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A seven-layer convolutional neural network for chest CT 
based COVID-19 diagnosis using stochastic pooling 
Yu-Dong Zhang, SMIEEE, Suresh Chandra Satapathy, SMIEEE, Li-Yao Zhu, Juan Manuel Górriz, Shui-Hua Wang, SMIEEE, 

Abstract—(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an 
effective imaging sensor system to make accurate diagnosis. (Method) This paper proposed a novel 
seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis 
(7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and 
introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-
fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 
94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 
7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art 
algorithms. The data augmentation and stochastic pooling methods are proven to be effective. 

Index Terms—deep learning; convolutional neural network; data augmentation; stochastic pooling; COVID-19 

1 Introduction 

COVID-19 (also known as coronavirus) was declared a 
Public Health Emergency of International Concern on 
30/01/2020, and declared as a pandemic on 11/03/2020.  

Till 2/Sep, this COVID-19 pandemic caused 25.8 million 
confirmed cases and 858.2 thousand death tolls (US 187.4k 
deaths, Brazil 122.5k deaths, India 66.3k deaths, Mexico 65.2k 
deaths, UK 41.5k deaths, etc.) 

Global economy experienced negative effects from COVID-
19. For example, Balsalobre-Lorente, et al. [1] analyzed
consequences of COVID-19 on the social isolation of Chinese
economy. Chaudhary, et al. [2] presented reflections for policy
and program of the effect of COVID-19 on economy in India.

Two prevail diagnosis are available. One is viral testing via a 
nasopharyngeal swab to test the presence of viral RNA 
fragments [3]. Another is imaging methods, among which the 
chest computed tomography (CCT) [4] is one of the imaging 
devices that can provide the highest sensitivity. The CCT uses 
X-ray generator and X-ray sensors that rotate around the
subjects.

The main biomarkers in CCT differentiating COVID-19 

from healthy people are the asymmetric peripheral ground-glass 
opacities (GGOs) without pleural effusions [5]. This study 
collects those CCT slices. 

However, manual interpretation by radiologists is tedious and 
easy to be influenced by inter-expert and intra-expert factors 
(such as fatigue, emotion, etc.). Smart diagnosis systems via 
computer vision and artificial intelligence can benefit patients, 
radiologists, experts and hospitals. Traditional artificial 
intelligence (AI) and modern deep learning (DL) methods have 
achieved excellent results in analyzing medical images, e.g., Lu 
[6] proposed a radial-basis-function neural network (RBFNN)
to detect pathological brains. Yang [7] presented a kernel-based
extreme learning classifier (K-ELM) to create a novel
pathological brain detection system. Their method was robust
and effective. Lu [8] proposed a novel extreme learning
machine trained by the bat algorithm (ELM-BA) approach. Li
and Liu [9] introduced the real-coded biogeography-based
optimization (RCBBO) to detect diseased brains. Jiang [10]
used a six-layer convolutional neural network (6L-CNN) to
recognize sign language fingerspelling. Szegedy, et al. [11]
presented the GoogleNet. Yu and Wang [12] suggested the use
of ResNet18 for mammogram abnormality detection.
Furthermore, some smart health systems gained success in
emotion-aware security [13], authentication [14], and IoT [15].

We proposed a novel 7-layer convolutional neural network 
for COVID-19 diagnosis (7L-CNN-CD). To improve its 
performance, three improvements were proposed in this study: 
(i) A 12-way data augmentation (DA-12) was proposed; (ii)
Stochastic pooling was introduced to replace traditional pooling
methods;

2 Dataset 

Image acquisition CT configuration and method: Philips 
Ingenuity 64 row spiral CT machine, KV: 120, MAS: 240, layer 
thickness 3 mm, layer spacing 3 mm, screw pitch 1.5: lung 
window (W: 1500 HU, L: -500 HU) , Mediastinum window (W: 
350 HU, L: 60 HU), thin layer reconstruction according to the 
lesion display, layer thickness and layer distance are 1mm lung 
window image. The patients were placed in a supine position, 
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breathing deeply after holding in, and conventionally scanned 
from the lung tip to the costal diaphragm angle.  

For each subject, 1-4 slices were chosen. Slice level selection 
(SLS) method was employed: For COVID-19 pneumonia 
patients, the slice showing the largest size and number of 
lesions was selected. For normal subjects, any level of the 
image can be selected. The resolutions of all images are 1,024 1,024 . Table 1 shows the demographics, where HC 
means healthy control. 

Table 1 demographics of subjects used in this study 
No. of subjects (m/f) No. of Images Age Range 

COVID-19 142 (95/47) 320 22-91 
HC 142 (88/54) 320 21-76 

When there are differences between the two analyses 𝒥 , 𝒥  , a superior doctor 𝒮   was consulted to reach a 
consensus. Suppose X means a CCT image scan, ℳ means the 
labelling of each individual expert, and the final labelling ℳ 
is obtained by ℳ 𝑋 ℳ 𝒥 ℳ 𝒥 ℳ 𝒥MV ℳ otherwise   (1.a) ℳ ℳ 𝒥 , ℳ 𝒥 , ℳ 𝒮   (1.b)
where MV denotes majority voting, ℳ   represents the 
labelling of all three experts. 

3 Methodology 

Table 8 shows the abbreviations and their full names for ease 
of understanding of our methodology part. 

3.1 Preprocessing 

(a) A raw COVID-19 image (b) Preprocessing 
Figure 1 Preprocessing on raw dataset 

The original dataset containing 320 COVID-19 images and 
320 HC images is symbolized as 𝑉 , each image is symbolized 
as 𝑣 𝑖 ∈ 𝑉 , 𝑖 1,2, ⋯ , 𝑛 640. We have 𝑉 𝑣 1 , 𝑣 2 , ⋯ , 𝑣 𝑖 , ⋯ , 𝑣 640   (2) 

Figure 1(a) shows a raw COVID-19 CCT image. Figure 1(b) 
shows the flowchart of our preprocessing procedure. First, we 
converted all color images to grayscale by only reserving the 
luminance information. The reason of performing grayscale is 
there is no need to store a grayscale image in three color 
channels. Directly inputting original RGB images to the neural 
network will increase the computation burdens. Thus, we get 
the grayscale image set 𝑉  as 

𝑉 𝒢 𝑉 |RGB → Grayscale𝑣 1 , 𝑣 2 , … , 𝑣 𝑖 , … 𝑣 640   (3)

where 𝒢 means the grayscale operation. 
Second, histogram stretching (HS) method was used to 

increase every slice’s contrast. For i-th image 𝑣 𝑖 , 𝑖1,2, ⋯ ,640, we first calculate their minimum grayscale value 𝜇 𝑣 𝑖   and maximum grayscale value 𝜇 𝑣 𝑖  
respectively by 𝜇 𝑣 𝑖 min , 𝑣 𝑖|𝑥, 𝑦  (4.a) 𝜇 𝑣 𝑖 max , 𝑣 𝑖|𝑥, 𝑦  (4.b) 
here (x, y) means coordinates of pixel of the image 𝑣 𝑖 . The 
new histogram stretched image 𝑣 𝑖  is obtained by 𝑣 𝑖  (5.a) 𝑉 𝐻𝑆 𝑉𝑣 1 , 𝑣 2 , ⋯ , 𝑣 𝑖 , … 𝑉 640   (5.b)

In all, we get the histogram stretched image set 𝑉  as above. 
Third, we crop the images to remove the texts at the margin 

areas, and the checkup bed at the bottom area. Thus, we get the 
cropped dataset 𝑉  as 𝑉 𝐶 𝑉 , top, bottom, left, right𝑣 1 , 𝑣 2 , ⋯ , 𝑣 𝑖 , ⋯ , 𝑣 640   (6.a) top bottom left right 150  (6.b) 
where C represents crop operation. Four crop variables: top, 
bottom, left, and right means the pixels to be removed during 
crop operation. In this study all their values equal 150. Now the 
size of each image is reduced from 1024 1024  to 724724. 

Fourth, we downsampled each image to size of [256, 256], 
and we now get the resized image set 𝑉  as 𝑉 ⇓ 𝑉 , 256 256𝑣 1 , 𝑣 2 , … , 𝑣 𝑖 , … 𝑣 640   (7)

where ⇓: 𝑥 ↦ 𝑦  means the downsampling (DS) function, 
where y is a downsampled image of original image x. 

Table 2 compares the size and storage of each image 𝑣 𝑖 , 𝑠 1, ⋯ ,5, 𝑖 1, ⋯ ,640  at every preprocessing step. 
We can see here after preprocessing procedure, each image will 
only cost about 2.08% of its original storage or size. The 
compression ratio (CR) rates of i-th image of final state 𝑉  to 
original stage 𝑉  were calculated by following equation. CR 𝑖 ,, , 2.083%  (8.a) CR 𝑖 ,, , 2.083%  (8.b) ∀𝑖 ∈ 1,640 , CR 𝑖 CR 𝑖   (8.c) 

We can see here the storage CR equals size CR for any i-th 
image. Figure 2 shows two samples from the preprocessed 
dataset 𝑉 . 

Table 2 Image size and storage per image at each preprocessing step 
Preprocess Symbol Size 

(per image) 
Storage 
(per image) 

Original 𝑣 𝑖  1024 1024 3 3,145,728 12,582,912 
Grayscale 𝑣 𝑖  1024 1024 1 1,048,576 4,194,304 
HS 𝑣 𝑖  1024 1024 1 1,048,576 4,194,304 
Crop 𝑣 𝑖  724 724 1 524,176 2,096,704 
DS 𝑣 𝑖  256 256 1 65,536 262,144 

Original CCT Image 
Set V1

Histogram Stretched  V3

Margin Cropped V4

Down-sampled V5

Grayscaled V2
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(a) COVID-19 (b) HC
Figure 2 Two samples of preprocessed dataset 𝑽𝟓 

3.2 Improvement I: Data Augmentation 

Figure 3 Illustration of our DA-14 

Generally, the CCT image set faces small-size dataset (SSD) 
and lack of generalization (LoG) problems. To break the curse 
of SSD and LoG, there are four possible types of solutions: (i) 
data generation (DG); (ii) regularization approach (RA), (iii) 
ensemble approach (EA); and (iv) data augmentation (DA). All 
those DG, RA, EA, and DA methods are effective in handling 
SSD and LoG problems. 

We proposed a 14-way DA method, as shown in Figure 3. We 
will use 10-fold cross validation technique. Suppose the 
preprocessed CCT image set 𝑉  will split into ten folds, nine 
of which form the training set B, and the rest forms test set C. 

𝑉 : 1st trial⎯⎯ 𝐵 , 𝐶⋯
10th trial⎯⎯⎯ 𝐵 , 𝐶   (9.a) 

‖𝐵 𝐶 ‖ ‖𝑉 ‖, ∀𝑟 ∈ 1,10   (9.b)
where ‖𝑥‖  means the cardinality of the set x. For ease of 
reading, we ignore the run-index r in following texts, and just 
simplify the situations as 𝑉 ⎯ 𝐵, 𝐶  , and we assume B

contains ‖𝐵‖ images 𝑏 𝑘 ∈ 𝐵, 𝑘 1, ⋯ , ‖𝐵‖  (10) 
For each image 𝑏 𝑘 , we shall define all the 14 different DA 
operations.  

(i) Rotation. Rotation angle 𝛾 ⃗ was in the value from -30°
to 30° in increase of 2°, skipping the value of 𝛾 0, since it 
corresponds to the original image 𝑏 𝑘 . 𝑏 𝑘⃗ rotate 𝑏 𝑘 , 𝛾 ⃗𝑏 𝑘, 𝛾 , 𝑏 𝑘, 𝛾 , ⋯ , 𝑏 𝑘, 𝛾  (11) 

where the rotation factor vector 𝛾 ⃗ is defined as 

𝛾 30°, 𝛾 28°, ⋯ , 𝛾 2°  (12.a) 𝛾 2°, 𝛾 4° ⋯ , 𝛾 30°  (12.b)
(ii) Scaling. All training CCT images were scaled with

scaling factor 𝛾 ⃗, the values of which vary from 0.7 to 1.3 
with increase of 0.02, skipping the value of 1. 𝑏 𝑘⃗ scale 𝑏 𝑘 , 𝛾 ⃗𝑏 𝑘, 𝛾 , … 𝑏 𝑘, 𝛾  (13) 

Where scaling factor vector 𝛾 ⃗ is defined as 𝛾 0.7, 𝛾 0.72, … , 𝛾 0.98  (14.a) 𝛾 1.02, 𝛾 1.04, … , 𝛾 1.3  (14.b) 
(iii) Noise injection (NI). The m-mean v-variance Gaussian

noises were added to the all CCT training images to produce 30 
new noised images. 𝑏 𝑘⃗ NI 𝑎 𝑘 , 𝑚 ⃗, 𝑣 ⃗𝑏 𝑘, 𝑚 , 𝑣 , … 𝑏 𝑘, 𝑚 , 𝑣  (15) 

where the mean and variance vector definition of noise are 
defined as 𝑚 𝑚 ⋯ 𝑚 0 , 𝑣 𝑣 ⋯𝑣 0.01. The values of 0 and 0.01 are default values of mean 
and variance of Gaussian noises, respectively. 

(iv) Random translation (RT). All CCT image 𝑏 𝑘  was
translated 30 times with random horizontal shift vector 𝛾 ⃗ and 
random vertical shift 𝛾 ⃗ 𝑏 𝑘⃗ RT 𝑏 𝑘 , 𝛾 ⃗, 𝛾 ⃗𝑏 𝑘, 𝛾 , 𝛾 , … 𝑏 𝑘, 𝛾 , 𝛾 (16)

where the values of  𝛾 ⃗ and  𝛾 ⃗ are in the range of [-15, 
15], and obey uniform distribution ℕ. ∀𝑗 ∈ 1,30 , 𝛾 ~ℕ 15,15𝛾 ~ℕ 15,15  (17) 

(v) Gamma correction (GC). GC can help adjust the
contrast of original image [16]. The factor vector of GC 𝛾 ⃗ 
varied from 0.4 to 1.6 with increase of 0.04, skipping the value 
of 1. 𝑏 𝑘⃗ GC 𝑏 𝑘 , 𝛾 ⃗𝑏 𝑘, 𝛾 , … 𝑏 𝑘, 𝛾  (18) 

where the values of 𝛾 ⃗ is chosen as: 𝛾 0.4, 𝛾 0.44, ⋯ , 𝛾 0.96  (19.a) 𝛾 1.04, 𝛾 1.08, ⋯ , 𝛾 1.6  (19.b) 
(vi) Horizontal shear transform (HST). We will generate

30 horizontal shear transform (HST) images as 𝑏 𝑘⃗ HST 𝑏 𝑘 , 𝛾 ⃗𝑏 𝑘, 𝛾 , … 𝑏 𝑘, 𝛾  (20) 

where the HST values are assigned from -0.15 to 0.15 with 
increase of 0.01, skipping the value o 0 𝛾 0.15, 𝛾 0.14, … , 𝛾 0.01  (21.a) 𝛾 0.01, 𝛾 0.02, … , 𝛾 0.15  (21.b) 

(vii) Vertical shear transform (VST). Similarly, we
generate 30 vertical shear transform (VST) images as below. 
Besides, the values of VST factor vector 𝛾 ⃗ are the same as 𝛾 ⃗. 𝑏 𝑘⃗ VST 𝑏 𝑘 , 𝛾 ⃗𝑏 𝑘, 𝛾 , … 𝑏 𝑘, 𝛾  (22.a) 

DA(1-7)

DA(8-14)

Mirror
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𝛾 𝛾 , ∀𝑗 ∈ 1,30   (22.b) 
(viii) Mirror. The original image 𝑏 𝑘  is mirrored and we

obtain a new image 𝑏 𝑘 . Suppose M is the mirror function, 
we have 𝑏 𝑘 𝑀 𝑏 𝑘   (23) 

we define following operations: 

⎩⎪⎨
⎪⎧ 𝑏 𝑘⃗ 𝑀 𝑏 𝑘⃗𝑏 𝑘⃗ 𝑀 𝑏 𝑘⃗⋯𝑏 𝑘⃗ 𝑀 𝑏 𝑘⃗   (24) 

(ix) Concatenation. All the first seven DA results are
concatenated, and we have 𝑏 𝑘⃗

ℂ 𝑏 𝑘⃗ , 𝑏 𝑘⃗ , ⋯ , 𝑏 𝑘⃗ , 𝑏 𝑘⃗   (25) 

where ℂ means the concatenation. The size of 𝑏 𝑘⃗ is 30 7 210  images, then we have the results of 8-14 DA 
techniques as 𝑏 𝑘⃗ ℂ 𝑏 𝑘⃗  (26)
Finally, one original image 𝑏 𝑘   will yield to 365 images 
(containing itself) in the enhanced training set. 𝑏 𝑘⃗ ℂ 𝑏 𝑘 , 𝑏 𝑘⃗ , 𝑏 𝑘⃗   (27) 

3.3 Improvement 2: Stochastic Pooling 

In traditional CNN, the activation maps (AMs) are usually 
too large [17] (i.e., contain too many features) which will cause 
(i) overfitting of the training and (ii) large computational costs.
Thus, pooling layers (PLs) are frequently used to reduce the size
of AMs. Besides, PL could help guarantee the characteristics of
invariance-to-translation. There exist three generally-used
pooling techniques: (i) 𝑙   norm pooling (L2P); (ii) average
pooling (AP); and (iii) max pooling (MP). Assume pooling is a
function 𝑃: 𝒮 ↦ 𝑡.

L2P calculates the 𝑙   norm [18] of a given region 𝒮 . 
Suppose 𝒮 𝑠 𝑠𝑠 𝑠  (28) 

L2P output 𝑡  is defined as 𝑡 𝒮 𝑠𝑞𝑟𝑡 ∑ 𝑠, . 
In this study, we add a constant 1/4 under the square root to 
make it easier to compare with other pooling methods. This 
constant 1/4 does not influence training and inference. 𝑡 𝒮 ∑ ,  (29) 

The AP [19] calculates the mean value of region 𝒮 𝑡 𝒮 ∑ ,  (30) 
Finally, MP picks out the maximal value from region 𝒮 𝑡 𝒮 max , 𝑠   (31) 

Figure 4 A toy example of four pooling techniques 
(L2P = l2 norm pooling; AP = average pooling; MP =max pooling; SP = 

stochastic pooling) 

Figure 4 showcases the differences of our pooling methods, 
where we assume both pooling size and pooling stride equal 2. 
Observe the top left region 𝒮̅ , its vectorization is vec 𝒮̅6 9 2 6  . The calculation of L2P, AP, and MP are as 
below: 𝑡 𝒮̅ sqrt sqrt 6.26 , 𝑡 �̅� 5.75, 𝑡 �̅� max 6,9,2,6 9. 

The SP was invented to conquer the problems caused by 
aforementioned three pooling methods: L2P, MP and AP. Both 
L2P and AP does not work well, since all pixels in 𝒮  are 
considered by L2P and AP, thus they could reduce the values of 
strong activations because of other surrounding near-zero pixels. 
On the other hand, the MP elucidates this obstruction, although 
it simply overfits the training set and causes the LoG problem. 

Instead of computing the 𝑙   norm, average value or max 
value, the output of the SP 𝑡  is attained via sampling from a 
multinomial distribution [20] formed from the activations of 
each element in region 𝒮 [21]. 

(1) Reckon the probability 𝑝  of each element 𝑠 , ∀𝑖, 𝑗1,2 ∈ 𝒮. 𝑝 ,∑ ,   (32.a) ∑ 𝑝 ,, 1  (32.b) 
(2) Select a location 𝛼 within the 𝒮 in accordance with the

probability  𝑝 ∈ 𝒫 , calculated by scanning the 𝒮
from up to bottom and left to right [22].𝛼~ 𝑝 , 𝑝 , 𝑝 , 𝑝   (33) 

(3) The output is the value at location 𝛼.𝑡 𝒮 𝑠   (34)
We use the first block �̅�  in Figure 4 as an instance. The 

calculation procedures of SP are described below: 𝒫 �̅� 6 92 6 /∑ 6 92 6 0.26 0.390.09 0.26   (35) 
Thus, we get 𝛼 �̅� 2 2 , and 𝑡 �̅� 6 . Using the 
probability map 𝒫 �̅�  , we randomly select the position 𝛼2 2   associated with probability of 𝑝 0.26 . Thus, the 
output 𝑡 𝒮  of SP at region �̅� is 6. Instead of considering 
the max values barely or considering all the elements in the 
region, SP uses non-maximal activations randomly within the 
region 𝒮. 
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3.4 Measures and Indicators 

We set a 10-fold cross validation on the whole dataset 𝑉 . 
Each fold will contain 32 COVID-19 images and 32 HC images. 
Within each trial, the training set contains 288 288 576 
images, and the test set contains 32 32 64 images. After 
combining all the 10 trials, the test set will contain 640 images. 
The above 10-fold cross validation will run 10 times, and so the 
final report was based on 10 640 6,400 images. Table 3 
shows the split setting of our dataset. 

Table 3 Split setting of our dataset 
Set Percentage COVID-19 HC Total 
Training 𝐵  90% 288 288 576 
DA Training 121,248 121,248 242,496 
Test 𝐶  10% 32 32 64 
Total 100% 320 320 640 

This proposed seven-layer convolutional neural network for 
COVID-19 diagnosis (7L-CNN-CD) will be tested by 10 runs 
of 10-fold cross validation. Suppose the ideal confusion matrix 
D over the test set at t-th trial and r-th run is 𝐷 𝑡, 𝑟 32 00 32   (36) 
Where the value 32 can be found in the test row in Table 3. The 
value of 32 means the number of COVID-19 cases and the 
number of HC cases in the test set. After running through 1-10 
trials, and we get the confusion matrix of one-run 10-fold CV 
as 𝐷 𝑟 ∑ 𝐷 𝑡, 𝑟 320 00 320   (37) 

In realistic inference, we cannot get the perfect diagonal 
matrix, where all off-diagonal elements are zero. Suppose the 
confusion matrix at r-th run is 𝐷 𝑟 ∑ 𝐷 𝑡, 𝑟 𝑑 𝑟 𝑑 𝑟𝑑 𝑟 𝑑 𝑟  (38) 

Note 0 𝑑 320, ∀𝑖, 𝑗 1,2 in this study. Here 𝑑  and 𝑑   represent true positive (TP) and true negative (TN), 
respectively. Positive class (P) is COVID-19, and negative class 
(N) is healthy control. 𝑑   and 𝑑   represent false negative
(FN) and false positive (FP), respectively. We can define four
simple measures as𝛽 𝑟  (39.a) 𝛽 𝑟  (39.b) 𝛽 𝑟  (39.c) 𝛽 𝑟   (39.d) 𝜂 𝑟 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟   (39.e) 

Three advanced measures are defined below. F1 score is: 𝛽 𝑟 2
 (40) 

Matthews correlation coefficient (MCC) is defined as 𝛽 𝑟   (41.a) 𝜃 𝑟 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟𝑑 𝑟 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟   (41.b) 

Fowlkes–Mallows index (FMI) is defined as 𝛽 𝑟  (42) 

After combining 10 runs 𝑟 ∈ 1,10  , we can calculate the 
mean and standard deviation (SD) of all m-th ∀𝑚 ∈ 1,7  
measures as mean 𝛽 ∑ 𝛽 𝑟   (43.a) std 𝛽 ∑ 𝛽 𝑟 mean 𝛽  (43.b) 

3.5 Proposed 7L-CNN-CD Algorithm 

Figure 5 Structure of proposed 7-layer CNN 

Figure 5 presents the structure of proposed 7-layer CNN (7L-
CNN). After training, the network can be used to diagnose 
COVID-19 is called 7L-CNN-CD. The sizes of activation map 
are labelled at each cube in Figure 5. Table 4 shows the 
pseudocode of our 7L-CNN-CD model. Here we divide our 
algorithm into two phases: (I) Preprocessing and (II) 10 runs of 
10-fold cross validation.

Table 4 Pseudocode of our 7L-CNN-CD model 
Input: Original Image Set 𝑉  
Ground Truth: ℳ obtained from two junior and one senior radiologists. 
See Eq. (1.a) 
Phase I: Preprocessing 
Grayscale 𝑉 → 𝑉 . See Eq. (3) 
Histogram Stretching 𝑉 → 𝑉 . See Eq. (5.a) 
Image Crop 𝑉 → 𝑉 . See Eq. (6.a) 
Downsampling 𝑉 → 𝑉 . See Eq. (7) 
Phase II: 10 runs of 10-fold cross validation 
for 𝑟 1: 10 % r is run index 

Randomly split preprocessed set 𝑉  into 10 folds 𝑉 ⎯ 𝑉 1 , 𝑉 2 , ⋯ , 𝑉 10 , 
for t = 1:10 % t is trial index 

Step II.A: Training & Test Set 
Test Set. C is chosen as the t-th fold.  𝐶 𝑟, 𝑡 𝑉 𝑡 ; 
Training Set. B is chosen as the other folds. 𝐵 𝑟, 𝑡 𝑉 1 , ⋯ , 𝑉 𝑡 1 , 𝑉 𝑡1 , ⋯ , 𝑉 10 . 
Enhanced Training Set.  DA 𝐵 𝑟, 𝑡 , see equation (27). 

 

Step II.B: Create Initial CNN model 
Create an initial deep network 𝔼 𝑟, 𝑡   via 7L-
CNN model; 
Use SP to replace all pooling layers in 7L-CNN 
model. See equation (34). 

Step II.C Trained 7L-CNN-CD model 
Train 7L-CNN network using DA 𝐵 𝑟, 𝑡   and 
ground truth ℳ 
Trained model 𝔼 𝑟, 𝑡 : 𝔼 𝑟, 𝑡 trainnetwork 𝔼 𝑟, 𝑡 , DA 𝐵 𝑟, 𝑡 , ℳ ; 

Step II.D: Confusion Matrix Performance 
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Test prediction 𝑃𝑟𝑒𝑑 𝑟, 𝑡 : 𝑃𝑟𝑒𝑑 𝑟, 𝑡 predict 𝔼 𝑟, 𝑡 , 𝐶 𝑟, 𝑡 ; 
Test performance. 𝐷 𝑟, 𝑡   is obtained by 
comparing test prediction and ground truth. 𝐷 𝑟, 𝑡 compare ℳ, 𝑃𝑟𝑒𝑑 𝑟, 𝑡 . 

 

end 
Summarize all 10 trials and get 𝐷 𝑟 , see Eq. (38). 
Calculate 𝛽 𝑟 , 𝑚 1,2, . ⋯ ,7, see Eqs. (39.a)-(42) 

 

end 
Output mean and SD of 𝛽 . see Eq. (43.a) 

4 Results, and discussions 

4.1 Result of Data Augmentation 

Suppose 𝑏 𝑘  is Figure 2(a), Figure 6 shows the DA(1-7) 
results. Due to the page limit, their horizontal results DA(8-14) 
are not presented in this paper. Particularly, we only select 15 
new generated images among 30 generate results per DA 
technique.  

Figure 6(a) presents the 15 rotated new images. Figure 6(b-
e) present 15 scaled, 15 noise-injected, 15 randomly translated, 
and 15 Gamma corrected images, respectively. Figure 6(f-g) 
present the 15 HST and 30 VST new images, respectively. 

(a) Half of 𝑏 𝑘⃗

(b) Half of 𝑏 𝑘⃗

(c) Half of 𝑏 𝑘⃗

(d) Half of 𝑏 𝑘⃗

(e) Half of 𝑏 𝑘⃗

(f) Half of 𝑏 𝑘⃗

(g) Half of 𝑏 𝑘⃗
Figure 6 Half of DA(1-7) Results 
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4.2 SP compared with other three pooling methods 

The results of SP against other three pooling methods were 
presented in Table 5, which indicates that SP obtained the best 
sensitivity, accuracy, F1, MCC, and FMI. The definition of 𝛽 
can be found in Eqs (39.a)-(42). 

 For the specificity and precision indicators, the AP achieved 
the best performance. If we consider all the indicators, SP wins 
five out of seven indicators. Hence, SP gives the best 
performance compared to other three pooling methods. 

Table 5 Ten runs of different pooling methods 
L2P 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  

1 90.63 94.69 94.46 92.66 92.50 85.38 92.52 
2 91.56 92.81 92.72 92.19 92.14 84.38 92.14 
3 92.50 94.06 93.97 93.28 93.23 86.57 93.23 
4 93.13 93.75 93.71 93.44 93.42 86.88 93.42 
5 92.19 93.44 93.35 92.81 92.77 85.63 92.77 
6 91.56 93.44 93.31 92.50 92.43 85.01 92.43 
7 93.13 94.38 94.30 93.75 93.71 87.51 93.71 
8 93.75 91.56 91.74 92.66 92.74 85.33 92.74 
9 93.13 95.31 95.21 94.22 94.15 88.46 94.16 
10 93.75 93.75 93.75 93.75 93.75 87.50 93.75 
M+SD 92.53 

±1.04 
93.72 
±1.04 

93.65 
±0.96 

93.13 
±0.66 

93.08 
±0.67 

86.27 
±1.31 

93.09 
±0.66 

AP 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  

1 91.25 94.38 94.19 92.81 92.70 85.67 92.71 
2 91.88 94.06 93.93 92.97 92.89 85.96 92.90 
3 92.50 92.19 92.21 92.34 92.36 84.69 92.36 
4 92.81 94.69 94.59 93.75 93.69 87.52 93.70 
5 92.81 95.00 94.89 93.91 93.84 87.83 93.84 
6 91.25 92.50 92.41 91.88 91.82 83.76 91.83 
7 92.50 92.50 92.50 92.50 92.50 85.00 92.50 
8 93.44 95.31 95.22 94.38 94.32 88.77 94.33 
9 92.81 94.38 94.29 93.59 93.54 87.20 93.55 
10 95.63 94.38 94.44 95.00 95.03 90.01 95.03 
M+SD 92.69 

±1.25 
93.94 
±1.12 

93.87 
±1.09 

93.31 
±0.98 

93.27 
±0.99 

86.64 
±1.96 

93.27 
±0.99 

MP 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  

1 94.69 95.31 95.28 95.00 94.98 90.00 94.98 
2 92.19 92.81 92.77 92.50 92.48 85.00 92.48 
3 94.69 94.69 94.69 94.69 94.69 89.38 94.69 
4 93.75 92.81 92.88 93.28 93.31 86.57 93.31 
5 92.50 94.38 94.27 93.44 93.38 86.89 93.38 
6 95.31 91.56 91.87 93.44 93.56 86.94 93.57 
7 94.38 93.44 93.50 93.91 93.93 87.82 93.94 
8 95.00 94.69 94.70 94.84 94.85 89.69 94.85 
9 94.06 93.13 93.19 93.59 93.62 87.19 93.62 
10 94.38 94.38 94.38 94.38 94.38 88.75 94.38 
M+SD 94.09 

±1.03 
93.72 
±1.15 

93.75 
±1.08 

93.91 
±0.80 

93.92 
±0.80 

87.82 
±1.60 

93.92 
±0.80 

SP 
(Ours) 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  

1 95.00 90.63 91.02 92.81 92.97 85.71 92.99 
2 93.13 92.50 92.55 92.81 92.83 85.63 92.84 
3 94.69 93.13 93.23 93.91 93.95 87.82 93.96 
4 94.69 95.31 95.28 95.00 94.98 90.00 94.98 
5 95.31 92.81 92.99 94.06 94.14 88.15 94.14 
6 94.06 95.31 95.25 94.69 94.65 89.38 94.66 
7 93.75 95.00 94.94 94.38 94.34 88.76 94.34 
8 94.69 92.19 92.38 93.44 93.52 86.90 93.53 
9 93.75 94.69 94.64 94.22 94.19 88.44 94.19 
10 95.31 94.69 94.72 95.00 95.02 90.00 95.02 
M+SD 94.44 

±0.73 
93.63 
±1.60 

93.70 
±1.47 

94.03 
±0.80 

94.06 
±0.76 

88.08 
±1.59 

94.06 
±0.76 

4.3 Effect of DA 

We compared using our 14-way DA “DA14” against not 
using DA (symbolized as DA0), to explore the effects of our 
DA14 strategies. The cognate comparison performance is 
presented in Table 6.  

We can observe training with DA14 could significantly 
provide better performance than DA0 in terms of all seven 
indicators. Furthermore, the SD of results of DA14 are slightly 
smaller than that of DA0. 

Table 6 Comparison of DA0 and DA14 
DA 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  
DA0 92.06 

±0.85 
91.59 
±1.60 

91.65 
±1.48 

91.83 
±0.96 

91.85 
±0.92 

83.67 
±1.92 

91.85 
±0.92 

DA14 
(Ours) 

94.44 
±0.73 

93.63 
±1.60 

93.70 
±1.47 

94.03 
±0.80 

94.06 
±0.76 

88.08 
±1.59 

94.06 
±0.76 

4.4 Comparison to State-of-the-art methods 

Our 7L-CNN-CD method was compared with five state-
of-the-art approaches: RBFNN [6], K-ELM [7], ELM-BA [8], 
GoogLeNet [11], and ResNet18 [12]. 

All performances were compared on test set and presented 
in Table 7. Omitting the SD information, the comparison plot is 
presented in Figure 7, with measurement indicators chosen 
from 𝛽  to 𝛽 . 

Table 7 Comparison to state-of-the-art approaches 
Approach 𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  𝛽  
RBFNN[6] 67.08 74.48 72.52 70.78 69.64 41.74 69.64 
K-ELM[7] 57.29 61.46 59.83 59.38 58.46 18.81 58.46 
ELM-BA 
[8] 

57.08 
±3.86 

72.40 
±3.03 

67.48 
±1.65 

64.74 
±1.26 

61.75 
±2.24 

29.90 
±2.45 

61.76 
±2.24 

GoogLeNet 
[11] 

76.88 
±3.92 

83.96 
±2.29 

82.84 
±1.58 

80.42 
±1.40 

79.65 
±1.92 

61.10 
±2.62 

79.65 
±1.91 

ResNet18 
[12] 

78.96 
±2.90 

89.48 
±1.64 

88.30 
±1.50 

84.22 
±1.23 

83.31 
±1.53 

68.89 
±2.33 

83.32 
±1.53 

7L-CNN-CD 
(Ours) 

94.44 
±0.73 

93.63 
±1.60 

93.70 
±1.47 

94.03 
±0.80 

94.06 
±0.76 

88.08 
±1.59 

94.06 
±0.76 

Figure 7 Bar plot of performances of six different methods 

5 Conclusion 

In this COVID-19 diagnosis study, a novel 7L-CNN-CD was 
proposed, using a seven-layer standard convolutional neural 
network as background, and integrating data augmentation and 
stochastic pooling methods. 

Experimental results showcased our 7L-CNN-CD algorithm 
obtained excellent test performances: 𝛽 94.44 0.73 , 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3025855, IEEE

Sensors Journal

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

8 

𝛽 93.63 1.60 , 𝛽 93.70 1.47 , 𝛽 94.03 0.80 , 𝛽 94.06 0.76 , β 88.08 1.59,  𝛽 94.06 0.76 . 
The results are better than five state-of-the-art algorithms in 
terms of COVID-19 diagnosis. 

In our future studies, we shall attempt to (i) test more 
advanced data augmentation techniques; (ii) collect more 
COVID-19 data to test our algorithm; and (iii) move our 
algorithm to cloud computing platform to benefit radiologists. 

Appendix 

Table 8 Abbreviation list 
Meanings Abbreviations 
MV majority voting 
SLS Slice level selection 
HC Healthy control 
CCT Chest computed tomography 
DS downsampling 
HS histogram stretching 
CR compression ratio 
DA Data augmentation 
(A)(M)(S)(L2)P (Average) (Max) (Stochastic) (𝑙  norm) pooling 
MCC Matthews correlation coefficient 
FMI Fowlkes–Mallows index 
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