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Abstract

Background: Although tuberculosis accounts for the highest mortality from a
bacterial infection on a global scale, questions persist regarding its origin. One
hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes
suggests their most recent common ancestor followed human migrations out of
Africa approximately 70,000 years before present. However, studies using ancient
genomes as calibration points have yielded much younger dates of less than 6000
years. Here, we aim to address this discrepancy through the analysis of the highest-
coverage and highest-quality ancient MTBC genome available to date, reconstructed
from a calcified lung nodule of Bishop Peder Winstrup of Lund (b. 1605–d. 1679).

Results: A metagenomic approach for taxonomic classification of whole DNA
content permitted the identification of abundant DNA belonging to the human host
and the MTBC, with few non-TB bacterial taxa comprising the background. Genomic
enrichment enabled the reconstruction of a 141-fold coverage M. tuberculosis
genome. In utilizing this high-quality, high-coverage seventeenth-century genome as
a calibration point for dating the MTBC, we employed multiple Bayesian tree models,
including birth-death models, which allowed us to model pathogen population
dynamics and data sampling strategies more realistically than those based on the
coalescent.

Conclusions: The results of our metagenomic analysis demonstrate the unique
preservation environment calcified nodules provide for DNA. Importantly, we
estimate a most recent common ancestor date for the MTBC of between 2190 and
4501 before present and for Lineage 4 of between 929 and 2084 before present
using multiple models, confirming a Neolithic emergence for the MTBC.

Keywords: Tuberculosis, Ancient DNA, Mycobacterium tuberculosis, Molecular dating,
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Background

Tuberculosis, caused by organisms in the Mycobacterium tuberculosis complex

(MTBC), has taken on renewed relevance and urgency in the twenty-first century due

to its global distribution, its high morbidity, and the rise of antibiotic-resistant strains

[1]. The difficulty in disease management and treatment, combined with the massive

reservoir the pathogen maintains in human populations through latent infection [2],

makes tuberculosis a pressing public health challenge. Despite this, controversy exists

regarding the history of the relationship between members of the MTBC and their hu-

man hosts.

Existing literature suggests two estimates for the time to the most recent common

ancestor (tMRCA) for the MTBC based on the application of Bayesian molecular dating

to genome-wide Mycobacterium tuberculosis data. One estimate suggests the extant

MTBC emerged through a bottleneck approximately 70,000 years ago, coincident with

major migrations of humans out of Africa [3]. This estimate was reached using a large

global dataset of exclusively modern M. tuberculosis genomes, with internal nodes of

the MTBC calibrated by extrapolated dates for major human migrations [3]. This esti-

mate relied on congruence between the topology of the MTBC and human mitochon-

drial phylogenies, but this congruence does not extend to human Y chromosome

phylogeographic structure [4]. As an alternative approach, the first publication of an-

cient MTBC genomes utilized radiocarbon dates as direct calibration points to infer

mutation rates and yielded an MRCA date for the complex of less than 6000 years [5].

This younger emergence was later supported by mutation rates estimated within the

pervasive Lineage 4 (L4) of the MTBC, using four M. tuberculosis genomes from the

late eighteenth and early nineteenth centuries [6].

Despite the agreement in studies that have relied on ancient DNA calibration so

far, dating of the MTBC emergence remains controversial. The young age sug-

gested by these works cannot account for purported detection of MTBC DNA in

archeological material that predates the tMRCA estimate (e.g., Baker et al. [7];

Hershkovitz et al. [8]; Masson et al. [9]; Rothschild et al. [10]), the authenticity of

which has been challenged [11]. Furthermore, constancy in mutation rates of the

MTBC has been questioned on account of observed rate variation in modern line-

ages, combined with the unquantified effects of latency [12]. The ancient genomes

presented by Bos and colleagues, though isolated from human remains, were most

closely related to Mycobacterium pinnipedii, a lineage of the MTBC currently asso-

ciated with infections in seals and sea lions [5]. Given our unfamiliarity with the

demographic history of tuberculosis in sea mammal populations [13], identical sub-

stitution rates between the pinniped lineage and human-adapted lineages of the

MTBC cannot be assumed. Additionally, estimates of genetic diversity in MTBC

strains from archeological specimens can be difficult given their similarities to en-

vironmental mycobacterial DNA from the depositional context, which increase the

risk of false positive genetic characterization [14]. Though the ancient genomes

published by Kay and colleagues belonged to human-adapted lineages of the

MTBC, and the confounding environmental signals were significantly reduced by

their funerary context in crypts, two of the four genomes used for molecular dating

were derived from mixed-strain infections [6]. By necessity, diversity derived in

each genome would have to be ignored for them to be computationally
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distinguished [6]. Though ancient DNA is a valuable tool for answering the ques-

tion of when the MTBC emerged, the available ancient data remains sparse and

subject to case-by-case challenges.

Here, we offer a higher resolution temporal estimate for the emergence of the MTBC

and L4 using multiple Bayesian models of varying complexity through the analysis of a

high-coverage seventeenth-century M. tuberculosis genome extracted from a calcified

lung nodule. Removed from naturally mummified remains, the nodule provided an ex-

cellent preservation environment for the pathogen, and exhibited minimal infiltration

by exogenous bacteria. The nodule and surrounding lung tissue also showed excep-

tional preservation of host DNA, thus showing promise for this tissue type in ancient

DNA investigations.

Results

Pathogen identification

Computed tomography (CT) scans of the mummified remains of Bishop Peder

Winstrup of Lund, Sweden revealed a calcified granuloma a few millimeters (mm) in

size in the collapsed right lung together with two ~ 5mm calcifications in the right

hilum (Fig. 1). Primary tuberculosis causes parenchymal changes and ipsilateral hilar

lymphadenopathy that is more common on the right side [15]. Upon resolution, it can

leave a parenchymal scar, a small calcified granuloma (Ghon focus), and calcified hilar

nodes, which are together called a Ranke complex. In imaging, this complex is suggest-

ive of previous tuberculosis infection, although histoplasmosis can have the same ap-

pearance [16]. Histoplasmosis, however, is very rare in Scandinavia and is more often

seen in other parts of the world (e.g., the Americas) [17]. The imaging findings were

therefore considered to result from previous primary tuberculosis. One of the calcified

hilar nodes was extracted from the remains during video-assisted thoracoscopic sur-

gery, guided by fluoroscopy. The extracted material was further subsampled for genetic

Fig. 1 CT image of Ranke complex. CT image of Peder Winstrup’s chest in a slightly angled axial plane with
the short arrow showing a small calcified granuloma in the probable upper lobe of the collapsed right
lung, and two approximately 5 mm calcifications in the right hilum together suggesting a Ranke complex
and previous primary tuberculosis. The more lateral of the two hilar calcifications was extracted for further
analysis. In addition, there are calcifications in the descending aorta proposing atherosclerosis (arrowhead)
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analysis. DNA was extracted from the nodule and accompanying lung tissue using pro-

tocols optimized for the recovery of ancient, chemically degraded, fragmentary genetic

material [18]. The library (LUND1) was shotgun sequenced to a depth of approximately

3.7 million reads.

Adapter-clipped and base quality-filtered reads were taxonomically binned with

MALT [19] against the full NCBI Nucleotide database (“nt,” April 2016). In this

process, 3,515,715 reads, or 95% of the metagenomic reads, could be assigned to taxa

contained within the database. Visual analysis of the metagenomic profile in MEGAN6

[20] revealed the majority of these reads, 2,833,403 or 81%, were assigned to Homo sa-

piens. A further 1724 reads were assigned to the Mycobacterium tuberculosis complex

(MTBC) node. Importantly, no other taxa in the genus Mycobacterium were identified,

and the only other identified bacterial taxon was Ralstonia solanacearum (Fig. 2a), a

soil-dwelling plant pathogen frequently identified in metagenomic profiles of archeo-

logical samples [22, 23] (Additional File 1).

Pre-processed reads were mapped to both the hg19 human reference genome and a

reconstructed MTBC ancestor (TB ancestor) [21] using BWA as implemented in the

Efficient Ancient Genome Reconstruction (EAGER) pipeline [24]. Reads aligned to

hg19 with direct mapping constituted an impressive 88% of the total sequencing data

(Additional File 2). Human mitochondrial contamination was extremely low, estimated

at only 1–3% using Schmutzi [25] (Additional File 3). Reads were also mapped to the

TB ancestor (Table 1). After map quality filtering and read de-duplication, 1458 reads,

or 0.045% of the total sequencing data, aligned to the reference (Table 1) and exhibited

cytosine-to-thymine damage patterns indicative of authentic ancient DNA (Fig. 2b) [26,

27]. Qualitative preservation of the tuberculosis DNA was slightly better than that of

the human DNA, as damage was greater in the latter (Additional File 2). Laboratory-

based contamination, as monitored by negative controls during the extraction and li-

brary preparation processes, could be ruled out as the source of this DNA

(Additional File 4).

Genomic enrichment and reconstruction

Due to the clear but low-abundance MTBC signal, a uracil DNA glycosylase (UDG) li-

brary was constructed to remove DNA lesions caused by hydrolytic deamination of

Fig. 2 Screening of sequencing data from LUND1 shows preservation of host and pathogen DNA. a Krona
plots reflecting the metagenomic composition of the lung nodule. The majority of sequencing reads were
aligned to Homo sapiens (n = 2,833,403), demonstrating extensive preservation of host DNA. A small portion
of reads aligned to bacterial organisms, and 80% of these reads were assigned to the MTBC node (n =
1724). b Damage plots generated from sequencing reads mapped directly to a reconstructed MTBC
ancestor genome [21], demonstrating a pattern characteristic of ancient DNA
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cytosine residues [28] and enriched with an in-solution capture [29, 30] designed to tar-

get genome-wide data representing the full diversity of the MTBC (see the “Methods”

section). The capture probes are based on a reconstructed TB ancestor genome [21].

The enriched library was sequenced using a paired-end, 150-cycle Illumina sequencing

kit to obtain a full fragment-length distribution (Fig. S1 in Additional File 3). The

resulting sequencing data was then aligned to the hypothetical TB ancestor genome

[21], and the mapping statistics were compared with those from the screening data to

assess enrichment (Table 1). Enrichment increased the proportion of endogenous

MTBC DNA content by three orders of magnitude, from 0.045 to 45.652%, and deep

sequencing yielded genome-wide data at an average coverage of approximately 141.5-

fold. The mapped reads have an average fragment length of ~ 66 base pairs (Table 1).

We further evaluated the quality of the reconstructed genome by quantifying the

amount of heterozygous positions (see the “Methods” section). Derived alleles repre-

sented by 10–90% of the reads covering a given position with five or more reads of

coverage were counted. Only 24 heterozygous sites were counted across all variant po-

sitions in LUND1. As a comparison, the other high-coverage (~ 125 fold) ancient gen-

ome included here—body92 from Kay et al. [6]—contained 70 heterozygous positions.

Phylogeny and dating

Preliminary phylogenetic analysis using neighbor joining (Figs. S2 and S3 in Additional

File 3), maximum likelihood (Figs. S4 and S5 in Additional File 3), and maximum parsi-

mony trees (Figs. S6 and S7 in Additional File 3) indicated that LUND1 groups within

the L4 strain diversity of the MTBC, and more specifically, within the L4.10/PGG3 sub-

lineage. This sublineage was recently defined by Stucki and colleagues as the clade con-

taining L4.7, L4.8, and L4.9 [31] according to the widely accepted Coll nomenclature

[32]. Following this, we constructed two datasets to support molecular dating of the full

MTBC (Additional File 5) and L4 of the MTBC (Additional File 6).

The dataset reflecting extant diversity of the MTBC was compiled as reported else-

where [5], with six ancient genomes as calibration points. These included LUND1; two

additional ancient genomes, body80 and body92, extracted from late 18th and early

nineteenth century Hungarian mummies [6]; and three human-isolated Mycobacterium

pinnipedii strains from Peru [5], encompassing all available ancient M. tuberculosis ge-

nomes with sufficient coverage to call SNPs confidently after stringent mapping with

BWA [33] (see the “Methods” section; Additional File 5). Mycobacterium canettii was

used as an outgroup. In generating an alignment of variant positions in this dataset, we

Table 1 Mapping statistics for LUND1 libraries

Pre/post
capture

Library
treatment

Processed
reads pre-
mapping (n)

Unique
mapped
reads, quality-
filtered (n)

Endogenous
DNA (%)

Mean fold
coverage

Mean
fragment
length (bp)

GC
content
(%)

Pre-capture Non-UDG 3,696,712 1458 0.045 0.018 54.31 63.89

Post-capture UDG 59,091,507 9,482,901 45.652 141.5062 65.83 62.96

A comparison of the mapping statistics for the non-UDG screening library and UDG-treated MTBC enriched library of

LUND1 when aligned to the MTBC ancestor genome [21]. For full EAGER output, see Additional File 2
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excluded repetitive regions and regions at risk of cross-mapping with other organisms

as done previously [5], as well as potentially imported sites from recombination events,

which were identified using ClonalFrameML [34] (Additional File 7). We chose to ex-

clude these potential recombinant sites despite M. tuberculosis being generally recog-

nized as a largely clonal organism with no recombination or horizontal gene transfer,

as these phenomena have been found to occur in M. canettii [35, 36]. Only twenty-

three variant sites were lost from the full MTBC alignment as potential imports. We

called a total of 42,856 variable positions in the dataset as aligned to the TB ancestor

genome. After incompletely represented sites were excluded, 11,716 were carried for-

ward for downstream analysis. Prior to performing the Bayesian molecular dating ana-

lysis, we assessed the dataset for clock-like structure with TempEst (R2 = 0.273; see the

“Methods” section; Fig. S8 in Additional File 3).

To explore the impact of the selected tree prior and clock model, we ran multiple

variations of models as available for use in BEAST2 [37]. We first used both a strict

and a relaxed clock model together with a constant coalescent model (CC+strict,

CC+UCLD). We found there to be minimal difference between the inferred rates esti-

mated by the two models. This finding, in addition to the low rate variance estimated

in all models, suggests there is little rate variation between known branches of the

MTBC. Nevertheless, the relaxed clock appeared to have a slightly better performance

(Table 2). To experiment with models that allowed for dynamic populations, we applied

a Bayesian skyline coalescent (SKY+UCLD) and birth-death skyline prior

(BDSKY+UCLD) combined with a relaxed clock model. In the BDSKY+UCLD model,

the tree was conditioned on the root. In a prior study, Kühnert and colleagues used

birth-death tree priors to investigate two modern tuberculosis outbreaks [38]. To our

knowledge, this study is the first to use a birth-death tree prior to infer evolutionary dy-

namics of the MTBC while using ancient data for tip calibration. The BDSKY+UCLD

model had the highest marginal likelihood value of all models applied to this dataset

(Table 2).

A calibrated maximum clade credibility (MCC) tree was generated for the

BDSKY+UCLD model, with 3258 years before present (BP) (95% highest posterior

density [95% HPD] interval, 2190–4501 BP) as an estimated date of emergence for the

MTBC (Fig. 3a). Tree topology agrees with previously presented phylogenetic analyses

of the full MTBC [3, 5, 39]. To test the meaningfulness of our ancient tip calibrations,

Table 2 Model comparison for full MTBC dataset

Model Marginal
likelihood

Mean rate
(95% HPD)

Mean rate variance
(95% HPD)

Mean tree height
(95% HPD)

BDSKY+UCLD − 6125044.47176458 1.4488E−8
(9.4606E−9, 1.9632E−8)

1.6881E−17
(5.4855E−18, 3.069E−17)

3258.0478
(2189.5235, 4501.1384)

CC+UCLD − 6126017.15694528 1.214E−8
(7.1934E−9, 1.6448E−8)

1.2459E−17
(2.833E−18, 2.3969E−17)

4172.1961
(2585.2349, 6119.744)

SKY+UCLD − 6127733.35000634 1.2944E−8
(8.6149E−9, 1.7342E−8)

1.3423E−17
(4.848E−18, 2.3869E−17)

3650.4222
(2472.6434, 4992.0277)

CC+strict − 6125541.68118691 1.1573E−8
(8.6397E−9, 1.4509E−8)

NA 4453.1162
(3330.1516, 5619.3974)

Marginal likelihood and parameter estimates from four models applied to the full MTBC dataset: constant coalescent

with uncorrelated lognormal clock (CC+UCLD), constant coalescent with strict clock (CC+strict), Bayesian skyline

coalescent with uncorrelated lognormal clock (SKY+UCLD), and birth-death skyline with uncorrelated lognormal clock

(BDSKY+UCLD). Marginal likelihoods obtained through path sampling (see the “Methods” section)

Sabin et al. Genome Biology          (2020) 21:201 Page 6 of 24



we performed a date randomization test of this model in which we randomly shuffled

the tip dates among the genomes in the dataset ten times and compared the clock rate

estimates with the randomized models to that of the “true” BDSKY+UCLD model for

the MTBC dataset [40, 41]. For this dataset, the tip shuffling caused extremely slow

convergence. Though only four out of ten randomized models reached an ESS of over

200 for the clock rate parameter, all randomizations reached an ESS of 100 or greater

with combined chain lengths of over 1,000,000,000 (Additional File 10). Date randomi-

zations are evaluated based on two criteria of differing stringency: (i) the mean rate es-

timate of the randomization does not fall within the 95% HPD interval of the original

model, or (ii) the 95% HPD interval of the randomization does not overlap with that of

the original model [40]. All randomizations for the MTBC dataset fulfilled the more

stringent criteria ii, indicating the tip calibrations from the ancient genomes firmly in-

formed our results (Additional File 10; Fig. S9 in Additional File 3).

The L4 dataset includes LUND1 and the two Hungarian mummies described above

[6] as calibration points. We selected 149 modern genomes representative of the known

diversity of L4 from previously published datasets (Additional File 3) [3, 21, 31]. A

modern Lineage 2 (L2) genome was used as an outgroup. After the exclusion of sites as

discussed above (Additional File 8), a SNP alignment of these genomes in reference to

the reconstructed TB ancestor genome [21] included a total of 17,333 variant positions,

Fig. 3 MTBC maximum clade credibility tree. This MCC tree of mean heights was generated from the
BDSKY+UCLD model as applied to the full MTBC dataset. Lineages are labeled on the right side. The
ancient genomes are indicated by red asterisks and labeled on the side with their sample names. The
outgroup is labeled as “M. canettii.” The 95% HPD intervals of the heights of nodes ancestral to each lineage
are indicated as (lower boundary–upper boundary) in years before present. Ancestral nodes are highlighted
by a circle colored to match the lineage label. The time scale is expressed as years before present, with the
most recent time as 2010. The accompanying skyline plot can be found in Fig. S10 in Additional File 3
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excluding positions unique to the L2 outgroup. Only fifteen variant sites were lost from

the L4 dataset alignment. After sites missing from any alignment in the dataset were ex-

cluded from downstream analysis, 10,009 SNPs remained for phylogenetic inference. A

total of 810 SNPs were identified in LUND1, of which 126 were unique to this genome. A

SNP effect analysis [42] was subsequently performed on these derived positions (Add-

itional File 3; Additional File 9). We also assessed the L4 dataset for clock-like structure

with TempEst (R2 = 0.113; see the “Methods” section; Fig. S9 in Additional File 3).

We applied the same models as described above for the full MTBC dataset, with the

addition of a birth-death skyline model conditioned on the origin of the root

(BDSKY+UCLD+origin). All mean tree heights are within 250 years of each other and

the 95% HPD intervals largely overlap. The BDSKY+UCLD and BDSKY+UCLD+origin

models show the highest marginal likelihood values after stepping stone sampling. We

employed the BDSKY+UCLD+origin model to determine if the estimated origin of the

L4 dataset agreed with the tree height estimates for the full MTBC dataset. Intriguingly,

the estimated origin parameter (Table 3), or the ancestor of the tree root, largely over-

laps with the 95% HPD range for MTBC tree height as seen in Table 2.

A calibrated MCC tree (Fig. 4) was generated based on the BDSKY+UCLD model for

the L4 dataset. This model yielded an estimated date of emergence for L4 of 1445 BP

(95% HPD, 929–2084 BP). The tree reflects the ten-sublineage topology presented by

Stucki and colleagues [31], with LUND1 grouping with the L4.10/PGG3 sublineage.

Due to the relatively low R2 value for the relationship between sampling time and root-

to-tip distance as calculated using TempEst, we also performed a date randomization

test of the L4 BDSKY+UCLD model, in which we shuffled the sampling dates randomly

among all genomes [40, 41]. We performed ten randomizations and compared the

resulting clock rate estimates with that of the BDSKY+UCLD model with the true sam-

pling dates (Table 3). Nine out of ten randomizations fulfilled the more stringent criter-

ion ii, exhibiting no overlap between their 95% HPD intervals and that of the original

Table 3 Model comparison for L4 dataset

Model Marginal
likelihood

Mean rate
(95% HPD)

Mean rate
variance
(95% HPD)

Mean tree
height
(95% HPD)

Origin
(BDSKY
only)

BDSKY+UCLD − 6033864.2003 3.1885E−8
(1.9488E−8,
4.4007E−8)

4.991E−17
(1.0674E−17,
8.9835E−17)

1444.5416
(929.3966,
2083.7636)

NA

BDSKY+UCLD
+origin

− 60327945.1483 3.4761E−8
(2.447E−8,
4.5029E−8)

5.5123E−17
(1.9718E−17,
9.4555E−17)

1319.2463
(952.8702,
1761.4382)

2310.916
(1165.2155,
3372.9253)

CC+UCLD − 6043356.1504 3.1068E−8
(1.988E−8,
4.1624E−8)

4.3865E−17
(1.3291E−17,
7.806E−17)

1569.0512
(1054.607,
2225.4758)

NA

SKY+UCLD − 6034698.3620 2.8097E−8
(1.5329E−8,
3.9927E−8)

3.7609E−17
(6.0593E−18,
7.1919E−17)

1690.536
(1016.2712,
2646.5163)

NA

CC+strict − 6034091.5119 2.9299E−8
(2.2173E−8,
3.6637E−8)

NA 1567.544
(1186.1186,
1978.6488)

NA

Selected parameter estimates from five models applied to the Lineage 4 dataset: constant coalescent with uncorrelated

lognormal clock (CC+UCLD), constant coalescent with strict clock (CC+strict), Bayesian skyline coalescent with

uncorrelated lognormal clock (SKY+UCLD), birth-death skyline with uncorrelated lognormal clock and tree conditioned

on the root (BDSKY+UCLD), and birth-death skyline with uncorrelated lognormal clock with origin parameter estimate

(BDSKY+UCLD+origin). Marginal likelihoods obtained through path sampling (see the “Methods” section)
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(Additional File 11; Fig. S12 in Additional File 3). All ten randomizations satisfied cri-

terion i (i.e., yielded a mean rate estimate that fell outside the 95% HPD interval of the

rate from the model using true temporal values).

Discussion

The increasing number of ancient Mycobacterium tuberculosis genomes is steadily re-

ducing the uncertainty of molecular dating estimates for the emergence of the MTBC.

Here, using the ancient data available to date, we directly calibrate the MTBC time tree

and confirm that known diversity within the complex is derived from a common ances-

tor that existed ~ 2000–6000 years before present (Fig. 3; Table 2) [5, 6]. Our results

support the hypothesis that the MTBC emerged during the Neolithic, and not before.

The Neolithic revolution generally refers to the worldwide transition in lifestyle and

subsistence from more mobile, foraging economies to more sedentary, agricultural

economies made possible by the domestication of plants and animals. The period dur-

ing which it occurred varies between regions. In Africa, where the MTBC is thought to

have originated [3, 43–45], the onset of these cultural changes, and animal domestica-

tion in particular, appears to have its focus around ~ 3000 BCE, or 5000 BP, across

multiple regions [46]. The estimates presented here place the emergence of tuberculosis

Fig. 4 L4 maximum clade credibility tree. This MCC tree of mean heights was generated from the
BDSKY+UCLD model as applied to the L4 dataset. Sublineages are labeled on the right side. The ancient
genomes are indicated by red asterisks and labeled with their sample name. The Lineage 2 outgroup,
represented by L2_N0020, is labeled on the side. The 95% HPD interval for node height is displayed for
ancestral nodes of each sublineage as (lower boundary–upper boundary) in years before present. Ancestral
nodes are highlighted by a circle colored to match the sublineage label. The time scale is expressed as
years before present, with the most recent time as 2010. The accompanying skyline plot can be found in
Fig. S13 in Additional File 3
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amidst the suite of human health impacts that took place as a consequence of the Neo-

lithic lifestyle changes often referred to collectively as the first epidemiological transi-

tion [47, 48].

Tuberculosis has left testaments to its history as a human pathogen in the archeo-

logical record [49], where some skeletal analyses have been interpreted to suggest tu-

berculosis in human and animal remains pre-dating the upper 95% HPD boundary for

the MTBC tMRCA presented here [7, 8, 10, 50–54]. However, it is important to ex-

plore the evolutionary history of the MTBC through molecular data. Furthermore, it is

crucial to base molecular dating estimates on datasets that include ancient genomes,

which expand the temporal sampling window and provide data from the pre-antibiotic

era. Numerous studies have found long-term nucleotide substitution rate estimates in

eukaryotes and viruses to be dependent on the temporal breadth of the sampling win-

dow, and it is reasonable to assume the same principle applies to bacteria [55–60].

Additionally, rate variation over time and between lineages, which may arise due to

changing evolutionary dynamics such as climate and host biology, can impact the con-

stancy of the molecular clock [58, 59]. Though models have been developed to accom-

modate uncertainty regarding these dynamics [61], temporally structured populations

can provide evidence and context for these phenomena over time and can aid re-

searchers in refining models appropriate for the taxon in question [60]. Though we did

not identify substantial rate variation within either the MTBC or L4 trees (Figs. S14

and S15 in Additional File 3), it is important that we draw these observations from

temporally structured datasets and continue to do so in the future.

In addition to our tMRCA estimate for the MTBC, we present one for L4, which is

among the most globally dominant lineages in the complex [31, 62]. Our analyses

yielded tMRCA dates between ~ 900 and 2500 years before present, as extrapolated

from the 95% HPD intervals of all models (Table 3), with mean dates spanning from

320 to 691 CE. These results are strikingly similar to those found in two prior publica-

tions and support the idea proposed by Kay and colleagues that L4 may have emerged

during the late Roman period [5, 6]. However, there exist discrepancies between differ-

ent estimates for the age of this lineage in available literature that overlap with the

upper [63] and lower [62] edges of the 95% HPD intervals reported here. In addition,

recent phylogeographic analyses of the MTBC and its lineages had ambiguous results

for L4, with the internal nodes being assigned to either African or European origins de-

pending on the study or different dataset structures used within the same study [62,

63]. This finding indicates a close relationship between ancestral L4 strains in Europe

and Africa [62, 63]. Stucki and colleagues delineated L4 into two groups based on the

extent of their geographic distribution: globally distributed “generalist” sublineages and

highly local “specialist” sublineages that do not appear outside a restricted geographical

niche [31]. Thus far, the “specialist” sublineages are found regionally on the African

continent. A clear phylogenetic relationship explaining the distinction between geo-

graphically expansive and limited strains has not been established. Specifically, LUND1

falls within the globally distributed, “generalist” L4.10/PGG3 sublineage that shares a

clade with two “specialist” sublineages: L4.6.1/Uganda and L4.6.2/Cameroon (Fig. 4)

[31]. Elucidating the phenomenon that separated L4.10/PGG3 and the L4.6 lineages

could offer relevant clues about the evolutionary relationship between specific popula-

tions of MTBC organisms and specific populations of humans by selection or genetic
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drift discussed elsewhere [44, 64]. Assuming modern L4 diversity in Africa was driven

by exchanges between Europe and Africa [62, 63], why do we not see the L4.6 lineages

more frequently in European populations as we do their sister clade? The current dis-

crepancies over the age and geographic origin of L4 make interpretations of existing

data unreliable for questions of such specificity and complexity at this time. These dis-

crepancies could be due to differences in genome selection, SNP selection, and/or

model selection and parameterization. It is unlikely we will gain clarity until more di-

verse, high-quality ancient L4 genomes are generated, creating a more temporally and

geographically structured dataset.

Going deeper into comparisons between the results presented here and those from

prior studies, mutation rate estimates in the L4 and full MTBC analyses were lower

than previous estimates for comparable datasets, but within the same order of magni-

tude, with all mean and median estimates ranging between 1E−8 and 5E−8 [5, 6]

(Table 2). Nucleotide substitution rates inferred based on modern tuberculosis data are

close to but slightly higher than those based on ancient calibration, with multiple stud-

ies finding rates of approximately 1E−7 substitutions per site per year [4, 65]. Despite a

strict clock model having been rejected by the MEGA-CC molecular clock test [66] for

both the L4 and full MTBC datasets, the clock rate variation estimates do not surpass

9E−17 in any model. Additionally, there is little difference between the clock rates esti-

mated in the L4 and full MTBC datasets suggesting the rate of evolution in L4 does

not meaningfully differ from that of the full complex (Tables 2 and 3; Fig. 5).

Importantly, we explored our data through multiple models, including birth-death

tree priors. In our opinion, these models offer more robust parameterization options

for heterochronous datasets that are unevenly distributed over time, such as those pre-

sented here, by allowing for uneven sampling proportions across different time intervals

of the tree [67]. Recent studies have demonstrated the importance of selecting appro-

priate tree priors for the population under investigation, as well as the differences be-

tween birth-death and coalescent tree priors [68, 69]. It is notable that the estimates

reported here roughly agree across multiple demographic and clock models imple-

mented in BEAST2. The estimate of the origin height for the L4 dataset as calculated

with the birth-death Skyline model overlaps with the 95% HPD intervals for the tree

height estimates across models in the full MTBC dataset.

In addition to confirming the findings of prior publications, this study contributes a

high-coverage, contamination-free, and securely dated ancient M. tuberculosis genome

for future dating efforts, which may include more ancient data or more realistic models.

Much of this quality likely comes from the unique preservation environment of the cal-

cified nodule. In the case of tuberculosis, such nodules form from host immunological

responses in the waning period of an active pulmonary infection [70] and remain in

lung tissue, characterizing the latent form of the disease. Host immune cells were likely

responsible for the dominant signal of human DNA in the LUND1 metagenomic

screening library (Fig. 1, Supplementary Table 2 in Additional File 1). Similar levels of

preservation have been observed through analyses of ancient nodules yielding Brucella

[71] and urogenital bacterial infections [72], with pathogen preservation surpassing

what we report here.

LUND1 avoided multiple quality-related problems often encountered in the identifi-

cation and reconstruction of ancient genetic data from the MTBC. The genome is of
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high quality both in terms of its high coverage and low heterozygosity. Despite the low

quantity of MTBC DNA detected in the preliminary screening data, in-solution capture

enriched the proportion of endogenous DNA by three orders of magnitude (Table 1).

The resultant genomic coverage left few ambiguous positions at which multiple alleles

were represented by greater than 10% of the aligned reads. This extremely low level of

heterozygosity indicated that LUND1 contained a dominant signal of only one MTBC

strain. This circumvented analytical complications that can arise from the simultaneous

presence of multiple MTBC strains associated with mixed infections or from the pres-

ence of abundant non-MTBC mycobacteria stemming from the environment. The pres-

ervation conditions of Bishop Winstrup’s remains, mummified in a crypt far from soil,

left the small MTBC signal unobscured by environmental mycobacteria or by the dom-

inance of any other bacterial organisms (Fig. 2a). The unprecedented quality of LUND1

and the precision of its calibration point (historically recorded year of death) made it

ideal for Bayesian molecular dating applications.

While the high quality and securely dated ancient genome presented here offered ad-

vantages in a molecular dating approach, there are caveats to the results of this study.

First, this analysis excludes diversity within M. canettii—a bacterium that can cause

pulmonary tuberculosis—from the MTBC dataset, and as such, our estimate does not

preclude the possibility of a closely related ancestor having caused infections indistin-

guishable from tuberculosis in humans before 6000 BP. The inferred tMRCA could be

restricted to a lineage that survived an evolutionary bottleneck or selective sweep, pos-

sibly connected to its virulence in humans as suggested elsewhere, albeit as a consider-

ably more ancient event [45, 73, 74]. It is possible there were pathogenic sister lineages

to the MTBC that existed prior to this reduction in diversity and are not represented

by extant MTBC diversity. Additionally, despite the use of ancient data, our temporal

sampling window is still narrow given the estimated age of the MTBC and L4. For the

MTBC dataset no samples pre-date 1000 years before present, and for L4, no samples

predate 350 years before present. It could be argued the ancient L4 genomes available

to date represent samples taken in the midst of an epidemic—namely, the “White

Plague” of tuberculosis, which afflicted Europe between the seventeenth and nineteenth

Fig. 5 Substitution rate comparison across models and studies. Mean substitution rate per site per year for
all models is expressed by a filled circle, with extended lines indicating the 95% HPD interval for that
parameter. The Bos et al. [5] and Kay et al. [6] ranges are based on the reported rate values in each study.
The Bos et al. [5] range is based on a full MTBC dataset, while the Kay et al. [6] range is based on an L4
dataset. All values presented here fall within one order of magnitude
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centuries [75]. For a slow-evolving bacterial pathogen like tuberculosis, it is possible

our sampling window of ancient genomes is subject to the very issue they are meant to

alleviate: the time dependency of molecular clocks [55, 57–59]. The genomes sampled

from pre-contact Peruvian remains do not derive from a known epidemic period in his-

tory and add temporal spread to our MTBC dataset, but also belong to a clade of

animal-associated strains (M. pinnipedii) that may have been subject to dramatically

different evolutionary pressures compared to the human-associated lineages of the

complex due to differing host biology and population dynamics. However, our use of a

relaxed clock model allowed for the estimation and accommodation of variable rates

across different branches of the complex. We do not see evidence for divergent substitu-

tion rates among the branches leading to the Peruvian M. pinnipedii strains (Fig. S14 in

Additional File 3). On a related matter, we may be missing diversity for some lineages

(e.g., L6, L7, animal lineages) for which whole genome data is sparse. The available ancient

MTBC genomes also suffer from a lack of lineage diversity, with only pinniped strains and

L4 represented. We furthermore qualify our BDSKY results by acknowledging our models

required the specification of priors for the rho parameter (the sampling proportion of the

total population at discrete time points). We chose rho priors (see Additional File 3) as-

suming that our modern genomes represented a greater sampling proportion of the total

contemporaneous MTBC and L4 populations than our ancient genomes. This assumption

alone made this parameterization less arbitrary than the assumptions inherent in the

coalescent-based methods that have been utilized in the past for similar time-sampled

analyses of the MTBC and other pathogens, which assume random sampling at uniform

rates across all time periods. We also acknowledge that skyline models assume panmictic

populations, and the datasets presented here do contain spatial subdivision, which may

bias estimates regarding population dynamics. However, this aspect of our datasets is un-

likely to bias our molecular clock estimates. As stated above, the agreement of multiple

models to reach similar dates for the tMRCA of the MTBC and L4 reinforces our support

of the hypothesis that the most recent common ancestor of the MTBC diversity we are

aware of today emerged during the Neolithic.

Filling the MTBC time tree with more ancient genomes from diverse time periods,

locations, and lineages would have the potential to address the limitations listed above.

The most informative data would (a) derive from an Old World context (i.e., Europe,

Asia, or Africa) pre-dating the White Plague in Europe or (b) come from any geograph-

ical location or pre-modern time period, but belong to one of the MTBC lineages not

yet represented by ancient data. An ideal data point, which would clarify many open

questions and seeming contradictions related to the evolutionary history of the MTBC,

would derive from Africa, the inferred home of the MTBC ancestor [3, 43–45], and

pre-date 2000 years before present. A genome of this age would test the lower boundar-

ies of the 95% HPD tree height intervals estimated in the full MTBC models presented

here. Until recently, it would have been considered unrealistic to expect such data to

be generated from that time period and location. Innovations and improvements in an-

cient DNA retrieval and enrichment methods, however, have brought this expectation

firmly into the realm of the possible [30, 76]. Ancient bacterial pathogen genomes have

now been retrieved from remains from up to 5000 years before present [77–79] and re-

cent studies have reported the recovery of human genomes from up to 15,000-year-old

remains from North Africa [80, 81].
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Conclusions

Here, we offer confirmation that the extant MTBC, and all available ancient MTBC ge-

nomes, stem from a common ancestor that existed a maximum of 6000 years before

present. Many open questions remain, however, regarding the evolutionary history of

the MTBC and its constituent lineages, as well as the role of tuberculosis in human his-

tory. Elucidating these questions is an iterative process, and progress will include the

generation of diverse ancient M. tuberculosis genomes, and the refinement and im-

proved parameterization of Bayesian models that reflect the realities of MTBC (and

other organisms’) population dynamics and sampling frequencies over time. To aid in

future attempts to answer these questions, this study provides an ancient MTBC gen-

ome of impeccable quality and explores the first steps in applying birth-death popula-

tion models to modern and ancient TB data.

Methods

Lung nodule identification

The paleopathological investigation of the body of Winstrup is based on extensive CT

scan examinations with imaging of the mummy and its bedding performed with a Sie-

mens Somatom Definition Flash, 128 slice at the Imaging Department of Lund Univer-

sity Hospital. Ocular inspection of the body other than of the head and hands was not

feasible, since Winstrup was buried in his episcopal robes and underneath the body

was wrapped in linen strips. The velvet cap and the leather gloves were removed during

the investigation. The body was naturally mummified and appeared to be well pre-

served with several internal organs identified.

The imaging was quite revealing. The intracranial content was lost with remains of

the brain in the posterior skull base. Further, the dental status was poor with several

teeth in the upper jaw affected by severe attrition, caries, and signs of tooth decay, as

well as the absence of all teeth in the lower jaw. Most of the shed teeth were repre-

sented by closed alveoli, indicating antemortem tooth loss. Along with the investigation

of the bedding, a small sack made of fabric was found behind the right elbow contain-

ing five teeth: two incisors, two premolars, and one molar. The teeth in the bag com-

plemented the remaining teeth in the upper jaw. It is feasible that the teeth belonged to

Winstrup and were shed several years before he died. A fetus approximately 5 months

of age was also found in the bedding, underneath his feet.

Both lungs were preserved but collapsed with findings of a small parenchymal calcifi-

cation and two ~ 5mm calcifications in the right hilum (Fig. 1). The assessment was

that these could constitute a Ranke complex, suggestive of previous primary tubercu-

losis [70]. A laparoscopy was performed at the Lund University Hospital in a clinical

environment whereby the nodules were retrieved. Furthermore, several calcifications

were also found in the aorta and the coronary arteries, suggesting the presence of ath-

erosclerosis. The stomach, liver, and gall bladder were preserved, and several small gall-

stones were observed. The spleen could be identified but not the kidneys. The

intestines were there, however, collapsed except for the rectum that contained several

large pieces of concernments. The bladder and the prostate could not be recognized.

The skeleton showed several pathological changes. Findings on the vertebrae consist-

ent with DISH (diffuse idiopathic skeletal hyperostosis) were present in the thoracic
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and the lumbar spine. Reduction of the joint space in both hip joints and the left knee

joint indicate that Winstrup was affected by osteoarthritis. No signs of gout or osteo-

logical tuberculosis (i.e., Pott’s disease) were found.

Neither written sources nor the modern examination of the body of Winstrup reveal

the immediate cause of death. However, it is known that he was bedridden for at least

2 years preceding his death. Historical records indicate that gallstones caused him

problems while traveling to his different parishes. Additionally, he was known to have

suffered from tuberculosis as a child, which may have recurred in his old age.

Sampling and extraction

Sampling of the lung nodule, extraction, and library preparation were conducted in

dedicated ancient DNA clean rooms at the Max Planck Institute for the Science of Hu-

man History in Jena, Germany. The nodule was broken using a hammer, and a 5.5 mg

portion of the nodule was taken with lung tissue for extraction according to a previ-

ously described protocol with modifications [18]. The sample was first decalcified over-

night at room temperature in 1 mL of 0.5M EDTA. The sample was then spun down,

and the EDTA supernatant was removed and frozen. The partially decalcified nodule

was then immersed in 1 mL of a digestion buffer with final concentrations of 0.45M

EDTA and 0.25 mg/mL Proteinase K (Qiagen) and rotated at 37 °C overnight. After in-

cubation, the sample was centrifuged. The supernatants from the digestion and initial

decalcification step were purified using a 5-M guanidine-hydrochloride binding buffer

with a High Pure Viral Nucleic Acid Large Volume kit (Roche). The extract was eluted

in 100 μl of a 10-mM tris-hydrochloride, 1-mM EDTA (pH 8.0), and 0.05% Tween-20

buffer (TET). Two negative controls and one positive control sample of cave bear bone

powder were processed alongside LUND1 to control for reagent/laboratory contamin-

ation and process efficiency, respectively.

Library preparation and shotgun screening sequencing

Double-stranded Illumina libraries were constructed according to an established proto-

col with some modifications [82]. Overhangs of DNA fragments were blunt-end

repaired in a 50 μl reaction including 10 μl of the LUND1 extract, 21.6 μl of H2O, 5 μl

of NEB Buffer 2 (New England Biolabs), 2 μl dNTP mix (2.5 mM), 4 μl BSA (10 mg/ml),

5 μl ATP (10 mM), 2 μl T4 polynucleotide kinase, and 0.4 μl T4 polymerase, then puri-

fied and eluted in 18 μl TET. Illumina adapters were ligated to the blunt-end fragments

in a reaction with 20 μl Quick Ligase Buffer, 1 μl of adapter mix (0.25 μM), and 1 μl of

Quick Ligase. Purification of the blunt-end repair and adapter ligation steps was per-

formed using MinElute columns (Qiagen). Adapter fill-in was performed in a 40-μl re-

action including 20 μl adapter ligation eluate, 12 μl H2O, 4 μl Thermopol buffer, 2 μl

dNTP mix (2.5 mM), and 2 μl Bst polymerase. After the reaction was incubated at 37 °C

for 20 min, the enzyme was heat deactivated with a 20-min incubation at 80 °C. Four li-

brary blanks were processed alongside LUND1 to control for reagent/laboratory con-

tamination. The library was quantified using a real-time qPCR assay (Lightcycler 480

Roche) with the universal Illumina adapter sequences IS7 and IS8 as targets. Following

this step, the library was double indexed [83] with a unique pair of indices over two

100 μl reactions using 19 μl of template, 63.5 μl of H2O, 10 μl PfuTurbo buffer, 1 μl
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PfuTurbo (Agilent), 1 μl dNTP mix (25 mM), 1.5 μl BSA (10 mg/ml), and 2 μl of each

indexing primer (10 μM). The master mix was prepared in a pre-PCR clean room and

transported to a separate lab for amplification. The two reactions were purified and

eluted in 25 μl of TET each over MinElute columns (Qiagen), then assessed for effi-

ciency using a real-time qPCR assay targeting the IS5 and IS6 sequences in the index-

ing primers. The reactions were then pooled into one double-indexed library.

Approximately one third of the library was amplified over three 70 μl PCR reactions

using 5 μl of template each and Herculase II Fusion DNA Polymerase (Agilent). The

products were MinElute purified, pooled, and quantified using an Agilent Tape Station

D1000 Screen Tape kit. LUND1 and the corresponding negative controls were se-

quenced separately on an Illumina NextSeq 500 using single-end, 75-cycle, high-output

kits.

Pathogen identification and authentication

De-multiplexed sequencing reads belonging to LUND1 were processed in silico with

the EAGER pipeline (v.1.92) [24]. ClipAndMerge was used for adapter removal, frag-

ment length filtering (minimum sequence length, 30 bp), and base sequence quality fil-

tering (minimum base quality, 20). MALT v. 038 [19] was used to screen the

metagenomic data for pathogens using the full NCBI Nucleotide database (“nt,” April

2016) with a minimum percent identity of 85%, a minSupport threshold of 0.01, and a

topPercent value of 1.0. The resulting metagenomic profile was visually assessed with

MEGAN6 CE [20]. The adapter-clipped reads were additionally aligned to a recon-

structed MTBC ancestor genome [21] with BWA [33] as implemented in EAGER (-l

1000, -n 0.01, -q 30). Damage was characterized with DamageProfiler in EAGER [84].

In-solution capture probe design

Single-stranded probes for in-solution capture were designed using a computationally

extrapolated ancestral genome of the MTBC [21]. The probes are 52 nucleotides in

length with a tiling density of 5 nucleotides, yielding a set of 852,164 unique probes

after the removal of duplicate and low complexity probes. The number of probes was

raised to 980,000 by a random sampling among the generated probe sequences. A

linker sequence (5′-CACTGCGG-3′) was attached to each probe sequence, resulting in

probes of 60 nucleotides in length, which were printed on a custom-design 1 million-

feature array (Agilent). The printed probes were cleaved off the array, biotinylated, and

prepared for capture according to Fu et al. [30].

UDG library preparation and in-solution capture

Fifty microliters of the original LUND1 extract were used to create a uracil-DNA glyco-

sylase (UDG) treated library, in which the post-mortem cytosine to uracil modifica-

tions, which cause characteristic damage patterns in ancient DNA, are removed. The

template DNA was treated in a buffer including 7 μl H2O, 10 μl NEB Buffer 2 (New

England Biolabs), 12 μl dNTP mix (2.5 mM), 1 μl BSA (10 mg/ml), 10 μl ATP (10 mM),

4 μl T4 polynucleotide kinase, and 6 μl USER enzyme (New England Biolabs). The reac-

tion was incubated at 37 °C for 3 h, and then 4 μl of T4 polymerase was added to the

Sabin et al. Genome Biology          (2020) 21:201 Page 16 of 24



library to complete the blunt-end repair step. The remainder of the library preparation

protocol, including double indexing, was performed as described above.

The LUND1 UDG-treated library was amplified over two rounds of amplification using

Herculase II Fusion DNA Polymerase (Agilent). In the first round, five reactions using

3 μl of template each were MinElute purified and pooled together. The second round of

amplification consisted of three reactions using 3 μl of template each from the first ampli-

fication pool. The resulting products were MinElute purified and pooled together. The

final concentration of 279 ng/μl was measured using an Agilent Tape Station D1000

Screen Tape kit (Agilent). A portion of the non-UDG library (see above) was re-amplified

to 215 ng/μl. A 1:10 pool of the non-UDG and UDG amplification products was made to

undergo capture. A pool of all associated negative control libraries (Supplementary

Table 2) and a positive control known to contain M. tuberculosis DNA also underwent

capture in parallel with the LUND1 libraries. Capture was performed according to an

established protocol [29], and the sample product was sequenced on an Illumina NextSeq

with a 150-cycle paired end kit to a depth of ~ 60 million paired reads. The negative con-

trols were sequenced on a NextSeq 500 with a 75-cycle paired end kit.

Genomic reconstruction, heterozygosity, and SNP calling

For the enriched, UDG-treated LUND1 sequencing data, de-multiplexed paired-end

reads were processed with the EAGER pipeline (v. 1.92) [24], adapter-clipped with

AdapterRemoval, and aligned to the MTBC reconstructed ancestor genome with BWA

(-l 32, -n 0.1, -q 37). Previously published ancient and modern Mycobacterium tubercu-

losis genomic data (Supplementary Table 4, Supplementary Table 5) were processed as

single-end sequencing reads, but otherwise processed identically in the EAGER pipe-

line. Genome Analysis Toolkit (GATK) UnifiedGenotyper was used to call SNPs using

default parameters and the EMIT ALL SITES output option [85]. We used Multi-

VCFAnalyzer (v0.87 https://github.com/alexherbig/MultiVCFAnalyzer) [5] to create

and curate SNP alignments for the L4 (Supplementary Table 5) and full MTBC (Sup-

plementary Table 4) datasets based on SNPs called in reference to the TB ancestor gen-

ome [21], with repetitive sequences, regions subject to cross-species mapping, and

potentially imported sites excluded. The repetitive and possibly cross-mapped regions

were excluded as described previously [5]. Potentially imported sites were identified

using ClonalFrameML [34] separately for each dataset, using full genomic alignments

and trees generated in RAxML [86] as input without the respective outgroups.

Remaining variants were called as homozygous if they were covered by at least 5 reads,

had a minimum genotyping quality of 30, and constituted at least 90% of the alleles

present at the site. Outgroups for each dataset were included in the SNP alignments,

but no variants unique to the selected outgroup genomes were included. Minority al-

leles constituting over 10% were called and assessed for LUND1 to check for a multiple

strain M. tuberculosis infection. Sites with missing or incomplete data were excluded

from further analysis.

Phylogenetic analysis

Neighbor joining (Figs. S2 and S3 in Additional File 3), maximum likelihood (Figs. S4

and S5 in Additional File 3), and maximum parsimony (Figs. S6 and S7 in Additional
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File 3) trees were generated for the L4 and full MTBC datasets (Tables S4 and S5 in

Additional File 1), with 500 bootstrap replications per tree. Maximum parsimony and

neighbor joining trees were configured using MEGA-Proto and executed using MEGA-

CC [66]. Maximum likelihood trees were configured and executed using RAxML [86]

with the GTR+GAMMA (4 gamma categories) substitution model.

Bayesian phylogenetic analysis of full MTBC and L4 datasets

Bayesian phylogenetic analysis of the full MTBC was conducted using a dataset of 261

M. tuberculosis genomes including LUND1, five previously published ancient genomes

[5, 6], and 255 previously published modern genomes (Additional File 5). Mycobacter-

ium canettii was used as an outgroup for this dataset. Bayesian phylogenetic analysis of

L4 of the MTBC was conducted using a dataset of 152 genomes including three ancient

genomes presented here and in a previous publication [6] and 149 previously published

modern genomes (Additional File 6). Body80 and body92 were selected out of the eight

samples presented by Kay and colleagues based on multiple criteria. Multiple samples

from that study proved to be mixed strain infections. Apart from body92, these samples

were excluded from this analysis due to our present inability to separate strains with re-

tention of unique positions. Body92 had a clearly dominant strain estimated by Kay et al.

[6] to constitute 96% of the tuberculosis DNA in the sample, and stringent mapping in

BWA [33] (-l 32, -n 0.1, -q 37) for this project found the genome to have 124-fold cover-

age when mapped against the TB ancestor. Between the degree of dominance and the

high coverage, we could confidently call variant positions from the dominant strain (Fig.

S16a in Additional File 3). Body80 was the only single-strain sample from that collection

to have sufficient coverage (~8x) for confident SNP calling after stringent mapping (Fig.

S16b in Additional File 3). For selection criteria for the modern genomes, please see

Additional File 3. L2_N0020 was used as an outgroup. The possibility of equal evolution-

ary rates in both datasets was rejected by the MEGA-CC molecular clock test [66]. Tem-

pEst [87] was also used to assess temporal structure in the phylogeny prior to analysis

with BEAST2 [37]. For the full MTBC alignment, R2 = 0.273, and for the L4 alignment,

R2 = 0.113 (Figs. S8 and S9 in Additional File 3). We generated a maximum likelihood

tree and alignment for the full MTBC excluding the animal-associated lineages, and con-

sequently excluding the ancient M. pinnipedii genomes, to test if limiting the dataset to

the human lineages produced a stronger temporal signal. Without the anchor of the an-

cient M. pinnipedii genomes, the temporal signal for the full complex reduced (R2 =

0.06), as all ancient calibration points were limited to Lineage 4 (Fig. S17 in Additional

File 3). When the root-to-tip distances are plotted with points labeled according to

lineage or sublineage, it becomes clear that clade membership is largely driving the dis-

tance from root of the genomes. However, there remains a temporal signal in the data.

A correction for static positions in the M. tuberculosis genome not included in the

SNP alignment was included in the configuration file. A “TVM” substitution model, se-

lected based on results from ModelGenerator [88], was implemented in BEAUti as a

GTR+G4 model with the AG rate parameter fixed to 1.0. LUND1, body80, and body92

were tip-calibrated using year of death, which was available for all three individuals

(Additional File 6). The three ancient Peruvian genomes were calibrated using the mid-

point of their OxCal ranges (Additional File 5) [5]. We performed tip sampling for all
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modern genomes excluding the outgroup over a uniform distribution between 1992

and 2010 in all models. The outgroup was fixed to 2010 in every case. All tree priors

were used in conjunction with an uncorrelated relaxed lognormal clock model. The

constant coalescent model was also used in conjunction with a strict clock model.

Two independent MCMC chains of 200,000,000 iterations minimum were com-

puted for each model. If the ESS for any parameter was below 200 after the chains

were combined, they were resumed with additional iterations. The results were

assessed in Tracer v1.7.1 with a 10% burn-in [89]. Trees were sampled every 20,

000 iterations. The log files and trees for each pair of runs were combined using

LogCombiner v2.4.7 [37]. An MCC tree was generated using TreeAnnotator with

10% burn-in [37]. Figures 3 and 4 were generated using the ggtree package [90] in

R [91]. For details on the parameterization of the birth-death models, please see

Additional File 3.

Marginal likelihood was calculated using stepping stone sampling [92] implemented

in the MODELSELECTION package in BEAST2. The total chain length required for

convergence in each model was split across 100 steps. Following this, we performed a

date randomization test [41] for the BDSKY+UCLD model for each dataset. Dates were

shuffled randomly among all genomes excluding the outgroup. For both datasets the

outgroup was used as an anchor for tip-dating of the “modern” genomes in each date-

randomized model. Ten randomizations were generated for each model and run in at

least two parallel chains. For the L4 dataset, the chains were run until the rate param-

eter reached an ESS of at least 200 for every date-randomized model (Additional File 11).

For the date randomizations of the full MTBC dataset, we reached sufficient ESS in

four out of ten models. However, as noted above in the “Results” section, we reached

ESS values greater than or equal to 100 for the rate parameter for all models. We

present the rate estimates and rate parameter ESS values for all MTBC date randomiza-

tions (Additional File 10).
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