertion algorithm is very similar. Starting

with high performance at 50% load factors, this performance drops

significantly as the load factor increases. However, even under a

high load factor, linearly and quadratically probing a hash table

seems to be very effective. Among the three methods, we observe

that RH is in general slightly slower than LP and QP. This is be-

cause RH performs small reorganizations on already inserted ele-

ments. However, these reorganizations often stay within one cache

line, and thus the decrease in performance stays typically within

less than 10%. With respect to QP and LP, the following are the

most relevant observations. QP and LP have very similar inser-

tion throughput for low load factors (up to 50). For higher load

factors, when the difference in collision handling plays a role: ()

LPMult is considerable faster than QPMult under the dense distri-

bution of keys (45M insertions/second versus 35M insertions/sec-

ond — Figure 4(a)), and () QP (Mult/Murmur) is faster than LP

(Mult/Murmur) otherwise. This is explainable: for () it suffices

to observe that a dense distribution is the best case for LPMult –

since Mult produces an approximate arithmetic progression (very

few collisions). The best way to lay out an (approximate) arith-

metic progression, in order to have better data locality, is to do so

linearly, just as LP does. We could also observe that when pri-

mary clusters start appearing, they appear well distributed across

the whole table, and they have similar sizes. Thus no cluster is ar-

bitrarily long, which is good for LP. On the other hand, QP touches

a new cache line in every probe subsequent to the third, and touch-

ing a new cache line results usually in a cache miss. Data locality

is thus not optimal. For () the argument complements (). Data is

distributed more randomly, by the hash function, across the table.

This causes an increment in collisions w.r.t. the combination 〈dense

distribution + Mult〉. For high load factors this increment in colli-

sions means considerable long primary clusters that LP has to deal

with. In this case, QP is a better strategy to handle collisions since

it scatters collisions more sparsely across the table, and chances to

find empty slots fast, over the whole sequence of insertions, are

better than in LP with considerable long primary clusters.

For lookups we can find a similar situation as for inserts. LP,

QP, and RH perform better than CuckooH4 in many situations, i.e.,

up to relatively high load factors. However, the performance of the

former three significantly decreases with () higher load factors and

() more unsuccessful lookups. We could observe that from a load

factor of 80% on, CuckooH4 clearly surpasses the other methods.

In general, LP, QP, and RH are better in dealing with higher colli-

sion rates than Cuckoo hashing, which is known to be negatively af-

fected by “weak” hash functions [19] such as Mult. However, these

“weak” hash functions affect only during the construction of the

hash table, since once the hash table is constructed, then lookups in

Cuckoo hashing are performed in constant time (four cache misses

at most for CuckooH4). As such, Cuckoo hashing is also less af-

fected by unsuccessful lookups than LP, QP, and RH. However, it

seems that we can benefit from CuckooH4 only on very high load

factors ≥ 80%.

As expected, the more complex re-organization that RH per-

forms on the keys during insertions, see Section 2.4, can be seen

to pay off under unsuccessful lookups — RH is much less affected

by them than LP and QP. In RH, unsuccessful lookups can stop as

soon as the displacement of the search key is exceeded by another

key we encounter during the probe. Hence, RH does not necessarily

require a complete scan of all adjacent keys in the same cluster, and

can stop probing after less iterations than LP or QP. Clearly, this ad-

vantage of RH over LP and QP increases with higher load factors

and higher rates of unsuccessful lookups — significantly improv-

ing on the worst-case of the methods. However, in the best of cases,

i.e., when all lookups are successful, RH is slightly slower than

the competitors. This is also expected as RH does not improve on

the average displacement or amount of loaded cache lines w.r.t. LP

(clusters contain only different permutations of the elements therein

contained under RH and LP). When all lookups are successful, the

(small) performance penalty of RH is due to its slightly more com-

plex code. We can conclude that RH provides a very interest-

ing trade-off: for a small penalty (often within 1-5%) in peak

performance on the best of cases (all lookups successful), RH

significantly improves on the worst-case over LP in general, up

to more than a factor 4. Under the dense distribution — Figure 4

(a – c) — RH and LP have similar performance up to 70% load

factor, but for 90% load factor, RH is significantly faster than LP

(up to 40%) from 25% unsuccessful lookups on.

Across the whole set of experiments, RH is always among

the top performers, and even the best method for most cases.

This observation holds for all data set sizes we tested. In this re-

gard, Figure 6 gives an overview and summarizes the absolute best

methods we tested in this experiment under all capacities (small,

medium, and large). Methods are color-coded as in the curves

in the plots. Observe that patterns are nicely recognizable. For

lookups in general, RH seems to be an excellent all-rounder un-

less the hash table is expected to be very full, or the amount of

unsuccessful queries is rather large. In such cases, CuckooH4 and

ChainedH24 would be better options, respectively, if their slow in-

sertion times are acceptable. With respect to insertions, it is natural

not to see RH appearing more often, and certainly CuckooH4 and

ChainedH24 not at all, due to their complicated insertion proce-

dures. For insertions, QP seems to be the best option in general.

Even when LP or RH are sometimes better, the difference is rather

small, less than 10%.

6. READ­WRITE WORKLOAD (RW)
In RW we are interested in analyzing how growing (rehashing)

over a long sequence of operations affects overall throughput and

memory consumption. The set of operations we consider is the

following: insertions, deletions (all successful), and lookups (suc-

cessful and unsuccessful). In RW we let the hash tables grow

over a set of 1000 million operations that appear in random order.

Each hash table initially contains 16 millions keys11. We set the

insertion-to-deletion ratio (updates) to 4:1 (20% deletions), and the

successful-to-unsuccessful-lookup ratio to 3:1 (25% unsuccessful

queries). For this kind of workload we present here only the re-

sults concerning the sparse distribution of keys. We consider three

different thresholds for rehashing: at 50%, 70%, and 90%. Re-

hashing at 50% allows us to always have enough empty slots, and

thus also less collisions. However, this also means a potential loss

11In the beginning (no updates), the hash tables have a load factor
of roughly 47%.

104

0

5

10

15

20

25

30

0 5 25 50 75 100

S
p
a
rs

e
 d

is
tr

ib
u
ti
o
n

(a)

M
 o

p
e

ra
ti
o

n
s
/s

e
c
o

n
d

Growing at 50% load factor
CuckooH4Mult

CuckooH4Murmur
LPMult

LPMurmur
QPMult

QPMurmur
RHMult

RHMurmur
Chained24HMult

Chained24HMurmur

0 5 25 50 75 100

(b)

Growing at 70% load factor

0 5 25 50 75 100

(c)

Growing at 90% load factor

0.0*10

5.0*10
3

1.0*10
4

1.5*10
4

2.0*10
4

2.5*10
4

3.0*10
4

3.5*10
4

0 5 25 50 75 100

(d)

M
e

m
o

ry
 f

o
o

tp
ri
n

t
[M

B
]

Update percentage (%)

0 5 25 50 75 100

(e)

Update percentage (%)

0 5 25 50 75 100

(f)

Update percentage (%)

Figure 5: 1000M operations of RW workload under different load factors and update-to-lookup ratios. For updates, the insertion-to-deletion ratio is 4:1. For
lookups, the successful-to-unsuccessful-lookup is ratio 3:1. The key distribution is sparse. Higher is better in performance, lower is better for memory.

L
oad

factor

Insertions

C
apacity

D
ist.

S
M
L

S
M
L

S
M
L

50%

70%

90%

50%

70%

90%

S
M
L

S
M
L

S
M
L

S
M
L

S
M
L

S
M
L

50%

70%

90%

Unsuccessful queries (%)

0% 25% 50% 75% 100%

CuckooH4Mult LPMult QPMult RHMult

56
46

126 91 114 188

80 63 61 64

72 85

57 56 58

52 47 49 52

63 73 103

50 51 53

59 51 53 58 66

44 46 51

37 27 2122

33 29 28 32

24 22 21 21

22 19 19 20 20

33 29 29 33

22 21 20 20

22 19 19 20 21

68 53 44 39 42

64 48 39 32 28

40 32 2326

30 26 26 31

20 19 19 19

18 16 16 16 16

30 26 26 30

20 19 19 19

18 16 15 16 16

D

e

n

s

e

G

r

i

d

S

p

a

r

s

e

72

113

25

20

18

104

57

77

28

26

19

18

76 56

75 48

60

28 30

345

346 113 71 62 63

124

90

5274

68109

67119

95212

183

289

56

290

169

30

44

43

46

35 2930

55

39

28

40

27

51

43

194

38
34

39
34

ChainedH24

Figure 6: Absolute best performers for the WORM workload (Section 5.2)
across distributions, different load factors, and different capacities: Small
(S), Medium (M) and Large (L). Throughput of the corresponding hash
table is shown inside its cell in millions of operations per second.

in space since the workload might stop short after growing, and

thus up to 75% of the hash table could be empty. On the other

hand, rehashing at 90% deals with a large amount of collisions as

the table gets full, but then we potentially waste less space. In ad-

dition to that, high load factors will incur into slow lookup times

before a rehash. Observe again that by the natural load factors of

Cuckoo hashing on two and three tables, Cuckoo hashing on four

tables is the best candidate again for controlling at what load factor

the hash table must rehash. For chained hashing, similar to the sit-

uation in WORM, we present here only the case where rehashing

is performed at 50% load factor. This is the only case in which we

can keep memory consumption of chained hashing (ChainedH24)

comparable to what the open-addressing schemes require. The re-

sults of these experiments are shown in Figure 5.

Discussion. With respect to the performance in the WORM sce-

nario on high load factors — Section 5.2 — the outcome of the

RW comparison offers few surprises. One of these surprises is

to see that ChainedH24 offers better performance than CuckooH4

(50% load factor only), and sometimes even by a large margin.

They both, however, lag clearly behind the other (open-addressing)

schemes. As RW workload is write-heavy, what we see in the

plots is mostly the cost of table reorganization (rehashing) — ex-

cept for data points at 0% updates. In that case, what we see are

only lookups with 25% of unsuccessful queries, see Figure 4(j) for

a comparison. For CuckooH4 the gap narrows as the load factor

increases, see Figure 5(c), but is not enough to become really com-

petitive with the best performers — which are at least twice as fast

as the updates become more frequent. As a conclusion, although

memory requirements of ChainedH24 and CuckooH4 are com-

petitive with that of the other schemes in a dynamic setting,

both — chained and Cuckoo hashing — should be avoided for

write-heavy workloads.

We can also see that Mult governs again over Murmur on all

hash tables — Figure 5 (a – c). Which is to be expected since

the hash tables rehash many times and thus hash function com-

putations are fundamental. Also, we always find LP, QP, and RH

as the fastest methods, and often with very similar performance.

Growing at 50% load factor — Figure 5(a) — the difference in

throughput of all three methods is mostly within the boundary of

variance. In case of high update percentage (> 50%), we can ob-

serve a small performance penalty for RH in comparison to LP and

QP, which is due to the slightly slower insert performance that we

already observed in the WORM benchmark, see Figure 4(i). This

is expected because at 50% load factor, there are few collisions,

and more sophisticated strategies for handling collisions can not

benefit as much. At 70% and 90% load factors — Figures 5(b)

and 5(c) — all three methods are getting slower, and we can also

observe a clearer difference between them because different strate-

gies have an impact now. Interestingly, with increasing load factor

and update ratios, QP is showing the best performance, with LP

being second and RH in third place. This is consistent with our

105

observation in the WORM experiment that QP is best for inserts on

high load factors and RH is typically the slowest. As a conclusion,

in a write-heavy workload, quadratic probing looks as the best

option in general.

7. ON TABLE LAYOUT: AOS OR SOA
One fundamental question in open-addressing is whether to or-

ganize the table as an array-of-structs (AoS) or as a struct-of-arrays

(SoA). In AoS, the table is internally represented as array of key-

value pairs whereas SoA keeps keys and values separated in two

corresponding, aligned arrays. Both variants offer different perfor-

mance characteristics and tradeoffs. These tradeoffs are somewhat

similar to the difference between row and column layout for storing

database tables. In general, we can expect to touch less cache-lines

for AoS when the total displacement of the table is rather low, ide-

ally just one cache line. In contrast to that, SoA already needs to

touch at least two cache lines for each successful probe (one for the

key and one for the value) in the best case. However, for high dis-

placement (and hence longer probe sequences) SoA layout offers

the benefit that we can just search through keys only, thus scan-

ning up to only half the amount of data compared to AoS, where

keys and values are interleaved. Another advantage of SoA over

AoS is that a separation of keys from values makes vectorization

with SIMD easy, essentially allowing us to load and compare four

densely packed keys at a time on 256-bit SIMD registers as offered

on current AVX-2 platforms. In contrast to that, comparing four

keys in AoS with SIMD requires to first extract only the keys from

the key-value pairs into the SIMD register, e.g., by using gather-

scatter vector addressing which we found to be not very efficient on

current processors. Independent of this, AoS also needs to touch up

to two times more cache lines for long probe sequences compared

to SoA when many keys are scanned.

In the following, we present a micro-benchmark to illustrate the

effect of different layout and SIMD for inserts and lookups in lin-

ear probing. Since our computing server does not support AVX-

2 instructions, we ran this micro-benchmark on a new MacBook

Pro as described in Section 4. We implemented key comparisons

with SIMD instructions for lookup and inserts on top of our exist-

ing linear probing hash tables by manually introducing intrinsics

to our code. For example, in AoS, we load four keys at a time

to a SIMD register from an cache-line-aligned index, using the

_mm256_load_si256 command. Then we perform a vector-

ized comparison on the four keys using _mm256_cmpeq_epi64

and, in case of one successful comparison, obtain the first matching

index with _mm256_movemask_pd.

We compare LPMult in AoS layout against LPMult in SoA lay-

out with and without SIMD on a sparse data set. Similar to the

indexing experiment of Section 5.2, we measure the throughput for

insertions and lookups for load factors 50, 70, 90%. Due to the lim-

ited memory available on the laptop, we use the medium table ca-

pacity of 227 slots — 2 GB. This still allows us to study the perfor-

mance outside of caches, where we expect layout effects to matter

most, because touching different cache lines typically triggers ex-

pensive cache misses. Figure 7 shows the results of the experiment.

Discussion. Let us start by discussing the impact of layout without

using SIMD instructions, methods LPAoSMult and LPSoAMult in

Figure 7. For inserts (Figure 7(a)), AoS performs up to 50% better

than SoA, on the lowest load factor (50%). This gap is slowly

closing with higher load factors, leaving AoS only 10% faster than

SoA on load factor 90%. This result can be explained as follows.

When collisions are rare (as on load factor 50), SoA touches two

times more cache lines than AoS — it has to place key and value in

different locations. In contrast to that, SoA can fit up to two times

more keys in one cache line than AoS, which improves throughput

for longer probes sequences when searching empty slots under high

load factors. However, when beginning inserting into an empty

hash table, we can often place the entry into its hash bucket without

any further probing. Only over time we will require more and more

probes. Thus, in the beginning, there is a high number of insertions

where the advantage of AoS has higher impact. This is also the

reason why the gap in insertion throughput between AoS and SoA

significantly narrows as the load factor increases.

For lookups (Figures 7(b — d)) we noticed overall that AoS is

faster than SoA on short probe sequences, i.e., especially for low

load factors and low rates of unsuccessful queries. On the lowest

load factor (50%, Figure 7(b)), we can see that in the best case

(all queries successful) AoS typically encounters half the num-

ber of cache misses compared to SoA, because keys and values

are adjacent. This is reflected in a 63% higher throughput. With

increasing unsuccessful lookup rate, the performance of SoA ap-

proaches AoS and the crossover point lies around 75% unsuccess-

ful lookups. For 100% unsuccessful lookups, AoS improves over

SoA by 15%. For load factor 70% (Figure 7(c)), AoS is again supe-

rior to SoA for low rates of unsuccessful queries, but the crossover

point at which SoA starts being beneficial shifted to 25% unsuc-

cessful queries instead of 75% of the 50% load factor. Interest-

ingly, we can observe that for load factor 90% (Figure 7(d)), the

advantage of SoA over AoS layout is unexpectedly low — with the

highest difference observed being around 30% instead of close to

a factor 2 as we could expect. Our analysis obtained a combina-

tion of three different factors that explain this result. First, even

in the extreme case of 100% unsuccessful lookups, the difference

in touched caches lines is not a factor 2. The combination 〈sparse

distribution, Mult〉 simulates the ideal case that every key is uni-

formly distributed over the hash table. Thus, we know [15] that

the average number of probes in an unsuccessful search in linear

probing is roughly 1
2

(

1 +
(

1
(1−α)2

))

, where α is the load factor

of the table. Thus, for 90% load factor the average probe length is

roughly 50.5 (we could verify this experimentally as well). Now,

in AoS we can pack four key-value pairs into a cache line, and

twice as much (eight) for SoA. This means that the average num-

ber of loaded cache lines in AoS and SoA is roughly 50.5
4

and 50.5
8

respectively. However, in practice this behaves like ⌈ 50.5
4

⌉ = 13

and ⌈ 50.5
8

⌉ = 7 respectively — since whole cache lines are loaded.

Which means that AoS loads only roughly 1.85× more caches lines

as SoA — which we were also able to verify experimentally. In

addition to that, a second factor are non-uniform costs of visiting

cache lines. We observed that the first probe in a sequence is typi-

cally more expensive than the subsequent linear probes because the

first probe is likely to trigger a TLB miss and a page walk, which

amortizes over visiting a larger amount of adjacent slots. The third

factor is that, independent from the number of visited cache lines,

the number of hash computations, loop iterations, and key compar-

isons are identical for SoA and AoS. Those parts of the probing

algorithm involve data dependencies that build up a critical path

in the pipeline, which is not easily hidden in the load latency by

modern processors and compilers. In conclusion, the ideal ad-

vantages of SoA over AoS are less strong in practice due to the

way hardware works.

We now proceed to discuss the impact of SIMD instructions in

both layouts. In general, SIMD allows us to compare up to four

8-byte keys (or half a cache line) in parallel, with one instruction.

However, this parallelism typically comes at a small price because

loading keys into SIMD registers and generating a memory address

from the result of SIMD comparison (e.g., by performing count-

106

0

5

10

15

20

25

30

35

40

50 70 90M
e
d
iu

m
 c

a
p
a
c
it
y
 -

 2
2
7
 s

lo
ts

S
p

a
rs

e
 d

is
tr

ib
u

ti
o

n
(a)

M
 i
n

s
e

rt
io

n
s
/s

e
c
o

n
d

Load factor (%)

Insertions

0 25 50 75 100

(b)

M
 l
o

o
k
u

p
s
/s

e
c
o

n
d

Unsuccessful queries (%)

Lookups (Hash tables at 50% load factor)

0 25 50 75 100

(c)

Unsuccessful queries (%)

Lookups (Hash tables at 70% load factor)

0 25 50 75 100

(d)

Unsuccessful queries (%)

Lookups (Hash tables at 90% load factor)

LPAoSMult
LPAoSMultSIMD

LPSoAMult
LPSoAMultSIMD

Figure 7: Effect of layout and SIMD in performance of LPMult at load factors 50, 70, 90% w.r.t. 227 under a sparse distribution of keys. Higher is better.

trailing-zeros on a bit mask) potentially introduce a small overhead

in terms of instructions. In case of writes that depend on address

calculation based on the result of SIMD operations, we could even

observe expensive pipeline stalls. Hence, in certain cases, SIMD

can actually make execution slower, e.g., see Figure 7(a). For lower

load factors, using SIMD for insertions can decrease performance

significantly for both AoS and SoA layout, by up to 64% in the

extreme case. However, there is a crossover point between SIMD

and non-SIMD insertions around 75% load factor. We found that

in such cases, SIMD is up to 12% faster than non-SIMD.

For lookups, we can observe that SIMD improves performance

in almost all cases. We notice that in general, the improvement of

SIMD is higher for SoA than for AoS. As mentioned before, SoA

layout simplifies loading keys to a SIMD register, whereas AoS re-

quires us to gather the interleaved keys in a register. We observed

that on the Haswell architecture, gathering is still a rather expen-

sive operation and this difference gives SoA an edge over AoS for

SIMD. As a result, we find SoA-SIMD superior to plain SoA in

all cases for lookups, with improvement of up to up to 81% (Fig-

ure 7(b)). We observed that AoS-SIMD can be up to 17% harmful

for low load factors, but beneficial for high load factors.

In general, we could observe in this experiment that AoS is sig-

nificantly superior to SoA for insertions — even up to very high

load factors. Our overall conclusion is that AoS outperforms

SoA by a larger margin than the other way around. Inside

caches (not shown), both methods are comparable in terms of

lookup performance, with AoS performing slightly better. When

using SIMD, SoA has an edge over AoS — at least on current

hardware — because keys are already densely packed.

8. CONCLUSIONS AND FUTURE WORK
Due to the lack of space, we stated our conclusions in an inline

fashion throughout the paper. All the knowledge we gathered leads

us to propose a decision graph, Figure 8, that we hope can help

practitioners to decide more easily what hash table to use in practice

under different circumstances. Obviously, no experiment can be

complete enough to fully capture the true nature of each hash table

in every situation. Our suggestions are, nevertheless, educated as a

result of our large set of experiments, and we are confident that they

represent very well the behavior of the hash tables. We also hope

that our study makes practitioners more aware about trade-offs and

consequences of not carefully choosing a hash table.

9. REFERENCES
[1] V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A comparison of adaptive radix

trees and hash tables. In 31st IEEE ICDE, April 2015.

[2] A. Appleby. Murmurhash3 64-bit finalizer. Version 19/02/15.

https://code.google.com/p/smhasher/wiki/MurmurHash3.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu. Main-memory hash joins on

modern processor architectures. IEEE TKDE, 2014.

[4] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani,

S. Lightstone, and D. Sharpe. Memory-efficient hash joins. VLDB, 8(4), 2014.

[5] P. Celis. Robin Hood Hashing. PhD thesis, University of Waterloo, 1986.

Load factor

< 50%?

Start
No

≥ 50%

Successful

lookups?

Yes

Yes
No

No

Read or write?

ChainedH24

LPMult

QPMult

Dynamic?

Load factor?

No

> 70%

≤ 70%

RHMult

CH4Mult

Reads ≥ Writes

No

Dense

distribution?

Writes > Reads

Yes

Yes

Unsuccessful

lookups?

Dense

distribution?

Yes

No

Load factor?

Load factor?

≥ 90%

< 90%

No

Yes ≥ 80%

YesUnsuccessful

lookups?

No
< 80%

Figure 8: Suggested decision graph for practitioners.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, MA, USA, 1990.

[7] M. Dietzfelbinger. Universal hashing and k-wise independent random variables

via integer arithmetic without primes. In STACS, pages 569–580, 1996.

[8] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable

randomized algorithm for the closest-pair problem. Journal of Algorithms,

25(1):19 – 51, 1997.

[9] M. Dietzfelbinger and R. Pagh. Succinct Data Structures for Retrieval and

Approximate Membership, volume 5125, pages 385–396. LNCS, 2008.

[10] M. Dietzfelbinger and U. Schellbach. On risks of using cuckoo hashing with

simple universal hash classes. In SODA, pages 795–804, 2009.

[11] M. Drmota and R. Kutzelnigg. A precise analysis of cuckoo hashing. ACM

Trans. Algorithms, 8(2):11:1–11:36, Apr. 2012.

[12] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with

worst case constant access time. Theory of Comp. Sys., 38(2):229–248, 2005.

[13] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.

Lee, S. A. Brandt, and P. Dubey. Fast: Fast architecture sensitive tree search on

modern cpus and gpus. In ACM SIGMOD, pages 339–350, 2010.

[14] D. Knuth. Notes on ”open” addressing. Unpublished Memorandum, 1963.

[15] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting

and Searching. Addison Wesley, 1998.

[16] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and A. Kemper. Massively

Parallel NUMA-Aware Hash Joins, pages 3–14. LNCS, 2015.

[17] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing

for main-memory databases. In 29th IEEE ICDE, pages 38–49, April 2013.

[18] M. Mitzenmacher. Some Open Questions Related to Cuckoo Hashing, volume

5757, pages 1–10. LNCS, 2009.

[19] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122–144, 2004.

[20] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing. J. ACM,

59(3):14:1–14:50, June 2012.

[21] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search on modern processors. In

DaMoN Workshop, pages 52–60. ACM, 2009.

[22] M. Thorup. String hashing for linear probing. In 20th ACM-SIAM SODA, pages

655–664, 2009.

[23] A. Viola. Analysis of hashing algorithms and a new mathematical transform.

University of Waterloo, 1995.

107

https://code.google.com/p/smhasher/wiki/MurmurHash3

	Introduction
	Our Contributions

	Hashing Schemes
	Chained Hashing
	Linear Probing
	Quadratic Probing
	Robin Hood Hashing on LP
	Cuckoo Hashing

	Hash Functions
	Multiply-shift
	Multiply-add-shift
	Tabulation hashing
	Murmur hashing

	Methodology
	Setup
	Measurement and Analysis
	Data distributions
	Narrowing down our result set
	On load factors for chained hashing

	Write-once-read-many (WORM)
	Low load factors: 25%, 35%, 45%
	High load factors: 50%, 70%, 90%

	Read-write workload (RW)
	On table layout: AoS or SoA
	Conclusions and future work
	References

